
DOI: 10.1007/s00454-004-1111-9

Discrete Comput Geom 33:185–206 (2005) Discrete & Computational

Geometry
© 2004 Springer Science+Business Media, Inc.

Incidences between Points and Circles in Three and
Higher Dimensions∗

Boris Aronov,1 Vladlen Koltun,2 and Micha Sharir3

1Department of Computer and Information Science, Polytechnic University,
Brooklyn, NY 11201-3840, USA
aronov@cis.poly.edu

2Computer Science Division, University of California,
Berkeley, CA 94720-1776, USA
vladlen@cs.berkeley.edu

3School of Computer Science, Tel Aviv University,
Tel-Aviv 69978, Israel
sharir@cs.tau.ac.il
and
Courant Institute of Mathematical Sciences, New York University,
New York, NY 10012, USA

Abstract. We show that the number of incidences between m distinct points and n distinct
circles in Rd , for any d ≥ 3, is O(m6/11n9/11κ(m3/n)+m2/3n2/3 +m + n), where κ(n) =
(log n)O(α2(n)) and where α(n) is the inverse Ackermann function. The bound coincides with
the recent bound of Aronov and Sharir, or rather with its slight improvement by Agarwal
et al., for the planar case. We also show that the number of incidences between m points
and n unrestricted convex (or bounded-degree algebraic) plane curves, no two in a common
plane, is O(m4/7n17/21 +m2/3n2/3 +m + n), in any dimension d ≥ 3. Our results improve
the upper bound on the number of congruent copies of a fixed tetrahedron in a set of n points
in 4-space and the lower bound for the number of distinct distances in a set of n points in
3-space. Another application is an improved bound for the number of incidences (or, rather,
containments) between lines and reguli in three dimensions. The latter result has already

∗ Work on this paper by Boris Aronov and Micha Sharir has been supported by a joint grant from the
U.S.–Israeli Binational Science Foundation. Work by Vladlen Koltun and Micha Sharir was also supported
by a grant from the Israel Science Fund (for a Center of Excellence in Geometric Computing). Work by
Boris Aronov was also supported by NSF Grants CCR-99-72568 and ITR-00-81964. Work by Vladlen Koltun
was also supported by NSF Grant CCR-01-21555. Work by Micha Sharir was also supported by NSF Grants
CCR-97-32101 and CCR-00-98246, and by the Hermann Minkowski–MINERVA Center for Geometry at Tel
Aviv University.



186 B. Aronov, V. Koltun, and M. Sharir

been applied by Feldman and Sharir to obtain a new bound on the number of joints in an
arrangement of lines in three dimensions.

1. Introduction

The main result of this paper is an improved upper bound for the number of incidences
between m points and n circles in three dimensions.1 The study of the number of inci-
dences between points in the plane and curves of various types has an extensive history,
and a variety of nontrivial upper (and, more rarely, lower) bounds have been obtained:

• For lines and pseudo-lines, the maximum number of incidences between m points
and n such curves is �(m2/3n2/3 + m + n) [10], [21], [22].
• For unit circles, the number of incidences is at most O(m2/3n2/3 + m + n) [10],

[20], [21].
• For arbitrary circles, the number of incidences is at most O(m6/11n9/11κ(m3/n)+

m2/3n2/3 + m + n), where κ(n) = (log n)O(α2(n)), and where α(n) is the inverse
Ackermann function [1], [6]. This improves an older bound of O(m3/5n4/5+m+n)
in [10]. In a recent study [1] the new bound is extended to certain classes of pseudo-
circles, i.e., closed Jordan curves, any two of which intersect at most twice, and of
pseudo-parabolas, i.e., graphs of continuous totally defined functions, any two of
which intersect at most twice. In particular, this includes the cases of parabolas and
of homothetic copies of any fixed convex curve of constant description complexity.
• Finally, in one of the most general situations considered in the plane, for curves

with “d degrees of freedom” (as defined in [16]; lines have d = 2 and circles
d = 3), the number of incidences is at most O(md/(2d−1)n(2d−2)/(2d−1) + m + n)
[16]. This has been recently improved for the special case of graphs of polynomials
of maximum degree d − 1 [6], [7].

See [17] for a recent survey on incidences and related problems.
Among the techniques developed so far for obtaining upper bounds on incidence

problems, the simplest and most elegant one is due to Székely [21], and is based on
crossing numbers of graphs drawn in the plane (see [15] for details). It yields directly the
bounds for lines, pseudo-lines, and unit circles, and is also used in a less direct manner
in the derivation of the bounds for arbitrary circles, for pseudo-circles, and for curves
with d degrees of freedom; see [1], [6], and [16].

Only recently, the study of incidences between points and curves has extended to
three dimensions [4], [18]. In general, we conjecture that the number of incidences in
three dimensions is never larger than the corresponding bound in the plane: If the curves
are plane curves and all lie in a common plane, then one achieves the planar bound.
However, if the curves are not coplanar (in a sense that needs to be made more precise),
then one expects the number of incidences to be smaller than in the planar case.

This has been substantiated by Sharir and Welzl [18] for the case of incidences
between points and lines in three dimensions. By projecting the configuration onto

1 To avoid trivialities, throughout the paper we consistently assume that the various collections of objects
(points, circles, etc.) considered consist of distinct objects.
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some generic plane, we obtain a planar configuration of points and lines with the same
number of incidences, so the planar bound always serves as an upper bound for the
three-dimensional case as well. Sharir and Welzl have shown that if all the lines form the
same angle with the z-direction, then one obtains a smaller upper bound on the number
of incidences. Without the above condition on the angles, improved bounds can also be
obtained, e.g., when each point is incident to at least three non-coplanar lines; see [18]
for details.

The case of circles is quite different, because a projection of the circles onto a generic
plane yields a collection of ellipses, which can intersect at four points per pair. The
recent bound of [6], and its extension in [1], rely on the fact that any two curves under
consideration intersect at most twice. Hence, the best known planar bound does not
extend trivially to higher dimensions.

In a previous version of this paper [4], we obtained a weaker bound of O(m4/7n17/21+
m2/3n2/3 + m + n) for the number of incidences between m points and n circles in any
dimension d ≥ 3. Moreover, this bound also applied to incidences between m points
and n arbitrary convex plane curves, no two of which lie in a common plane, in any
dimension d ≥ 3.

In this version we retain the derivation of the above bound, because it remains the
currently best upper bound for incidences involving points and pairwise non-coplanar
convex (or bounded-degree algebraic) plane curves, in any dimension d ≥ 3. However,
for the case of circles, we improve the incidence bound further, and reduce it to the
aforementioned planar bound of [1], [6]. Here we do not have to require that the circles
lie in distinct planes. The new bound is optimal for m ≥ n5/4κγ (n), for an appropriate
constant γ , because it is then equal to O(m2/3n2/3 + m), which can be attained when
all circles lie in a common plane or sphere, as a variant of the known lower-bound
construction for the case of lines [6], [12].

