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Abstract. It is possible to associate a valuation on the “orthant lattice” with each oriented
matroid. In the case of uniform oriented matroids, it is not difficult to provide a charac-
terization of the corresponding valuations. This is done here, thereby establishing a new
characterization of the uniform oriented matroids themselves. Additionally, the connection
between the valuations and the total polynomials associated with uniform oriented matroids
is noted.

1. Introduction

Here we show how to associate with each oriented matroid a valuation on the “orthant lat-
tice.” The valuation associated with a given oriented matroid retains enough information
to determine the oriented matroid. We are able to characterize the valuations which arise
in this way from uniform oriented matroids in terms of certain linear inequalities and
integrality constraints. This gives a new characterization of uniform oriented matroids.

The set {1, 2, . . . , n} is denoted by [n]. The orthant latticeQn is the collection of sets
Q(I, J ) ⊆ Rn , where for sets I, J ⊆ [n],

Q(I, J ) =
{
(x1, . . . , xn) ∈ Rn:

{
xi ≥ 0 if i ∈ I
xi ≤ 0 if i ∈ J

}
.

There are 4n such sets. The intersection of two such sets is another; also, Q(I1, J1) ⊆
Q(I2, J2) if and only if I2 ⊆ I1 and J2 ⊆ J1.

The word “orthant” as defined above has a more liberal meaning than is normally
assigned to it. We use the phrase pointed orthant to designate the 3n subsets Q(I, J ),
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where I ∪ J = [n], of Rn . The full-dimensional pointed orthants are the sets which are
usually called (closed) “orthants.” These are the 2n orthants Q(I, J ) such that I∪ J = [n]
and I ∩ J = ∅. Also, we call the 2n coordinate subspaces Q(I, I ), for I ⊆ [n], linear
orthants. The dimension of the orthant Q = Q(I, J ) is dim(Q) = n − |I ∩ J |.

The coordinate hyperplanes are the linear orthants Q({i}, {i}), which will also be
denoted by H 0

i . The two closed halfspaces bounded by H 0
i are H+i = Q({i},∅) and

H−i = Q(∅, {i}).

2. Valuations on the Orthant Lattice

Let C denote a collection of subsets of Rn . Following [9], we define a valuation on C to
be a function ν: C → A, where A is an additive abelian group, such that whenever P ,
Q, P ∩ Q, and P ∪ Q are elements of C,

ν(P ∪ Q)+ ν(P ∩ Q) = ν(P)+ ν(Q).
Possibilities for C which are of interest include: C = Qn; C = (the collection of

closed, convex, polyhedral cones emanating from the origin in Rn); C = (the collection
of closed, convex polyhedra in Rn); C = (the collection of convex polytopes in Rn); and
C = (the collection of compact, convex sets in Rn).

Given a set S ⊆ Rn , we denote by [S] its indicator function, defined on Rn by

[S](x) =
{

1 if x ∈ S,
0 if x /∈ S.

We denote by S(C) the additive group of Z -valued functions on Rn which is generated
by the indicator functions [P] of P ∈ C.

If P and Q are sets in C such that P ∩ Q and P ∪ Q are also in C, then it is clear
that [P ∪ Q] + [P ∩ Q] = [P] + [Q]. From this it follows that if ν̄: S(C) → A is
a homomorphism of abelian groups, then the function ν: C → A defined by ν(P) =
ν̄([P]) for P ∈ C is a valuation on C. Conversely, for any but the last of the possibilities
listed above, if ν: C → A is a valuation, and (when∅ ∈ C) ν(∅) = 0, then there is a unique
homomorphism ν̄: S(C)→ A such that ν̄([P]) = ν(P), for each P ∈ C. For the class of
convex polytopes, this was proven by Volland [13] and rediscovered by Perles and Sallee
[11]. For the class of orthants,Qn , it is Corollary 2 of Theorem 1, below. It is not known
if valuations on the class of compact, convex sets determine such homomorphisms;
however, Groemer [5] has proven the existence of such homomorphisms in this case
when an additional continuity assumption is imposed. When it exists, we say that the
homomorphism ν̄ is the homomorphism induced by ν.

The collections C are sometimes closed under intersection, as in all the possibilities
mentioned above. In this case there are useful extension results which are consequences
of the existence of an induced homomorphism: If ν: C → A is a valuation and the
induced homomorphism ν̄ exists, then ν has a unique extension to a valuation on the
distributive lattice of finite unions of elements of C; and, stronger when ν(∅) = 0, ν has a
unique extension to a valuation on the boolean lattice generated by C under intersection,
union, and complementation.
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Let χ0 be the function defined on closed convex polyhedra in Rn such that χ0(∅) = 0
and χ0(P) = 1 if P is a nonempty, closed convex polyhedron. Clearly, χ0 is a valuation.
Denote its (unique) extension to a valuation on the distributive lattice of finite unions of
closed convex polyhedra by χ . This will be referred to as the Euler characteristic.

Sallee, in [12], has used the phrase “weak valuation” to indicate a function ν: C → A
such that the defining equation for valuations,

ν(P ∪ Q)+ ν(P ∩ Q) = ν(P)+ ν(Q),
holds, whenever P , Q, P∩Q, and P∪Q are in C, and, additionally, the relative interiors
of P and Q have no points in common. He showed that if C is the collection of convex
polytopes, then every weak valuation on C is a valuation.

We call a function ν: Qn → A a weak valuation if, whenever P ∈ Qn and i ∈ [n],
the equation

ν(P)+ ν(P ∩ H 0
i ) = ν(P ∩ H+i )+ ν(P ∩ H−i )

holds. We will see that every weak valuation on Qn is a valuation.
For a given pointed orthant Q ∈ Qn , let νQ : Qn → Z denote the function

νQ(P) =
{

1 if P ⊇ Q,
0 otherwise.

