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Abstract. In this note we consider the metric Ramsey problem for the normed spaces �p .
Namely, given some 1 ≤ p ≤ ∞ and α ≥ 1, and an integer n, we ask for the largest m
such that every n-point metric space contains an m-point subspace which embeds into �p

with distortion at most α. In [1] it is shown that in the case of �2, the dependence of m on
α undergoes a phase transition at α = 2. Here we consider this problem for other �p , and
specifically the occurrence of a phase transition for p �= 2. It is shown that a phase transition
does occur at α = 2 for every p ∈ [1, 2]. For p > 2 we are unable to determine the answer,
but estimates are provided for the possible location of such a phase transition. We also study
the analogous problem for isometric embedding and show that for every 1 < p <∞ there
are arbitrarily large metric spaces, no four points of which embed isometrically in �p .

1. Introduction

A Ramsey-type theorem states that large systems necessarily contain large, highly struc-
tured subsystems. Here we consider Ramsey-type problems for finite metric spaces,
interpreting “highly structured” as having low distortion embedding in �p.

A mapping between two metric spaces f : M → X is called an embedding of M in
X . The distortion of the embedding is defined as

dist( f ) = sup
x, y ∈ M

x �= y

dX ( f (x), f (y))

dM(x, y)
· sup

x, y ∈ M
x �= y

dM(x, y)

dX ( f (x), f (y))
.
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The least distortion required to embed M in X is denoted by cX (M). When cX (M) ≤ α

we say that M α-embeds in X . In this note we study the following notion.

Definition 1 (Metric Ramsey Function). We denote by RX (α, n) the largest integer m
such that every n-point metric space has a subspace of size m that α-embeds into X .

When X = �p we use the notations cp and Rp. Note that for p ∈ [1,∞], it is
always true that Rp(α, n) ≥ R2(α, n). When α = 1 we drop it from the notation, i.e.,
RX (n) = RX (1, n).

Bourgain et al. [4] study this function for X = �2, as a metric analog of Dvoretzky’s
theorem [7]. They prove:

Theorem 1 [4]. For any α > 1 there exists C(α) > 0 such that R2(α, n) ≥ C(α) log n.
Furthermore, there exists α0 > 1 such that R2(α0, n) = O(log n).

In [1] the metric Ramsey problem is studied comprehensively. In particular, the fol-
lowing phase transition is established in the case of X = �2.

Theorem 2 [1]. Let n ∈ N. Then:

1. For every 1 < α < 2: c(α) log n ≤ R2(α, n) ≤ 2 log n + C(α), where c(α) and
C(α) may depend only on α.

2. For every α > 2: nc′(α) ≤ R2(α, n) ≤ nC ′(α), where c′(α) and C ′(α) depend only
on α and 0 < c′(α) ≤ C ′(α) < 1. Moreover, c′(α) tends to 1 as α tends to ∞.

By Dvoretzky’s theorem, the lower bound in part 2 of Theorem 2 implies in particular
that if α > 2, and X is any infinite-dimensional normed space, then RX (α, n) ≥ nc′(α).
Therefore, in our search for a possible phase transition for Rp(·, n), p �= 2, it is natural
to extend the upper bound in part 1 of Theorem 2 to this range. The main result proved
in this note is the following:

Theorem 3. There is an absolute constant c > 0 such that for every 0 < δ < 1:

1. For 1 ≤ p < 2, Rp(2 − δ, n) ≤ ec/δ2
log n.

2. For 2 < p <∞, Rp(22/p − δ, n) ≤ ec/p2δ2
log n.

Thus we extend the result of [1] to show that a phase transition occurs in the metric
Ramsey problem for �p, p ∈ [1, 2), at α = 2. The asymptotic behavior of Rp(α, n) for
p > 2, and α ∈ [22/p, 2], is left as an open problem. In particular, we do not know
whether or not this function undergoes a similar phase transition. We find this problem
potentially significant: if there is a phase transition at 2 also in the range 2 < p < ∞,
then this result will certainly be of great interest. On the other hand, if it is possible to
improve the lower bound in part 2 of Theorem 2 for p > 2 and certain distortions strictly
less than 2, then this would involve an embedding technique that is different from the
method used in [1], which does not distinguish between the various �p spaces.

The proof of the upper bound on R2(α, n) for α < 2 stated in Theorem 2 uses
the Johnson-Lindenstrauss dimension reduction lemma for �2 [10]. For �p, p �= 2, no



Some Low Distortion Metric Ramsey Problems 29

such dimension reduction is known to hold. (Recent work [5], [11] shows that dimension
reduction does not, in general, hold in �1.) Our proof is based on a non-trivial modification
of the random construction in [4], in the spirit of Erdös’ upper bound on the Ramsey
numbers [9], [3]. In the process we prove tight bounds on the embeddability of the
metrics of complete bipartite graphs in �p. Specifically we show that

cp(Kn,n) =
{

2 −�(n−1), p ∈ [1, 2],
22/p −�((pn)−1), p > 2.