Besides being an interesting and natural extension of the analogous two-dimensional
question, there are additional motivations for studying incidences between points and
circles (or more general curves) in three and higher dimensions, which are reviewed in
Section 5.

2. Circles in Three Dimensions

We first provide a brief and somewhat informal overview of the analysis of the case of
circles in R3. We begin by constructing a multigraph G by connecting consecutive pairs
of points of P along each circle c ∈ C . Pairs that are connected by just one such circular
arc are referred to as “light,” and the remaining pairs are called “heavy.” Light edges
can be analyzed as in [21], by projecting the circles onto some generic 2-plane and by
applying Székely’s technique to the resulting plane graph. Heavy edges are analyzed by
the following iterative pruning process. We pick a circle c0 ∈ C that has many heavy
arcs, and “capture” all the other circles of C that form with it heavy arcs of G, within a
system of spheres that pass through c0. Within each such sphere σ , we apply the planar
bound of [1] and [6] on the number of cuts of the circles in σ that eliminate all such
arcs. We then remove all the circles that lie on these spheres and repeat the process. With
some care (see details below), this yields an initial weak bound (see Theorem 2.1) on
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the number of incidences, which is asymptotically the same as a similarly weak bound
derived in the planar case. The bound is then improved via a problem decomposition
that is based on a certain partition of three-dimensional dual space, in which the points
of P are represented by planes and the circles of C by points.

2.1. An Initial Bound

Let C be a set of n circles and let P be a set of m points in 3-space. Let I (P,C) denote
the number of incidences between P and C ; that is, the number of pairs (p, c) ∈ P ×C
with p ∈ c.

We first apply an inversion of R3 about a point o, which does not lie on any circle
of C or on any sphere or plane that contains more than one circle of C . Without loss of
generality, we take o to be the origin, and identify a point with its radius-vector x from
the origin. Then the inversion is the mapping x 	→ x/ |x|2. It maps a sphere with center
c and radius r to a sphere with center c/(|c|2 − r2) and radius r/

(∣∣|c|2 − r2
∣∣). Hence,

in particular, it maps o to the “sphere at infinity,” all points at the “sphere at infinity”
to o, a sphere avoiding o to another such sphere, a plane missing o to a sphere through
o and vice versa, and a plane through o to itself. Consequently, the inversion maps a
circle missing o to another such circle. After the transformation, we obtain a new set
of m points and n circles, where no two resulting circles are coplanar. Indeed, any such
coplanar pair would have had to lie, before the transformation, on a common sphere or
plane that passes through o, contrary to the choice of o. Hence, throughout the remainder
of this section, we assume that no two circles of C are coplanar.

We may also assume that each circle of C contains at least three points of P , since
the remaining circles contribute at most 2n to the incidence count. After making this
assumption, the notion of the arc of a circle delimited by a pair of consecutive points of
P on the circle is unambiguous. We call such an arc elementary.

We represent the incidence structure by a multigraph G embedded in 3-space as
follows: vertices of G are the points of P themselves and any two points of P consecutive
along a circle c ∈ C are connected by an arc of G, drawn as the corresponding elementary
arc along c. In this manner a pair of points might be connected by multiple arcs—
abstractly we think of it as a single multi-edge (i.e., an edge with multiplicity) in G. Note
that we reserve the term “arc (of G)” for a geometric object—an (elementary) arc of
some circle connecting two consecutive points of P , while the term “edge (of G)” will
mean the abstract (multi)edge of G, i.e., a pair of points with one or more elementary
arcs between them. The number of edges in G, counted with multiplicity, is exactly the
number of arcs in G, which is precisely I (P,C).

An edge {p, q}of G is called light if it has multiplicity one, i.e., p and q are consecutive
along a single circle; otherwise we call it heavy. The corresponding elementary arc or
arcs are also referred to as light or heavy, respectively.

The number of light arcs is easy to bound. Indeed, project C and P onto some generic
plane π . Consider the collection G ′ of the projections of all the light arcs of G onto
π . G ′ is a simple graph drawn in the plane, with m vertices and at most 4

(n
2

) = O(n2)

edge crossings (any such crossing is an intersection between the projections of the two
respective circles; these projections are ellipses, which may intersect each other in at
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most four points per pair). The Crossing Lemma for planar graphs (see [14] and [15])
asserts that a simple graph drawn in the plane with m vertices and X edge crossings has
at most O(m + m2/3 X1/3) edges (see [6], [11], and [21] for similar applications of the
Crossing Lemma). Hence, the total number of light arcs is O(m2/3n2/3+m+ n). It thus
remains to bound the number of heavy arcs.

Fix a threshold parameter k. We apply the following iterative pruning process to set
C . Suppose that there exists a circle c0 ∈ C with at least k other circles meeting it at two
not necessarily consecutive points each. Let K (c0) denote the set of these circles, and
let µ ≥ k denote its cardinality.

Consider the set �(c0) of all spheres that contain c0 and at least one additional circle
of K (c0). Clearly, |�(c0)| ≤ µ. For each σ ∈ �(c0), let C(σ ) denote the set of circles
that lie on σ ; one of them is c0, and some of them might not intersect c0 at all. Put
µσ = |C(σ )|, and µ′ =∑s

i=1 µσ . Note that µ′ > k. Put K ′(c0) =
⋃
σ∈�(c0)

C(σ ); this
set contains c0, the circles in K (c0), and also possibly some circles that happen to lie on
some sphere σ , without intersecting c0.

Within each σ , consider the set C(σ ), which we map to a set of coplanar circles
by an appropriate stereographic projection. The results of [1] and [6] imply that the
number of heavy elementary arcs in the arrangementA(C(σ )) is O(µ3/2

σ κ(µσ )), where
κ(r) = (log r)O(α2(r)). Indeed, a multi-edge of G that has j > 1 elementary arcs along σ
induces � j/2� pairwise non-overlapping lenses (in the terminology of [1] and [6]), and
the maximum size of a family of pairwise non-overlapping lenses in a planar arrangement
of µσ circles is O(µ3/2

σ κ(µσ )) (see Theorem 5.1 of [1]). The number of elementary arcs
under consideration is at most three times the number of these lenses. Note however that
this only counts elementary arcs on circles of C(σ ), whose endpoints are shared by at
least one additional circle from C(σ ), where they also delimit an elementary arc. Any
other heavy elementary arc on a circle in C(σ ) has a companion elementary arc, with the
same endpoints, on a circle c that is transversal to σ (that is, c intersects σ at two points,
which are the endpoints of the elementary arc being considered). Elementary arcs of this
latter kind will be counted momentarily.

Suppose that c, c′ �= c0 are two circles that lie on different respective spheres σ, σ ′ ∈
�(c0), and meet each other at two points p, q, so that p and q delimit elementary arcs
along both c and c′. This interaction between c and c′ is not recorded in the bounds just
mentioned, but we can bound the number of these arcs as follows: Note that p and q
must lie on c0. This implies that c, c′ ∈ K (c0), and there can be at most one such arc
along each circle c ∈ K (c0). Hence, the number of these arcs is at most µ.