Observe that νQ is a valuation. Indeed, if Q = Q(I, J ), where I ∪ J = [n], and
letting x = (x1, . . . , xn) ∈ Rn be a point in the relative interior of Q, so that xi = 0 if
i ∈ I ∩ J , xi > 0 if i ∈ I\J , and xi < 0 if i ∈ J\I , then for P ∈ Qn we have

νQ(P) =
{

1 if x ∈ P,
0 otherwise,

from which it is clear that ν is a valuation.

Lemma 1. If Q1 and Q2 are pointed orthants such that Q1 ⊆ Q2 then∑
Q: Q1⊆Q⊆Q2

(−1)dim(Q)−dim(Q1) =
{

1 if Q2 = Q1,

0 otherwise.

Proof. Suppose Qi = Q(Ii , Ji ) (i = 1, 2). Then I2 ⊆ I1, J2 ⊆ J1, and I2 ∪ J2 =
I1 ∪ J1 = [n]. The summation is over orthants Q = Q(I, J ) such that I2 ⊆ I ⊆ I1 and
J2 ⊆ J ⊆ J1. The collection of such orthants is in bijective correspondence with the
boolean lattice of subsets S of (I1\I2) ∪ (J1\J2) by the mapping which takes Q(I, J )
to S = (I\I2) ∪ (J\J2). (This mapping reverses inclusion order.) Let d = dim(Q2) −
dim(Q1) = |(I1\I2) ∪ (J1\J2)|. We may rewrite the sum as∑

S⊆(I1\I2)∪(J1\J2)

(−1)d−|S|.

This, in turn, equals

d∑
k=0

∑
S: |S|=k

(−1)d−k =
d∑

k=0

(−1)d−k

(
d

k

)
=

{
1 if d = 0,
0 if d > 0.



448 J. Lawrence

Theorem 1. Suppose ν: Qn → A is a weak valuation and P ∈ Qn . Then

ν(P) =
∑

Q, pointed

αQνQ(P),

where

αQ =
∑

Q′⊆Q

(−1)dim(Q)−dim(Q′)ν(Q′) ∈ A,

for each pointed orthant Q.

Proof. Denote the right-hand side of the equation by µ(P):

µ(P) =
∑

Q, pointed

αQνQ(P).

Clearly, µ is a weak valuation. We must show that, for each P ∈ Qn , ν(P) = µ(P).
Let P = Q(I, J ). We proceed by induction on the value of the parameter k =

|[n]\(I ∪ J )|. First, suppose this is 0; that is, P is pointed. We have

µ(P) =
∑

Q, pointed

( ∑
Q′⊆Q

(−1)dim(Q)−dim(Q′)ν(Q′)

)
νQ(P)

=
∑

Q′, pointed

( ∑
Q: Q′⊆Q⊆P

(−1)dim(Q)−dim(Q′)

)
ν(Q′).

By the lemma,

∑
Q: Q′⊆Q⊆P

(−1)dim(Q)−dim(Q′) =
{

1 if P = Q′,
0 otherwise,

so this does indeed yield ν(P).
Now suppose k > 0 and that the result holds for orthants for which this value is k−1.

Let i be an element of [n]\(I ∪ J ). Then

ν(P) = ν(P ∩ H+i )+ ν(P ∩ H−i )− ν(P ∩ H 0
i )

= ν(Q(I ∪ {i}, J ))+ ν(Q(I, J ∪ {i}))− ν(Q(I ∪ {i}, J ∪ {i})).

The inductive assumption applies to each of the three terms, so this equals

µ(Q(I ∪ {i}, J ))+ µ(Q(I, J ∪ {i}))− µ(Q(I ∪ {i}, J ∪ {i})),

which, since µ is a weak valuation, equals µ(P).
By induction, the result holds for all P .

Corollary 1. If ν: Qn → A is a weak valuation then it is a valuation.
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Proof. According to the theorem, ν is a combination of the νQ’s of the form
∑

Q αQνQ ,
where the αQ’s are in A. Clearly, any such combination of valuations is again a
valuation.

Henceforth, we dispense with the adjective “weak.”

Corollary 2. If ν: Qn → A is a valuation, then there is a unique homomorphism
ν̄: S(Qn)→ A such that ν̄([P]) = ν(P), for each orthant P .

Proof. Uniqueness follows from the fact that S(Qn) is generated additively by the
functions [P] (for P ∈ Qn).

It remains to establish the existence of ν̄. By the theorem, ν is a combination of the
νQ’s, so it will suffice to show that, for each of the valuations νQ (Q ∈ Qn), there exists
such a homomorphism ν̄Q : S(Qn)→ Z . Let x = (x1, . . . , xn) be a point in the relative
interior of Q. For F ∈ S(Qn), define ν̄Q(F) = F(x). This is clearly a homomorphism
of S(Qn) to Z , and

ν̄Q([P]) = νQ(P) =
{

1 if x ∈ P,
0 otherwise,

as required.

Theorem 2. The set of functions νQ : Qn → Z , where Q is a pointed orthant, forms a
basis for the additive group (Z-module) of Z-valued valuations.

Proof. It follows from Theorem 1 that this set generates the set of valuations as a
Z -module. It remains to establish independence.

Suppose that this is not the case, so that we have an equation∑
Q, pointed

βQνQ(P) = 0

holding for each P ∈ Qn , where the βQ’s are integers, not all 0.
Choose a minimal set Q0 such that βQ0 �= 0. Letting P = Q0 yields

0 =
∑

βQνQ(Q0) =
∑

Q⊆Q0

βQ = βQ0 ,

a contradiction; so the set is independent.

