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Abstract. We introduce the convex combinatorial optimization problem, a far-reaching
generalization of the standard linear combinatorial optimization problem. We show that it
is strongly polynomial time solvable over any edge-guaranteed family, and discuss several
applications.

1. Introduction

The general linear combinatorial optimization problem is the following:

Linear Combinatorial Optimization. Given a family F ⊆ 2N of subsets of N :=
{1, . . . , n} and a rational weighting w: N −→ Q, find F ∈ F of maximum weight
w(F) :=∑j∈F w( j).

There is a massive body of knowledge on the computational complexity of this problem
for various classes of families presented in various ways (in terms of n and sometimes
additional parameters), and efficient algorithms in numerous cases, see [13]. For instance,
if F is the family of stable sets in a given graph with vertex set N then the problem is
NP-hard whereas if F is the family of matchings in a given graph with edge set N then
the problem is polynomial time solvable.

In this article we consider the following generalization of linear combinatorial opti-
mization.
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Convex Combinatorial Optimization. Given F ⊆ 2N with N = {1, . . . , n}, a vec-
torial weighting w: N −→ Qd , and a convex functional c: Qd −→ Q, find F ∈ F of
maximum value c(w(F)).

The standard linear combinatorial optimization problem over a family F is recovered as
the special case with d = 1,w: N −→ Qweighting by scalars, and c: Q −→ Q: x 	→ x
the identity.

Convex combinatorial optimization has a very broad expressive power and conve-
niently captures a variety of problems studied in the operations research and mathe-
matical programming literature including quadratic assignment, inventory management,
scheduling, reliability, bargaining games, clustering, and vector partitioning, see [2], [4],
[7], [10], [12], [22], [27], [43], and references therein. In Section 3 we discuss some of
these applications in detail and demonstrate that, as a consequence of our framework,
all admit a simple unified strongly polynomial time algorithm.

A particularly successful general methodology for linear combinatorial optimization
is the geometric approach inaugurated by Edmonds [17] and culminated by Grötschel
et al. [25], outlined as follows. With each family member F ∈ F is associated its
indicator 1F :=∑j∈F 1j with 1j the j th standard unit vector in Qn , and with the family
is associated the polytope

PF := conv{1F : F ∈ F} ⊂ Qn.

Extending w to Qn by w(x) := ∑n
j=1w( j)xj , the problem reduces to maximizing the

linear functional w over PF . This leads to the study of facets of PF ; when these can
be suitably controlled, the problem is polynomial time solvable via the ellipsoid method
[34] for linear programming.

In this article we further develop the geometric approach and use it to provide a
widely applicable general methodology for convex combinatorial optimization as well.
Our framework leads to the study of edge-directions of PF ; when these can be suitably
controlled, the problem is efficiently solvable via zonotope (or hyperplane arrangement)
methods as follows.

Theorem 1.1. For any fixed d, there is a strongly polynomial oracle time algorithm
solving convex combinatorial optimization over any edge-guaranteed family presented
by a membership oracle.

A family is edge-guaranteed if it comes with a set of vectors that contains a direction of
every edge of the polytope PF ; the precise definition is given in Section 2. All families
underlying the various applications in Section 3 naturally possess this property. The
assumption of fixed d is also natural and necessary: already for d = 1, the problem
generalizes linear combinatorial optimization which is frequently intractable; and when
d is variable, the problem captures NP-hard instances even for the simple power set
family F = 2N , see Example 3.1 below.

The main part of the proof of this theorem is a reduction of the convex combinatorial
optimization problem over a family F to the solution of polynomially many standard
linear combinatorial optimization counterparts over the same family F . The reduction



Convex Combinatorial Optimization 551

makes use of several results about zonotopes which are available in combinatorial and
computational geometry, but so far have not been integrated and harnessed in a systematic
way to discrete optimization.

The repeated solution of each of the standard linear combinatorial optimization coun-
terparts can be done following either one of the following two approaches. The first is
to use any efficient ad hoc algorithm available in the literature for the specific family
F at hand: this typically leads to the best overall running time. This approach indeed
applies to all of the applications discussed in Section 3, since each admits a very fast
ad hoc algorithm (ranging from simple greedy to sophisticated min-cost flow). The sec-
ond approach, which is generic and works for any F , takes advantage of the fact that a
test set (see [47]) is readily available for any edge-guaranteed family, and (see [45] and
references therein), using scaling [19] and Diophantine approximation [20], allows the
efficient solution of the necessary linear optimization counterparts.

The article is organized as follows. In Section 2 we prove Theorem 1.1 as well as some
other results, and discuss some relevant issues, as follows. In Section 2.1 we discuss the
necessary preliminaries on zonotopes and edge-directions. In Section 2.2 we prove The-
orem 2.6 providing the reduction of convex combinatorial optimization to polynomially
many standard linear combinatorial optimization counterparts. In Section 2.3 we discuss
the generic approach for solving the counterparts and combine it with Theorem 2.6 to
establish Theorem 1.1. In Section 2.4 we discuss the problem of finding short monotone
paths on (0, 1)-polytopes, provide Lemma 2.10 which is a certain (0, 1)-analog of the
Klee–Minty cube [36], and raise some questions. In Section 2.5 we consider classes
of edge-guaranteed families and conclude Corollary 2.12 concerning such edge-well-
behaved classes (defined therein). In Section 2.6 we discuss projection representation
which sometimes helps control edge-directions. Section 3 is devoted to applications:
in Section 3.1 we discuss quadratic assignment and matroids, whereas in Section 3.2
we make use of projection representation and discuss in detail the broadly applicable
shape vector partitioning problem. Section 4 contains some final remarks and open
problems.