Let c be a circle that is not cospherical with c0. Then c meets each of the spheres
σ ∈ �(c0) in at most two points. We wish to bound the number of heavy elementary arcs
along c whose endpoints lie on some circle c′ ∈ K ′(c0)where they also delimit an elemen-
tary arc. We claim that the number of such arcs is at most two. Indeed, suppose c′, c′′, c′′′

are three circles, lying on three distinct respective spheres σ ′, σ ′′, σ ′′′ through c0, so that
each of them meets c at two points, denoted respectively as {p′, q ′}, {p′′, q ′′}, {p′′′, q ′′′}.
What is the order of these six points along c? If c forms a link with c0, i.e., the disk
bounded by c intersects c0, then, up to relabeling c′, c′′, c′′′ and interchanging the p’s
and q’s, the order must be p′, p′′, p′′′, q ′, q ′′, q ′′′ (see Fig. 1(a)), otherwise it must be
p′, p′′, p′′′, q ′′′, q ′′, q ′ (see Fig. 1(b)). However, neither order is consistent with the re-
quirement that p′q ′, p′′q ′′, p′′′q ′′′ be distinct elementary arcs on c; specifically, they are
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Fig. 1. Elementary arcs along a circle c that is not cospherical with c0; the cross section of the scene by the
plane containing c is shown. The dash–dotted segment is the intersection of the plane with the disk bounded
by c0.

not disjoint: they must partially overlap in case (a) and nest in case (b). This establishes
the claim.

Hence, any circle c not in K ′(c0) contains at most two elementary arcs that share
endpoints with some elementary arc(s) on the circles of K ′(c0), for a total of at most
2n additional arcs. It is possible that such an elementary arc γ along c has only one
companion elementary arc γ ′ with common endpoints on just one circle c′ ∈ K ′(c0).
Arcs γ ′ of this type have not yet been counted (within the system of spheres�(c0)), but
there can be at most two such companion arcs for each transversal circle c, for a total of
at most 2n additional arcs, giving a total of at most 4n additional heavy elementary arcs
that can be formed by these transversal circles.

Note that, at this point, any heavy multi-edge of G that has at least one elementary
arc on a circle in K ′(c0) has been counted with its multiplicity. Combining the bounds
obtained above for the several possible types of heavy elementary arcs that we count
while analyzing c0, we conclude that the number of such arcs is at most

O

(
n +

∑
σ∈�(c0)

µ3/2
σ κ(µσ )

)
= O((µ′)3/2κ(µ′)+ n). (1)

We now remove c0 and all the circles in K ′(c0) from C . Note that the number
ν of circles that are removed may be smaller than µ′. Specifically, we have ν =
µ′ − |�(c0)| + 1, because c0 is multiply counted in µ′. However, since each sphere σi

contains at least one circle other than c0, and all these circles are distinct, it follows that
µ′ ≤ 2ν.

We then pick a new circle c1 from the remaining circles, such that c1 has at least
k circles meeting it at two points each. If there is no such circle, our pruning process
terminates. Otherwise, we repeat the above pruning step with c1 as the “base” circle,
remove c1 and the collection K ′(c1) of circles, and proceed to the next iteration of the
process.
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Let r be the overall number of iterations, and let ν1, . . . , νr denote the number of
circles removed at each iteration. We have

∑r
j=1 νj ≤ n, and νj > k for each j . Thus

r ≤ n/k. Arguing as above, the total number of heavy arcs counted by our procedure is
thus

r∑
j=1

O(n + ν3/2
j κ(νj )) = O(n3/2κ(n)+ nr) = O

(
n3/2κ(n)+ n2

k

)
.

We are left with a collection C ′ of circles, so that each c ∈ C ′ meets at most k other
circles at two points each, and thus has at most k elementary arcs, for a total of at most
O(nk) additional arcs. The grand total number of heavy elementary arcs is thus

O

(
n3/2κ(n)+ n2

k
+ nk

)
.

Choosing k = n1/2, and adding the number of light elementary arcs, we conclude:

Theorem 2.1. The number of incidences between m points and n circles in R3 is

O(m2/3n2/3 + n3/2κ(n)+ m), (2)

where κ(n) = (log n)O(α2(n)).

2.2. Strengthening the Bound

The bound in Theorem 2.1 is worst-case optimal when m ≥ n5/4κ3/2(n). For smaller
values of m, we apply the following problem decomposition in dual space. As in the
preceding subsection, we assume that no pair of circles in C are coplanar.

Let� denote the set of n planes containing the circles of C . Apply a standard duality
transform that maps each point p ∈ P to a plane p∗ and each plane π ∈ � to a point π∗,
so that incidences between points and planes are preserved. In the dual space we have
a set P∗ of m planes, and a set �∗ of n points, where each point π∗ ∈ �∗ is associated
with the unique circle that lies in the primal plane π . Clearly, if a point p is incident to
a circle c contained in a plane π , then π∗ ∈ p∗.

Fix a parameter 1 ≤ r ≤ m, to be determined below, and construct a (1/r)-cutting
of the dual space into O(r3) simplices, so that the interior of each simplex is intersected
by at most m/r planes of P∗. The cutting is obtained in two stages, as in [9]. In the first
stage we choose a random sample R of r dual planes, construct the arrangement A(R)
of R, and triangulate each cell, using bottom-vertex triangulation. Simplices that are
crossed by at most m/r planes are part of the final output. Simplices τ that are crossed
by a set P∗τ of mξ/r planes, for ξ > 1, are further refined into subcells, by choosing a
random sample Rτ of cξ log ξ planes from P∗τ , for some absolute constant c, constructing
a triangulation of A(Rτ ), as above, and clipping its cells to within τ . As shown in [9],
there exist choices for the sets R, Rτ , that result in a (1/r)-cutting of A(P∗) consisting
of O(r3) cells.

Consider first dual points in�∗ that lie in cell interiors. We can further subdivide the
cells of the cutting into subcells, say, by a set of parallel planes in some fixed generic
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orientation, so that each subcell contains at most n/r3 points, and so that the number
of new cells is still O(r3). For each cell τ , apply Theorem 2.1 to bound the number of
incidences between the circles whose dual points lie in the interior of τ , and the points
whose dual planes cross τ . The total number of such incidences, over all cells τ , is

O

(∑
τ

((m

r

)2/3 ( n

r3

)2/3
+ m

r
+
( n

r3

)3/2
κ
( n

r3

)))

= O

(
r3
(m

r

)2/3 ( n

r3

)2/3
+ mr2 + n3/2

r3/2
κ
( n

r3

))

= O

(
m2/3n2/3r1/3 + mr2 + n3/2

r3/2
κ
( n

r3

))
.

We next bound the number of incidences involving points π∗ that lie on cell bound-
aries. If a point π∗ lies in the relative interior of a two-dimensional face f of a cell τ ,
we assign it to τ (there can be at most two such cells τ , and we assign π∗ to just one
of them). Any dual plane incident to π∗, other than the one containing f , if any such
plane exists, will intersect the interior of τ , so the incidences between the unique circle
contained inπ and the points dual to the planes incident toπ∗ will then be counted within
τ . In addition, we may miss at most one incidence for each of these circles (with the
point whose dual plane contains f ). Summed over all faces f , these missed incidences
number at most n.

