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Abstract. Let X be a semialgebraic set inRn defined by a Boolean combination of atomic
formulae of the kind h ∗ 0 where ∗ ∈ {>,≥,=}, deg(h) < d, and the number of distinct
polynomials h is k. We prove that the sum of Betti numbers of X is less than O(k2d)n .

Let an algebraic set X ⊂ Rn be defined by polynomial equations of degrees less than
d. The well-known results of Oleinik, Petrovskii [8], [9], Milnor [6], and Thom [12]
provide the upper bound

b(X) ≤ d(2d − 1)n−1

for the sum of Betti numbers b(X) of X (with respect to the singular homology). In a
more general case of a set X defined by a system of k non-strict polynomial inequalities
of degrees less than d , the sum of Betti numbers does not exceed O(kd)n .

These results were later extended and refined. Basu [1] proved that if a semialgebraic
set X is basic (i.e., X is defined by a system of equations and strict inequalities), or is
defined by a Boolean combination (with no negations) of only non-strict or of only strict
inequalities, then

b(X) ≤ O(kd)n,
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where k is the number of distinct polynomials in the defining formula (this is a relaxed
form of Basu’s bound, for a more precise description see [1], [2].) Papers [7] and [13] im-
ply that if X is compact and is defined by an arbitrary Boolean combination of equations
or inequalities, then

b(X) ≤ O(kd)2n.

The purpose of this note is to prove a bound for an arbitrary semialgebraic set defined
by an arbitrary Boolean formula. More precisely, let X be a semialgebraic set in Rn

defined by a Boolean combination of atomic formulae of the kind h ∗ 0 where ∗ ∈ {>,
≥,=}, deg(h) < d , and the number of distinct polynomials h is k.

Theorem 1. The sum of Betti numbers of X is less than O(k2d)n .

We deduce Theorem 1 from the following result.

Proposition 2 [1]. Let the Boolean combination which defines X contain only non-
strict inequalities and no negations. Then the sum of Betti numbers of X is less than
O(kd)n .

Since sums of Betti numbers of sets X and X ∩ {x2
1 + · · · + x2

n < �} coincide for a
large enough� ∈ R (see Lemma 1 of [1]), we assume in what follows that X is bounded.

Definition 3. For a given finite set {h1, . . . , hk} of polynomials hi define its (h1, . . . ,

hk)-cell (or just cell) as a semialgebraic set in Rn of the kind

{hi1 = · · · = hik1
= 0, hik1+1 > 0, . . . , hik2

> 0, hik2+1 < 0, . . . , hik < 0}, (1)

where i1, . . . , ik1 , . . . , ik2 , . . . , ik is a permutation of 1, . . . , k.

Obviously, for a given set of polynomials any two distinct cells are disjoint. According
to [4] and [5], the number of all non-empty (h1, . . . , hk)-cells is at most (kd)O(n), but
we do not need this bound in what follows. Observe that both X and the complement
X̃ = Rn\X are disjoint unions of some non-empty (h1, . . . , hk)-cells.

Example 4. Let X := {(x, y) ∈ R2| x2 y2 > 0 ∨ x2 + y2 = 0}, i.e., X is the plane R2

minus the union of the coordinate axes plus the origin. There are nine (x2 y2, x2+y2)-cells
among which exactly three,

{x2 y2 = x2 + y2 = 0}, {x2 y2 > 0, x2 + y2 > 0}, and {x2 y2 = 0, x2 + y2 > 0},

are non-empty. The union of the first two of these cells is X .

Introduce the following partial order on the set of all cells. Let 	 ≺ 	′ iff the cell 	′ is
obtained from the cell 	 by replacing at least one of the equalities hj = 0 in 	 by either
hj > 0 or hj < 0. Thus the minimal cell with respect to ≺ is 	min := {h1 = · · · = hk =
0}. Clearly, the cells having the same number p of equations are not pairwise comparable
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with respect to ≺, we say that these cells are on the level k − p + 1. In particular, 	min

is the only cell on level 1.
Let

1� ε1 � δ1 � ε2 � δ2 � · · · � εk � δk > 0,

where� stands for “sufficiently greater than”. The set X1 is the result of the following
inductive construction.