We conclude this Introduction with some comments. First, our results make use of
and provide an efficient enumeration of the vertices of the polytopePFw := conv{w(F) :
F ∈ F} which is a projection of PF ; as the maximum of a convex functional c over
PFw is attained at a vertex and each vertex has the form w(F) with F ∈ F , this provides
a strategy for addressing the convex combinatorial optimization problem. One of the
difficulties we overcome is that the number of sets in F is typically exponential in n and
hence it is generally impossible to constructPFw directly efficiently. As a consequence of
our efficient vertex enumeration ofPFw , our results immediately extend to the larger class
of problems where c is any functional which is guaranteed to attain a maximum overPFw
at a vertex, e.g., when c is (edge-)quasi-convex onPFw , see [31]. In particular, our results
apply when c is (asymmetric) Schur convex and the edge-directions ofPFw are differences
of standard unit vectors inQd , again see [31]. Also, the results can be generalized to some
extent from (0, 1)-problems to integer programming. Second, we note that in studying
edge-directions, we make use of projections of polytopes; thus the Billera–Sturmfels
theory of fiber polytopes [9], related to various aspects of polytope projection, may be
helpful in the classification of edge-well-behaved classes of families. Also, some new
questions that we raise about graphs of (0, 1)-polytopes might be addressed through
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the Billera–Sarangarajan universal embedding of such polytopes as traveling salesman
polytopes [8].

We hope this exposition will make our framework a widely accessible tool in the
arsenal of discrete optimization, and will stimulate the study of edge-directions of poly-
topes PF for various combinatorially defined families. Since convex combinatorial op-
timization is often intractable, there is also much room for the study of approximation
algorithms for this problem for various familiesF , and we hope this article will stimulate
research on this yet unexplored ground.

2. Edge-Directions and the Algorithmic Solution

2.1. Edge-Directions and Zonotopes

We start by introducing the necessary terminology and collecting several facts that we
make use of; for some we only provide a reference and for others we provide a short
proof.

The zonotope generated by a set of vectors E = {e1, . . . , em} inQd is the Minkowski
sum

Z = zone(E) :=
m∑

i=1

[−ei , ei ] =
{

m∑
i=1

λi e
i : −1 ≤ λi ≤ 1

}

= conv

{
m∑

i=1

λi e
i : λi = ±1

}
⊂ Qd .

The following bound on the number of vertices of zonotopes has been rediscovered many
times over the years; see, e.g., [11] and [28] for early references and [23] and [48] for
recent extensions and refinements.

Lemma 2.1. The number of vertices of any d-dimensional zonotope generated by m
vectors is at most 2

∑d−1
i=0

(m−1
i

)
. Thus, for fixed d it is O(md−1) and hence polynomially

bounded in m.

Each vector a ∈ Qd is also interpreted as the linear functional on Qd given via the
standard inner product a · x = ∑d

i=1 ai xi . The normal cone of a polytope P at its face
F is the (relatively open) cone CF

P of those linear functionals a which are maximized
over P precisely at points of F . The following computational analogue of Lemma 2.1
is provided by the algorithm in [15] and [16] (the latter reference provides a necessary
correction of the former); some extensions are again in [23].

Lemma 2.2. Fix any d ≥ 3. Then all vertices of any d-dimensional zonotope Z gen-
erated by m given vectors can be listed, each vertex u along with a linear functional
a(u) ∈ Cu

Z uniquely maximized overZ at u, in strongly polynomial time using O(md−1)

arithmetic operations.
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A similar statement holds for d ≤ 2 as well but with arithmetic complexity O(md). Also,
we point out that the space complexity of the algorithm of Lemma 2.2 coincides with its
time complexity. Note that throughout we are mainly interested in strongly polynomial
(oracle) time algorithms, that is, algorithms that perform a polynomial number of arith-
metic operations (and calls to the relevant oracles if any) and are also polynomial time
in the Turing computation model.

The collection of normal cones of a polytope P at all faces is called the normal fan of
P (see [26]). A polytope Z is a refinement of a polytope P if the closure of each normal
cone of P is the union of closures of normal cones of Z . A standard result shows that
Z is a refinement of P if and only if the normal cone of every vertex of Z is contained
in the normal cone of some vertex of P , and we use this property interchangeably with
the above definition of refinement. A direction of an edge [u, v] of a polytope P is any
nonzero scalar multiple of v − u. We provide a simple proof of the following fact (see
[23]) which is quite central to our considerations.

Lemma 2.3. Let P be a polytope and let E be a finite set of vectors containing a
direction of every edge of P . Then the zonotope Z := zone(E) generated by E is a
refinement of P .

Proof. Let E = {z1, . . . , zm}. Consider any vertex u of Z . Then u = ∑m
i=1 λi zi for

some λi = ±1 and hence its normal cone Cu
Z consists of those a satisfying a · λi zi > 0

for all i . Let v be a vertex of P at which some such â (belonging to Cu
Z ) is maximized

over P . Consider any edge [v,w] of P . Then v −w = αi zi for some scalar αi �= 0 and
some zi , and 0 ≤ â · (v − w) = â · αi zi , implying αiλi > 0. It follows that every a in
the cone Cu

Z of the vertex u ofZ satisfies a · (v−w) > 0 for every edge of P containing
v and therefore a is also in the cone CvP of the vertex v of P , and hence Cu

Z ⊆ CvP .
Since u was arbitrary, it follows that the normal cone of every vertex of Z is contained
in the normal cone of some vertex of P and we are done by the aforementioned standard
result.

Finally, we need the following statement about edge-directions of linear images of
polytopes.

Lemma 2.4. LetQ := ω(P) be the image of a polytopeP under a linear map ω. Then
every direction q of an edge of Q is the image under ω of some direction p of an edge
of P .