Consider next points π∗ that lie in the interior of an edge e of some cell τ and not
in the interior of any two-dimensional face of another cell. Any plane that is incident to
such a point π∗ ∈ e and that does not contain e meets the interior of τ , so by assigning
π∗ to τ we will capture in the preceding analysis each incidence of this type involving
π∗ (here the number of cells τ may be large, but, as above, we assign π∗ to only one
of them, chosen arbitrarily). The planes that contain e constitute, in primal space, a set
of collinear points, and no circle can be incident to more than two of them. Hence, the
number of incidences between the circles represented by points π∗ ∈ e and the points
dual to the planes containing e is at most twice the number of these circles. Summed
over all edges e, we obtain a total of at most 2n incidences of this type.

Finally, consider points π∗ that are vertices of the cells (and do not lie in the relative
interior of any face or edge of another cell). Any vertex π∗ is either a vertex of the first
decomposition stage or a vertex of the second stage, constructed within a cell of the first
stage.

In the former case, π∗ is the intersection point of three planes of R that do not pass
through a common line. Fix one such plane p∗0 . Then π∗ is a vertex of the planar cross
section of the arrangement A(R) within p∗0 . Any dual plane p∗ that is incident to π∗

intersects p∗0 in a line � that passes through π∗. The number of such incidences within
p∗0 is at most r , since � must cross one of the planes of R at π∗. In total, this yields a
bound of O(mr2) on the number of incidences under consideration.

In the latter case, π∗ is an intersection point of a triple of planes of Rτ ∪�τ that do
not share a line, for some simplex τ of the first decomposition stage, which is crossed
by mξτ /r dual planes, for some ξτ > 1; here�τ is the set of four planes bounding τ . At
least one of the planes of the triple belongs to Rτ , or else π∗ would be a vertex of the first
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decomposition stage. Let p∗0 be such a plane. Applying and adapting the analysis used
in the former case, we obtain a total of O((mξτ /r) · (ξτ log ξτ )2) incidences, involving
all vertices π∗ of the cutting in τ , and all planes p∗ ∈ P∗τ . Summing this bound over all
cells τ with ξτ > 1, we obtain a total of

O

(∑
τ

m

r
ξ 3
τ log2 ξτ

)
.

It has been shown in [9] that the expected number of cells τ of the initial triangulation
of A(R), for which ξτ > t , is O(r3 · 2−t ). This implies that, with an appropriate choice
of R and Rτ , the sum just obtained is at most O(mr2).

We sum up the bounds obtained so far, to conclude that

I (P,C) = O

(
m2/3n2/3r1/3 + n3/2

r3/2
κ
( n

r3

)
+ mr2 + n

)
.

We now choose r = n5/11κ6/11(m3/n)/m4/11, and note that 1 ≤ r ≤ m when n1/3 ≤
m ≤ n5/4κ3/2(n). If m > n5/4κ3/2(n), we use the bound O(m2/3n2/3 + m), yielded by
Theorem 2.1. If m < n1/3 then I (P,C) = O(n), which follows, e.g., from the general
weaker bound O(m3/5n4/5 + m + n) observed in [2] and [3]. We thus obtain

I (P,C) = O(m6/11n9/11κ2/11(m3/n)+ m2/3n2/3 + m3/7n6/7 + m + n).

(We have used the fact that n/r3 = O((m3/n)4/11), which implies that κ(n/r3) =
O(κ(m3/n)).) The first term dominates the third one when m ≥ n1/3. For the sake of
notational simplicity, we rewrite κ2/11(·) as κ(·), since both of these functions have the
same asymptotic expression, with a different constant of proportionality in the exponent.
Hence, we obtain the first main result of the paper:

Theorem 2.2. The number of incidences between m points and n circles in R3 is

O(m6/11n9/11κ(m3/n)+ m2/3n2/3 + m + n),

where κ(n) = (log n)O(α2(n)).

Remark. Comparing our analysis with that of [1] and [6] for the planar case, we note
that both depend, in a very similar manner, on the number of cuts needed to eliminate
all heavy elementary arcs in a planar arrangement of circles. However, in the derivation
of the weak bound, we also have the expression kn + n2/k, whose minimum value is
�(n3/2). This happens to be slightly smaller than the bound on the number of cuts that
eliminate all heavy arcs (which is O(n3/2κ(n))), so it does not affect the overall analysis.
In particular, if the bound on the number of cuts is ever improved to o(n3/2), this would
improve the incidence bound in the plane, but will not in itself improve the bound in
three and higher dimensions.

3. Circles in Higher Dimensions

Interestingly, Theorem 2.2 can be extended to any dimension d ≥ 4, employing a variant
of the technique used in the preceding section. Here is a somewhat informal and brief
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overview of the analysis. We proceed by induction on d, where the case d = 3 serves as
the induction basis. The analysis of the number of light elementary arcs is identical to
the preceding one. In analyzing heavy elementary arcs, we make use of the fact that if c
and c0 are two circles that meet at two points then they both lie in a common 3-space.
Hence, for a given base circle c0, we can “capture” all circles that meet it at two points
within a system of hyperplanes that rotate about the affine hull of c0, and apply the
inductive bound for d − 1 within each hyperplane. We then prune away c0 and all these
other circles, and repeat the process. With some care (see details below), this yields the
same asymptotic bound as in Theorem 2.1. Improving the bound proceeds by simply
projecting all the circles onto some 3-space, and applying a cutting-based decomposition
there, as in the three-dimensional case.

3.1. An Initial Bound

We begin by extending Theorem 2.1.

Theorem 3.1. The number of incidences between m points and n circles inRd , for any
d ≥ 4, is

O(m2/3n2/3 + n3/2κ(n)+ m), (3)

where κ(n) = (log n)O(α2(n)).

Proof. Let P be a set of m points, and let C be a set of n circles in Rd .
By applying an appropriate inversion to Rd , in complete analogy to the three-

dimensional case, we may assume that no two circles of C lie in a common 2-plane.
The notions of elementary arcs of the multigraph G, and of light and heavy edges and

arcs, carry over to higher dimensions verbatim. In particular, the number of light arcs
is O(m2/3n2/3 + m + n), which is shown exactly as in the three-dimensional case, by
projecting the collections C and P onto a generic 2-plane.

The analysis of the number of heavy arcs proceeds by induction on d. Specifically,
we show:

Lemma 3.2. The number of heavy elementary arcs in an arrangement of n circles in
R

d is O(n3/2κ(n)).

Proof. The proof proceeds by induction on d ≥ 3. The base case d = 3 follows from
the proof of Theorem 2.1. Let d ≥ 4. Suppose the lemma holds in all dimensions d ′ < d.

Fix a threshold parameter k. We again apply an iterative pruning process to the set
C . Suppose that there exists a circle c0 ∈ C with at least k other circles meeting it at
two points each. Let K (c0) denote the set of these circles, and let µ ≥ k denote its
cardinality.

