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Abstract. Let G be a set of n points in general position (i.e., no three points are on a line)
in the plane, and let C be a caterpillar on n vertices. We show that one can always find a
rectilinear embedding of C in the plane such that the vertices of C are the points of G and
no two edges of C go to parallel segments. This proves a conjecture of Robert E. Jamison.

1. Introduction

Let G be a set of n points in the plane. A direction path for G is a path whose vertices
are the points of G and whose edges consist of straight line segments no two of which
are parallel (see, for example, Fig. 1). Clearly, a necessary condition for the existence
of a direction path for a set G is that the points of G determine at least n − 1 different
slopes.

A well-known theorem of Ungar [U] asserts that any set of n points, which is not
contained in a line, determines at least n − 1 different directions. In [J2] Jamison used
this result to show that any non-collinear set of n points in the plane admits a direction
tree, namely, a tree whose vertices are the n points, and every pair of edges have different
directions. In the same paper (and also in [J1]) Jamison conjectured that if G is a set of
n points in general position, then not only that it admits a direction tree, but in fact a
direction path. On the other hand, Jamison [J1] constructed arbitrary large non-collinear
sets G such that every line determined by G contains at most |G|/3+ 3 points, but still
G does not admit a direction path.

In this paper we prove a generalization of the conjecture of Jamison. We show that
his conjecture is in fact true for any caterpillar, as follows:

Theorem 1.1. Let C be any given caterpillar on n vertices, and let G be any set of n
points in general position in the plane, then there is a rectilinear embedding of C in the
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Fig. 1. A directed path for the set of vertices of a regular hexagon.

plane so that the vertices of C are the points of G and every pair of edges of C have
different directions.

We note that a special case of Theorem 1.1, where G is the set of vertices of a regular
n-gon, was shown by Jamison. There it follows from the equivalence of a tree being a
direction tree for the set of vertices of a regular n-gon, and a labeling of the vertices of
a tree by the numbers 0, 1, . . . , n − 1 so that the sums of the labels (modulo n) of every
two adjacent vertices of the tree are pairwise different.

Pach [P] observed that the proof presented in this paper is similar to a proof presented
in [AGH+] (in its dual version) for bipartite embedding of paths in the plane with no two
edges crossing. Indeed, Pach managed to show that Jamison’s conjecture for a path can
be shown to be implied by the theorem in [AGH+]. Nevertheless, the proof presented
here applies to general caterpillars and to arrangements of x-monotone pseudolines
rather than just points in the plane. At the same time, however, the proof presented here
can be used to prove an extension of the theorem in [AGH+] to general caterpillars as
well.

2. Caterpillars

In this section we prove Theorem 1.1. We use duality of points and lines by which
Theorem 1.1 will follow from the following theorem on arrangement of lines (in fact,
everything remains true if we consider arrangements of x-monotone pseudolines).

We say that an arrangement of lines A in the plane is in general position if no three
lines ofA pass through the same point, and no line inA is vertical. We also require that
every two lines in A cross (that is, no two lines in A are parallel).

Theorem 2.1. Let A be an arrangement of n lines in general position in the plane.
Let C be any caterpillar on n vertices. Then one can find a correspondence between the
lines ofA and the vertices of C so that those intersection points of (pairs of ) lines which
correspond to adjacent vertices in C have pairwise different x-coordinates.

It is easy to see how Theorem 1.1 follows from Theorem 2.1. Indeed, let G be a set
of n points in general position in the plane. Fix a coordinate system in the plane. By
a suitable rotation of the set G we can assume that no two points of G have the same
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x-coordinates. Apply the points–lines duality which takes a point (A, B) to the lines
y + Ax + B = 0, and takes a (non-vertical) line y + Ax + B = 0 to the point (A, B).
Observe that by this duality parallel lines go to points with the same x-coordinate and
vice versa.

The set G is then transfered to an arrangement of lines in general position. If we now
apply Theorem 2.1 to this arrangement, we get exactly what we want. Indeed, embed
the caterpillar C in the plane by sending the vertices of C to the dual points of their
corresponding lines from Theorem 1.1. If l1, l2 are two lines in the plane which contain
two different embedded edges of C , then the dual of l1 and l2 will be two points with
different x-coordinates in the dual plane (according to the result in Theorem 1.1). This
means that l1 and l2 are not parallel.

Instead of proving Theorem 2.1 directly, we will prove a slightly stronger version that
will be required for the induction argument. We need a bit of terminology and notation.

Let C be a caterpillar. We say that C has type (a, b) where a and b are positive
integers, if, as a bipartite graph, C has its two color classes with cardinalities a and b,
respectively. We then write V (C) = (V1, V2) for the set of vertices of C . V1 and V2 are
the two color classes of C as a bipartite graph, and of course |V1| = a and |V2| = b.
The vertices of C are divided into two kinds, the leaves and those vertices that are not
leaves which we call links. In a caterpillar the vertices which are links form a path
which we call the spine. A vertex of C is called a head if it is an extreme link of the
spine.