The second part of this note addresses the isometric Ramsey problem for p ∈ (1,∞).
It turns out that this problem is naturally tackled within the class of uniformly convex
normed spaces (see Section 3 for the definition).

Theorem 4 (Isometric Ramsey Problem). Let X be a uniformly convex normed space
with dim(X) ≥ 2. Then RX (1, n) = 3 for n ≥ 3.

Since �p is uniformly convex for p ∈ (1,∞), the conclusion of Theorem 4 holds in
these cases. Note that the theorem does not apply for �1 and �∞ which are not uniformly
convex. Specifically, it is known that �∞ is universal in that it contains an isometric copy
of every finite metric space, whence R∞(n) = n. It is known [6] that any four-point
metric space is isometrically embeddable in �1, and therefore R1(n) ≥ 4 for n ≥ 4. The
determination of R1(n) is left as an open problem.

2. An Upper Bound for α < 2

In this section we prove that for any α < min{2, 22/p}, Rp(α, n) = O(log n). Our
technique both improves and simplifies the technique of [4], which is itself in the spirit
of Erdös’ original upper bound for the Ramsey coloring numbers. The basic idea is to
exploit a universality property of random graphs G ∈ G(n, 1

2 ). Namely, that any fixed
graph of constant size appears as an induced subgraph of every induced subgraph of G
of size �(log n). More precisely, we define the following notion of universality.

Definition 2. Let H be a graph. A graph G is called (H, s)-universal if every set of s
vertices in G contains an induced subgraph isomorphic to H .

Proposition 1. For every k-vertex graph H there exists a constant C > 0 and an
integer n0 such that for any n > n0 there exists an (H,C log n)-universal graph on n
vertices. Furthermore,

C ≤ O(k22(
k
2)) and n0 ≤ O(k32(

k
2)).

Such facts are well known in random graph theory, and similar arguments can be
found for example in [13]. We sketch the standard details for the sake of completeness.

Recall that a family of sets F is called almost disjoint if |A ∩ B| ≤ 1 for every
A, B ∈ F . In what follows, given a set S and an integer k, we denote by

(S
k

)
the set of

all k-point subsets of S.
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Lemma 2. For every integer k and a finite set S of cardinality s = |S| > 2k2, there
exists an almost disjoint family K ⊂ (S

k

)
, such that |K | ≥ �s/2k�2.

Proof. Let p be a prime satisfying s/2k ≤ p ≤ s/k, and assume that

L = {(i, j); i, j ∈ Zp, i ∈ {0, . . . , k − 1}} ⊆ S.

For each a, b ∈ Zp (the field of residues modulo p), define

Aa,b = {(i, j); j ≡ ai + b (mod p), i ∈ {0, . . . , k − 1}},
and take K = {Aa,b|a, b ∈ Zp}. The set K is easily checked to satisfy the requirements.

As usual G(n, 1
2 ) denotes the model of random graphs in which each edge on n

vertices is chosen independently with probability 1
2 .

Lemma 3. Let H be a k-vertex graph and let s > 2k2. The probability that a random
graph G ∈ G(s, 1

2 ) does not contain an induced subgraph isomorphic to H , is at most

(1 − 2−(k
2))�s/2k�2

.

Proof. Construct, as in Lemma 2, an almost disjoint family F of �s/2k�2 subsets of
{1, . . . , s}, the vertex set of G. If F1 �= F2 ∈ F , then the event that the restriction of G
to F1 (resp. F2) is isomorphic to H is independent. Hence, the probability that none of
the sets F ∈ F spans a subgraph isomorphic to H is at most (1 − 2−(k

2))�s/2k�2
.

Proof of Proposition 1. Let G be a random graph in G(n, 1
2 ). By the previous lemma,

the expected number of sets of s vertices which contain no induced isomorphic copy of
H is at most

(n
s

)
(1−2−(k

2))�s/2k�2
. If this number is< 1, then there is an (H, s)-universal

graph, as claimed. It is an easy matter to check that this holds with the parameters as
stated.

A class C of finite metric spaces is called a metric class if it is closed under isometries.
C is said to be hereditary if M ∈ C and N ⊂ M imply N ∈ C. We call a metric space
(X, d) a {0, 1, 2} metric space if for all x, y ∈ X , d(x, y) ∈ {0, 1, 2}. There is a simple
1:1 correspondence between graphs and {0, 1, 2} metrics. Namely, associated with a
{0, 1, 2} metric space M = (X, d) is the graph G = (X, E) where {x, y} ∈ E iff
dM(x, y) = 1.

Lemma 4. Let C be a hereditary metric class of finite metric spaces, and suppose that
there exists some finite {0, 1, 2} metric space M0 which is not in P . Then there exist
metric spaces M = Mn of arbitrarily large size n such that every subspace S ⊂ Mn with
at least C log n points is not in C. The constant C depends only on the cardinality of M0.