Let π0 be the 2-plane that contains c0. Choose some (d − 2)-flat g0 that contains π0,
so that g0\π0 does not contain any center of a circle of C or any intersection point of
two such circles. Consider the set H = H(c0) of all ((d − 1)-dimensional) hyperplanes
that contain g0 and at least one circle of C besides c0. Note that such a hyperplane
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contains a circle in K (c0) if and only if it contains its center. All the hyperplanes that
contain g0 form a one-dimensional family—their normals trace the circle γ0 of vectors
perpendicular to g0 on the ((d − 1)-dimensional) unit sphere of directions. For each
h ∈ H , let C(h) denote the set of circles that lie on h; one of them is c0, and some
of them might not intersect c0 at all. Put µh = |C(h)| and µ′ = ∑

h∈H µh . Note that
µ′ > k. Put K ′(c0) =

⋃
h∈H C(h); this set contains c0, the circles in K (c0), and also

possibly some circles that happen to lie on some hyperplane h, without intersecting c0.
(Note that, since no two circles of C are coplanar, no circle in K (c0) can have its center
on π0, because any such circle would have to be coplanar with c0.)

Fix a hyperplane h ∈ H , consider the set C(h), and associate with it the multigraph
G(h) that is formed by all elementary arcs on the circles in C(h). The induction hypoth-
esis implies that the number of heavy elementary arcs in G(h) is O(µ3/2

h κ(µh)). Similar
to the situation for d = 3, this only counts elementary arcs on circles of C(h), whose
endpoints are shared by at least one additional circle from C(h), where they also delimit
an elementary arc.

Suppose that c, c′ �= c0 are two circles that lie on different respective hyperplanes
h, h′, and meet each other at two points p, q, so that p and q delimit elementary arcs
along both c and c′. This interaction between c and c′ is not recorded in the bounds
just mentioned, but we can bound the number of these arcs, exactly as in the three-
dimensional case, as follows: Note that p and q must lie on π0 (they lie in g0, and
the choice of g0 ensures that they cannot lie in g0\π0). Since any circle in C\{c0}
intersects π0 in at most two points, it follows that there can be at most one such el-
ementary arc along each circle c ∈ K ′(c0). Hence, the number of these arcs is at
most µ′.

Let c be a circle that does not lie in any of the hyperplanes h of H . Then c meets
each of the hyperplanes h ∈ H in at most two points. We wish to bound the num-
ber of heavy elementary arcs along c that have common endpoints with some circle
c′ ∈ K ′(c0) where they also delimit an elementary arc. We claim that the number of
such arcs is at most two; the proof is identical to the analogous proof in three dimen-
sions. Specifically, suppose c′, c′′, c′′′ are three circles, lying on three distinct respective
hyperplanes h′, h′′, h′′′ through g0, so that each of them meets c at two points, denoted
respectively as {p′, q ′}, {p′′, q ′′}, {p′′′, q ′′′}. To determine the order of these six points
along c, we project the set of circles orthogonally onto a 2-plane orthogonal to g0. If
the disk bounded by c meets g0, then, up to relabeling c′, c′′, c′′′ and interchanging the
p’s and q’s, the order must be p′, p′′, p′′′, q ′, q ′′, q ′′′ (see Fig. 2(a)); otherwise, it must
be p′, p′′, p′′′, q ′′′, q ′′, q ′ (see Fig. 2(b)). However, neither order is consistent with the
requirement that p′q ′, p′′q ′′, p′′′q ′′′ be distinct elementary arcs on c; specifically, they
are not disjoint, as they partially overlap in case (a) and are nested in case (b). This
establishes the claim. Hence, any circle c not in K ′(c0) contains at most two elementary
arcs of the type under consideration, for a total of at most 2n additional arcs. Adding the
companion elementary arcs along circles in K ′(c0), if needed, as in the three-dimensional
case, we obtain at most 2n more arcs. The overall number of heavy elementary arcs that
we count while analyzing c0 is thus at most

O

(∑
h∈H

µ
3/2
h κ(µh)+ n

)
= O((µ′)3/2κ(µ′)+ n).
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Fig. 2. Elementary arcs along a circle c that does not lie in any hyperplane h ∈ H (as seen when projected
onto a 2-plane orthogonal to g0).

We now remove c0 and all the circles in K ′(c0) from C . Clearly, any heavy multi-edge of
G that has at least one elementary arc on a circle in K ′(c0) is counted, with its multiplicity,
in the bound just given.

The described iterative process is repeated until no circle c′0 ∈ C has k or more other
circles meeting it in two points each. Let ν1, . . . , νr denote the number of circles removed
at each step in the process. We have

∑r
j=1 νj ≤ n, and νj > k for each j . Therefore

r ≤ n/k. Arguing as above, the total number of heavy arcs in G is thus

r∑
j=1

O(ν3/2
j κ(νj )+ n) = O(n3/2κ(n)+ nr) = O

(
n3/2κ(n)+ n2

k

)
.

We are left with a collection C ′ of circles, so that each c ∈ C ′ meets at most k other
circles at two points each, and thus has at most k elementary arcs, for a total of at most
O(nk) arcs. The grand total number of heavy elementary arcs is thus

O

(
n3/2κ(n)+ n2

k
+ nk

)
.

Choosing k = n1/2 yields the bound asserted in the lemma. This completes the induction
step, and thus also the proof of the lemma.

We return to the estimation of I (P,C). Using the bound of Lemma 3.2 on the number
of heavy elementary arcs, and adding the number of light elementary arcs noted above,
we obtain

I (P,C) = O(m2/3n2/3 + n3/2κ(n)+ m),

thus completing the proof of the theorem.
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3.2. Strengthening the bound

To improve the bound of Theorem 3.1, we project P and C onto some generic 3-
space. The circles of C are mapped to ellipses, and incidences between points of P
and circles of C are mapped to incidences between the corresponding projected points
and ellipses. Let P̂ and Ĉ denote, respectively, the projected sets of points and cir-
cles. By using a generic projection, we may assume that no two ellipses in Ĉ are
coplanar.

We pass to the dual 3-space, and map the points of P̂ to planes and the ellipses of Ĉ
to points, dual to the planes containing the ellipses. From this point on, we can repeat the
analysis of Section 2.2 almost verbatim, except for the following items: (i) Within each
cell of the cutting we apply Theorem 3.1 to bound the number of incidences between the
corresponding original points and circles in d-space. (ii) When we consider dual points
π∗ that lie on an edge e of the cutting, we note that, since the projection onto 3-space
is generic, the primal points p whose duals contain e must be collinear not only in the
projected 3-space but also in the original Rd , so the analysis of this case carries over
easily to d dimensions as well. Omitting further easy details we obtain the improved
bound, which is asymptotically identical to the bound in three dimensions:

Theorem 3.3. The number of incidences between m points and n circles in Rd is

O(m6/11n9/11κ(m3/n)+ m2/3n2/3 + m + n),

where κ(r) = (log r)O(α2(r)).

