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Abstract. This paper is a study of the polyhedral geometry of Gelfand–Tsetlin polytopes
arising in the representation theory of glnC and algebraic combinatorics. We present a
combinatorial characterization of the vertices and a method to calculate the dimension of
the lowest-dimensional face containing a given Gelfand–Tsetlin pattern.

As an application, we disprove a conjecture of Berenstein and Kirillov [1] about the
integrality of all vertices of the Gelfand–Tsetlin polytopes. We can construct for each n ≥ 5
a counterexample, with arbitrarily increasing denominators as n grows, of a nonintegral
vertex. This is the first infinite family of nonintegral polyhedra for which the Ehrhart
counting function is still a polynomial. We also derive a bound on the denominators for the
nonintegral vertices when n is fixed.

1. Introduction

Many authors have recently observed that polyhedral geometry plays a special role in
combinatorial representation theory (see, for example, [2], [7], [8], [10]–[12], [14], and
the references within). In this note we study the polyhedral geometry of the so-called
Gelfand–Tsetlin patterns, which arise in the representation theory of glnC and the study
of Kostka numbers.

For each n ∈ N, let Xn be the set of all triangular arrays (xi j )1≤i≤ j≤n with xi j ∈ R.
Then Xn inherits a vector space structure under the obvious isomorphism Xn

∼= Rn(n+1)/2.

Definition 1.1. A Gelfand–Tsetlin pattern or GT-pattern is a triangular array
(xi j )1≤i≤ j≤n ∈ Xn satisfying the following inequalities:

• xi j ≥ 0, for 1 ≤ i ≤ j ≤ n; and
• xi, j+1 ≥ xi j ≥ xi+1, j+1, for 1 ≤ i ≤ j ≤ n − 1.

∗ This research was supported by NSF Grant DMS-0309694 and by NSF VIGRE Grant No. DMS-0135345.
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Fig. 1. A bijection mapping GT (λ, µ) ∩ Z (n(n+1)/2) → SSY T (λ, µ).

We always depict a GT-pattern (xi j )1≤i≤ j≤n by arranging the entries as follows:

x1n · · · · · · · · · xnn

. . .
. . . . .

.
. .

.

x13 x23 x33

x12 x22

x11

In this arrangement, the inequalities in Definition 1.1 state that each entry is nonnegative,
and each entry not in the top row is weakly less than its upper-left neighbor and weakly
greater than its upper-right neighbor. We refer to the elements x1 j , . . . , xj j as the j th
row, i.e., the j th row counted from the bottom. The solutions of these inequalities define
a polyhedral cone in Rn(n+1)/2. See the top of Fig. 1 for an example of a GT-pattern.

Definition 1.2. Given λ,µ ∈ Zn , the Gelfand–Tsetlin polytope GT (λ, µ) ⊂ Xn is the
convex polytope of GT-patterns (xi j )1≤i≤ j≤n satisfying the equalities

• xin = λi , for 1 ≤ i ≤ n;
• x11 = µ1; and

∑ j
i=1 xi j −

∑ j−1
i=1 xi, j−1 = µj , for 2 ≤ j ≤ n.

In other words, GT (λ, µ) is the set of all GT-patterns in Xn in which the top row is λ
and the sum of the entries in the j th row is

∑ j
i=1 µi for 1 ≤ j ≤ n. Note that when we

speak of a GT-polytope GT (λ, µ), we assume that λ and µ are integral.

The importance of GT-polytopes stems from a classic result of Gelfand and Tsetlin in
[6], which states that the number of integral lattice points in the GT-polytope GT (λ, µ)
equals the dimension of the weight µ subspace of the irreducible representation of glnC

with highest weight λ. These subspaces have bases indexed by the set SSY T (λ, µ) of
semistandard Young tableaux with shape λ and content µ [18]. It is well known that the
elements of SSY T (λ, µ) are in one-to-one correspondence with the integral GT-patterns
in GT (λ, µ) under the bijection exemplified in Fig. 1: Given an integral GT-pattern in
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Xn , let λ( j) be the j th row (so that λ(n) = λ). For 1 ≤ j ≤ n, place a j in each of
the boxes in the skew shape λ( j)/λ( j−1) in the Young diagram of shape λ. (Here we put
λ(0) = ∅ to deal with the j = 1 case.) See [18] for details and [1] and [8] for more
interesting uses of GT-polytopes. Now we introduce the main combinatorial tool for the
study of vertices of the GT-polytopes:

