
DOI: 10.1007/s00454-004-1148-9

Discrete Comput Geom 33:463–481 (2005) Discrete & Computational

Geometry
© 2005 Springer Science+Business Media, Inc.

A Near-Quadratic Algorithm for Fence Design∗

Pankaj K. Agarwal,1 Robert-Paul Berretty,2 and Anne D. Collins3

1Department of Computer Science, Duke University,
Durham, NC 27708-0129, USA
pankaj@cs.duke.edu

2Philips Research Laboratories, Building WDC 1-053,
Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
robert-paul.berretty@philips.com

3Department of Mathematics, Stanford University,
Bldg. 380, Stanford, CA 94305-2125, USA
collins@math.stanford.edu

Abstract. A part feeder is a mechanism that receives a stream of identical parts in arbitrary
orientations and outputs them oriented the same way. Various sensorless part feeders have
been proposed in the literature. The feeder we consider consists of a sequence of fences that
extend partway across a conveyor belt; a polygonal part P carried by the belt is reoriented
by each fence it encounters. We present an O(m + n2 log3 n)-time algorithm to compute a
sequence of fences that uniquely orients P , if one exists, where m is the total number of
vertices and n is the number of stable edges of P . We reduce the problem to searching for
a path in a state graph that has O(n3) edges. By exploiting various geometric properties
of this graph, we show that it can be represented implicitly and that a desired path can be
computed in O(m + n2 log3 n) time. We believe that our technique is quite general and
could be applicable to other part-manipulation problems as well.

1. Introduction

Robotic manipulation deals with various part-manipulation problems in industrial au-
tomation [12]. One such problem, which arises in automated assembly, is the so-called

∗ Research by P.A. was supported by the NSF under Grants CCR-00-86013, EIA-98-70724, EIA-01-31905,
and CCR-97-32787, and by a grant from the U.S.–Israel Binational Science Foundation. Research by R.B. was
supported by the Dutch Organization for Scientific Research (N.W.O.). Research by A.C. was supported by
the NSF under Grants CCR-00-86013, CCR-97-32787, DMS-0107621, and DMS-9983320. Part of this work
was done while R.B. was visiting the Department of Computer Science, University of North Carolina, Chapel
Hill and A.C. was a Ph.D. student at Duke University.

464 P. K. Agarwal, R.-P. Berretty, and A. D. Collins

Fig. 1. A polygonal part is moved by a conveyor belt past a series of rigid fences. The fences passively
reorient the part, which leaves the last fence in a unique orientation regardless of its initial orientation.

part feeding or orienting problem. Many automated manufacturing processes require
parts to be oriented prior to assembly. A part feeder receives a stream of identical parts
in arbitrary orientations and outputs them oriented the same way. Although many part
feeders use some kind of sensors, we are interested in sensorless feeders, for which the
initial orientation of the part is unknown and parts are oriented using passive mechani-
cal compliance. A variety of sensorless part feeders have been proposed. For example,
parts on a conveyor belt can be oriented using a sequence of stationary fences or a
single moving fence, using horizontal pins suspended above the belt that can topple a
three-dimensional part as it moves by, or using a collection of conveyor belts at varying
heights. Parts can be pushed with fences, squeezed or rolled between parallel-jaw grip-
pers, pulled from the inside-out, dropped through traps, tilted on a table, or subjected to
vibrating plates with programmable vector fields. See [2], [15], [12], and the references
therein.

Part feeders are typically created on a case-by-case basis, and it can take a long time
to design a feeder for a single part. Only recently, researchers have begun to focus on
automating the design process itself. In this paper we focus on designing a system of
fences that uniquely orients a two-dimensional part moving on a conveyor belt.

Our Model. Our feeder consists of a conveyor belt equipped with a series of fences
designed to reorient a part passively as it moves by. The fences are rigid, frictionless bars
attached to walls on either side of the belt that extend partway across the belt at some
fixed angle. See Fig. 1 for an example. We refer to our feeder as a fence feeder.

