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Abstract. The set of all unordered real line arrangements of given degree in the real
projective plane is known to have a natural semialgebraic structure. The nonreduced ar-
rangements are singular points of this structure. We show that the set of all unordered real
line arrangements of given degree also has a natural structure of a smooth compact con-
nected affine real algebraic variety. In fact, as such, it is isomorphic to a real projective
space. As a consequence, we get a projectively linear structure on the set of all real line
arrangements of given degree. We also show that the universal family of unordered real line
arrangements of given degree is not algebraic.

1. Introduction

Let K be any field. An unordered line arrangement over K is a closed subscheme V (F)
of the projective plane P2 = P2

K , defined by a nonzero homogeneous polynomial F ∈
K [X, Y, Z ] that is equal to the product of its linear factors in K [X, Y, Z ]. Equivalently,
an unordered line arrangement over K is a proper closed subscheme of P2 that is the
scheme-theoretic union of finitely many projective lines in P2. Note that, with the cur-
rent definition, unordered line arrangements are not necessarily reduced or nonempty
(see [3]).

Since the set of projective lines in P2 is parametrized by the set (P2)�(K ) of all
K -rational points of the dual projective plane (P2)�, the set of all unordered line ar-
rangements of degree d over K is naturally parametrized by the symmetric power

Ad = ((P2)�(K ))(d),

where d is a natural integer.
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Bretagne Occidentale, 6 avenue Victor Le Gorgeu, B.P. 809, 29285 Brest Cedex, France. johannes.
huisman@univ-brest.fr.



158 J. Huisman

Now, the set Ad has two bad properties:

1. Ad is not, in a natural way, the set of K -rational points of an algebraic variety
over K , and

2. Ad contains singularities, as a subset of the algebraic variety ((P2)�)(d).

Indeed, as for property 1,Ad is a subset of the set ((P2)�)(d)(K ) of all K -rational points
of the symmetric power ((P2)�)(d). One has a strict inclusion

Ad � ((P
2)�)(d)(K )

if and only if the field K admits a nontrivial extension of degree ≤ d. For example, if K
is algebraically closed then Ad is equal to the set of K -rational points of ((P2)�)(d).
However, if K is not algebraically closed, Ad is strictly contained in ((P2)�)(d)(K ) for
all d ≥ d0, for some natural integer d0. For example, if K is the field R of real numbers
then Ad is a strict semialgebraic subset of ((P2)�)(d)(R) for all d ≥ 2.

As for property 2, since (P2)� is two-dimensional, the symmetric power ((P2)�)(d)

is singular along the so-called big diagonal � for all d ≥ 2.
While seemingly nothing can be done to resolve property 1, one can resolve property 2

by resolution of singularities. This has, however, the following drawback. Let Ãd be a
resolution of singularities of Ad . Let A� be the disjoint union of Ad , for d ∈ N and let,
similarly, Ã� be the disjoint union of Ãd , for d ∈ N. Then the scheme-theoretic union
of unordered line arrangements over K , which is a monoid law

A� ×A� −→ A�

on A�, does not extend to a map

Ã� × Ã� −→ Ã�.

Therefore, even if K is algebraically closed, property 2 erects serious obstacles.
The object of this paper is to show that, when K is the field R of real numbers,

both bad properties 1 and 2 can be resolved. More precisely, we show that Ad can be
identified, in a natural way, with the whole set of real points of a proper smooth algebraic
variety over R. In fact, there is a natural bijection between Ad and the set of real points
of a real projective space (see Theorem 2.1). In particular, Ad has a natural structure of
a smooth compact connected affine real algebraic variety in the sense of [1]. Moreover,
with respect to this structure, the scheme-theoretic union of real line arrangements

A� ×A� −→ A�

is an algebraic map (see Corollary 2.3).
In Section 3 we show that the universal family Ud of unordered real line arrangements

over Ad only is semialgebraic, and is not algebraic (see Theorem 3.2).

Convention. All line arrangements will be unordered, unless specified otherwise.
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2. A Real Algebraic Structure on the Space of Real Line Arrangements

Let I be the homogeneous ideal of R[X, Y, Z ] generated by the polynomial X2 +
Y 2 + Z2. Let d be a natural integer. Let R[X, Y, Z ]d denote the real vector subspace
of R[X, Y, Z ] of all homogeneous polynomials of degree d. Let Id be the real vector
subspace of R[X, Y, Z ]d defined by

Id = I ∩ R[X, Y, Z ]d ,

i.e., Id is the real vector subspace of R[X, Y, Z ]d consisting of all polynomial multiples
of X2 + Y 2 + Z2. Define

Sd = R[X, Y, Z ]d/Id .

Since R[X, Y, Z ]d is of dimension 1
2 (d + 2)(d + 1), for each d, the dimension of Id is

equal to 1
2 d(d − 1) and

dim(Sd) = 1
2 (d + 2)(d + 1)− 1

2 d(d − 1) = 2d + 1.