Definition 1.3. Given a GT-pattern x ∈ Xn , the tiling P of x is the partition of the set

{(i, j) ∈ Z2: 1 ≤ i ≤ j ≤ n}

into subsets, called tiles, that results from grouping together those entries in x that are
equal and adjacent. More precisely, P is that partition of {(i, j) ∈ Z2: 1 ≤ i ≤ j ≤ n}
such that two pairs (i, j), (ĩ, j̃) are in the same tile if and only if there are sequences

i = i1, i2, . . . , ir = ĩ,

j = j1, j2, . . . , jr = j̃

such that, for each k ∈ {1, . . . , r − 1}, we have that

(ik+1, jk+1) ∈ {(ik + 1, jk + 1), (ik, jk + 1), (ik − 1, jk − 1), (ik, jk − 1)}

and xik+1 jk+1 = xik jk .

In other words, the tiles are just the connected components in the diagram of a GT-
pattern, where two entries are connected when they are adjacent and contain the same
value. See Fig. 2 for examples of GT-patterns and their tilings. The shading of some of
the tiles in that figure is explained below.

Given a GT-pattern x with tiling P , we associate to P (or, equivalently, to x) a matrix
AP as follows. Define the free tiles P1, P2, . . . , Ps of P to be those tiles in P that do
not intersect the bottom or top row of x, i.e., those tiles that do not contain (1, 1) and do
not contain (i, n) for 1 ≤ i ≤ n. The order in which the free tiles are indexed will not
matter for our purposes, but, for concreteness, we adopt the convention of indexing the
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Fig. 2. Tilings of GT-patterns.
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free tiles in the order that they are initially encountered as the entries of x are read from
left to right and bottom to top. Define the tiling matrix AP = (ajk)2≤ j≤n−1, 1≤k≤s by

ajk = #{i : (i, j) ∈ Pk}.

(Note that the index j begins at 2.) That is, ajk counts the number of entries in the j th
row of x that are contained in the free tile Pk .

Example 1.4. Two GT-patterns and their tilings are given in Fig. 2. The unshaded tiles
are the free tiles. The associated tiling matrices are respectively


1 1 0 0 0

0 1 1 1 0
0 1 0 0 1




and 


1 0 0
1 1 0
2 2 0
1 1 1


 .

The motivation for introducing tilings, and the main result of this paper, is the
following.

Theorem 1.5. Suppose that P is the tiling of a GT-pattern x. Then the dimension of
the kernel of AP is equal to the dimension of the minimal (dimensional) face of the
GT-polytope containing x.

As a corollary to this result, we get an easy-to-check criterion for a GT-pattern being
a vertex of the GT-polytope containing it.

Corollary 1.6. If x ∈ GT (λ, µ) has tiling P containing s free tiles, then the following
conditions are equivalent:

• x is a vertex of GT (λ, µ); and
• AP has trivial kernel; i.e, for some s × s submatrix Ã of AP , det Ã �= 0.

As an application of Theorem 1.5, we present a solution to a conjecture by Berenstein
and Kirillov (Conjecture 2.1 on p. 101 in [1]): all vertices of a GT-polytope have integer
coordinates, i.e., GT (λ, µ) is a convex integral polytope. This conjecture seems to have
been motivated by the fact that, for an integer parameter l, the Kostka number Klλ,lµ is
a univariate polynomial in l when λ and µ are fixed. This was proved by Kirillov and
Reshetikhin using fermionic formulas in [9]. For completeness, we give another proof at
the end of Section 2. Billey et al. [3] have shown that, more strongly, Kλµ is a piecewise
multivariate polynomial in λ and µ. It is natural to ask whether the above polyno-
mial properties of the Kostka numbers extend to the Littlewood–Richardson coefficients
cνλ,µ. Indeed, Derksen and Weyman established that the one-parameter dilations of these
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numbers (i.e., clν
lλ,lµ with λ,µ, ν fixed) are again univariate polynomials [4]. Rassart (see

[15]) has now extended the piecewise multivariate polynomiality of Kostka numbers to
Littlewood–Richardson coefficients.