We say that an arrangement A of lines is of type (a, b) if it consists of precisely a
lines with positive slopes and b lines with negative slopes. We denote A = (L+, L−)
where L+ is the set of lines with positive slopes and L− is the set of lines with negative
slopes.

We are now ready to state the stronger version of Theorem 2.1. (The statement of
the theorem is a bit long but very easy to understand.) In this theorem we let C be a
caterpillar of type (a, b), we let V (C) = (V1, V2), and we assume that V1 contains a
vertex v which is a head of C . Those assumptions are not restrictive because if C does
not have any head, then it consists of only one edge, in which case everything is trivial.
Once we know that C has a head we may assume it is in V1 for otherwise we reflect
the whole scene about the x-axis (as we do when applying the induction hypothesis, see
details below).

Theorem 2.2. Let C be a caterpillar of type (a, b), and let V (C) = (V1, V2). We
assume that V1 contains a vertex v which is a head of C . Let A = (L+, L−) be an
arrangement of lines of type (a, b) in general position in the plane. Assume that there
is a point p on precisely one of the lines in L+ such that every line from L− passes
above p and every line in L+ passes through or below p. Then one can find a one to
one correspondence between the lines in L+ and the vertices in V1 and a one to one
correspondence between the lines in L− and the vertices in V2, such that the following
is true:

1. The x-coordinates of the intersection points of pairs of lines that correspond
to adjacent vertices in C are pairwise different and strictly greater than the x-
coordinate of p.
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2. If l is any line with negative slope that passes through p, then the x-coordinate of
the intersection point of l with the line lv , that corresponds to v, is smaller than
the x-coordinate of the intersection point of any two lines l1, l2 ∈ A\{lv} which
correspond to two adjacent vertices in C .

Proof of Theorem 2.2. We start with an easy observation.

Claim 2.3. Let p′ be any intersection point of a line from L+ with a line from L−. Then
the x-coordinate of p′ is strictly larger than that of p.

Proof. Indeed, if l+ ∈ L+ and l− ∈ L−, then we know that l− passes above p and l+

passes through or below p. Since the slope of l+ is larger than that of l−, l+ is always
below l−, when we are to the left of p. In particular, p′, the intersection point of l+ and
l−, must be to the right of p.

If a = 1, then C is a star. We denote by lv the only line in L+, and assign it to the vertex
v. We arbitrarily assign the lines in L− to the b vertices in V2. Clearly, the intersection
points of lv with the lines in L− have pairwise different x-coordinates (since A is in
general position and thus no three lines of it pass through the same point). Moreover, by
Claim 2.3, all these intersection points have their x-coordinates greater than that of p.
Assertion 2 in the theorem is, in this case, void, since one of every two adjacent vertices
in C must be v. Therefore we are done.

Thus we may assume that a > 1 (and hence there is a link of C in V2). Let m ≥ 1
denote the degree of v in C . Since v is a head of C and a > 1, vertex v has m − 1
neighbors which are leaves and another neighbor which is a link.

For every line l ∈ L+, let zl
1, . . . , zl

m denote the x-coordinates of the m leftmost
intersection points of l with lines from L−. Let lv be such that zlv

m = minl∈L+{zl
m}. Let

pv denote that (intersection) point on lv whose x-coordinate is zlv
m . Let l−1 , . . . , l

−
m−1

denote the lines from L− that intersect lv at the points with x-coordinates zlv
1 , . . . , zlv

m−1,
respectively.

The idea of the proof is to assign the line lv to v and the lines l−1 , . . . , l
−
m−1 arbitrarily

to the m−1 neighbors of v that are leaves, and then conclude by the induction hypothesis
on the remaining caterpillar after removing v and its m − 1 neighbors that are leaves.
However, we first have to make sure that this assignment satisfies the requirements in the
theorem and that the conditions of the theorem are satisfied when applying induction.
This is the aim of the following claims.

Claim 2.4.

(1) Every line of L−\{l−1 , . . . , l−m−1} passes through or above pv .
(2) Every line of L+\{lv} passes below pv .

Proof. (1) is obvious, since if l− ∈ L−\{l−1 , . . . , l−m−1} passes below pv , then there
are m lines from L−, namely, l−1 , . . . , l

−
m−1 and l− which intersect lv at points with

x-coordinates smaller than that of pv , contradicting the definition of pv .
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Fig. 2. Determining pv : here m = 2. A small copy of the caterpillar C is shown on the top. pv and lv as well
as l−1 and l−2 are indicated in the figure. The dotted lines correspond to lines with negative slopes.

To prove (2), let l+ ∈ L+\{lv}. l+ cannot pass through pv since lv and a l−m pass
through it. If l+ passes above pv , then the lines l−1 , . . . , l

−
m intersect l+ at points with

x-coordinates smaller than that of pv . This would mean zl+
m < zlv

m , contradicting the
definition of lv .