The object of this section is to show that there is a natural bijection from the set Ad

of all real line arrangements of degree d onto the real projective space P(Sd). One can
already observe that P(Sd) has the right dimension.

Let

πd : R[X, Y, Z ]d −→ Sd

be the quotient map. Since ker(πd) = Id , the map πd induces a projectively linear
projection

P(πp): P(R[X, Y, Z ]d)−−→ P(Sd)

with center P(Id). Note that P(R[X, Y, Z ]d) can—and will—be identified with the space
of all real algebraic plane curves of degree d, and, as such, contains the set Ad of all
real line arrangements of degree d. Since X2 + Y 2 + Z2 is irreducible, the intersection
of Ad and P(Id) is empty. Hence, the restriction of P(πd) to Ad is a true map

ρd : Ad −→ P(Sd).

Theorem 2.1. Let d ∈ N. The map ρd is a bijection. In particular, Ad has a natural
structure of a smooth real algebraic variety of dimension 2d. In fact, with respect to this
structure, Ad is isomorphic to P2d(R).

For the proof of Theorem 2.1 it is convenient to have a more geometric description
of ρd . Let Q be the real algebraic plane curve defined by the equation X2+Y 2+ Z2 = 0.
Since Q is a rational normal curve,P(Sd) can—and will—be identified with the complete
linear system of all effective real divisors on Q of degree 2d. If A is a real line arrangement
of degree d , the intersection product A · Q is well defined since Q is a nondegenerate
conic. The map ρd maps the real line arrangement A to the real effective divisor A · Q.
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Proof of Theorem 2.1. Let D be an effective real divisor on Q of degree 2d. We have
to show that there is a unique real line arrangement A of degree d such that A · Q = D.
Since D is an effective real divisor on Q of degree 2d,

D =
n∑

i=1

mi Pi ,

where Pi are nonreal closed points of Q and mi are nonzero natural integers satisfy-
ing

∑
mi = d . Here we have used that Q does not have any real points. Since each Pi

is a nonreal closed point of Q, there is a unique real projective line Li that contains Pi .
Since Q is a conic, Li · Q = Pi . Let A be the real line arrangement defined by

A =
n∑

i=1

mi Li .

Then A is a real line arrangement of degree d and A · Q = D. In order to show that A
is unique, let B be another real line arrangement of degree d such that B · Q = D.
Since B ·Q ≥ mi Pi and since B is a scheme-theoretic union of real projective lines, one
has B ≥ mi Li , for all i . Hence B ≥ A and, therefore, B = A.

Remark 2.2. By Theorem 2.1,Ad is isomorphic to P2d(R), with respect to its natural
real algebraic structure. In particular, one gets a projectively linear structure on the setAd .
For example, given two distinct real line arrangements A and B of degree d, there is a
unique real projective line of real line arrangements of degree d that contains A and B!

For example, let A = V (X2) be the nonreduced real line arrangement of degree 2
defined by the polynomial X2, and let B = V (Y 2) be the nonreduced real line arrange-
ment of degree 2 defined by the polynomial Y 2. Let us determine the real projective
line L ⊆ A2 that contains A and B. Let W ⊆ R[X, Y, Z ]2 be the real vector subspace
generated by X2, Y 2, Z2. Since I2 is the real vector subspace generated by X2+Y 2+ Z2,

P(π2)
−1(ρ2(L)) = P(W )\P(I2).

The elements of P(W )\P(I2) are of the form λX2+µY 2+ νZ2, where λ,µ, ν ∈ R are
not all equal. If the real number λ is between µ and ν, i.e., if µ ≤ λ ≤ ν or ν ≤ λ ≤ µ,
then

λX2 + µY 2 + νZ2 ≡ (µ− λ)Y 2 + (ν − λ)Z2 (mod I2).

Since µ−λ and ν−λ have opposite signs, (µ−λ)Y 2+ (ν−λ)Z2 is a product of linear
polynomials in R[X, Y, Z ]. Hence,

P(π2)(λX2 + µY 2 + νZ2) = ρ2(V (αY 2 − βZ2)),

for some nonnegative real numbers α, β, not both zero. One has a similar description
of P(π2)(λX2 + µY 2 + νZ2) when µ is between λ and ν, or when ν is between λ and
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µ. It follows that the real projective L containing A and B is a union L = L1 ∪ L2 ∪ L3,
where

L1 =
{

V (αY 2 − βZ2) | (α, β) ∈ (R2
≥0)\{(0, 0)}} ,

L2 =
{

V (αX2 − βZ2) | (α, β) ∈ (R2
≥0)\{(0, 0)}} ,

L3 =
{

V (αX2 − βY 2) | (α, β) ∈ (R2
≥0)\{(0, 0)}} .

We conclude this section by stating a consequence of Theorem 2.1. Let P(S�) be
the disjoint union of the real projective spaces P(Sd), where d runs through all natural
numbers. The multiplication of the graded R-algebra S induces a structure of a graded
monoid on P(S�). In fact, P(S�) is a graded monoid in the category of real algebraic
varieties, i.e., P(S�) is a graded real algebraic monoid. Let

ρ: A� −→ P(S�)

be the disjoint union of the maps ρd , for d ∈ N.