3. Some Valuations on the Orthant Lattice

In this section we give some examples of valuations on Qn . The first two classes of
these examples will serve as prototypes of valuations associated with lopsided sets and
oriented matroids in later sections.
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Suppose that P is a convex set in Rn . Define

λP(Q) =
{

1 if P ∩ Q �= ∅,
0 if P ∩ Q = ∅.

Notice that if Q is an orthant and i ∈ [n], then

λP(Q) = max(λP(Q ∩ H+i ), λP(Q ∩ H−i ))

and also

λP(Q ∩ H 0
i ) = min(λP(Q ∩ H+i ), λP(Q ∩ H−i )).

Clearly, these properties imply that λP is indeed a valuation on the orthant lattice. A
valuation satisfying the stronger properties is called a max-min valuation.

If χ is the Euler characteristic and the set P is a closed convex polyhedron, we can
write λP(Q) = χ(P ∩ Q). Then the valuation property follows from the fact that the
Euler characteristic is a valuation.

Here are some properties of λP :
λP is a valuation; λP is monotone—that is, if Q1, Q2 are orthants and Q1 ⊆ Q2,

then λP(Q1) ≤ λP(Q2); and λP is {0, 1}-valued. These properties are equivalent to the
statement that λP is a {0, 1}-valued max-min valuation on Qn .

For small values of n these conditions characterize the valuations that can be obtained
in this way from a convex set K . This is not the case, however, for n ≥ 7. We will see in
Section 5 that the {0, 1}-valued max-min valuations correspond to “lopsided sets.” For
an example of a lopsided subset of the 7-cube which is not realizable by a convex set as
above, see [10].

Next, let W denote a linear subspace of Rn . Let ∂Bn denote the boundary of the
n-dimensional cross-polytope,

Bn = conv{e1,−e1, . . . , en,−en},

where ei = (0, . . . , 0, 1, 0, . . . , 0) is the vector having 1 in the i th entry and zeros
elsewhere. We define a valuation µW : Qn → Z by

µW (Q) = χ(Q ∩W ∩ ∂Bn).

That µW is a valuation on Qn is immediate from the similar property of χ . Also it is
clear that

µW (Q) =
{

1 if Q ∩W is not a linear subspace,
1+ (−1)d−1 if Q ∩W is a linear subspace of dimension d,

for in one case Q ∩W ∩ ∂Bn is homeomorphic to a ball, Q ∩W being a closed convex
cone which is not a linear subspace, and in the other case Q∩W ∩∂Bn is homeomorphic
to a sphere of dimension d − 1, or, for d = 0, empty. It is easy to verify that µW is a
valuation directly from this. Note, in particular, µW ({0}) = 0.

We will see in Section 4 that any oriented matroid on [n] yields a valuation on Qn .



Oriented Matroids and Associated Valuations 451

Suppose we impose the further restrictions on W that

(a) dim(W ) = r for some fixed r , and
(b) W is in general position with respect to the coordinate axes, so that, for each

linear orthant Q of dimension at most n − r , W ∩ Q = {0}.
These conditions imply also that

(c) if Q is an orthant which is not linear and Q ∩ W is a linear subspace then
Q ∩W = {0}, and

(d) if Q is a linear orthant of dimension n −m, where m ≤ r , then the dimension of
the linear subspace Q ∩W is r − m.

It is then possible to say much more about the function µW , as follows.
If Q is an orthant which is not linear then, by (c), Q ∩W ∩ ∂Bn is either empty or a

topological ball. Therefore, µW (Q) is either 0 or 1 when Q is not linear, being 0 if and
only if Q ∩ W = {0}. When Q is linear, Q ∩ W ∩ ∂Bn is either empty or a sphere, so
in this case the possible values for µW (Q) are 0 and 2.

Furthermore, if Q1 and Q2 are orthants which are not linear, and Q1 ⊆ Q2, then
µW (Q1) ≤ µW (Q2); that is, we cannot have µW (Q1) = 1 and µW (Q2) = 0. We say
that µW is partly monotone.

For a linear orthant Q of dimension d ≥ n − r , Q ∩ W is a linear subspace of
dimension r + d − n, so µW (Q) = χ(Q ∩ W ∩ ∂Bn) = 1 + (−1)r+d−n−1. If Q is
an orthant of dimension d ≤ n − r then Q ∩ W = {0}, so µW (Q) = 0. In particular,
µW ({0}) = 0.

We will show in Section 6 that a subset of these properties delineate the valuations
arising from uniform oriented matroids: such valuations are those which are symmetric,
partly monotone, {0, 1}-valued on orthants which are not linear, and have value 0 on
the smallest orthant. Since the oriented matroid is retrievable using knowledge of its
corresponding valuation, this yields a characterization of the uniform oriented matroids.

Next, we consider four special valuations on Qn having values in S(Qn).
A very simple example of such a valuation is ι: Qn → S(Qn), defined by ι(P) = [P].

Another is ρ: Qn → S(Qn), where ρ(P) = [−P] for P ∈ Qn and −P denotes the
orthant Q(J, I ), which is the image of P under reflection through the origin. It is easy
to verify that ι and ρ are valuations.

Also, σ : Qn → S(Qn) is defined by

σ(P) =
∑
Q⊆P,
pointed

(−1)dim(Q)[Q].

This maps P to the indicator of its relative interior, times (−1)dim(P).
The valuation τ : Qn → S(Qn) is defined by

τ(Q(I, J )) = [Q([n]\I, [n]\J )].
It maps the orthant P=Q(I, J ) to the indicator of its normal cone, P⊥=Q([n]\I, [n]\J ).