Proof. Let H0 be the graph corresponding to the metric space M0. We apply Proposi-
tion 1, to construct arbitrarily large graphs Gn = (Vn, En)with |Vn| = n, in which every
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set of ≥ C log n vertices contains an induced subgraph isomorphic to H0. Let Mn be
the n-point metric space corresponding to Gn . It follows that every subspace of Mn of
size ≥ C log n contains a metric subspace that is isometric to M0. Since C is hereditary,
S /∈ C.

Note that {M; M is a metric space, cp(M) ≤ α} is a hereditary metric class. There-
fore, in order to show that for α < 2, Rp(α, n) = O(log n), it is enough to find a {0, 1, 2}
metric space whose �p distortion is greater than α. We use the complete bipartite graphs
Kn,n . The �p-distortion of Kn,n , 1 ≤ p <∞, is estimated in the following proposition.

Proposition 5. For every 1 ≤ p ≤ 2,

2

(
n − 1

n

)1/p

≤ cp(Kn,n) ≤ 2

√
n − 1

n
.

For every 2 ≤ p <∞,

22/p

(
n − 1

n

)1/p

≤ cp(Kn,n) ≤ 22/p

(
1 − 1

2n

)1/p

.

Before proving Proposition 5, we deduce the main result of this section:

Theorem 5. There is an absolute constant c > 0 such that for every 0 < δ < 1, if
1 ≤ p ≤ 2, then

Rp(2 − δ, n) ≤ ec/δ2
log n,

and if 2 < p <∞, then

Rp(2
2/p − δ, n) ≤ ec/p2δ2

log n.

Proof. Proposition 1 implies that there is an absolute constant C such that for every
n ≥ 2Ck3

there exists a {0, 1, 2} metric space Mn such that any subset S ⊂ Mn of
cardinality at least 2Ck2

log n contains an isometric copy of Kk,k .
We start with 1 ≤ p ≤ 2. Let k = �2/δ� + 1. By Proposition 5,

cp(Kk,k) ≥ 2

(
1 − 1

k

)1/p

> 2

(
1 − δ

2

)
= 2 − δ,

so that for n large enough (≥ eC ′/δ3
), and hence for all n (by proper choice of constants),

Rp(2 − δ, n) ≤ eC ′/δ2
log n.

When p > 2 take k = 2�4/pδ�. In this case one easily verifies that

cp(Kk,k) ≥ 22/p

(
1 − 1

k

)1/p

≥ 22/p − δ,

from which the required result follows as above.
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In order to prove Proposition 5, we need some preparation.

Lemma 6. Let A = (ai j ) be an n × n matrix and 2 ≤ p <∞. Then

n∑
i=1

n∑
j=1

(∣∣∣∣∣
n∑

k=1

aik −
n∑

k=1

ajk

∣∣∣∣∣
p

+
∣∣∣∣∣

n∑
k=1

aki −
n∑

k=1

akj

∣∣∣∣∣
p)

≤ (2n)p

2

n∑
i=1

n∑
j=1

|ai j |p.

Proof. We identify �n2

p with the space of all n × n matrices A = (ai j ), equipped with
the �p norm:

‖A‖p =
(

n∑
i=1

n∑
j=1

|ai j |p

)1/p

.

Define a linear operator T : Rn2 → R
n2 ⊕ Rn2

by

T (ai j ) =
(

n∑
k=1

aik −
n∑

k=1

ajk

)
i j

⊕
(

n∑
k=1

aki −
n∑

k=1

akj

)
i j

.

For q ≥ 1 denote ‖T ‖q→q = maxA �=0 ‖T (A)‖q/‖A‖q . Our goal is to show that
‖T ‖p→p ≤ 21−1/pn. By a result from the complex interpolation theory for linear oper-
ators (see [2]), for 2 ≤ p ≤ ∞, ‖T ‖p→p ≤ ‖T ‖2/p

2→2 · ‖T ‖1−2/p
∞→∞. It is therefore enough

to prove the required estimate for p = 2 and p = ∞. The case p = ∞ is simple:

‖T (A)‖∞ = max
1≤i, j≤n

max

{∣∣∣∣∣
n∑

k=1

aik −
n∑

k=1

ajk

∣∣∣∣∣ ,
∣∣∣∣∣

n∑
k=1

aki −
n∑

k=1

akj

∣∣∣∣∣
}
≤ 2n‖A‖∞.

For p = 2 we have to show that

n∑
i=1

n∑
j=1



∣∣∣∣∣

n∑
k=1

aik −
n∑

k=1

ajk

∣∣∣∣∣
2

+
∣∣∣∣∣

n∑
k=1

aki −
n∑

k=1

akj

∣∣∣∣∣
2

 ≤ 2n2

n∑
i=1

n∑
j=1

|ai j |2.