We must comment that it is quite natural to conjecture the integrality of the vertices
of GT-polytopes, if one knows of the theory of Ehrhart functions that count the number
of lattice points inside convex polytopes and their dilations (see Chapter 4 of [17]). The
Ehrhart counting functions are known to be polynomials when the vertices are integral.
As a consequence, in the following theorem we are in fact presenting the first infinite
family of nonintegral polyhedra whose Ehrhart counting functions are still polynomials.
Other low-dimensional families have been found recently [13]. Finally, we must remark
that R.P. Stanley communicated to us that his student Peter Clifford noticed nonintegrality
for GT-polytopes earlier (unpublished) and that King et al. had independently noticed
nonintegrality for hive polytopes (which are isomorphic to GT-polytopes under a lattice-
preserving linear map) in the case n = 5 (see [7]). They also proved integrality of
vertices for n ≤ 4, did a nice study of “stretched” Kostka and Littlewood–Richardson
coefficients, and presented several conjectures again concerning the polynomiality of
Ehrhart counting functions.

Theorem 1.7. The Berenstein–Kirillov conjecture is true for n ≤ 4, but counterex-
amples to this conjecture exist for all values of n ≥ 5. More strongly, by choosing n
sufficiently large, we can find GT-polytopes in which the denominators of the vertices are
arbitrarily large: For positive integer k, let λ = (kk, k−1, 0k) andµ = ((k−1)k+1, 1k).
Then a vertex of GT (λ, µ) ⊂ X2k+1 contains entries with denominator k.

2. Proof of the Main Result and Its Consequences

Proof. [Proof of Theorem 1.5] Suppose that P is the tiling of a GT-pattern x in the
GT-polytope GT (λ, µ) ⊂ Xn . Let s be the number of free tiles in P . Let (ε(1), . . . , ε(d))
be a basis for ker AP . Because we can scale the basis by any nonzero scalar, we can
assume that

|ε(m)k | < 1/2 min{|xi1 j1 − xi2 j2 |: xi1 j1 �= xi2 j2}, for 1 ≤ m ≤ d, 1 ≤ k ≤ s,

where ε(m)k is the kth coordinate of ε(m).
Let H ⊂ Xn be the linear subspace of Xn such that H + x is the affine span of

the minimal face of GT (λ, µ) containing x. Define a linear map ϕ: ker AP → Xn by
ϕ(ε(m)) = y(m), where

y(m)i j =
{
ε
(m)
k if (i, j) is in the free tile Pk of P,

0 if (i, j) is not in a free tile of P.

(See Example 2.1.) Thus, x + y(m) is the result of adding ε(m)k to each entry in the kth
free tile of x for 1 ≤ k ≤ s.

The claim is that (y(1), . . . , y(d)) is a basis for H . First, since the ε(m)k ’s are sufficiently
small, x± y(m) is a GT-pattern. Moreover, y(m)11 = 0, y(m)in = 0 for 1 ≤ i ≤ n, and each
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row-sum of y(m) is 0. This last fact is true because ε(m) ∈ ker AP and the row-sum is,
by construction, the same as the dot product of ε(m) with the matrix AP . Taken together,
these properties yield that x ± y(m) ∈ GT (λ, µ). That is, x + y(m) and x − y(m) are the
endpoints of a line segment contained in GT (λ, µ) that contains x in its relative interior.
This establishes that y(1), . . . , y(d) ∈ H .

That y(1), . . . , y(d) are linearly independent clearly follows from the fact that ε(1), . . . ,
ε(d) are linearly independent. Thus, it remains only to prove that y(1), . . . , y(d) span
H . Suppose that y ∈ H , and assume that y is scaled by a nonzero amount so that
x± y ∈ GT (λ, µ). We construct an element ε of ker AP such that ϕ(ε) = y. Note that

• yi j = 0 when (i, j) is in the bottom or top row of P ,
• each row-sum of y is 0, and
• if (i1, j1) and (i2, j2) are in the same tile of P , then yi1 j1 = yi2 j2 .

To see that this last property holds, it suffices (see Definition 1.3) to examine the case
where yi1 j1 and yi2 j2 are adjacent entries, i.e., where

(i2, j2) ∈ {(i1 + 1, j1 + 1), (i1, j1 + 1), (i1 − 1, j1 − 1), (i1, j1 − 1)}.
Since x± y is a GT-pattern (see Definition 1.1), we must have either

xi1 j1 + yi1 j1 ≤ xi2 j2 + yi2 j2 and xi1 j1 − yi1 j1 ≤ xi2 j2 − yi2 j2

or
xi1 j1 + yi1 j1 ≥ xi2 j2 + yi2 j2 and xi1 j1 − yi1 j1 ≥ xi2 j2 − yi2 j2 .

However, since (i1, j1) and (i2, j2) are in the same tile of P , we have xi1 j1 = xi2 j2 . Thus,
in either case, we can subtract the x entries from both sides, yielding yi1 j1 = yi2 j2 , as
claimed.