Claim 2.5. Let l be any line with negative slope through p. Let q be the intersection
point of l with lv . Then the x-coordinate of q is greater than or equal to the x-coordinate
of p and is strictly smaller than the x-coordinate of pv .

Proof. If q = p, then there is nothing to prove since we know, from Claim 2.3, that pv
has its x-coordinate strictly larger than that of p.

Assume then that q �= p. In this case lv passes below p (rather than through p,
because otherwise p = q , the intersection point of l with lv). Just like in the proof of
Claim 2.3, since l passes through p and lv passes below p and the slope of l is smaller
than that of lv , then q must be to the right of p, that is, its x-coordinate is greater than
that of p.
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We now show that the x-coordinate of q is strictly smaller than that of pv . Let l+p
denote the line from L+ which passes through p. We know that l+p �= lv . Assume to the
contrary that q (which is the intersection point of l with lv) is either pv or its x-coordinate
is larger than the x-coordinate of pv . Then, since l has negative slope and lv has positive
slope, l passes through or above pv (recall that pv lies on lv). However, l+p is above l
when we are to the right of p so in particular l+p passes above pv . This is a contradiction
to part (2) of Claim 2.4.

We now conclude the proof of the theorem by using induction (on the size of the
caterpillar C): we assign lv to the vertex v and arbitrarily assign l−1 , . . . , l

−
m−1 to the

m − 1 neighbors of v which are leaves.
Let C ′ be the caterpillar of type (a− 1, b−m+ 1) obtained from C by removing the

vertex v and its m − 1 neighbors which are leaves. Denote V (C ′) = (V ′1, V ′2). Observe
that V ′2 must contain a head of C ′ (namely, the neighbor of v which is a link in C).
Define L ′+ = L+\{lv} and L ′− = L−\{l−1 , . . . , l−m−1}. Clearly, |L ′+| = a − 1 and
|L ′−| = b−m + 1. Observe that there is a line in L ′−, namely, l−m which passes through
pv . By Claim 2.4, every line from L ′+ passes below pv and every line from L ′− passes
through or above pv .

Now apply the induction hypothesis on the smaller caterpillar C ′ by interchanging
the roles of C ′1 and C ′2, so that now there is a head of C ′ in the correct color class. As
the arrangement of lines we take L ′+ ∪ L ′− reflected about the x-axis. Therefore, the
reflection of L ′+ will serve as the set of lines with negative slopes and the reflection of
L ′− will serve as the set of lines with positive slopes. We take the point pv to play the
role of p in the statement of the theorem. Let v′ be the (only) neighbor of v which is a
link in C . v′ ∈ V ′2 is a head of C ′. We take v′ to play the role of v in the statement of the
theorem.

It is easy to see that all the conditions of the theorem are satisfied by the new caterpillar
C ′ and the new reflected arrangement of lines. We can thus find a correspondence between
the lines of L ′+ and the vertices of V ′1 and between the lines of L ′− and the vertices of
V ′2. By this correspondence all intersection points between lines which correspond to
adjacent vertices in C ′ have pairwise different x-coordinates, and they all lie to the right
of pv so that they have different x-coordinates than those intersection points between lv
and l−1 , . . . , l

−
m−1.

We have to consider only one more intersection point between the line lv and the
line l ′v which corresponds to v′ (recall that v and v′ are neighbors in C). Denote that
intersection point by r . We want to show that the x-coordinate of r is different than
the x-coordinate of the intersection point of any two lines which correspond to adjacent
vertices in C . Clearly, the x-coordinate of r is different than those of the intersection
points of lv with any of the lines l−1 , . . . , l

−
m−1. If we take the line l in the statement of the

theorem to be the reflection of lv about the x-axis (recall that lv passes through pv), then
it follows from the induction hypothesis that r is to the left of any intersection point of
two lines l1, l2 ∈ A\{lv, lv′ }which correspond to adjacent vertices in C . This implies that
the x-coordinate of r is different from every x-coordinate of two lines which correspond
to adjacent vertices in C as required.

Finally, we have to show the validity of assertion 2 in the theorem. Let l be any
line with negative slope through p. Observe that every two lines l1, l2 ∈ A\{lv}, which
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correspond to two adjacent vertices, must be in L ′+ ∪ L ′−. By the induction hypothesis,
the intersection point of any two lines l+ ∈ L ′+ and l− ∈ L ′− which correspond to
adjacent vertices in C ′ is to the right of pv . However, the intersection point of l and lv
is, by Claim 2.5, to the left of pv .

Open Problem. It is a striking open problem whether Theorem 1.1 is true if C is any
tree on n vertices. This problem is already very interesting in the case where the set of
points G is the set of vertices of a regular n-gon. Then this problem is equivalent to the
so-called Harmonic Tree Conjecture.
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