4. Convex Non-Coplanar Plane Curves

General convex plane curves that lie in distinct planes are handled in substantially the
same manner as circles, except that the argument that we used to derive the weak bound
in three dimensions, in which circles that form heavy elementary arcs with a fixed circle
c0 can be “captured” by a system of spheres that pass through c0, cannot be extended to
general curves. We thus use here a significantly different argument, which results in a
somewhat weaker initial bound. Additionally, the bounds in higher dimensions follow
immediately from the three-dimensional argument.

4.1. The Three-Dimensional Case

4.1.1. An Initial Bound. Let C be a set of n arbitrary convex plane curves, no two in a
common plane, and let P be a set of m points in 3-space. Let I (P,C) denote the number
of incidences between P and C .

As above, we also assume that each curve of C contains at least three points of P ,
since the remaining curves only contribute at most 2n to the incidence count. The notions
of an elementary arc, of light and heavy arcs, and of the multigraph G that represents the
incidence structure, are defined in complete analogy to the case of circles. Our analysis
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Fig. 3. A configuration.

also allows (some of) the given curves to be unbounded. In this case the number |G| of
edges of G satisfies |G| ≥ I (P,C)− n. Thus, bounding |G| suffices in this case too.

As in the case of circles, the number of light arcs is O(m2/3n2/3 + m + n). It thus
remains to bound the overall number of heavy arcs.

We start with some definitions. A configuration consists of four curves c, c1, c2, c3 ∈
C and three pairs {p1, q1}, {p2, q2}, and {p3, q3} of points from P , such that (refer to
Fig. 3):

(i) The curves ci and c intersect at the two points pi , qi , for i = 1, 2, 3.
(ii) The six points p1, q1, p2, q2, p3, q3 of P are distinct (making the three curves

c1, c2, c3 distinct as well).
(iii) For i = 1, 2, 3, pi and qi are consecutive points of P both along ci and along c;

thus all three edges {pi , qi } are heavy edges of G.

We do not distinguish configurations that differ only by a permutation of the indices
1, 2, 3. Since a configuration, when it exists, is completely determined by its four curves,
we sometimes refer to it as (c, c1, c2, c3), instead of the somewhat more awkward, even
if more accurate notation (c, c1, c2, c3, p1, q1, p2, q2, p3, q3). The main technical tool
used in our analysis is the following lemma.

Lemma 4.1. Let c1, c2, c3 be three distinct curves in C . There are at most 128 curves
c ∈ C forming a configuration with c1, c2, c3, for any choice of points p1, q1, p2, q2,

p3, q3.

Proof. Let c1, c2, c3 be a fixed triple of curves in C . By our non-coplanarity assumption,
the curves c1, c2, c3 lie in three distinct respective planes π1, π2, π3, and no curve c that
forms a configuration with this triple is coplanar with any of them. Let A denote the
arrangement of these three planes. A has a single vertex o, unless the three planes are
parallel to a common line. Consider first the case where the vertex o exists. In this case,
A has eight three-dimensional cells, each being an infinite trihedral wedge with its apex
at o.

Suppose to the contrary that there are at least 129 curves c ∈ C that form a con-
figuration with c1, c2, c3, as above. Let c be a curve that forms a configuration of the
form (c, c1, c2, c3, p1, q1, p2, q2, p3, q3) with c1, c2, c3. Consider the elementary arc
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Fig. 4. A three-dimensional cell τ , bounded by the planes π1, π2, π3 containing c1, c2, c3, respectively. A
“clipped” curve c̄ within τ is shown.

p1q1 along c. Its endpoints lie on π1, and it cannot meet π2 or π3, because any such
intersection must be a point of P where c meets c2 or c3. Hence, p1 and q1 lie in the
same 2-face of A, and similarly for p2, q2, and for p3, q3.

This is easily seen to imply that, if we remove from c the three (closed) elementary
arcs pi qi , for i = 1, 2, 3, the remainder of c, which we denote by c̄, is fully contained in
a single (open) three-dimensional cell of A. See Fig. 4. Since there are eight such cells,
at least one of them, call it τ , must contain the truncations c̄ of at least 17 of the curves c.

Consider one such curve c. The plane π containing c meets each ci , for i = 1, 2, 3,
at the two respective points pi , qi . We say that ci lies on the near side (resp., the far
side) of π if the elementary arc pi qi along ci lies on the side of π that does not contain
(resp., contains) o. (Note that π cannot pass through o.) There are 8 = 23 possible
combinations of sides for any plane π containing such a curve c (one of two sides for
each of c1, c2, c3), so there exists at least one such combination that arises for at least
three out of the seventeen curves c as above. We denote these curves by c, c′, c′′, and
their containing planes by π, π ′, π ′′. We consider the following cases:

(i) All three sides are of the same kind, say all are far sides. For each i = 1, 2, 3,
remove from ci the three elementary arcs that it forms with c, c′, c′′. Denote the portion
of the remainder of ci that lies on ∂τ by c̄i . Note that each c̄i is nonempty, because ci

meets each of c, c′, c′′ at a pair of points that lie on ∂τ . Then c̄1, c̄2, c̄3 are all contained
in the intersection of the three closed halfspaces that are bounded by π, π ′, π ′′ and do
not contain o, and of the three closed halfspaces that are bounded by π1, π2, π3 and
intersect in τ . Let K be the convex polyhedron formed by the intersection of these six
halfspaces. Then K has six facets, and each of the three (closed) facets that lie on the
planes π, π ′, π ′′ meets each of the three (closed) facets that lie on the planes π1, π2, π3.
To see this, consider, for example, the two points p1, q1 of intersection of c and c1. Then:
(a) Since p1 and q1 lie on ∂τ , they lie in the appropriate halfspaces that are bounded
by π1, π2, π3. (b) Both points lie on π . (c) The halfspace h′ under consideration that is
bounded by π ′ contains all of c1, except for the elementary arc of c1 delimited by its
intersections with c′. Since p1 and q1 do not lie in this arc, they lie in h′, and, similarly,
also in the appropriate halfspace bounded by π ′′. This implies that p1, q1 lie on an edge
of K where π and π1 meet, and similarly for all other relevant pairs of curves (nine pairs
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in total). In other words, ∂K yields an impossible plane drawing of K3,3 contained in
its dual graph. That is, we fix a point inside each of the six facets, and connect, say, the
point on the facet of π1 to the point on the facet of π by an appropriate path, consisting
of two segments, within the union of the two facets, and similarly for all other relevant
pairs of facets. This contradiction rules out this case. (The situation where all sides are
near is argued in exactly the same manner.)