Proof. Let q be a direction of an edge [x, y] ofQ. Consider the face F := ω−1([x, y])
of P . Let V be the set of vertices of F and let U = {u ∈ V : ω(u) = x}; as x �= y,
U �= V . Further, as the graph of F is connected there must be an edge [u, v] of F , and
hence of P , for some u ∈ U and v ∈ V \U . Then ω(v) ∈ (x, y] hence ω(v) = x + αq
for some α �= 0. Therefore q = (1/α)(ω(v)− ω(u)) = ω((1/α)(v − u)) = ω(p) with
p := (1/α)(v − u), a direction of the edge [u, v] of P .
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2.2. Reduction of Convex to Linear Combinatorial Optimization

We now reduce convex to linear combinatorial optimization. We make the following
assumptions. The ground set is N := {1, . . . , n} and the family F ⊆ 2N is edge-
guaranteed, which means that it is nonempty and comes with an explicit set E =
{e1, . . . , em} ⊆ Qn of vectors guaranteed to contain a direction of each edge of the
polytopePF = conv{1F : F ∈ F} associated withF . In this subsection we assume that
F is presented by a linear combinatorial optimization oracle that, given b : N −→ Q,
returns a family member F ∈ F of maximum weight b(F) = ∑j∈F b( j). The convex
functional c: Qd −→ Q is presented by an evaluation oracle that, given x ∈ Qd , returns
the value c(x). The weightingw: N −→ Qd is given by an explicit listw(1), . . . , w(n) ∈
Qd . We consider d as fixed; otherwise, as mentioned before, the problem becomes
intractable at once even for the simple family F = 2N , see Example 3.1 below. The
following algorithm, applied to the data above, provides a reduction of convex to linear
combinatorial optimization.

Algorithm 2.5. Given data as above, perform the following steps:

1. Consider the linear map ω: Qn −→ Qd defined by ω(x) :=∑n
j=1w( j)xj .

(a) Compute the image ω(E) = {ω(e1), . . . , ω(em)} of E under ω.
2. Consider the zonotopeZ := zone(ω(E)) =∑m

i=1[−ω(ei ), ω(ei )] in d-spaceQd .
(a) Compute the list {u1, . . . , uk} of all vertices of Z .
(b) For each ui compute a linear functional ai ∈ Cui

Z in the normal cone of Z at
ui .

3. (a) For each ai compute bi : N −→ Q defined by bi ( j) := ai · w( j) =∑d
t=1 ai

tw( j)t .
(b) For each bi query the oracle of F and obtain Fi ∈ F of maximum weight

bi (Fi ).
(c) For each Fi query the oracle of c and obtain the value c(w(Fi )) =

c(
∑

j∈Fi w( j)).
4. Output Fi ∈ F of maximum value c(w(Fi )) among F1, . . . , Fk .

The following theorem is stated for d ≥ 3; as for Lemma 2.2, a similar statement holds
for d ≤ 2 as well but with arithmetic complexity O(nmd) (but same query complexity
O(md−1)).

Theorem 2.6. For d ≥ 3, Algorithm 2.5 solves the convex combinatorial optimization
problem with data as above in strongly polynomial oracle time using O(nmd−1) arith-
metic operations and O(md−1) queries of the linear combinatorial optimization oracle
of F and evaluation oracle of c.

Proof. First we justify the algorithm. Recall the polytopePFw = conv{w(F) : F ∈ F}.
As

PFw = conv{w(F) : F ∈ F} = conv{ω(1F ) : F ∈ F} = ω(PF ),
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PFw is the image of PF under the linear map ω defined in step 1 of the algorithm. Thus,
by Lemma 2.4, the image ω(E) of E under ω contains a direction of every edge of PFw .
Therefore, by Lemma 2.3, the zonotope

Z := zone(ω(E)) =
m∑

i=1

[−ω(ei ), ω(ei )]

defined in step 2 is a refinement of PFw . Now consider any vertex v of PFw . Since
Z refines PFw , the normal cone of PFw at v contains the normal cone of Z at some
vertex ui of Z found in step 2(a). This implies that the corresponding linear functional
ai ∈ Cui

Z found in step 2(b) is maximized uniquely over PFw at v. Now, consider the
corresponding weighting bi defined in step 3(a). As v is the unique maximizer of ai over
PFw = conv{w(F) : F ∈ F}, we have

bi (F) =
∑
j∈F

ai · w( j) = ai ·
∑
j∈F

w( j) = ai · w(F) ≤ ai · v

for each F ∈ F , with equality if and only if w(F) = v. Thus, the member Fi ∈ F
obtained in step 3(b) from the linear combinatorial optimization oracle of F when
maximizing bi has v = w(Fi ). It follows that every vertex of PFw equals w(Fi ) for
some Fi obtained in step 3(b). Since c is convex, the maximum value c(w(F)) of F ∈ F
occurs at some vertex v = w(Fi ) of PFw . Thus the member Fi ∈ F output by the
algorithm in step 4, which has maximum value c(w(Fi )) among the values computed
in step 3(c), is an optimal solution to the convex combinatorial optimization problem.

Next we verify the claimed complexity, where, as explained, d is considered fixed. The
computation of the linear image ω(E) in step 1(a) takes O(dnm) = O(nm) operations.
By Lemma 2.1, the number of vertices of the zonotope Z defined in step 2 satisfies
k = O(md−1), and the computation of these vertices ui and of the corresponding linear
functionals ai in steps 2(a) and 2(b) requires O(md−1) operations by Lemma 2.2. The
number of queries in step 3(b) of the oracle of F and in step 3(c) of the oracle of c
are k = O(md−1) as claimed. The computation of each bi in step 3(a) and of each
w(Fi ) in step 3(c) takes O(dn) = O(n) operations totalling together over all i to
O(kn) = O(nmd−1) arithmetic operations. Finally, the arithmetic complexity of finding
the maximum among the k values c(w(Fi )) in step 4 is O(k) = O(md−1). Thus, the
dominant arithmetic complexity is O(nmd−1) as claimed.