Each of these valuations is the restriction to the orthant lattice of a valuation defined
analogously on the closed, convex, polyhedral cones emanating from the origin. See [7].
For each, the induced homomorphism is an involutive isomorphism of the Z -module



452 J. Lawrence

S(Qn). The induced homomorphism σ̄ , when applied to the indicator of the relative
interior of an orthant, yields the indicator of the (closed) orthant. The valuation σ is the
restriction to Qn of the Sallee–Shephard mapping, defined in [7].

The valuationsµW arising from linear subspaces in general position with respect to the
coordinate hyperplanes satisfy conditions that can be expressed utilizing the valuationsρ,
σ , and τ . These conditions are given in the proposition below. For the third statement,
we need two additional, special, Z -valued valuations, ε1, ε2, onQn . On orthants Q which
are not linear, each of these has value 1. For linear orthants Q, ε1(Q) = 1 + (−1)d ,
where d is the dimension of Q; and ε2(Q) = 1+ (−1)d+1, where d is the dimension of
Q. Clearly, ε1(Q)+ ε2(Q) = 2, for each orthant Q.

Proposition 1. We have, for each orthant Q:

µ̄W (ρ(Q)) = µW (Q);

µ̄W (σ (Q)) = (−1)n−r−1µW (Q);
and

µ̄W (τ (Q)) = εi (Q)− µW⊥(Q),

where W⊥ is the normal cone to W (its orthogonal complement), i = 1 if the dimension
of W is odd, and i = 2 otherwise.

Proof. The first equation clearly holds, since W is symmetric with respect to the origin,
and ρ(Q) = [−Q].

For the second equation, note that, for a pointed orthant Q, using the fact that W is
in general position, either the sets W ∩ ∂Bn ∩ ri(Q) and W ∩ ∂Bn ∩ Q are both empty
or the former is the relative interior of the latter, which is a nonempty convex polytope.
If they are empty, their Euler characteristics are 0. Otherwise, the Euler characteristic of
the former is (−1)m , where m = r + dim(Q) − n − 1 is its dimension, and that of the
latter is 1. The desired equality now follows, since the left-hand side is

µ̄W (σ (Q)) = (−1)dim(Q)χ(W ∩ ∂Bn ∩ ri(Q)),

and the right-hand side is (−1)n−r−1. Equality holds in general, since both sides are
valuations, and each valuation is determined by its values on the pointed orthants.

The third equation shows that µW⊥ is determined by µW . The choice of ε1 or ε2

ensures that equality holds for Q = {0}, both sides having value 0 in this instance. For
other pointed orthants Q, W ∩ Q⊥ contains a nonzero point if and only if W⊥ ∩ Q does
not (using that W is in general position with respect to the coordinate hyperplanes); so
equality holds, for each pointed orthant Q. Equality holds in general, since both sides
are valuations, and each valuation is determined by its values on the pointed orthants.

4. Valuations from Arbitrary Oriented Matroids

Before giving this construction, we switch to more concise notation for dealing with the
partially ordered set of orthants.
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An involuted set consists of a set (here, finite), E , together with a function which
maps E to itself, ∗: E → E , the image of e ∈ E under this function being denoted by
e∗, and satisfying, for each e ∈ E ,

(i) (e∗)∗ = e, and
(ii) e∗ �= e.

Clearly, E must have even cardinality in order to admit such a function. Given S ⊆ E ,
we write S∗ = {e∗: e ∈ S}. A set S ⊆ E is involuted if S∗ = S.

For E , we take the set of 2n symbols,

E = {1+, 1−, 2+, 2−, . . . , n+, n−},
and we let

E+ = {1+, 2+, . . . , n+}
and

E− = {1−, 2−, . . . , n−};
the involution ∗ then switches i+ and i−, for each i ∈ [n].

Let ϕ: E → [n] denote the mapping which takes i+ and i− to i , for each i ∈ [n]. If
A ⊆ E then ϕ(A) denotes its image under this map; if A ⊆ [n] then ϕ−1(A) denotes the
inverse image of A under this map.

The collection Qn of orthants can be identified, as a partially ordered set, with the
collection of subsets of E : For S ⊆ E let

Q(S) = Q(ϕ(E+\S), ϕ(E−\S)).
Then Q is an order-preserving bijection from 2E to Qn . The 2n coordinate halfplanes
H+i and H−i are the sets of the form Q(E\{e}), for e ∈ E ; and

Q(S) =
⋂

e∈E\S
Q(E\{e}).

With this association, it is clear that an integer-valued valuation on Qn corresponds
to a function ν: 2E → Z such that, for S ⊆ E and p ∈ E\(S ∪ S∗),

ν(S ∪ {p, p∗})+ ν(S) = ν(S ∪ {p})+ ν(S ∪ {p∗}).
(Notice that this equation holds, for any function ν, when p ∈ S ∪ S∗.) We will see how
to associate a particular valuation with each oriented matroid.

Recall, from [3], that an oriented matroid is a triple O = (E, h,∗ ), where (E,∗ ) is
an involuted set, and h: 2E → 2E is a function satisfying:

(1) A ⊆ h(A), for each subset A ⊆ E ;
(2) if A ⊆ B then h(A) ⊆ h(B);
(3) h(h(A)) = h(A), for each A ⊆ E ;
(4) for A ⊆ E and p ∈ E , if p ∈ h(A ∪ {p∗}) then p ∈ h(A);
(5) for A⊆E and p, q∈E , if q∈h(A∪{p∗})\h(A) then p∈h((A∪{q∗})\{p}); and
(6) for A ⊆ E , h(A∗) = h(A)∗.
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If W is a linear subspace of Rn then, for A ⊆ E , letting h(A) denote the set of elements
e ∈ E such that Q(E\{e}) contains the intersection Q(E\A) ∩ W , OW = (E, h,∗ ) is
an oriented matroid.