For 1 ≤ k ≤ s and for each (i, j) in the free tile Pk , put εk = yi j . Let ε = (ε1, . . . , εs).
Then, from the conditions on y given above, ε ∈ ker AP and ϕ(ε) = y. Hence, the
coordinates of ε with respect to the basis (ε(1), . . . , ε(d)) of ker AP will also be the
coordinates of y with respect to (y(1), . . . , y(d)). In particular, (y(1), . . . , y(d)) is a basis
for H , as claimed.

Example 2.1. Let x be the GT-pattern

6 5 3 2 0
6 9

2 3 1
2

5 7
2

1
2

9
2

1
2

4

from Fig. 2. We explicitly apply to x the constructions in the proof of Theorem 1.5. This
GT-pattern has tiling matrix

AP =

 1 1 0 0 0

0 1 1 1 0
0 1 0 0 1


 .
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A “sufficiently short” basis for ker AP is

(ε(1), ε(2)) =




1
3




0
0
−1
1
0


 ,

1
3




1
−1
1
0
1





 .

(Here, “sufficiently short” refers to the fact that x + y(1) and x + y(2), which are con-
structed shortly, will lie within the minimal face containing x.) Therefore, x lies in a two
dimensional face of

GT ((6, 5, 3, 2, 0), (4, 1, 4, 5, 2)).

Applying the map ϕ from the proof to (ε(1), ε(2)) yields

y(1) =

0 0 0 0 0
0 0 0 0
− 1

3
1
3 0

0 0
0

and

y(2) =

0 0 0 0 0
0 1

3 0 − 1
3

1
3 0 − 1

3
1
3 − 1

3
0

From the proof just given, the set {x, x+ y(1), x+ y(2)} affinely spans the affine hull of
the minimal face containing x .

The machinery of tilings allows us easily to find nonintegral vertices of GT-polytopes
by looking for a tiling with a tiling matrix satisfying certain properties given below. Then
the tiling can be “filled” in a systematic way with the entries of a GT-pattern that is a
nonintegral vertex.

Lemma 2.2. Suppose that P is a tiling with s free tiles such that AP has a trivial
kernel. Then the following conditions are equivalent:

(1) P is the tiling of a nonintegral vertex x of a GT-polytope in which q ∈ N is the
least common multiple of the denominators of the entries in x (written in reduced
form); and

(2) there is an integral vector ξ = (ξ1, . . . , ξs) such that APξ ≡ 0(mod q) and such
that, for some k ∈ {1, . . . , s}, gcd(ξk, q) = 1.

Proof. (1)⇒ (2) Suppose that x is a nonintegral vertex in which q is the least common
multiple of the denominators of the entries. For each entry xi j , 1 ≤ i ≤ j ≤ n, let
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pi j = qxi j . Let P1, . . . , Ps be the free tiles ofP , and define ξ = (ξ1, . . . , ξs) by ξk = pi j

for some (i, j) ∈ Pk (all values of pi j are equal within a tile). Since x has entries with
denominator q , we have that, for some k ∈ {1, . . . , s}, gcd(ξk, q) = 1. Moreover, since
each row-sum of x is an integer, we have that, for each fixed j ∈ {1, . . . , n},

q divides
∑

1 ≤ k ≤ s
(i, j) ∈ Pk

pi j =
∑

1≤k≤s

ajkξk .

Therefore, APξ ≡ 0(mod q).
(2)⇒ (1)P is given to be a tiling, so some GT-pattern ˜̃x with rational entries has tiling

P . If necessary, multiply ˜̃x by some integer to produce an integral GT-pattern x̃ with
tiling P . Choose ξ = (ξ1, . . . , ξs) satisfying condition (2) such that 0 ≤ ξ1, . . . , ξs < q.
Define y ∈ Xn by

yi j =
{
ξk/q if (i, j) is in the free cell Pk of P ,
0 if (i, j) is not in a free cell of P .

Then x = x̃+ y satisfies condition (1).

Now we are ready to give the details of the proof of Theorem 1.7. In particular,
Propositions 2.3 and 2.4 settle the Berenstein–Kirillov conjecture. Proposition 2.3 has
also been proven by King et al. [7] with respect to hive polytopes, which are isomorphic
to GT-polytopes under a lattice-preserving linear map. We give here a “tiling” proof.

Proposition 2.3. When n ≤ 4, every GT-polytope in Xn is integral.