This inequality follows from the following elementary identity:

2n2
n∑

i=1

n∑
j=1

a2
i j =

n∑
i=1

n∑
j=1


( n∑

k=1

aik −
n∑

k=1

ajk

)2

+
(

n∑
k=1

aki −
n∑

k=1

akj

)2



+ 2
n∑

i=1

n∑
j=1

(
nai j −

n∑
k=1

aik −
n∑

k=1

akj

)2

.

Corollary 7. Let 1 ≤ p <∞ and x1, . . . , xn, y1, . . . , yn ∈ �p. Then if 2 ≤ p <∞,

n∑
i=1

n∑
j=1

(‖xi − xj‖p
p + ‖yi − yj‖p

p

) ≤ 2p−1
n∑

i=1

n∑
j=1

‖xi − yj‖p
p .
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If 1 ≤ p ≤ 2, then

n∑
i=1

n∑
j=1

(‖xi − xj‖p
p + ‖yi − yj‖p

p

) ≤ 2
n∑

i=1

n∑
j=1

‖xi − yj‖p
p .

Proof. By summation it is clearly enough to prove these inequalities for x1, . . . , xn,

y1, . . . , yn ∈ R. If 2 ≤ p < ∞, then the required result follows from an application
of Lemma 6 to the matrix ai j = xi − yj . If 1 ≤ p ≤ 2, then consider �p equipped
with the metric d(x, y) = ‖x − y‖p/2

p . It is well known (see [14]) that (�p, d) embeds
isometrically in �2, so that the case 1 ≤ p ≤ 2 follows from the case p = 2.

Remark. In [8] Enflo defined the notion on generalized roundness of a metric space.
A metric space (M, d) is said to have generalized roundness q ≥ 0 if for every
x1, . . . , xn, y1, . . . , yn ∈ M ,

n∑
i=1

n∑
j=1

(d(xi , xj )
q + d(yi , yj )

q) ≤ 2
n∑

i=1

n∑
j=1

d(xi , yj )
q .

Enflo proved that Hilbert space has generalized roundness 2 and in [12] the concept of
generalized roundness was investigated and was shown to be equivalent to the notion of
negative type (see [6] and [14] for the definition). Particularly, it was proved in [12] that
for 1 ≤ p < 2, �p has generalized roundness p, which is precisely the second statement
in Corollary 7. For the case p = 1, simpler more direct proofs can be given which do
not use reduction to the case p = 2, see, e.g., [6]. Observe that Lemma 6 would follow
simply by convexity had it not been for the additional factor 1

2 on the right-hand side.
This factor is crucial for our purposes, and this is why the interpolation argument was
needed.

Proof of Proposition 5. We identify Kn,n with the metric on {u1, . . . , un, v1, . . . , vn}
where d(ui , uj ) = d(vi , vj ) = 2 for all i �= j , and d(ui , vj ) = 1 for every 1 ≤ i, j ≤ n.
Fix some 1 ≤ p <∞ and let f : {u1, . . . , un, v1, . . . , vn} → �p be an embedding such
that for every x, y ∈ Kn,n , d(x, y) ≤ ‖ f (x)− f (y)‖p ≤ Ld(x, y). Then

n∑
i=1

n∑
j=1

(‖ f (ui )− f (uj )‖p
p + ‖ f (vi )− f (vj )‖p

p) ≥ 2n(n − 1)2p

and
n∑

i=1

n∑
j=1

‖ f (ui )− f (vj )‖p
p ≤ n2L p.

For 1 ≤ p ≤ 2 Corollary 7 gives

2n(n − 1)p2p ≤ 2n2L p �⇒ L ≥ 2

(
n − 1

n

)1/p

.
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For 2 ≤ p <∞ we get that

2n(n − 1)2p ≤ 2p−1n2L p �⇒ L ≥ 22/p

(
n − 1

n

)1/p

.

This proves the required lower bounds on cp(Kn,n).
To prove the upper bound assume first that p = 2 and denote by {ei }∞i=1 the standard

unit vectors in �2. Define f : Kn,n → �2n
2 by

f (ui ) =
√

2

(
ei − 1

n

n∑
j=1

ej

)
,

f (vi ) =
√

2

(
en+i − 1

n

n∑
j=1

en+ j

)
.

Then for i �= j , ‖ f (ui ) − f (uj )‖2 = ‖ f (vi ) − f (vj )‖2 = 2 = d(ui , uj ) = d(vi , vj ).
On the other hand,

‖ f (ui )− f (vj )‖2 =
√
‖ f (ui )‖2

2 + ‖ f (vj )‖2
2

=
√

4

(
1 − 1

n

)2

+ 4(n − 1) · 1

n2
= 2

√
n − 1

n
.