A matroid is a pairM = (F, g), where F is a finite set and g is an operator g: 2F →
2F , satisfying the closure axioms

(a) if A ⊆ F then g(A) ⊇ A,
(b) if A ⊆ B ⊆ F then g(A) ⊆ g(B),
(c) if A ⊆ F then g(g(A)) = g(A),

and the exchange axiom

(d) if p, q ∈ F , A ⊆ F , and q ∈ g(A ∪ {p})\g(A) then p ∈ g(A ∪ {q}).
A flat of the matroid (F, g) is a subset A ⊆ F such that g(A) = A. Then F is

itself a flat and the collection G of flats is closed under intersection. The collection G
therefore has the structure of a lattice under the inclusion ordering. This lattice is a
geometric lattice, and, consequently, if O denotes the smallest element, g(∅), of G, then
for A ∈ G the lengths of any two maximal chains from O to A are equal. This is called
the rank, rank(A), of A. The rank function is extended to all subsets A ⊆ F by the rule
rank(A) = rank(g(A)).

Every oriented matroid has an underlying matroid. For O = (E, h,∗ ), where E =
{i+, i−: i ∈ [n]}, as above, define, for A ⊆ [n], g(A) = ϕ(h(ϕ−1(A))). Then ([n], g) is
the underlying matroid of O.

For a set A ⊆ E , the rank of A (in the oriented matroid) is defined to be rank(A) =
rank(ϕ(A)).

If W is a linear subspace, OW is the associated oriented matroid, and ([n], g) is its
underlying matroid, then

g(A) =
{

i ∈ [n]: H 0
i ⊇ W ∩

⋂
j∈A

H 0
j

}

for A ⊆ [n].
The oriented matroid O = (E, h,∗ ) determines a valuation, as follows.

Theorem 3. For S ⊆ E , define

ρ(S) =
{

0 if h(S) �= h(S∗),
(−1)rank(S) if h(S) = h(S∗).

Then ρ is a valuation.

Proof. Clearly, for S ⊆ E , ρ(S) = ρ(h(S)); that is, the value of ρ is a function of h(S).
We are required to show that, for S ⊆ E and p ∈ E , ρ(S ∪ {p, p∗}) + ρ(S) =

ρ(S ∪ {p})+ ρ(S ∪ {p∗}).
This certainly holds if p ∈ h(S), for then h(S) = h(S ∪ {p}) and h(S ∪ {p, p∗}) =

h(S ∪ {p∗}), so that ρ(S) = ρ(S ∪ {p}) and ρ(S ∪ {p, p∗}) = ρ(S ∪ {p∗}) . Similarly
the equation holds if p ∈ h(S∗).
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Suppose p /∈ h(S)∪h(S∗) and h(S) �= h(S∗). Thenρ(S) = 0. There is q ∈ S such that
q∗ /∈ h(S). If q∗ ∈ h(S∪{p}) then by the exchange axiom (5), p∗ ∈ h(S∪{q}) = h(S),
contrary to our assumption. It follows that q∗ /∈ h(S∪{p}). Similarly, q∗ /∈ h(S∪{p∗}).
It follows that q∗ /∈ h(S ∪ {p, p∗}), from which we see that all four values ρ(S),
ρ(S ∪ {p, p∗}), ρ(S ∪ {p}), and ρ(S ∪ {p, p∗}) are 0, and equality holds.

Finally, suppose p /∈ h(S)∪h(S∗) and h(S∗) = h(S). Then h(S∪{p, p∗}) = h(S∗ ∪
{p, p∗}). It follows that ρ(S) = (−1)rank(S) and ρ(S ∪ {p, p∗}) = (−1)rank(S∪{p,p∗}) =
(−1)rank(S)+1, so the left-hand side in the equation is 0. Since p /∈ h(S), it follows that
p /∈ h(S∪{p∗}), so h(S∗ ∪{p∗}) �= h(S∪{p}), and therefore ρ(S∪{p}) = 0. Similarly,
ρ(S ∪ {p∗}) = 0, and from these it follows that the right-hand side is also 0.

We now define χO: 2E → Z by

χO(S) = 1− (−1)rank(E)ρ(E\S).
Clearly this is also a valuation, called the valuation associated with O.

If h(E\S∗) = h(E\S) (which certainly holds when S∗ = S) then χO(S) is 0 or
2, depending on whether the rank of E\S is even or odd, being 0 when S = ∅. If
h(E\S∗) �= h(E\S) then χO(S) = 1.

The circuits of O are the minimal subsets S ⊆ E such that S is not involuted and
h(S) is involuted. This property of S can certainly be checked, using only the associated
valuation: such sets S are the minimal sets which are not involuted and satisfyχO(S) �= 1.
Therefore the structure of the oriented matroid is completely determined by the associated
valuation.

A uniform oriented matroid is one such that if S is involuted and has cardinality less
than twice the rank of E , then h(S) = S; that is, the underlying matroid is uniform.
In the realizable case, the uniform oriented matroids are those which arise from vector
spaces W which are in general position with respect to the coordinate axes. For a uniform
oriented matroid O, more can be said about the values of χO, as follows.

Proposition 2. SupposeO is uniform of rank r . Recall 1
2 |E | = n. If S is a subset of E

which is not involuted then

χO(S) =
{

0 if h(E\S) = E,
1 if h(E\S) �= E .

If S is a subset of E which is involuted and m = 1
2 |S| then

χO(S) =
{

0 if m �≡ r + n (mod 2),
2 if m ≡ r + n (mod 2).