As the proof shows, convex combinatorial optimization is solved by enumerating all
vertices of the polytope PFw and picking the best. While each vertex of PFw is the image
under w of some vector 1F , with F ∈ F , the difficulty is that the number of sets in
F is typically exponential in n and hence it is generally impossible to construct PFw
directly in polynomial arithmetic complexity (in particular, each 1F is a vertex of PF ).
The efficient construction of PFw is made possible by the given set of edge-directions
of PF and by proceeding, indirectly, through the zonotope Z that refines PFw . While
the number of vertices of Z can be much larger than that of PFw , the vertices of Z
can be better controlled and this leads to the polynomial complexity bound. So if the
polytope PF of a family F admits a relatively small set containing a direction of each
edge which can be efficiently constructed or even characterized, then the problem is
efficiently reducible.
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2.3. Generic Solution of the Linear Combinatorial Optimization Counterparts

We now discuss how to realize an oracle that will repeatedly solve each of the linear
combinatorial optimization counterparts queried upon in Algorithm 2.5. As before, we
assume that our family F is edge-guaranteed and hence nonempty and comes with an
explicit set E = {e1, . . . , em} containing a direction of each edge of PF . We assume
moreover that the family comes with one member F0 ∈ F to start with. We consider the
following three oracle presentations of F :

• Membership oracle: when queried about F ⊆ N , this oracle asserts whether or not
F ∈ F .
• Augmentation oracle: when queried about F ∈ F and b: N −→ Q, this oracle

returns a family member F̂ ∈ F with b(F̂) > b(F) or asserts that F has maximum
weight in F .
• Linear combinatorial optimization oracle: when queried about b: N −→ Q, this

oracle returns a family member F ∈ F of maximum weight b(F).

Lemma 2.7. For any edge-guaranteed family, a membership oracle enables us to sim-
ulate an augmentation oracle in strongly polynomial oracle time.

Proof. Without loss of generality, assume that each ei is a {−1, 0, 1}-vector. The sim-
ulation is simple. Consider a query about F and b: N −→ Q. Call an edge-direction ei

improving if b(ei ) =∑n
j=1 b( j)ei

j > 0; call it admissible at F if 1F+ei is a {0, 1}-vector
whose support Fi := supp(1F + ei ) is in F . If there is an edge-direction ei which is
both improving and admissible then return Fi ; otherwise assert that F has maximum
weight in F . The simulation works correctly since, as is well known, a vertex u is not
a maximizer of a linear functional b over a polytope if and only if the polytope has an
edge [u, v] for some vertex v with b(v) > b(u).

The next lemma is from [24] and [46]; see [45] for the state of the art on this line of
research. The lemma involves a computationally heavy Diophantine approximation step
[20] and a scaling step [19]. We include an outline of the proof, which is relevant for the
discussion in the next subsection.

Lemma 2.8. For any family, an augmentation oracle enables us to simulate a linear
combinatorial optimization oracle in strongly polynomial oracle time.

Proof. We outline the simulation. Consider the query about b: N −→ Q. The Dio-
phantine approximation step (see Theorem 3.3 of [20]) replaces b by a: N −→ Z with
the following two properties: first, it is equivalent to b in that, for any pair F,G ⊆ N , it
satisfies a(F) ≤ a(G) if and only b(F) ≤ b(G); and, second, the maximum number of
bits k := 1 + maxj∈N�log|a( j)|� in the binary representation of the weight under a of
any element is polynomial in n.

The scaling step (inspired by [19]) is the following. Applying a simple transformation
(see [46]) we may assume a is nonnegative. Following the proof of Theorem 9.2 of [24],
for i = 0, . . . , k, starting with Fi ∈ F , find a maximizing Fi+1 ∈ F with respect to the
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weighting ai := �2i−ka�. As shown in [24] or [46], each Fi+1 is obtained from Fi by
calling the augmentation oracle at most n times. Thus, the maximizer Fk+1 of a = ak is
found using at most kn calls, and since k is polynomial in n, the desired maximizer of b
is obtained in strongly polynomial oracle time.

We can now prove Theorem 1.1. As discussed before, the familyF ⊆ 2N comes with
one explicit F0 ∈ F and an explicit set E = {e1, . . . , em} ⊂ Qn containing a direction of
each edge of PF , and is presented by a membership oracle. The complexity is measured
in terms of n and m.

Theorem 1.1. For any fixed d, there is a strongly polynomial oracle time algorithm
solving convex combinatorial optimization over any edge-guaranteed family presented
by a membership oracle.

Proof. Theorem 2.6 guarantees that Algorithm 2.5 solves the convex combinatorial
optimization problem overF efficiently using a linear combinatorial optimization oracle
which, by Lemmas 2.7 and 2.8, can be efficiently simulated from the membership oracle
presenting F .

We conclude this subsection with several important remarks which lead to the discus-
sion in the next subsection. First, the complexity behind Theorem 1.1 is quite horrendous:
for each linear combinatorial optimization counterpart invoked by Algorithm 2.5, an ap-
plication of the Diophantine approximation step which takes O(n8) arithmetic operations
[20] is required. However, improved complexity bounds follow from Theorem 2.6 when
Algorithm 2.5 is used with a more efficient linear combinatorial optimization oracle
whenever a particular family admits one.

Second, what about real data and real arithmetic computation (where pairs of real
numbers can be added, multiplied, or compared in unit time)? Algorithm 2.5 remains
valid and polynomial and the analog of Theorem 2.6 (with “strongly polynomial oracle
time” replaced by “polynomially many real arithmetic operations and queries”) holds. So
does the conversion of the membership oracle to the augmentation oracle manifested by
Lemma 2.7 above. However, the proof of both parts of Lemma 2.8 (scaling and Diophan-
tine approximation) breaks down for real data, and the conversion of the augmentation
oracle to the optimization oracle is no longer available.