This finishes the calculation of c2(Kn,n). For 1 ≤ p < 2, since for every ε > 0 and
for every k, �p contains a (1 + ε) distorted copy of �k

2, we get the estimate cp(Kn,n) ≤
2
√
(n − 1)/n.
The case 2 < p < ∞ requires a different embedding. We begin by describing an

embedding with distortion 22/p and then explain how to modify it so as to reduce the
distortion by a factor of (1 − 1/2n)1/p. Let z1, . . . , zn be a collection of n mutually
orthogonal ±1 vectors of dimension m = O(n). (For example, the first n rows in an
m×m Hadamard matrix.) In our first embedding we define f (ui ) as the (2m)-dimensional
vector (zi , 0), namely, zi concatenated with m zeros. Likewise, f (vi ) = (0, zi ) for all
i . Now ‖ f (ui ) − f (uj )‖p = 2(m/2)1/p and ‖ f (ui ) − f (vj )‖p = (2m)1/p, and so f
has distortion 22/p. To get the (1 − 1/2n)1/p improvement, note that for some m ≤ 4n
it is possible to select the zi so that the mth coordinate in all of them is +1. Modify the
previous construction to an embedding into 2m − 1 dimensions as follows: now g(ui ) is
zi concatenated with m −1 zeros, whereas g(vi ) has zeros in the first m −1 coordinates,
1 in the mth and this is followed by the first m − 1 coordinates of the vector zi . The easy
details are omitted.

Remark. The upper bounds in Proposition 5 were not used in the proof of Theorem 5.
Apart from their intrinsic interest, these upper estimates show that the above technique
cannot prove an upper bound of O(log n) on R2(2 − ε, n) which is independent of ε.
In fact, this can never be achieved using {0, 1, 2} metric spaces due to the following
proposition.

Proposition 8. Let X be an n-point {0, 1, 2}metric space. Then c2(X) ≤ 2
√
(n − 1)/n.
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Proof. We think of X as a metric on {1, . . . , n} and denote d(i, j) = di j . Define an
n × n matrix A = (ai j ) as follows:

ai j =




2 if i = j,
0 if di j = 2,
2

n
if di j = 1.

We claim that A is positive semidefinite. Indeed, for any z ∈ Rn ,

〈Az, z〉 =
n∑

i=1

n∑
j=1

ai j zi zj

≥
n∑

i=1

2z2
i −

∑
i �= j

2

n
|zi | · |zj |

≥
n∑

i=1

2z2
i −

n∑
i=1

n∑
j=1

2

n
|zi | · |zj |

= 2‖z‖2
2 −

2

n
‖z‖2

1 ≥ 2‖z‖2
2 −

2

n
n‖z‖2

2 = 0.

In particular, it follows that A has a square root, denoted A1/2. Let e1, . . . , en be the
standard unit vectors in Rn . Define f : X → R

n by f (i) = A1/2ei . Now,

‖ f (i)− f ( j)‖2
2 = 〈Aei , ei 〉 + 〈Aej , ej 〉 − 2〈Aei , ej 〉 = aii + aj j − 2ai j ,

so that if di j = 1, then ‖ f (i) − f ( j)‖2 = √
4 − 4/n and if di j = 2, then ‖ f (i) −

f ( j)‖2 = 2. It follows that

dist( f ) = 2

√
n − 1

n
.

3. The Isometric Ramsey Problem

In this section we prove that for n ≥ 3, 1 < p <∞, Rp(n) = Rp(1, n) = 3. In fact, we
show that this is true for any uniformly convex normed space. We begin by sketching an
argument that is specific to �2:

Proposition 9. R2(n) = 3 for n ≥ 3.

Proof. That R2(n) ≥ 3 follows since any metric space on three points embeds isometri-
cally in �2

2. To show that R2(n) ≤ 3, we construct a metric space on n > 3 points, no four-
point subspace of which embeds isometrically in �2. Fix an integer n > 3 and let {ai }n

i=0
be an increasing sequence such that a0 = 0, a1 = 1, and for 1 ≤ i < n, ai+1 ≥ 2(n+1)ai .
Fix some 0 < ε < 1/(2an). It is easily verified that d(i, j) = |i − j |− εa|i− j | is a metric
on {1, 2, . . . , n}. We show that for ε small enough no four points in ({1, . . . , n}, d) em-
bed isometrically in �2. Fix four integers 1 ≤ i1 < i2 < i3 < i4 ≤ n and set j = i2 − i1,
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k = i3 − i2, l = i4 − i3. Suppose that for every ε > 0 there exists an isometric em-
bedding f : ({i1, i2, i3, i4}, d) → �3

2. Without loss of generality we may assume that
f (i1) = (α, β, γ ), f (i2) = (0, 0, 0), f (i3) = (k − εak, 0, 0), and f (i4) = (p, q, 0).
Then

2α(k − εak) = 2〈 f (i1), f (i3)〉
= ‖ f (i1)− f (i2)‖2

2 + ‖ f (i3)− f (i2)‖2
2 − ‖ f (i3)− f (i1)‖2

2

= ( j − εaj )
2 + (k − εak)

2 − ( j + k − εaj+k)
2.