The valuation χO is partly monotone (so that if A ⊆ B ⊆ E and A, B are not involuted,
then χO(A) ≤ χO(B)).

Proof. For uniform oriented matroids, if h(U ∗) = h(U ) then either h(U ) = E or
U itself is involuted and h(U ) = U . If S ⊆ E is not involuted and h(E\S) = E
then ρ(E\S) = (−1)r so χO(S) = 1 − (−1)rρ(E\S) = 0; if S is not involuted and
h(E\S) �= E then h(E\S) is not involuted so ρ(E\S) = 0 and χO(S) = 1.
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If S is involuted

χO(S) = 1− (−1)rρ(E\S)
= 1− (−1)r+(n−m)

=
{

0 if m �≡ r + n (mod 2),
2 if m ≡ r + n (mod 2).

It is clear from the first assertion of the proposition that if the subsets S1 ⊆ S2 of E
are not involuted, then χO(S1) ≤ χO(S2), so χO is partly monotone.

5. Valuations and Lopsided Sets

A lopsided set is a subset L of the vertex set {−1, 1}n of the n-cube [−1, 1]n such that
whenever F and G are coordinate subspaces of Rn which are complementary, so that
F ∩G = {0} and F +G = Rn (and we may write F = Q(A, A), G = Q(B, B), where
A and B are complementary subsets of [n]), either there is a face of the cube which is
parallel to F , all of whose vertices are in L or there is a face parallel to G, none of whose
vertices are in L .

Given an involuted set S = S∗, a crosscut of S is a subset C ⊆ S such that C∪C∗ = S
and C ∩ C∗ = ∅; then E+ and E− are complementary crosscuts of E . The collection
of crosscuts of an involuted set S is denoted by C(S). We may identify the vertices of
the cube with the elements of C(E): the vertex (δ1, . . . , δn) ∈ {−1, 1}n corresponds to
the crosscut C , where, if δi = 1 then i+ ∈ C , and if δi = −1 then i− ∈ C . With this
identification, we can now refer to “lopsided sets” of crosscuts of E .

The following definition is equivalent in the setting of involuted sets to the one already
given: a set L of crosscuts of E is lopsided if for each partition of E into involuted sets
U, V , either there is a crosscut X0 of U such that, for each crosscut Y of V , X0∪Y ∈ L ,
or there is a crosscut Y0 of V such that, for each crosscut X of U , X ∪ Y0 /∈ L . Note that
both conditions cannot hold, considering the set X0 ∪ Y0.

An equally simple, equivalent formulation of this definition can be given in terms of
the indicator function ιL of the set L of crosscuts:

ιL(C) =
{

1 if C ∈ L ,
0 if C /∈ L .

A moment’s reflection shows that a {0, 1}-valued function ι on crosscuts is the indicator
function of a lopsided set of crosscuts if and only if the equation

max
crosscuts
X of U

min
crosscuts
Y of V

ι(X ∪ Y ) = min
crosscuts
Y of V

max
crosscuts
X of U

ι(X ∪ Y )

holds for all partitions {U, V } of E into involuted sets.
Given a lopsided set L with indicator function ι, define νL : 2E → Z by

νL(S) = min
crosscuts

X of E\(S∪S∗)
max
crosscuts

Y of S∩S∗
ι(X ∪ Y ∪ (S\S∗)).

Here the set X ∪ Y ∪ (S\S∗) is a crosscut of E .
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Clearly, νL is {0, 1}-valued. Also, if S1 ⊆ S2, then νL(S1) ≤ νL(S2). We see therefore
that νL is monotone and {0, 1}-valued. We will see (in Theorem 4 below) that it is a
max-min valuation. Furthermore, it is clear that if S is a crosscut then νL(S) = ι(S).

The following lemma shows that we may reverse the order of the max and min in the
definition of νL .

Lemma 2. We have the equality

νL(S) = max
crosscuts

Y of S∩S∗
min

crosscuts
X of E\(S∪S∗)

ι(X ∪ Y ∪ (S\S∗)).

Proof. Suppose, on the contrary, that there is some set S ⊆ E for which this equation
fails. Choose such a set with |S\S∗| as small as possible. By definition of lopsidedness,
the equation does not fail when S is involuted; therefore S\S∗ �= ∅. Choose s ∈ S\S∗.

Certainly

νL(S) = min
crosscuts

X of E\(S∪S∗)
max
crosscuts

Y of S∩S∗
ι(X ∪ Y ∪ (S\S∗))

≥ max
crosscuts

Y of S∩S∗
min

crosscuts
X of E\(S∪S∗)

ι(X ∪ Y ∪ (S\S∗)),

so, since ι is {0, 1}-valued, we must have that

νL(S) = 1 (a)

and

max
crosscuts

Y of S∩S∗
min

crosscuts
X of E\(S∪S∗)

ι(X ∪ Y ∪ (S\S∗)) = 0. (b)

Clearly then also

min
crosscuts X

of (E\(S∪S∗))∪{s,s∗}
max

crosscuts Y
of S∩S∗

ι(X ∪ Y ∪ (S\(S∗ ∪ {s}))) = 1 (c)

and

max
crosscuts Y of
(S∩S∗)∪{s,s∗}

min
crosscuts X

of E\(S∪S∗)
ι(X ∪ Y ∪ (S\(S∗ ∪ {s}))) = 0. (d)

By the minimality of |S\S∗|, (c) yields

max
Y

min
X
ι(X ∪ Y ∪ (S\(S∗ ∪ {s}))) = 1 (e)

and (d) yields

min
X

max
Y
ι(X ∪ Y ∪ (S\S∗ ∪ {s})) = 0. (f)

Using (e), we see that there is a crosscut Y0 of (S ∩ S∗) ∪ {s, s∗} such that, for each
crosscut X of E\(S ∪ S∗), ι(X ∪ Y0 ∪ (S\S∗ ∪ {s})) = 1. By (b), it is clear that s∗ ∈ Y0.
Let Y ′0 = Y0\{s∗}. Using (f), we see that there is a crosscut X0 of E\(S ∪ S∗) ∪ {s, s∗}
such that, for each crosscut Y of S ∩ S∗, ι(X0 ∪ Y ∪ (S\(S∗ ∪ {s}))) = 0. By (a), it is
clear that s∗ ∈ X0. Let X ′0 = X0\{s∗}.