Proof. Note that it suffices to prove the n = 4 case since there is a natural embedding
Xn ↪→ Xn+1 defined by x �→ x̃, where

x̃i j =
{

0 if 1 ≤ i = j ≤ n + 1,
xi, j−1 if 1 ≤ i < j ≤ n + 1.

Suppose that x ∈ X4 is a vertex. Then, by Corollary 1.6, the associated tiling matrix
AP has a trivial kernel. Therefore, AP is either a 2 × 1 or a 2 × 2 matrix. Note also
that the first and last nonzero entries of each column of a tiling matrix associated with a
GT-pattern must be 1. Therefore, AP is a 0/1-matrix.

If AP is 2× 1, then the only possibilities are

AP =
[

1
0

]
, AP =

[
1
1

]
or AP =

[
0
1

]
.

In each case, there exists no vector ξ �≡ 0(mod q) such that APξ ≡ 0(mod q) for q > 1,
so Lemma 2.2 implies that the entries of x are integral. On the other hand, if AP is 2×2,
then det AP ∈ {−1, 1}, i.e., gcd(det AP , q) = 1 for q > 1. Therefore, AP , considered as
a module homomorphism on Z/qZ× Z/qZ, is invertible for q > 1, so, by Lemma 2.2,
x is integral.
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Now we show that nonintegral GT-polytopes exist in Xn for each n ≥ 5. Moreover,
by choosing n sufficiently large, we can find GT-polytopes in which the denominators
of the vertices are arbitrarily large.

Proposition 2.4. For a positive integer k, let λ = (kk, k − 1, 0k) and µ = ((k −
1)k+1, 1k). Then a vertex of GT (λ, µ) ⊂ X2k+1 contains entries with denominator k.

Proof. Define x(k) ∈ X2k+1 by

x (k)i j =




(k− j+1)(k+1)
k if 1 ≤ i = j ≤ k + 1,

k − 1
k if 1 ≤ i < j ≤ k + 1,

k if k + 1 < j ≤ 2k + 1 and 1 ≤ i < j − k,
k − 1

k if k + 1 < j ≤ 2k + 1 and j − k ≤ i ≤ k,
( j−k−1)(k−1)

k if k + 1 < j ≤ 2k + 1 and i = k + 1,
0 if k + 1 < j ≤ 2k + 1 and k + 1 < i ≤ 2k + 1.

(See Fig. 3.) Then x(k) ∈ GT (λ, µ). The tiling matrix associated with x(k) is

AP =




1 1 0 · · · 0 0 · · · 0 0
2 0 1 · · · 0 0 · · · 0 0
...

...
...

. . .
...

...
. . .

...
...

k − 1 0 0 · · · 1 0 · · · 0 0
k 0 0 · · · 0 0 · · · 0 0

k − 1 0 0 · · · 0 1 · · · 0 0
...

...
...

. . .
...

...
. . .

...
...

2 0 0 · · · 0 0 · · · 1 0
1 0 0 · · · 0 0 · · · 0 1




.

Since det AP = k, x(k) is a vertex of GT (λ, µ) by Corollary 1.6.

Proposition 2.4 explicitly constructs counterexamples to the Berenstein–Kirillov con-
jecture in Xn where n ≥ 5 is odd. Counterexamples with even n ≥ 6 may be constructed
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Fig. 3. An infinite family of counterexamples to the Berenstein–Kirillov conjecture.
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from these using the embedding Xn ↪→ Xn+1 given in the proof of Proposition 2.3. Less
trivial examples with even n may be constructed using other tilings.

As a final application of tilings, we derive a bound on the size of the denominators
in the vertices of GT-polytopes in fixed dimension. Observe that Lemma 2.2 says that
if x is a nonintegral vertex in which q appears as a denominator, then the tiling matrix
AP has a trivial kernel as a linear operator Rs → R

n−2 (since x is a vertex), but AP has
a nontrivial kernel when considered as an operator (Z/qZ)s → (Z/qZ)n−2. Moreover,
this nontrivial kernel contains a vector in which one of the coordinates is a unit in Z/qZ.
This last condition implies that each s × s submatrix of AP has determinant equal to 0
modulo q .

Proposition 2.5. For fixed n, the numbers that may appear as denominators of entries
in vertices of GT-polytopes in Xn are smaller than (n − 2)(n − 1)!/4.

Proof. Fix n ∈ N. Since only finitely many partitions of {(i, j) ∈ Z2: 1 ≤ i ≤ j ≤ n}
exist, there is an upper bound on the set{

|m| : m is the determinant of a square row submatrix
of the tiling matrix of some GT-pattern x ∈ Xn

}
.