Can these obstacles be waved and does the real analog of Theorem 1.1 remain valid?
Our families are edge-guaranteed, which is stronger than having a test set (see [47] and
references therein) and even more so than having a mere augmentation oracle: can we
take advantage of that and simulate standard linear combinatorial optimization directly
and more efficiently, avoiding scaling and Diophantine approximation? We discuss some
of these issues next.

2.4. On the Hirsch Conjecture and the Klee–Minty Problem for (0, 1)-Polytopes

A form of the Hirsch conjecture, open to date, asks whether the diameter of (the graph
of) every n-polytope with f facets is bounded above by a polynomial in n and f ; for
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all one knows, the linear upper bound f − n may suffice, see [33] and [35]. Also open
is the analogous form of the monotone Hirsch conjecture asking whether the shortest
increasing path under any linear functional from any vertex to some maximizing vertex
is polynomially bounded in n and f . Both variants are true for (0, 1)-polytopes [38] as
well as for some more general classes of integer polytopes [14], [37]. The following
slightly stronger form, relevant to the discussion below, holds:

Lemma 2.9. Any (0, 1) n-polytope P admits, under any linear functional, a nonde-
creasing path from any vertex u to any maximizing vertex w, of length at most n using
no edge-direction twice.

Proof. The claim being trivial for n = 0, we proceed by induction. If u and w lie on a
common proper face of P then induction takes over. Otherwise, there is a nondecreasing
arc (u, v); pick any i with ui �= vi ; then vi = wi and hence, by induction, there is a
nondecreasing (v,w)-path of length at most n − 1 using no edge-direction twice on the
face F := {x ∈ P : xi = wi }. As no edge of F can have direction v − u, this path
preceded by the arc (u, v) gives the desired (u, w)-path.

The effective Hirsch conjecture asks, broadly, whether a monotone path could be
efficiently traced. To make things precise, the presentation of the polytope has to be
specified. For instance, tracing such a path in strongly polynomial time for polytopes
presented by linear inequalities would imply a strongly polynomial time algorithm for
linear programming via the simplex method which does not seem likely; but tracing it
in subexponential time is possible [33]. A natural question is: how long can an arbitrary
increasing path be? A classical construction by Klee and Minty [36] transforms the n-
cube so as to admit increasing paths of exponential length 2n . However, (0, 1)-polytopes
are very special, as Lemma 2.9 shows. How long, then, can an arbitrary increasing path
in a (0, 1)-polytope be? We now show that, unfortunately, (0, 1)-polytopes admit such
paths of length exponential in the dimension as well: in this sense, the following lemma
can be regarded as a (0, 1) analog of the Klee–Minty cube; we thank Tal Raviv for a
related discussion.

Lemma 2.10. For every n there is a (0, 1)-polytope of dimension less than 1
4 n4 with n!

vertices that admits a Hamiltonian (and hence n!-long) nondecreasing path under every
linear functional.

Proof. The Young polytope Yn−2,2 is the convex hull of all
(n

2

)× (n
2

)
matrices of permu-

tations of edges of the complete graph Kn induced by the n! permutations of its vertices.
For instance, the matrix corresponding to the permutation of vertices σ = (1, 2, 3, 4)
(in cycle notation) is


 =




12 13 14 23 24 34

12 0 0 0 1 0 0
13 0 0 0 0 1 0
14 1 0 0 0 0 0
23 0 0 0 0 0 1
24 0 1 0 0 0 0
34 0 0 1 0 0 0



.
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The claims about the dimension and number of vertices of Yn−2,2 are obvious. In [39] it
was shown that Yn−2,2 is 2-neighborly, that is, its graph is the complete graph Kn!: the
very existence of 2-neighborly (0, 1)-polytopes is an amazing fact in itself! It follows
that if a is any linear functional, then any ordering v1, . . . , vn! of the vertices of Yn−2,2

satisfying a(v1) ≤ · · · ≤ a(vn!) gives a Hamiltonian (and hence exponentially long)
nondecreasing path under a.

Here, however, we are especially interested in the polytopes PF of edge-guaranteed
families. Lemmas 2.7 and 2.8 imply that for such a family, a monotone path can be
traced in time strongly polynomial in m and n, alas, for rational functionals only, and
using the heavy Diophantine approximation procedure. Can we do better? What is the
maximal length I (n,m) of any increasing path in any n-dimensional (0, 1)-polytope
with m pairwise nonproportional edge-directions?

2.5. Edge-Well-Behaved Classes

In most applications, in particular all of those discussed in Section 3, one is concerned
with a class of families possessing some unifying structure. It is therefore useful to
make some formal definitions regarding such classes and then use it to obtain a suitable
corollary of Theorem 1.1. For n ≥ 0 let N = {1, . . . , n} as before and let Un be the set
of all families with ground set N ,

Un := 22{1,...,n} = {F : F ⊆ 2N }.
A class of families is a (typically infinite) set of families C =⊎n≥0 Cn with Cn ⊆ Un for
all n.

Definition 2.11. A class C is edge-well-behaved if there is a polynomial time algorithm
that, given n, produces a set En = {e1, . . . , em(n)} ⊆ {−1, 0, 1}n with respect to which
everyF ∈ Cn is edge-guaranteed. In particular, m(n) is polynomial in n and eachF ∈ C
is nonempty.