Hence,

α ≤ − j + ε

k
[(k + j)ak+ j − jaj − kak − jak] + O(ε2).

Similarly,

p ≥ (k + l)+ ε

k
[(k + l)ak − (k + l)ak+l − kak + lal] + O(ε2).

Now

j + k + l − εaj+k+l

= ‖ f (i4)− f (i1)‖2

≥ p − α

≥ j + k + l

+ ε

k
[(k + l)ak − (k + l)ak+l + lal − (k + j)ak+ j + jaj + jak]

+ O(ε2).

Letting ε tend to zero we deduce that

aj+k+l ≤
(

1 + j

k

)
ak+ j +

(
1 + l

k

)
ak+l − l

k
al − j

k
aj − j + k + l

k
ak

< 2(n + 1)aj+k+l−1,

which is a contradiction.

The argument above is quite specific to �2, and so we now consider any uniformly
convex normed space. The modulus of uniform convexity of a normed space X is defined
by

δX (ε) = inf

{
1 − ‖a + b‖

2
; ‖a‖, ‖b‖ ≤ 1 and ‖a − b‖ ≥ ε

}
.

X is said to be uniformly convex if δX (ε) > 0 for every 0 < ε ≤ 2. The L p spaces
1 < p <∞ are known to be uniformly convex. For a uniformly convex space X , δX is
known to be continuous and strictly increasing on (0, 2].
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Assume that X is a uniformly convex normed space and a, b ∈ X\{0}. Then∥∥∥∥ a

‖a‖ + b

‖b‖
∥∥∥∥ =

∥∥∥∥
(

1

‖a‖ + 1

‖b‖
)
(a + b)− a

‖b‖ − b

‖a‖
∥∥∥∥

≥
(

1

‖a‖ + 1

‖b‖
)
‖a + b‖ − ‖a‖

‖b‖ − ‖b‖
‖a‖

= 2 −
(

1

‖a‖ + 1

‖b‖
)
(‖a‖ + ‖b‖ − ‖a + b‖).

Now,

δX

(∥∥∥∥ a

‖a‖ − b

‖b‖
∥∥∥∥
)

≤ 1 − 1

2
·
∥∥∥∥ a

‖a‖ + b

‖b‖
∥∥∥∥

≤ 1

2
·
(

1

‖a‖ + 1

‖b‖
)
(‖a‖ + ‖b‖ − ‖a + b‖).

Hence ∥∥∥∥ a

‖a‖ − b

‖b‖
∥∥∥∥ ≤ δ−1

X

(
1

2
·
(

1

‖a‖ + 1

‖b‖
)
(‖a‖ + ‖b‖ − ‖a + b‖)

)
.

Take x, y, z ∈ X and apply this inequality for a = x − y, b = y − z. It follows that∥∥∥∥y −
( ‖y − z‖
‖x − y‖ + ‖y − z‖ · x + ‖x − y‖

‖x − y‖ + ‖y − z‖ · z

)∥∥∥∥
≤ ‖x − y‖ · ‖y − z‖

‖x − y‖ + ‖y − z‖ · δ−1
X

(‖x − y‖ + ‖y − z‖ − ‖x − z‖
min{‖x − y‖, ‖y − z‖}

)
. (1)

This inequality is the way uniform convexity is going to be applied in the sequel. Indeed,
we have the following “metric” consequence of it:

Lemma 10. Let X be a uniformly convex normed space and let x1, x2, x3, x4 ∈ X be
distinct. Then

‖x1 − x2‖ + ‖x2 − x3‖ − ‖x1 − x3‖
2‖x2 − x3‖
≤ δ−1

X

(‖x1 − x3‖ + ‖x3 − x4‖ − ‖x1 − x4‖
min{‖x1 − x3‖, ‖x3 − x4‖}

)

+ δ−1
X

(‖x2 − x3‖ + ‖x3 − x4‖ − ‖x2 − x4‖
min{‖x2 − x3‖, ‖x3 − x4‖}

)
.

Lemma 10 is a quantitative version of the fact that in a uniformly convex space, if
‖x1 − x4‖ is approximately ‖x1 − x3‖ + ‖x3 − x4‖ and ‖x2 − x4‖ is approximately
‖x2 − x3‖ + ‖x3 − x4‖, then ‖x1 − x3‖ is approximately ‖x1 − x2‖ + ‖x2 − x3‖. This
fact is geometrically evident since the first assumption implies that x3 is almost on the
line segment connecting x1 and x4 and x2 is almost on the line segment connecting x1

and x3. It follows that x2 is almost on the line segment connecting x1 and x3, as required.
Since we are dealing with bi-Lipschitz embeddings, we must formulate this phenomenon
without referring to “line segments.”
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Proof of Lemma 10. Define

λ = ‖x3 − x4‖
‖x1 − x3‖ + ‖x3 − x4‖ and µ = ‖x3 − x4‖

‖x2 − x3‖ + ‖x3 − x4‖ .