The value ι(X ′0 ∪ Y ′0 ∪ (S\(S∗ ∪ {s}) ∪ {s∗})) can be neither 0 nor 1, a
contradiction.
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Theorem 4. The function νL is a max-min valuation.

Proof. Suppose A ⊆ E , p ∈ E\(A ∪ A∗). Then

νL(A) = min
crosscuts X

of E\(A∪A∗)
max

crosscuts Y
of A∩A∗

ι(X ∪ Y ∪ (A\A∗))

which is the minimum of

min
crosscuts X of

E\(A∪A∗∪{p,p∗})
max

crosscuts Y
of A∩A∗

ι(X ∪ Y ∪ (A\A∗) ∪ {p})

and

min
crosscuts X

of E\(A∪A∗∪{p,p∗})
max

crosscuts Y
of A∩A∗

ι(X ∪ Y ∪ (A\A∗) ∪ {p∗});

that is, νL(A) = min{νL(A ∪ {p}), νL(A ∪ {p∗})}.
From the lemma, similarly, we get νL(A∪{p, p∗}) = max{νL(A∪{p}), νL(A∪{p∗})}.

Obviously, ι (and L) can be retrieved from νL : ι is the restriction of νL to the collection
of crosscuts.

Suppose we begin with a max-min, {0, 1}-valued valuation ν. We will see that it
arises as above from a lopsided set. Clearly all that is needed for this is to show
that the restriction to the collection of crosscuts is the indicator function of a lopsided
set.

Theorem 5. Suppose that ν is a {0, 1}-valued, max-min valuation. Then the collection
L of crosscuts C such that ν(C) = 1 is a lopsided set.

Proof. We verify that the restriction ι of ν to crosscuts satisfies the defining condition.
Suppose {U, V } is a partition of E into involuted sets U, V . It is clear that by repeated
application of the equation ν(S ∪ {p, p∗}) = min{ν(S ∪ {p}), ν(S ∪ {p∗})}, we obtain

ν(U ) = max
crosscuts
X of U

ν(X).

By repeated application of ν(S) = min{ν(S ∪ {p}), ν(S ∪ {p∗})} (where p, p∗ /∈ S), we
continue

= min
crosscuts X

of U

max
crosscuts Y

of V

ν(X ∪ Y ).

Similarly, we also obtain

ν(U ) = max
crosscuts Y

of V

min
crosscuts X

of U

ν(X ∪ Y ).

The desired conclusion follows.
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6. Valuations from Uniform Oriented Matroids

Let O be an oriented matroid and let ν be the associated valuation, as in Section 4. At
the end of that section we saw that, under the assumption thatO is uniform, the function
ν has, among others, the following properties: the valuation ν is {0, 1, 2}-valued, and
is {0, 1}-valued on sets S ⊆ E which are not involuted; ν is partly monotone; and
ν(S∗) = ν(S) for all subsets S of E (ν is symmetric). We now show that any valuation
ν having these properties arises as in Section 4 from a uniform oriented matroid. The
following lemma will be of use.

Lemma 3. Suppose that ν and ν ′ are valuations, ν, ν ′: 2E → Z , which agree on sets
which are not involuted and on ∅. Then ν ′ = ν.

Proof. Suppose not. Let S ⊆ E be a minimal set for which ν ′(S) �= ν(S). Then S is
involuted and S �= ∅. Choose p ∈ S and let S0 = S\{p, p∗}. Then

ν ′(S) = ν ′(S0 ∪ {p, p∗}) = ν ′(S0 ∪ {p})+ ν ′(S0 ∪ {p∗})− ν ′(S0)

and

ν(S) = ν(S0 ∪ {p, p∗}) = ν(S0 ∪ {p})+ ν(S0 ∪ {p∗})− ν(S0).

By minimality of S, the right-hand sides are equal; so the left-hand sides are equal,
contradicting our assumption.

Recall that a tope of the oriented matroidO is a crosscut C of E such that h(C) = C .

Theorem 6. The map O→ χO of Section 4, restricted to uniform oriented matroids,
is a bijective correspondence between the set of uniform oriented matroids on E and
the set of valuations on E which are partly monotone, symmetric, {0, 1}-valued on sets
which are not involuted, and have value 0 on ∅.

Proof. Given O we have seen how to obtain the valuation χO.
Let χ be a valuation having the properties listed. Let L be the set of all crosscuts

C ⊆ E such that χ(C) = 1. For each p ∈ E we define a function χp on E\{p, p∗} by
the rule χp(S) = χ(S ∪ {p}). Since in this expression S ∪ {p} cannot be symmetric,
it follows that χp is a max-min valuation on E\{p, p∗} which has values in {0, 1}. By
Theorem 5 the set L p of crosscuts C of E\{p, p∗} such that χp(C) = 1 is lopsided.
Since this holds for each p ∈ E , it follows by Theorem 9 of [6] that L is the set of topes
of a uniform oriented matroid O.