(ii) Two sides are of the same kind, and the third is of the opposite kind. Without loss
of generality, assume that c1 and c2 lie on the far side of π, π ′, π ′′, and that c3 lies on
the near side of π, π ′, π ′′. Denote by π+ (resp., π−) the halfspace bounded by π and
containing o (resp., not containing o), and define similarly the halfspaces π ′+, π ′−, π ′′+,
and π ′′−. Assume that π, π ′, π ′′ meet at a single point q. Then Q+ = π+ ∩ π ′+ ∩ π ′′+
and Q− = π− ∩ π ′− ∩ π ′′− are complementary trihedral wedges with a common apex q.
Define the truncated curves c̄1, c̄2, c̄3 as above; again they must be nonempty. Note that τ
must meet both Q+ and Q−, because c̄1, c̄2 ⊂ Q−, and c̄3 ⊂ Q+. Note that this implies
that the point q does exist. Indeed, if it does not exist, then π, π ′, π ′′ are all parallel to
some direction, which implies that at least one of Q+, Q− is a dihedral wedge, bounded
by only two of these planes. However, this wedge contains at least one of the truncated
circles c̄1, c̄2, c̄3, which meets each of π, π ′, π ′′ at two distinct points, a contradiction
that shows π, π ′, π ′′ must meet in single point q.

There are two subcases to consider:
(ii(a)) τ contains q . See Fig. 5(a). Consider the convex polyhedron K− = Q−∩τ . Ar-

guing as in case (i), K− has (at least) five facets, bounded by the planes π1, π2, π, π
′, π ′′,

(a)

Q+

q

�

Q�

�

Q�
`�3

�

Q+

`+2
`+1

(b)

q

Fig. 5. Case (ii) of the proof: (a) q ∈ τ , (b) q �∈ τ .
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and three of them, those lying on the planes π, π ′, π ′′, meet at the common vertex q.
In this case we also obtain an impossible plane drawing of K3,3 along ∂K−, in which
the nodes of one vertex set are (points within) the facets that lie on π, π ′, π ′′, and the
nodes of the second vertex set are the vertex q and (points within) the facets that lie on
π1, π2. The edges connecting the points on the facets of π, π ′, π ′′ to the points on the
facets of π1, π2 are drawn as in case (i); the edges incident to q are trivial to draw. This
contradiction rules out this subcase.

(ii(b)) τ does not contain q . Draw through q a plane ζ that misses τ ; ζ must cross
both Q+ and Q−, or else τ could not meet both of them; see Fig. 5(b). Consider the three
lines �1 = π ∩ π ′, �2 = π ∩ π ′′, �3 = π ′ ∩ π ′′. Each line �j is split at q into two rays,
one of which, denoted �+j , is an edge of Q+, and the other, denoted �−j , is an edge of Q−.
Consider the halfspace h bounded by ζ and containing τ . Then either h contains two of
the rays �+j and one of the rays �−j , or the other way around. Suppose, say, that h contains
�+1 , �+2 , �−3 . Then the facet ϕ of Q− delimited by �−1 and �−2 (this is the facet lying on
π ) is fully disjoint from h and thus also from τ . However, c and c1, say, must meet each
other within τ ∩ Q− (since c1 lies in the far side of π, π ′, π ′′), or, rather, within τ ∩ ϕ.
Since this intersection is empty, we obtain a contradiction that rules out this subcase too.

Since the planes π, π ′, π ′′ play fully symmetric roles in the preceding argument, it
applies also to any other case where h contains two “positive” rays and one “negative”
ray. The cases where h contains two negative rays (say, �−1 , �

−
2 ) and one positive ray (�+3 )

is handled by considering c3, which has to meet c within τ ∩ Q+, which is impossible,
since the facet of Q+ that is bounded by π is disjoint from τ .

If the planes π1, π2, π3 do not meet at a single point and do not share a common line,
a near-identical argument applies, the only difference being that A has no vertices, so τ
is a three-sided prism rather than a trihedral wedge. (The notions of near and far sides
now need to be redefined in a consistent, though obvious, manner.) Finally, we need to
consider the case where π1, π2, π3 share a common line. If there existed a curve c that
formed a configuration with c1, c2, c3, arguing as in the preceding analysis, we would
conclude that the truncated portion c̄ of c would have to lie fully within a single open
cell of A. However, any such cell is bounded by only two of the planes π1, π2, π3, so
c cannot form an elementary arc with the curve that lies in the remaining plane. Hence
π1, π2, π3 cannot share a line.

This completes the proof of the lemma.

Continuing with our main argument, let Q denote the set of all configurations.
Lemma 4.1 implies that |Q| = O(n3). A lower bound for |Q| is obtained as follows.
Fix a curve c ∈ C that contains Mc ≥ 3 heavy arcs that do not share endpoints. Any
other curve contributes at most six incidences involving heavy arcs, for a total of O(n).
(The maximum number six is attained when c contains two pairs of heavy arcs, each
sharing a common endpoint. Together, these four arcs have six endpoints.) Each of the(Mc

3

)
triples of those heavy arcs on c generates a distinct configuration in Q. (In general,

it may generate more than one configuration.) Hence, we have

|Q| ≥
∑
c∈C

Mc≥3

(
Mc

3

)
.
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In other words, the total number of heavy arcs is at most

O(n)+ O

(∑
Mc≥3

Mc

)
= O(n)+ O

(∑
c

(Mc − 2)

)

= O(n)+ O



(∑

c

(
Mc

3

))1/3

· n2/3




= O(n5/3).

The second equation follows from Hölder’s inequality. We have thus shown:

Theorem 4.2. Let C be a family of n convex plane curves in R3, no two in the same
plane. Let P be a set of m points in R3. Then I (P,C) = O(m2/3n2/3 + m + n5/3).

4.1.2. Strengthening the Bound. The bound in Theorem 4.2 is worst-case optimal when
m ≥ n3/2. For smaller values of m, we apply an essentially identical analysis to the one
given in Section 2.2, which considers the points of P and the (distinct) planes containing
the curves of C in dual space. The main differences are: (i) Within each cell of the cutting
we apply Theorem 4.2 to bound the number of incidences between the corresponding
original points and curves. (ii) When we consider dual points π∗ that lie on an edge e
of the cutting, we note that, as above, the primal points p whose duals contain e are
collinear, and any convex plane curve can be incident to at most two of them. Thus the
analysis of this case carries over easily to the situation at hand.

To summarize, the number of incidences involving dual points π∗ that lie in the
interiors of the cells of the cutting is

O

(∑
τ

((m

r

)2/3 ( n

r3

)2/3
+ m

r
+
( n

r3

)5/3
))
= O

(
m2/3n2/3r1/3 + mr2 + n5/3

r2

)
.

As described above, dual points that lie on cell boundaries are handled as in Section 2.2.
That is, they are assigned to neighboring cells and/or contribute O(n+mr2) additional
incidences.

In total, we thus obtain

I (P,C) = O

(
m2/3n2/3r1/3 + n5/3

r2
+ mr2 + n

)
.

We now choose r = n3/7/m2/7, and note that 1 ≤ r ≤ m when n1/3 ≤ m ≤ n3/2. If
m > n3/2, we use the bound O(m2/3n2/3+m), yielded by Theorem 4.2. If m < n1/3, then
I (P,C) = O(n). This follows since the bipartite incidence graph {(p, c) ∈ P×C | p ∈
c} does not contain K3,2, so, by extremal graph theory [15], the number of incidences is
O(mn2/3 + n) = O(n). We thus obtain

I (P,C) = O(m4/7n17/21 + m2/3n2/3 + m3/7n6/7 + m + n).