Let �
,1, . . . , �
,t
 be all cells on the level 
 which lie in X . Let �
,1, . . . , �
,r
 be
all cells on the level 
 which have the empty intersection with X . For any cell

�
, j := {hi1 = · · · = hik−
+1 = 0, hik−
+2 > 0, . . . , hik1
> 0, hik1+1 < 0, . . . , hik < 0}

on the level 
 ≤ k introduce the set

�̂
, j := {h2
i1
≤ ε
, . . . , h2

ik−
+1
≤ ε
,

hik−
+2 ≥ 0, . . . , hik1
≥ 0, hik1+1 ≤ 0, . . . , hik ≤ 0}.

Additionally, for any cell

�k+1, j := {hi1 > 0, . . . , hik1
> 0, hik1+1 < 0, . . . , hik < 0}

on the level k + 1 let

�̂k+1, j := {hi1 ≥ 0, . . . , hik1
≥ 0, hik1+1 ≤ 0, . . . , hik ≤ 0}.

For any cell

�
, j := {hi1 = · · · = hik−
+1 = 0, hik−
+2 > 0, . . . , hik1
> 0, hik1+1 < 0, . . . , hik < 0}

on the level 
 ≤ k introduce the set

�̂
, j := {h2
i1
< δ
, . . . , h2

ik−
+1
< δ
,

hik−
+2 > 0, . . . , hik1
> 0, hik1+1 < 0, . . . , hik < 0}.

Let

Xk+1 := X ∪
⋃

j

�̂k+1, j .

Assume that X
+1 is constructed. Let

X
 :=
(

X
+1\
⋃

j

�̂
, j

)
∪

⋃
j

�̂
, j .

On the last step of the induction we obtain set X1.

Example 4 (continued). In Example 4 we have

	min = �1,1 = �1,t1 = {x2 y2 = x2 + y2 = 0}.
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Choose the following sub-indices for the non-empty cells:

�2,1 := {x2 y2 = 0, x2 + y2 > 0},
�3,1 := {x2 y2 > 0, x2 + y2 > 0}.

Then

�̂1,1 = {(x2 y2)2 ≤ ε1, (x
2 + y2)2 ≤ ε1},

�̂2,1 = {(x2 y2)2 < δ2, x2 + y2 > 0},
�̂3,1 = {x2 y2 ≥ 0, x2 + y2 ≥ 0}.

The inductive construction proceeds as follows. Since�3,1 is the only non-empty cell on
level 3, we get X3 = X ∪ �̂3,1 = X . Next, since�2,1 is the only non-empty cell on level
2, we get X2 = X3\�̂2,1 (i.e., X2 is R2 minus an open δ2-neighbourhood of the union of
the coordinate axes). Finally, X1 = X2 ∪ �̂1,1, or, in terms of polynomial inequalities,

X1 = (X\{(x2 y2)2 < δ2, x2 + y2 > 0}) ∪ {(x2 y2)2 ≤ ε1, (x
2 + y2)2 ≤ ε1}. (2)

Thus, X1 is the plane R2 minus an open neighbourhood of the union of the coordinate
axes plus a larger closed neighbourhood of the origin. Obviously, X1 can be defined by a
Boolean formula without negations, involving the same polynomials as in (2), and having
only non-strict inequalities. It is easy to see that X and X1 are homotopy equivalent.

Returning to the general case, one can prove that X and X1 are weakly homotopy
equivalent. For our purposes the following weaker statement will be sufficient.

Lemma 5. The sum of Betti numbers of X coincides with the sum of Betti numbers
of X1.

Proof. For every m, 1 ≤ m ≤ k + 1, define a set Y m using the inductive procedure
similar to the one used for defining X1. The difference is that the base step of the induction
starts at some level m rather than specifically at the level k + 1. More precisely, let
Y k+1 := X1. For any m ≤ k, let

Zm,1
m := X\

⋃
j

�̂m, j and Zm,2
m := Zm,1

m ∪
⋃

j

�̂m, j .

This concludes the base of the induction.
On the induction step, suppose that Zm,s


+1 is defined, where m − 1 ≥ 
 ≥ 1, s = 1, 2.
Define

Zm,s

 :=

(
Zm,s

+1\

⋃
j

�̂
, j

)
∪

⋃
j

�̂
, j .