We assume the part to be a planar polygon P , which lies on the conveyor belt and
is translated past each fence. Since a fence is only in contact with the boundary of
its convex hull, we can assume P to be a convex m-gon. When the part encounters
a fence, it simultaneously rotates and slides until one of its stable edges aligns with
the fence; we assume that the fences are long enough to allow ample time for this
reorientation.1 Once aligned, the part slides compliantly along the fence until it reaches
the end.

1 We assume that the motion of P follows the pushing model proposed by Mason [11]. See the original
paper and [2] for details, which we omit from here.

A Near-Quadratic Algorithm for Fence Design 465

�

�

Fig. 2. The fence angle ϕ is the direction of the upward normal to the fence.

In order to avoid any uncertainty in the orientation of the part as it leaves a fence, we
add a carefully curved tail, as in [5]. This ensures that when the part leaves the fence,
the aligned edge is parallel to and facing the wall from which the fence emanates.

We work in a frame of reference in which the belt moves downward. A fence is
specified by its fence angle ϕ,2 the direction of the ray normal to the fence with positive
vertical component. If the fence is attached on the left side of the belt, then ϕ ∈ (0, π/2),
while ϕ ∈ (π/2, π) for a right fence (Fig. 2). Note that these are open intervals; a part
cannot pass a fence with ϕ = π/2, and the vertical fences at ϕ = 0 and π have no effect.

Given a polygonal part P , the fence-design problem is to construct a sequence � =
〈ϕ1, . . . , ϕk〉 of fence angles so that, regardless of its initial orientation, P always leaves
the last fence in a unique final orientation. We refer to � as a valid fence sequence.

Related Work. Goldberg [10] showed that it is possible to reorient any polygon in the
plane from an unknown initial orientation to a unique final one by a fixed sequence
of normal pushes with a straight fence. Each push is in a direction orthogonal to the
length of the fence, and the reorientation of the fence between pushes is independent of
the orientation of the part. Goldberg’s O(n2 log n)-time algorithm computes a shortest
sequence of O(n2) pushes, although he conjectured that the shortest push sequence was
in fact linear. Chen and Ierardi [6] proved the conjecture.

The fence-design problem is closely related to orienting a part by pushing. The main
difference is that the fences can no longer be reoriented arbitrarily. Namely, if the belt
moves downward, then any fence encountered by a part will affect a push with positive
vertical component; thus, only half of the possible push directions are available at a given
time. This restriction makes the problem significantly more complicated, and requires a
very different approach.

The fence-design problem was first considered by Peshkin and Sanderson [14]. They
introduce a graph representation of the state space, in which each node represents a
set of possible orientations of the part at a given moment and in which certain paths
represent successful fence designs. They discretize the set of allowable fence angles,
so their solution is not complete, in the sense that when their algorithm fails to design
a feeder, there may still exist a solution that requires an angle not in their set. Later,
Brokowski et al. [5] suggested the addition of a curved tail to each fence so that the part

2 In this paper all angles are represented in the range [0, 2π).

466 P. K. Agarwal, R.-P. Berretty, and A. D. Collins

is constrained to be in one of O(m) orientations after it leaves a fence. This led to the
complete algorithm of Wiegley et al. [16], which allows for all possible fence angles
and is guaranteed to find a sequence of fences to orient a part if one exists. However, the
running time of their algorithm is exponential, and they conjecture that a polynomial-time
fence-design algorithm exists for any polygonal part. Roughly speaking, they construct
a state graph in which each node corresponds to a subset of states in which P can be at
a given moment. Assuming that P is currently in one of the states in the subset I and
there is a fence f so that the subset of states in which P can be after it is pushed by f
is contained in J , then they add the edge (I, J) to the graph. The fence-design problem
then reduces to finding a path in this graph. By taking advantage of certain monotonicity
properties of fences it can be shown that it suffices to consider only O(m2) subsets of
states instead of all subsets. Using this observation and a general result by Eppstein [8],
an O(m4)-time algorithm for fence design can be obtained. Berretty et al. [3] construct a
related graph of size O(m3), thereby improving the design time to O(m3). Actually, the
running time of their algorithm is O(m+n3), where n is the number of “stable” edges in
P (see Section 2 for the definition), which can be much smaller than m. The interested
readers are referred to [2] and the references therein for many other part-feeder problems
that have been studied.