An application of (1) twice gives

‖x3 − (λx1 + (1 − λ)x4)‖ ≤ ‖x1 − x3‖ · ‖x3 − x4‖
‖x1 − x3‖ + ‖x3 − x4‖
· δ−1

X

(‖x1 − x3‖ + ‖x3 − x4‖ − ‖x1 − x4‖
min{‖x1 − x3‖, ‖x3 − x4‖}

)
and

‖x3 − (µx2 + (1 − µ)x4)‖ ≤ ‖x − 2 − x3‖ · ‖x3 − x4‖
‖x2 − x3‖ + ‖x3 − x4‖
· δ−1

X

(‖x2 − x3‖ + ‖x3 − x4‖ − ‖x2 − x4‖
min{‖x2 − x3‖, ‖x3 − x4‖}

)
.

By symmetry, we may assume without loss of generality that λ ≤ µ. Now,∥∥∥∥x2 − λ(1 − µ)

µ(1 − λ)
x1 − µ− λ

µ(1 − λ)
x3

∥∥∥∥
= 1

µ

∥∥∥∥µx2 + (1 − µ)x4 − x3 + 1 − µ

1 − λ
(x3 − λx1 − (1 − λ)x4)

∥∥∥∥
≤ 1

µ
‖x3 − µx2 − (1 − µ)x4‖ + 1 − µ

µ(1 − λ)
· ‖x3 − λx1 − (1 − λ)x4‖

≤ ‖x2 − x3‖ + ‖x3 − x4‖
‖x3 − x4‖ · ‖x2 − x3‖ · ‖x3 − x4‖

‖x2 − x3‖ + ‖x3 − x4‖
· δ−1

X

(‖x2 − x3‖ + ‖x3 − x4‖ − ‖x2 − x4‖
min{‖x2 − x3‖, ‖x3 − x4‖}

)

+ ‖x2 − x3‖
‖x3 − x4‖

‖x1 − x3‖ + ‖x3 − x4‖
‖x1 − x3‖

‖x1 − ‖x3‖ · ‖x3 − x4‖
‖x1 − x3‖ + ‖x3 − x4‖

· δ−1
X

(‖x1 − x3‖ + ‖x3 − x4‖ − ‖x1 − x4‖
min{‖x1 − x3‖, ‖x3 − x4‖}

)

= ‖x2 − x3‖δ−1
X

(‖x1 − x3‖ + ‖x3 − x4‖ − ‖x1 − x4‖
min{‖x1 − x3‖, ‖x3 − x4‖}

)

+ ‖x2 − x3‖δ−1
X

(‖x2 − x3‖ + ‖x3 − x4‖ − ‖x2 − x4‖
min{‖x2 − x3‖, ‖x3 − x4‖}

)
.

Additionally,

‖x2 − x1‖ ≤
∥∥∥∥x2 − λ(1 − µ)

µ(1 − λ)
x1 − µ− λ

µ(1 − λ)
x3

∥∥∥∥
+
∥∥∥∥x1 − λ(1 − µ)

µ(1 − λ)
x1 − µ− λ

µ(1 − λ)
x3

∥∥∥∥
=
∥∥∥∥x2 − λ(1 − µ)

µ(1 − λ)
x1 − µ− λ

µ(1 − λ)
x3

∥∥∥∥+ µ− λ

µ(1 − λ)
‖x1 − x3‖
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and

‖x2 − x3‖ ≤
∥∥∥∥x2 − λ(1 − µ)

µ(1 − λ)
x1 − µ− λ

µ(1 − λ)
x3

∥∥∥∥
+
∥∥∥∥x3 − λ(1 − µ)

µ(1 − λ)
x1 − µ− λ

µ(1 − λ)
x3

∥∥∥∥
=
∥∥∥∥x2 − λ(1 − µ)

µ(1 − λ)
x1 − µ− λ

µ(1 − λ)
x3

∥∥∥∥+ λ(1 − µ)

µ(1 − λ)
‖x1 − x3‖.

Summing up these estimates gives the required result.

We can now prove the main result of this section:

Theorem 6. Let X be a uniformly convex normed space with dim(X) ≥ 2. Then for
every n ≥ 3, RX (n) = 3. Moreover, for every δ : (0, 2] → (0,∞) which is continuous,
increasing, and δ ≤ δ�2 , let UCδ be the class of all normed spaces X with δX ≥ δ. Then
for each n ≥ 3 there is a constant εn(δ) > 0 such that RUCδ

(1 + εn(δ), n) = 3.

The proof of Theorem 6 proceeds by constructing a space in which each quadruple
violates the conclusion of Lemma 10. The construction is done iteratively, by adding
one point at a time.