While the existence of such a “uniform” polynomial time algorithm that produces sets
containing edge-directions for the polytopes of all families in the class may seem a strong
assumption, we will see in Section 3 that in many applications such an algorithm is readily
available. Also, the assumption that the edge-directions are (−1, 0, 1)-valued is not
restrictive since, for (0, 1)-polytopes, each edge is a difference of two vertices and hence
admits a (−1, 0, 1)-direction. The next corollary follows at once from Theorem 1.1; here
the complexity is in terms of n only.

Corollary 2.12. Fix any d . Then for any edge-well-behaved class there is a strongly
polynomial oracle time algorithm that solves the convex combinatorial optimization
problem over any family in the class which is presented by a membership oracle.

While this statement may seem a reformulation of Theorem 1.1, it is natural and useful in
uniformly establishing the polynomial solvability in all of the applications discussed in
Section 3.
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2.6. Projection Representation and Circuits

We conclude Section 2 by discussing a useful setup that helps in controlling edge-
directions, and which is used and demonstrated in the application given in Section 3.2.
A circuit of an r × s matrix A is a nonzero solution z ∈ Qs of the system Az = 0 whose
support is inclusion-minimal. It is known (see Exercise 10.14 of [44]) that any nonzero
solution of Az = 0 has a conformal circuit decomposition, i.e., can be expressed as
z = ∑

i αi zi with the αi positive scalars and the zi pairwise nonproportional circuits
such that zi

j z j > 0 for all i and all j ∈ supp(zi ). Consider the standard polytope
P = {x ∈ Qs : Ax = b, l ≤ x ≤ u} defined by A, right-hand side b ∈ Qr , lower
bound l ∈ Qs , and upper bound u ∈ Qs . We provide a short proof of the following useful
property of edge-directions of the standard polytope (see [41] for a refinement of this
property which characterizes edge-directions).

Lemma 2.13. Each edge-direction of a standard P is a circuit of its defining
matrix A.

Proof. Consider any x, y ∈ P . Then A(y− x) = 0 so y− x admits a conformal circuit
decomposition y − x = ∑

i αi zi . It is then not hard to verify that for every circuit zi

participating in that decomposition, both x + αi zi and y − αi zi satisfy the lower and
upper bounds and hence are in P . They belong, moreover, to any face F containing
both x and y. Indeed, pick any c in the normal cone CF

P : then c · x ≥ c · (x + αi zi )

which implies c · zi ≤ 0, and c · y ≥ c · (y − αi zi ) which implies c · zi ≥ 0. It follows
that c · zi = 0 and hence c · (x + αi zi ) = c · x and c · (y − αi zi ) = c · y implying
x + αi zi , y − αi zi ∈ F . Now, if the decomposition y − x = ∑

i αi zi involves more
than one circuit, say z1, z2, then any face containing x, y contains the three noncollinear
points x, x + α1z1, x + α2z2 and hence is not an edge. So if [x, y] is an edge of P then
y − x = αz for some circuit z. Any direction of that edge is a nonzero multiple of z and
hence a circuit of A.

Lemma 2.13 implies that any inclusion-maximal set Z of pairwise nonproportional
circuits of A contains a direction of each edge of P . So if the size of A is r × s then
P admits such a set Z with no more than

(s
r

)
elements. Every polytope Q is the linear

image of a standard polytope: ifQ = {x : Bx ≤ b} is a description by inequalities then,
adding a suitable “slack” vector y, we get Q = ϕ(P) with P = {(x, y) : Bx + I y =
b, y ≥ 0} and with ϕ the “y forgetting” projection ϕ(x, y) = x . In particular, the
polytope PF of any family F is the linear image PF = ϕ(P) of a standard polytope
P = {x ∈ Qs : Ax = b, l ≤ x ≤ u}. Typically the number of inequalities describing
PF is exponentially large and hence so is the dimension of P , but when P has small
dimension, we can benefit from such a “projection representation” in two ways as follows.

First, if the defining matrix A admits an efficiently determinable set Z = {z1, . . . , zm}
⊂ Qs containing a scalar multiple of each circuit of A then, by Lemmas 2.4 and 2.13,
its image E := ϕ(Z) contains a direction of each edge of PF , making F an edge-
guaranteed family. Second, linear combinatorial optimization over F can be “lifted” to
linear programming over the polytope P , giving an alternative way to Section 2.3 for
solving the counterparts called upon by Algorithm 2.5.



Convex Combinatorial Optimization 561

3. Some Applications

3.1. Some Direct Applications

Here we give two examples where the set of edge-directions can be directly determined
and used.

Example 3.1 (Positive Semidefinite Quadratic Assignment). The quadratic assign-
ment problem is the following: given a real n×n matrix M , find x ∈ {0, 1}n maximizing
the quadratic form xT Mx induced by M ; see [43] for an overview of this problem and
its applications. We consider the instance where M is positive semidefinite, in which
case it can be assumed to be presented as M = W T W with W a given d × n matrix. If
the rank d of W and M is variable then this problem is NP-hard [27]. For fixed d it is
polynomial time solvable [2].

When W is rational, the problem can be modeled as convex combinatorial optimiza-
tion with the following data: the family is the entire power set F = 2N of N with the
natural correspondenceF ↔ {0, 1}n; the weight of j ∈ N is the j th columnw( j) := W j

of the matrix W ; and c: Qd −→ Q: x 	→ ‖x‖2 is the squared standard l2 norm. Indeed,
for each F ∈ F we then have 1T

F W T W 1F = c(w(F)).
Now, the polytope of the family F here is just the n-cube PF = [0, 1]n; therefore

the trivially computable set of n standard unit vectors E := {11, . . . , 1n} contains a
direction of each edge. Thus, the class of all such families is edge-well-behaved with
m(n) = n and Corollary 2.12 applies and guarantees the efficient solution. Here, one
obtains a faster solution by using Algorithm 2.5 together with a linear combinatorial
optimization oracle realized by simple sign checking as follows: given b: N −→ Q, a
member F ∈ F maximizing b(F) is simply F := { j : b( j) > 0}.