Now it is clear that χO and χ agree on crosscuts, each having value 1 on topes of O.
Since for each p ∈ E and for S ⊆ E\{p, p∗}, both S �→ χ(S∪{p}) and S �→ χO(S∪{p})
are max-min valuations, agreeing on crosscuts of E\{p, p∗}, we see that χ and χO agree
on sets of the form S ∪ {p}, where p∗ /∈ S, that is, on sets which are not involuted. Since
each has value 0 on ∅, the lemma applies, and the two valuations coincide.
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7. Valuations and Total Polynomials

The valuation χO associated with the uniform oriented matroid O is closely related to
the “total polynomial” TO of O, introduced in [8]. TO is a sum of certain monomials
associated with the nonzero covectors of the oriented matroid. With the terminology
of Section 4, the nonzero covectors correspond to the sets A ⊆ E such that A �= E ,
A ∪ A∗ = E , and h(A) = A. Let L denote the set of such subsets. For each element
e ∈ E let xe denote an indeterminate. For A ⊂ E let m A be the monomial

∏
e∈A xe. Then

the total polynomial TO of the uniform oriented matroid O = (E, h,∗ ) is

TO =
∑
A∈L

m E\A.

Suppose A ⊆ E , A �= E , and A∪ A∗ = E . Note that A is not involuted. If h(A) = A,
so that A ∈ L, then h(A) = A is not involuted, so ρ(A) = 0, and χO(E\A) = 1. If
h(A) �= A, then, sinceO is uniform, h(A) = E , so that χO(E\A) = 0. Also χO(∅) = 0,
and we may write

TO =
∑

A: A∪A∗=E

χO(E\A)m E\A;

or, replacing A by its complement in this expression,

TO =
∑

A: A∩A∗=∅
χO(A)m A.

This shows that the total polynomial may be derived rather simply from the valuation.
The reverse is also true: the valuesχO(A), for A such that A∩A∗ = ∅, are the coefficients
of TO; and, since χO is a valuation, its values on other sets A ⊆ E are determined by
these.

The three equations of Proposition 1 hold for uniform oriented matroids in general.

Proposition 3. We have, for each orthant P:

χ̄O(ρ(P)) = χO(P);

χ̄O(σ (P)) = (−1)n−r+1χO(P);
and

χ̄O(τ (P)) = εi (P)− χÔ(P),

where Ô is the dual of O, r is the rank of O, i = 1 if r is odd, and i = 2 otherwise.

Proof. The first of these follows from the equation χO(A∗) = χO(A); the second and
third are equivalent to Theorems 1 and 2 (respectively) of [8].
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8. Notes

The above characterization of the valuations associated with uniform oriented matroids
of fixed rank r can be viewed as follows. These valuations form a certain finite subset of
the real vector space of functions η: 2E → Z . According to the results above, this subset
is determined by finite collections of linear equations and inequalities, together with
integrality constraints. Additionally, many important invariants of the oriented matroids,
for example, the number of faces of some fixed dimension of the oriented matroid poly-
tope, are restrictions to this finite set of linear functions on the vector space. Therefore,
problems of maximization or minimization of such invariants are seen to be large integer
programming problems.

To illustrate, suppose n and r are given and it is desired to maximize or minimize
some sufficiently nice function over uniform oriented matroids of rank r on E , where,
as before, E is involuted and |E | = 2n. Producing variables xA, one for each subset
A ⊆ E , we can write the conditions given in Theorem 6 that with the xA’s as values,
η(A) = xA for A ⊆ E , the function η is the valuation corresponding to some uniform
oriented matroid on E . They are:

(1) x∅ = 0;
(2) xA∗ = xA, for each set A ⊆ E ;
(3) if A ⊆ B ⊆ E , A �= A∗, and B �= B∗, then xA ≤ xB ;
(4) if A ⊆ E and p ∈ E\(A ∪ A∗), then

xA∪{p,p∗} + xA − xA∪{p} − xA∪{p∗} = 0;
and

(5) if A ⊆ E and A �= A∗, then xA ∈ {0, 1}.
To guarantee that the rank is r , fixing subsets A0, B0 ⊆ E such that A∗0 = A0, B∗0 = B0,
|A0| = 2(n − r + 1), |B0| = 2(r + 1), we can use

(6) xA0 = 2 and xB0 = 0.

Consider now the function
∑

xA, where the sum extends over, say, all crosscuts A of E
such that |A∩E+| = k, where k is fixed. If the xA’s are the values of a valuation associated
to a given uniform oriented matroid on E having rank r—that is, if conditions (1)–(6)
are met—then this function counts the number of topes of the oriented matroid which
have exactly k positive elements. Its maximization subject to the constraints (1)–(6) is
an integer programming problem.

This is of course a huge integer programming problem, in any interesting case. Its
usefulness suffers as well from the fact that its linear relaxation, obtained upon dropping
the requirement (5) of integrality, is rather far from a characterization of the convex hull
of the feasible (integer-valued) assignments of xA’s. Nevertheless, at least in the case of
problems involving uniform oriented matroids which have rank 3 and are acyclic, there is
an integer programming method which is computationally feasible for problems having
n at most a dozen or so. This method will be presented elsewhere.

It would be nice to extend the characterization to oriented matroids in general. In this
paper we have relied on results of [6] in our characterization of the valuations arising
from uniform oriented matroids. Da Silva [2] has improved upon the results of [6] by
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giving a related characterization of the subsets of the vertex sets of the cubes which
correspond to topes of oriented matroids in general. Perhaps this characterization could
be used to extend the description of the valuations associated with uniform oriented
matroids, to arbitrary oriented matroids.

It is worth noting that another useful characterization of the uniform oriented matroids
is described by Gärtner and Welzl in [4]. Also in that paper, a connection between lopsided
sets and the notion of “Vapnik–Chervonenkis dimension” is described.
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