Corollary 2.3. The map ρ is an isomorphism of graded monoids. In particular,A� is a
graded real algebraic monoid, i.e., the scheme-theoretic union on the set of all real line
arrangements A� is real algebraic with respect to the natural real algebraic structure
on A�.

3. The Universal Family of Real Line Arrangements

Let us make precise what we mean by an algebraic family of real line arrangements of
degree d . Let T be a real algebraic variety in the sense of [1]. An algebraic family of
real line arrangements of degree d over T is a closed subscheme A of the projective
plane P2 over the ringR(T ) of regular functions on T such that, Zariski-locally on T , A
is defined by a homogeneous polynomial in X, Y, Z of degree d that is a product of its
linear factors. If A is an algebraic family of real line arrangements of degree d over T ,
then, for each t ∈ T , the fiber At of A at t is a real line arrangement of degree d.

For example, the subscheme A = V (α2 X2 − β2Y 2) of P2
R(T ) is an algebraic family

of real line arrangements of degree 2 over the real algebraic variety T = R2\{(0, 0}. Its
fiber A(1,1) at (1, 1) is the real line arrangement given by the polynomial X2 − Y 2.

Another example of an algebraic family of real line arrangements that will be of in-
terest to us is the following. Let Ãd be the product of d copies of the dual real projective
plane P2(R)�. Then Ãd is the real algebraic variety of all ordered real line arrangements
of degree d . Let Ũd be the algebraic family of real line arrangements of degree d over Ãd

whose fiber over (L1, . . . , Ld) ∈ Ãd is the real line arrangement defined by the polyno-
mial L1 · · · Ld . It is the universal family of ordered real line arrangements of degree d.
It is an algebraic family of real line arrangements over Ãd .

A weaker notion is the notion of a semialgebraic family of real line arrangements
over a real algebraic variety T . Such a family is a closed subscheme A of P2 over the
ring S(T ) of semialgebraic continuous functions S(T ) on T such that, semialgebraically
locally on T , A is defined by a homogeneous polynomial in X, Y, Z of degree d that is
a product of its linear factors.
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The motivating example of a semialgebraic family of real line arrangements is the
following. The symmetric group�d acts on the d-fold product Ãd of dual real projective
planes by permutation of the factors. The quotient Ãd/�d can—and will—be identified
with the setAd of real line arrangements of degree d. The quotient Ãd/�d has a natural
semialgebraic structure, as it follows from general theory [2], [4], that coincides with the
semialgebraic structure onAd that underlies the real algebraic structure onAd . There is a
natural action of�d on the scheme Ũd lying over the action of�d on the ringR(Ãd). The
quotient Ud of Ũd by the action of�d is a semialgebraic family of real line arrangements
over Ad . It is the universal family of real line arrangements of degree d.

The object of this section is to prove that the universal family Ud of all real line
arrangements of degree d is not algebraic, whenever d ≥ 2. The following lemma
implies that it suffices to show that statement for d = 2.

Lemma 3.1. Let d ≥ 2 be a natural integer. If Ud is algebraic then U2 is algebraic.

Proof. Choose three real line arrangements A1, A2, A3 of degree d − 2 such that the
intersection A1 ∩ A2 ∩ A3 is empty. Let

σi : A2 −→ Ad

be defined by σ(A) = A+ Ai , for i = 1, 2, 3, where, as usual, the sum A+ Ai represents
the scheme-theoretic union. By hypothesis, Ud is a a closed subscheme of P2 over the
ring R(Ad) of regular functions of Ad . By Corollary 2.3, the map σi is real algebraic.
Hence, we get an induced closed subscheme σ �i Ud of P2 over R(A2), for i = 1, 2, 3.
Since the intersection of the arrangements A1, A2, A3 is empty, one has

U2 = (σ �1 Ud) ∩ (σ �2 Ud) ∩ (σ �3 Ud).

It follows that U2 is algebraic.

Theorem 3.2. Let d ∈ N. The universal family Ud of real line arrangements of degree d
is semialgebraic. If d ≥ 2 then Ud is not algebraic.

Proof. By Lemma 3.1, it suffices to show that Ud is not algebraic for d = 2. Suppose
that U2 is algebraic. Recall, from Remark 2.2, the explicit description of the real projective
line L in A2 that contains the real line arrangements A = V (X2) and B = V (Y 2).
Since U2 is supposed to be algebraic over A2, the restriction U of U2 over L would be
algebraic as well. Now, observe that the point [0 : 0 : 1] belongs to the fiber Ut for
all t ∈ L3 ⊆ L . Since L3 is Zariski-dense in L , the point [0 : 0 : 1] belongs to all fibers
of U . However, the real line arrangement C = V (Z2) is a fiber of U and does not contain
the point [0 : 0 : 1]. Contradiction.
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