Example 3.2 (Convex Matroid Optimization). This problem (see [29] and [40]) is the
special case of convex combinatorial optimization where F is either the collection B of
bases or the collection I of independent sets of a matroid over N . It generalizes classical
matroid optimization, first studied in [18], and has a rich modeling power on its own:
useful matroids include the forest matroid of a graph and, more generally, the matroid of
linear dependencies of a matrix over a field. For us it suffices that the matroid is presented
by a membership oracle for F .

It can be derived from the matroid-bases-axioms that the trivially computable set
D := {1i − 1j : 1 ≤ i < j ≤ n} of

(n
2

)
differences of unit vectors contains a direction of

each edge of the polytope PB of the family B of bases. Likewise, it can be derived from
the matroid-independence-axioms that the

(n+1
2

)
-element union D ∪ E of D and the set

E := {11, . . . , 1n} of unit vectors contains a direction of each edge of the polytope PI
of the family I of independent sets. Thus, the class of all such families B (respectively,
families I) is edge-well-behaved with m(n) = (n

2

)
(respectively, m(n) = (n+1

2

)
), and

Corollary 2.12 applies and guarantees the efficient solution.
Here, too, one obtains a faster solution by using Algorithm 2.5 together with a linear

combinatorial optimization oracle over F = B or F = I which is efficiently realizable
from a membership oracle forF using the classical greedy algorithm (see [13] and [18])
that, given b: N −→ Qmakes use of sorting the values b( j) to find the lexicographically
b-largest member F ∈ F which can be shown to be the one maximizing b(F).
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3.2. Shaped Vector Partitioning

The shaped partition problem concerns the partitioning of a multiset V = {v1, . . . , vn} of
n vectors in d-space into p parts so as to maximize an objective function which is convex
on the sum of vectors in each part, subject to constraints on the number of elements in
each part. To describe the problem precisely we need some notation. A p-partition of
the index set {1, . . . , n} of V is an ordered tuple π = (π1, . . . , πp) of pairwise disjoint
sets whose union is {1, . . . , n}. The shape of a partition is the tuple of cardinalities of
its parts, |π | := (|π1|, . . . , |πp|). In addition to the set of vectors V , the data includes
vectors l, u ∈ {0, 1 . . . , n}p with l ≤ u providing lower and upper bounds on the shape
of admissible partitions. With each partition π is associated a d × p matrix

V π :=
[(∑

i∈π1

vi

)
, . . . ,

(∑
i∈πp

vi

)]
=

p∑
j=1

(∑
i∈πj

vi

)
1T

j ,

whose j th column is the sum (representing the “total value”) of vectors assigned to the
j th part. The data also includes a convex functional c : Qd×p −→ Q on d × p matrices
which “weighs together” the sums of vectors in the various parts. The problem is to find
a p-partition π whose shape satisfies the lower and upper bounds l ≤ |π | ≤ u and which
maximizes the value c(V π ).

Shaped partition problems have applications in diverse fields such as clustering, in-
ventory, reliability, and more—see [7], [10], [12], [30], [32], [43], and references therein.
Here is a typical example.

Example 3.3 (Minimal Variance Clustering). This is the following problem, which has
numerous applications in the analysis of statistical data: given n sample points v1, . . . , vn

in d-space, group the points into p clusters π1, . . . , πp so as to minimize the sum of
cluster variances:

p∑
j=1

1

|πj |
∑
i∈πj

∥∥∥∥∥vi −
(

1

|πj |
∑
i∈πj

vi

)∥∥∥∥∥
2

.

We consider the instance where there are n = p · m points and the clustering sought
is balanced, that is, the clusters should have equal size m. Suitable manipulation of the
sum of variances shows that the problem is equivalent to a shaped partition problem
with the lower and upper bounds l := u := (m, . . . ,m) (forcing the single shape
|π | = (m, . . . ,m) on partitions), and with the convex functional (to be maximized)
simply as the square of the l2 norm on d × p matrices, given by c: Qd×p −→ Q: X 	→
‖X‖2 =∑d

i=1

∑p
j=1 |Xi, j |2.

If either the dimension d or the number of parts p is variable, then the shaped partition
problem instantly captures NP-hard problems and hence is presumably intractable [30].
Therefore, it is interesting to study the worst case arithmetic complexity in terms of the
number n of points with both d and p fixed. In the special case where there are no shape
restrictions (partitions of all shapes are admissible), an upper bound of O(nd(p−1)−1) on
the complexity is given in [42] and a quite compatible lower bound of �(n�(d−1)/2�p)
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is in [5]. In the more general case where arbitrary sets of shapes are allowed, the best
upper bound to date is O(ndp2

) from [30]; while a matching lower bound is unknown, the
lower bound O(nd(p

2)) from [3] on the related number of separable partitions indicates
that the quadratic term p2 in the exponent may be unavoidable.

We now show how to solve the shaped partition problem efficiently using our frame-
work. We begin by modeling it as a convex combinatorial optimization problem. The
ground set is taken to be N := {(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ p}. Each p-
partition π = (π1, . . . , πp) is encoded as the set Fπ := {(i, j) : i ∈ πj } ⊆ N .
The family consists of all such sets corresponding to p-partitions of admissible shapes,
F := {Fπ : l ≤ |π | ≤ u}. The weight of element (i, j) ∈ N is the d × p matrix
w(i, j) := vi 1T

j whose j th column is vi and whose other columns are zero. Finally, the
convex functional is simply the given one c defined on d × p matrix space. It is not hard
to verify that this indeed casts the shaped partition problem as a convex combinatorial
optimization problem with a ground set of size |N | = np and weight vectors (matrices)
in dimension dp.