Let Y m := Zm,2
1 .

For every m, 1 ≤ m ≤ k + 1, define the set Y ′m by the procedure similar to the
definition of Y m , replacing in each �̂
, j the inequalities h2

i1
≤ ε
, . . . , h2

ik−
+1
≤ ε


by h2
i1
< ε
, . . . , h2

ik−
+1
< ε
, respectively, and in each �̂
, j the inequalities h2

i1
<
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δ
, . . . , h2
ik−
+1

< δ
 by h2
i1
≤ δ
, . . . , h2

ik−
+1
≤ δ
, respectively. Denote the results of the

replacements by �̂′
, j and �̂′
, j , respectively.
We show by induction on m that b(Y m) = b(Y ′m) and that b(X) = b(Y m) = b(Y ′m).

It will follow, in particular, that the sum of Betti numbers of X does not exceed the sum
of Betti numbers of X1 = Y k+1.

For the base case of m = 1, let first 	min �= ∅ and 	min ∩ X = ∅ (i.e., 	min = �1,1 =
�1,r1 ), then

Y 1 = X\�̂1,1 = X\{h2
1 < δ1, . . . , h2

k < δ1}.
Introduce the following directed system of sets. First replace δ1 in the definition of Y 1

by a parameter and then consider the family of sets as the parameter tends to 0. Denote
this directed system by {Y 1}δ1→0. Observe that {Y 1}δ1→0 is a fundamental covering of
X . Indeed, since any point x ∈ X does not belong to the closed set {h1 = · · · = hk =
0}, there is a neighbourhood U of x in Y 1 for all small enough δ1, which is also a
neighbourhood of x in X , such that U ∩ {h1 = · · · = hk = 0} = ∅. Thus, if for a subset
A ⊂ X the intersection A ∩ Y 1 is open in Y 1 for any small enough δ1, then A is open
in X . Therefore (see Section 1.2.4.7 of [10]), X is a direct limit of {Y 1}δ1→0. It follows
(see Theorem 4.1.7 on p. 162 of [11]) that H∗(X) is the direct limit of {H∗(Y 1)}δ1→0.
On the other hand, by Hardt’s triviality theorem [3, p. 62, Theorem 5.22] for a small
enough positive δ1 all Y 1 are pairwise homeomorphic. Thus, for a small enough δ1 we
have b(X) ≤ b(Y 1). Moreover, we have H∗(X) � H∗(Y 1) and therefore b(X) = b(Y 1).
Indeed, due again to Hardt’s triviality theorem, for all small enough positive values of δ1

the inclusion maps in the filtration of spaces Y 1 are homotopic to homeomorphisms and
therefore induce isomorphisms in the corresponding direct system of groups H∗(Y 1). It
follows that the direct limit of groups {H∗(Y 1)}δ1→0 is isomorphic to any of these groups
for a fixed small enough positive δ1.

Observe that a similar argument is applicable to Y ′1 = X\{h2
1 ≤ δ1, . . . , h2

k ≤ δ1},
therefore H∗(X) � H∗(Y ′1).

Suppose now that 	min �= ∅ and 	min ⊂ X (i.e., 	min = �1,1 = �1,t1 ). Then
	min ∩ X̃ = ∅, where X̃ is the complement of X . Replacing in the above proof the set
X by X̃ , and δ1 by ε1, we get H∗(X̃) � H∗(Ỹ ′1). Since X is bounded, by Alexander’s
duality, b(X̃) = b(X)+ 1 and b(Ỹ ′1) = b(Y ′1)+ 1, hence b(X) = b(Y ′1).

Similar argument shows that b(X) = b(Y 1).
The case when 	min = ∅ is trivial. This concludes the base induction step.
Assume that b(X) = b(Y m) = b(Y ′m). First let

⋃
j �m+1, j �= ∅, then the family of

sets {Z ′m+1,1
1 }δm+1→0 is a fundamental covering of Y ′m . Indeed, by the definition we have

Z ′m+1,1
m+1 = X\

⋃
j

�̂′m+1, j .