The first term dominates the third one when m ≥ n1/3. Hence we obtain the main result
of this section:
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Theorem 4.3. The number of incidences between m points and n convex plane curves
in R3, no two in the same plane, is O(m4/7n17/21 + m2/3n2/3 + m + n).

4.2. Extensions to Nonconvex Plane Curves and to Higher Dimensions

Theorem 4.4. Let C be a collection of n convex plane curves, no two of which lie
in a common 2-plane, and let P be a set of m points in Rd , for any d ≥ 4. Then
I (P,C) = O(m4/7n17/21 + m2/3n2/3 + m + n).

Proof. We project the curves and points onto some generic 3-space. In the projection
the curves of C remain convex and planar, and no two of them are coplanar, so we can
apply Theorem 4.3 to obtain the bound.

Theorem 4.5. Let C be a collection of n distinct plane curves inRd , so that each curve
is semialgebraic of constant descriptive complexity, and so that no two curves lie in a
common plane.2 Let P be a set of m distinct points in Rd . Then the number I (P,C) of
incidences between the points of P and the curves of C is O(m4/7n17/21 + m2/3n2/3 +
m + n).

Proof. Each curve in C can be decomposed into at most c arcs, for some constant c,
each of which is algebraic of some constant maximum degree b. Each arc has thus at
most b − 2 inflection points, and cutting it at these points decomposes it into at most
b − 1 convex subarcs. Altogether, each original curve in C is decomposed into at most
a = (b− 1)c convex pieces. We replace C by a separate collections C1, . . . ,Ca , where
each collection contains a distinct piece of each curve of C , and so that no two curves
in the same collection Ci lie in a common 2-plane. Clearly, I (P,C) ≤∑a

i=1 I (P,Ci ).
The theorem is now an immediate consequence of Theorem 4.4.

Theorem 4.6. Let S be a (d−1)-dimensional semialgebraic surface inRd of constant
descriptive complexity, let P be a set of m distinct points on S, and let � be a set of n
distinct 2-planes in Rd . Then the number I (P,�) of incidences between the points of
P and the planes of � is O(m4/7n17/21 + m2/3n2/3 + m + n).

Proof. Apply Theorem 4.5 to P and the set of plane curves {π ∩ S | π ∈ �}.

5. Applications

Congruent Tetrahedra and Distinct Distances. Theorems 2.2 and 3.3 can be applied
(a) to improve the bound, obtained in [2], for the number of congruent tetrahedra in a

2 A semialgebraic set of constant descriptive complexity is a set defined as a Boolean combination of a
constant number of polynomial equalities and inequalities in a constant number of variables and of constant
maximum degree.
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point set in four dimensions, and (b) to derive the bound, obtained in [5], for the number
of distinct distances in three dimensions. Specifically, we have:

Theorem 5.1. Let P be a set of n points in R4, and let � be a given tetrahedron. The
number of congruent copies of � that are spanned by the points of P is O(n20/9+ε), for
any ε > 0.

Theorem 5.2 [5]. Let P be a set of n points in R3. Then (a) the number of distinct
distances determined by P is�(n0.546), and (b) furthermore, there always exists a point
of P that determines �(n0.546) distinct distances to the remaining points of P .

The proof of Theorem 5.1 is an immediate adaptation of the proof in [2], where the
bound on the number of point–circle incidences in 4-space is replaced by the bound in
Theorem 3.3. The proof of Theorem 5.2, given in [5], makes use of the bound on the
number of point–circle incidences in 3-space (Theorem 2.2).

Incidences between Lines and Reguli. Given three pairwise skew lines �1, �2, �3 in
R

3, the set σ = σ(�1, �2, �3) of lines meeting all three lines is called a regulus. All lines
in σ are pairwise skew, and they span a ruled surface σ ∗ = ⋃

�∈σ � in R3, which is a
quadric. See [18] and [19] for more details. Note that we make a distinction between
the regulus σ , that is a one-parameter family of lines, and the ruled surface σ ∗ that it
spans. An “incidence” between a line � and a regulus σ means that � belongs to the
family σ and implies (but is not equivalent to) that � is contained in σ ∗. The following
result is a special case of Theorem 4.6 and is of interest due to its application in [13] to
deriving an improved bound on the number of joints in an arrangement of lines in three
dimensions.

Theorem 5.3. Let L be a set of m lines in 3-space, and let R be a set of n reguli in
3-space. Then the number I (L , R) of incidences between the lines of L and the reguli
of R is O(m4/7n17/21 + m2/3n2/3 + m + n).

Proof. We use the well known representation of lines in space by their Plücker coordi-
nates; see, e.g., [8] for details. Here a line � is mapped to a point p� on a four-dimensional
quadric �, known as the Plücker surface, in real projective 5-space RP5. Dually, � is
mapped to a hyperplane π� in RP5. Two lines in space meet each other (including the
case of being parallel) if and only if the Plücker point of one of them lies on the Plücker
hyperplane of the other. Consider a regulus σ ∈ R which is the locus of lines that meet
some triple �1, �2, �3 of pairwise skew lines. In Plücker space, σ is the one-dimensional
curve π�1 ∩ π�2 ∩ π�3 ∩ � that is the intersection of the 2-plane π�1 ∩ π�2 ∩ π�3 with
�. It is easily checked that π�1 ∩ π�2 ∩ π�3 is indeed a 2-plane, and that the n 2-planes
that arise in this manner are distinct. The theorem is thus an immediate consequence of
Theorem 4.6.
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6. Conclusions

The paper raises several open problems:

• Improve the upper bound on the number of incidences between points and circles
inRd . Of course, the first step is to improve this bound in the planar case, a problem
already posed in [1] and [6].
• Improve the upper bound on the number of incidences between points and non-

coplanar plane curves in Rd . Can one at least extend the bound of Theorem 3.3 to
the case of plane curves?
• Can one obtain an improved bound for the special case of unit circles in Rd? This

is the case in the plane, where the bound for the number of incidences between m
points and n unit circles is O(m2/3n2/3 + m + n) [10], [20], [21].
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14. J. Matoušek, Lectures on Discrete Geometry, Graduate Texts in Mathematics, Springer-Verlag, Berlin,
2002.

15. J. Pach and P.K. Agarwal, Combinatorial Geometry, Wiley-Interscience, New York, 1995.
16. J. Pach and M. Sharir, On the number of incidences between points and curves, Combin. Probab. Comput.

7 (1998), 121–127.
17. J. Pach and M. Sharir, Geometric incidences, in Towards a Theory of Geometric Graphs (J. Pach, ed.),

pp. 185–223, Contemporary Mathematics, vol. 342, American Mathematical Society, Providence, RI,
2004.

18. M. Sharir and E. Welzl, Point–line incidences in space, Combin. Probab. Comput., 13 (2004), 203–220.
19. D.M.Y. Sommerville, Analytic Geometry of Three Dimensions, Cambridge University Press, Cambridge,

1934.
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