To show that the class of all such families is edge-well-behaved we discuss the family
polytope PF ⊂ Qn×p. The indicator of a family member Fπ ∈ F is the (0, 1)-valued
n × p matrix 1π whose (i, j)th entry equals 1 precisely when i ∈ πj . The polytope PF
admits a simple projection-representation as follows. Consider (n + 1) × p matrices
whose rows are indexed by {0, 1, . . . , n}. Define lower and upper bound matrices L ,U
in terms of the given vectors l, u as follows: for j = 1, . . . , p set Li, j := 0, Ui, j := 1
if 1 ≤ i ≤ n and L0, j := n − uj , U0, j := n − lj . Let P be the transportation polytope
defined by this data, which is the following standard polytope:

P :=
{

X ∈ Q(n+1)×p :
p∑

j=1

Xi, j = 1(1 ≤ i ≤ n),

n∑
i=0

Xi, j = n(1 ≤ j ≤ p), L ≤ X ≤ U

}
.

Then PF = ϕ(P) with ϕ: Q(n+1)×p −→ Qn×p the projection erasing the zeroth row of
a matrix.

Let Kn+1,p be the complete bipartite graph with edge set {(i, j) : 0 ≤ i ≤ n, 1 ≤
j ≤ p} corresponding to this transportation system. Each circuit of Kn+1,p gives an
(n+ 1)× p matrix supported on that circuit, with values±1 alternating along the edges
of the circuit and 0 elsewhere. It is well known that each circuit of the (n+ p)× (n+1)p
matrix of coefficients of the equation system defining P is proportional to some such
circuit-supported matrix. Let Z := {z1, . . . , zm} be the set of all such (n+1)× p matrices
corresponding to the m := ∑p

i=2
1
2

(p
i

)(n+1
i

)
i! (i − 1)! distinct circuits of Kn+1,p. Then

the projection E = {e1, . . . , em} := ϕ(Z) is a set of (−1, 0, 1)-valued n × p matrices
which, as explained in Section 2.6, contains a direction of each edge of PF .

Since p is assumed to be fixed, the set of circuits Z and its projection E are computable
in time polynomial in n, and therefore the class of all such families is indeed edge-well-
behaved with m(n) =∑p

i=2
1
2

(p
i

)(n+1
i

)
i! (i−1)! = O(n p). Thus, Corollary 2.12 applies

and guarantees the efficient solution. As in the examples in Section 3.1, here too one
can obtain a typically faster solution by using Algorithm 2.5 together with a linear
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combinatorial optimization oracle realized by lifting toP and solving the corresponding
transportation problem using available fast algorithms for bipartite network flows, see
[1]. These algorithms, however, are not strongly polynomial and do depend on the bit
size of the bounds l, u and the costs bi called repeatedly by Algorithm 2.5.

For unrestricted partitioning, that is, shaped partitioning with l = (0, . . . , 0) and
u = (n, . . . , n), the characterization of circuits obtained in [41] shows that circuits of
Kn+1,p which yield circuits of the matrix of coefficients of the equation system defining
P correspond to switching a single item from one part to another. As the number of
such circuits is n

(p
2

)
, the class of such families is edge-well-behaved with (improved)

m(n) = n
(p

2

)
. Thus, while Theorem 2.6 with m(n) = O(n p) and dimension dp implies

a complexity bound of nO(dp2) on the general shaped partition problem, in line with [30],
with m(n) = n

(p
2

)
and same dimension dp it implies the improved bound of nO(dp) on

the complexity of the unrestricted partition problem, in line with [42].

4. Concluding Remarks

In this article we have defined the convex combinatorial optimization problem and shown
that it can be solved in strongly polynomial time for edge-guaranteed families and
for edge-well-behaved classes of families. We have demonstrated several natural and
broad applications that indeed give rise to edge-well-behaved classes and therefore are
efficiently solvable through our framework.

The polynomial time solvability of linear combinatorial optimization for facet-well-
behaved classes via the Ellipsoid method [25], [34] has stimulated over the years a broad
body of work on the identification and characterization of such classes. A major research
program called upon by this paper is an analogous identification and characterization of
edge-well-behaved classes of combinatorial families, for which our framework automat-
ically yields strongly polynomial time solvability of convex combinatorial optimization.

Some more specific questions are discussed within the body of our paper, in particular,
those in Sections 2.3 and 2.4 concerning a more efficient generic solution of standard
linear combinatorial optimization over edge-guaranteed families and the effective Hirsch
conjecture for polytopes of such families. What is the maximal length I (n,m) of any
increasing path in any n-dimensional (0, 1)-polytope with m pairwise nonproportional
edge-directions? Can we trace such a path efficiently while avoiding scaling and the
heavy Diophantine approximation procedure? Can we trace such a path in polynomially
many real arithmetic operations for real linear functionals?

For solving the standard linear counterparts of a convex combinatorial optimization
problem over a familyF with weightingw, one approach may be to try and augment along
edges of the polytope PFw downstairs (see discussion following the proof of Theorem
2.6). While a set of edge-directions of that polytope is available as the projection ω(E)
of the set of edge-directions of PF , this information is not enough: one needs to know,
at any vertex v of PFw , which edge-directions ω(ei ) are admissible at v, and, moreover,
“how much to walk”—namely, what is the nonnegative scalar α such that v+ αei is the
new vertex to move to. When this information is available, even in an abstract setting of a
suitably defined neighborhood oracle, it may be possible to apply the vertex enumeration
methodology of [6]; and in some applications, such as unrestricted vector partitioning,
this can be carried out particularly efficiently as in [21].
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Finally, as mentioned in the Introduction, there is much room for the study of approx-
imation algorithms for the often intractable convex combinatorial optimization problem
for various classes of families, and we hope this article will stimulate research on this
yet unexplored ground.
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