Take any point x ∈ Z ′m+1,1
1 . Then x belongs either to⋂

j

({h2
i1
> δm+1} ∪ · · · ∪ {h2

ik−m
> δm+1}

)
for all non-empty cells

�m+1, j = {hi1 = · · · = hik−m = 0, hik−m+1 > 0, . . . , hik < 0}
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and all sufficiently small δm+1, or to a set of the kind

{hi1 = · · · = hik−m = 0, h2
ik−m+1

< εt , . . . , h2
ik−t+1

< εt ,

hik−t+2 > 0, . . . , hik1
> 0, hik1+1 < 0, . . . , hik < 0}

for some t ≤ m and a non-empty cell

�t, j = {hi1 = · · · = hik−t+1 = 0, hik−t+2 > 0, . . . , hik < 0} ⊂ X.

In both cases there is a set U which is a neighbourhood of x in Z ′m+1,1
1 for all sufficiently

small δm+1, and also a neighbourhood of x in Y ′m .
Thus, for a small enough δm+1 we have H∗(Y ′m) � H∗(Z

′m+1,1
1 ). Introduce a set

Z ′m+1,1
1 (γ ), where 0 < γ � δm+1, defined by a formula ϕ(γ ) which is constructed

as follows. In the formula ϕ defining Z ′m+1,1
1 replace all occurrences of the systems of

inequalities of the kind h2
i1
< ε
, . . . , h2

ik−
+1
< ε
 by h2

i1
≤ ε
 − γ, . . . , h2

ik−
+1
≤ ε
 − γ

and all occurrences of the systems inequalities of the kind h2
i1
≤ δ
, . . . , h2

ik−
+1
≤ δ
 by

h2
i1
< δ
+γ, . . . , h2

ik−
+1
< δ
+γ . The family of sets {Z ′m+1,1

1 (γ )}γ→0 is a fundamental

covering of Z ′m+1,1
1 , thus for a small enough γ we have

H∗(Z
′m+1,1
1 ) � H∗(Z

′m+1,1
1 (γ )).

However, the sets Z ′m+1,1
1 (γ ) and Zm+1,1

1 are homeomorphic due to Hardt’s triviality
theorem, therefore H∗(Z

′m+1,1
1 ) � H∗(Z

m+1,1
1 ). It follows that

b(X) = b(Y ′m) = b(Z ′m+1,1
1 ) = b(Zm+1,1

1 ).

Now let
⋃

j �m+1, j �= ∅. Note that X̃ ∩⋃
j �m+1, j = ∅. As above (but using εm+1 in

place of δm+1), we get

b(X̃) = b(Z̃m+1,2
1 ) = b(Z̃ ′m+1,2

1 ).

By Alexander’s duality we have b(X̃) = b(X) + 1, b(Z̃m+1,2
1 ) = b(Zm+1,2

1 ) + 1, and
b(Z̃ ′m+1,2

1 ) = b(Z ′m+1,2
1 )+ 1, hence in this case the condition

b(X) = b(Zm+1,2
1 ) = b(Z ′m+1,2

1 )

is also true.
The case when

⋃
j

(
�m+1, j ∪�m+1, j

) = ∅ is trivial.

Recalling that Zm+1,2
1 = Y m+1 and Z ′m+1,2

1 = Y ′m+1, we get the required b(X) =
b(Y m+1) = b(Y ′m+1).

Proof of Theorem 1. According to Lemma 5, it is sufficient to prove the bound for the
set X1 which is defined by a Boolean combination (with no negations) of non-strict
inequalities. The atomic polynomials are either of the kind hi or of the kind h2

i − δj or
of the kind h2

i − εj , 1 ≤ i, j ≤ k, hence there is at most O(k2) pairwise distinct among
them. Now the theorem follows from Proposition 2.
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Remark 6. Employing some additional technicalities one can prove that in the con-
struction of set X1 it is sufficient to use just one sort of constants, i.e., keep ε1, . . . , εk

in their positions and replace δ1, . . . , δk by ε1, . . . , εk , respectively. This reduces the
number of polynomials involved in the description of X1 and therefore the O-symbol
constant in the upper bound of Theorem 1.
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