Proof of Theorem 6. That RX (n) ≥ 3 follows since any three-point metric embeds
isometrically into any two-dimensional normed space, by a standard continuity argument.

Fix some δ : (0, 2] → (0,∞) which is continuous, increasing, and δ ≤ δ�2 . We shall
construct inductively a sequence {Mn}∞n=3 of metric spaces and numbers {ηn}∞n=3 such
that:

(a) For every n ≥ 3, ηn > 0. Each Mn is a metric on {1, . . . , n}, and we denote
dn

i j = dMn (i, j).
(b) For every 1 ≤ i < j < k ≤ n,

dn
i, j + dn

jk − dn
i,k − ηn

≥ 2dn
j,k

[
δ−1

(
dn

i,k + dn
k,n − dn

i,n

min{dn
i,k, dn

k,n}

)
+ δ−1

(
dn

j,k + dn
k,n − dn

j,n

min{dn
j,k, dn

k,n}

)]
.

Lemma 10 immediately implies that there is a constant εn(δ) > 0 such that for every
1 ≤ i < j < k < l ≤ n and for every normed space X with δX ≥ δ,

cX ({i, j, k, l}, dMn ) ≥ 1 + εn(δ),

as required.
M3 is the equilateral metric on {1, 2, 3}, in which case η3 = 1. We construct Mn+1 =

({1, . . . , n + 1}, dn+1) as an extension of Mn , by setting

dn+1
n,n+1 = 1 − s/2 and ∀1 ≤ i < n, dn+1

i,n+1 = dn
in + 1 − s.
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This is indeed a definition of a metric as long as 0 < s ≤ min{1, 2 min1≤i<n dn
i,n} (this

fact follows from a simple case analysis).
We are left to check condition (b). Fix 1 ≤ i < j < k ≤ n. If k �= n, then

dn+1
i, j + dn+1

j,k − dn+1
i,k − ηn

= dn
i, j + dn

j,k − dn
i,k − ηn

≥ 2dn
j,k

[
δ−1

(
dn

i,k + dn
k,n − dn

i,n

min{dn
i,k, dn

k,n}

)
+ δ−1

(
dn

j,k + dn
k,n − dn

j,n

min{dn
j,k, dn

k,n}

)]

≥ 2dn
j,k

[
δ−1

(
dn

i,k + (dn
k,n + 1 − s)− (dn

i,n + 1 − s)

min{dn
i,k, dn

k,n + 1 − s}

)

+ δ−1

(
dn

j,k + (dn
k,n + 1 − s)− (dn

j,n + 1 − s)

min{dn
j,k, dn

k,n + 1 − s}

)]

= 2dn+1
j,k

[
δ−1

(
dn+1

i,k + dn+1
k,n+1 − dn+1

i,n+1

min{dn+1
i,k , dn+1

k,n+1}

)

+ δ−1

(
dn+1

j,k + dn+1
k,n+1 − dn+1

j,n+1

min{dn+1
j,k , dn+1

k,n+1}

)]
.

It remains to check (b) for the quadruple {i, j, n, n+1}. Condition (b) for Mn implies
that

dn+1
i j + dn+1

jn − dn+1
in ≥ ηn.

On the other hand,

2dn+1
j,n

[
δ−1

(
dn+1

i,n + dn+1
n,n+1 − dn+1

i,n+1

min{dn+1
i,n , dn+1

n,n+1}

)
+ δ−1

(
dn+1

j,n + dn+1
n,n+1 − dn+1

j,n+1

min{dn+1
j,n , dn+1

n,n+1}

)]

= 2dn
j,n

[
δ−1

(
s/2

min{dn
i,n, 1 − s/2}

)
+ δ−1

(
s/2

min{dn
j,n, 1 − s/2}

)]
,

so that condition (b) will hold when s is small enough such that the quantity above is at
most ηn/2 and with ηn+1 = ηn/2.

Corollary 11. For all 1 < p <∞, Rp(n) = 3 for n ≥ 3.

We end this section with a simple lower bound for the isometric Ramsey problem for
graphs. We do not know the asymptotically tight bound in this setting.

Proposition 12. Let G be an unweighted graph of order n. Then there is a set of
�
(√

log n/log log n
)

vertices in G whose metric embeds isometrically into �2.

Proof. Let � be the diameter of G. The shortest path between two diameterically far
vertices is isometrically embeddable in �2. On the other hand, the Bourgain et al. theorem



Some Low Distortion Metric Ramsey Problems 41

[4] yields, for every 0 < ε < 1, a subset N ⊂ V which is (1+ ε) embeddable in Hilbert
space and |N | = �((ε/log(2/ε)) log n). When ε = 1/2�, such an embedding is an
isometry. Hence we can always extract a subset of V which is isometrically embeddable
in �2 with cardinality

�

(
max

{
�,

log n

� log�

})
= �

(√
log n

log log n

)
,

as claimed.
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