By a “row submatrix”, we mean a submatrix where the rows are a subset of the rows of
the tiling matrix.

Let N be an upper bound on this set. The claim is that no GT-polytope in Xn has a
vertex with denominators greater than N . Let q > N be given. Suppose that x ∈ Xn is a
vertex. Let s be the number of free tiles in x, and let AP be the tiling matrix of x. Then
no s × s submatrix of AP has a determinant greater than or equal to q. Moreover, by
Corollary 1.6, some s × s submatrix of AP has a nonzero determinant. Therefore, this
s × s submatrix has a determinant not equal to 0 modulo q. However, in the remarks
preceding this proposition, we noted that if x is a vertex in which q is a denominator of
one of the entries, then every s × s submatrix has a determinant equal to 0 modulo q.
This proves that N is a bound as claimed.

Our second claim is that N is no more than (n − 2)(n − 1)!/4. All tiling matrices
for GT-patterns in Xn have n − 2 rows and only nonnegative entries. Moreover, since
the first and last entry in each column must be a 1, and since each entry can differ by at
most±1 from the entry above it, the largest possible entry in a tiling matrix is (n−1)/2.
Therefore, if A = (ai j ) is an s × s submatrix of a tiling matrix, we have that

det A ≤
∑
σ∈As

a1σ(1) · · · asσ(s) ≤ n − 2

4
(n − 1)!,

where As denotes the alternating group in Ss .

The bound in Proposition 2.5 is not tight. For example, it is easy to show that, when
n = 5, the largest possible denominator is 2 < (5− 2)(5− 1)!/4 = 18.

To conclude this paper we present another proof of the following result:

Proposition 2.6. Given a GT-polytope GT (λ, µ) ⊂ Xn , the Ehrhart counting function
f (m) = #(GT (mλ,mµ) ∩ Z(n+1

2 )) is a univariate polynomial.
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Proof. It is well known, from Ehrhart’s fundamental work, that f (m) must be a
quasipolynomial. This means that there exist an integer M and polynomials g0, g1, . . . ,

gM−1 such that f (m) = gi (m) if m ≡ i(mod M) (see details in Chapter 4 of [17]). So
it is then enough to prove that, for some large enough value of m, a single polynomial
interpolates all values from then on, because then the gi ’s are forced to coincide infinitely
many times, which proves that they are the same polynomial.

We use the algebraic meaning of f (m) as the multiplicity of the weight mµ in the
irreducible representation Vmλ of glnC. The well-known Kostant’s multiplicity formula
(see p. 421 of [5]) gives that

f (m) =
∑
σ∈Sn

(−1)ε(σ )K (σ (mλ+ δ)− mµ− δ), (∗)

where K (b) is Kostant’s partition function for the root system An , ε(σ ) denotes the
number of inversions of σ , and δ is one-half of the sum of the positive roots in An .

Kostant’s partition function is what combinatorialists call a vector partition function
[19]. More precisely, K (b) is equal to the number of nonnegative integral solutions x
of a linear system Ax = b. The columns of A are exactly the positive roots of the
system An . Because the matrix A is unimodular [16], the counting function K (b) is a
multivariate piecewise polynomial function. The regions where K (b) is a polynomial are
convex polyhedral cones called chambers [19]. The chamber that contains b determines
the polynomial value of K (b); in fact it is the vector direction of b, not its norm, that
determines the polynomial formula to be used.

In formula (∗) the right-hand side vector for Kostant’s partition function is b =
σ(mλ+ δ)− (mµ+ δ).As m grows, we might be moving from one chamber to another.
Our claim is that, from some value of m on, the vectors σ(mλ + δ) − (mµ + δ) are
inside the same chamber. To see this, note that in the expression (∗), µ, λ, and δ are
constant vectors. For a given permutation σ , the vector direction σ(mλ+δ) is closer and
closer to that of σ(λ) when m grows in value. Similarly, the vector direction of mµ+ δ
approaches that of µ when m grows. Thus, the direction of b = σ(mλ+ δ)− (mµ+ δ)
approaches the direction of b′ = σ(λ) + µ along a straight line. For sufficiently large
m, the vectors b and b′ are contained in the same chamber, where a single polynomial
gives the value of K (b).

We have shown that, for all values of m greater than some M , the formula (∗) represents
an alternating sum of polynomials in the variable m. Therefore f (m) is a polynomial,
exactly as we wished to prove.
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