Our Results. The main result of this paper is an O(m + n2 log3 n) algorithm for the
fence-design problem, where n is the number of stable edges of the convex m-gon P . By
exploiting the geometry of the state graph, we show that the graph can be represented
implicitly, as the union of a family of complete bipartite subgraphs, and a desired path
can be found in this implicit representation. Although similar techniques have been used
in the past in other contexts [1], [9], we believe this is the first application of this approach
for a manipulation problem. We believe that our approach is versatile and will find other
applications in those part-manipulation problems that can be formulated as searching in
a graph.

2. Fence Function and Fence Graph

We first describe the push mechanism and the motion of the part when it encounters a
fence. Then we explain how the fence-design problem can be formulated as a graph-
searching problem.

Radius and Push Functions. Let c be the center of mass of P . We attach a local frame
of reference to P with c as its origin. The radius function ρ: S1 → R

+ of P is defined
as follows: Let
 be the line tangent to P whose inward (toward P) normal points in the
direction α, as measured in the frame attached to P . Then ρ(α) is the (shortest) distance
from c to
; see Fig. 3.

The radius function is piecewise sinusoidal, and its local maxima and minima occur
when a ray originating from a contact point and normal to
 passes through c. Let γi

and εi be the angles where ρ attains its local maxima and minima, respectively, ordered
in the counterclockwise direction with γ0 < ε0 < γ1 < . . . < εn−1. An edge e of P is
called stable if the normal direction of e is a local minima of ρ; if e is stable, then the

A Near-Quadratic Algorithm for Fence Design 467

�(�)

`

�

c
�

�

(i) (ii)

Fig. 3. The radius function ρ : S1 → R+: (i) α is the direction of the ray normal to
 that passes through c;
(ii) ρ is a piecewise-sinusoidal function of α.

ray from c normal to e intersects e. Let 〈e0, . . . , en−1〉 be the sequence of n stable edges
of P; they can be computed in time O(m).

Now, suppose that we push P with a fence in the direction normal to the fence. As
described in [11], during the push, P first rotates in the direction that decreases ρ until
a stable edge of P aligns with the fence, and then P translates in the direction normal to
the fence. The push function p: S1 → S

1 for P is defined as follows: If a fence applies
a normal push to P in the direction α, then p(α) is the final orientation of the fence,
where both α and p(α) are measured in P’s coordinate frame; see Fig. 4. That is,

p(α) =
{
εi if γi < α < γi+1,

γi if α = γi .
(1)

We avoid pushing in the directions γi , as these are unstable equilibria.
Note that the belt does not translate the part in a direction normal to the fence; in

general, the motion of the part when pushed in such a fashion is quite complicated, even
unpredictable [12]. However, the component of the push force along the length of the
fence is due to friction alone, so our assumption that the contact is frictionless implies
that the force of the push felt by the part is always orthogonal to the fence. Thus the push
function p correctly predicts the resulting orientation of P when it encounters a fence
on the belt.

"1

"2

1
�

"0
2

e1

e2

0

e0

1

"0

"1

"2

p(�)

2�0

�

2

(i) (ii)

Fig. 4. The push function p : S1 → S1. (i) A push in direction α with p(α) = ε1. (ii) p(α) is a step function.
εi and γi are the local minima and maxima of ρ.

468 P. K. Agarwal, R.-P. Berretty, and A. D. Collins

(1; R)

(2; R)

(4; L)

(1; L)
(3; R)

(2; L)

(4; R)

(3; L)e1

e2

e3

e4
c

Fig. 5. A hexagon P with four stable edges (shaded edges are unstable) and the stable orientations of P in
its local frame.

Fence Function. Finally, we turn to the fence function, which describes the action of
a fence, with fence angle ϕ, on the orientation of the part. Recall that once P is aligned
with a fence, the curved tail reorients P so that the aligned edge faces the left side of the
belt if ϕ ∈ (0, π/2), or the right side of the belt if ϕ ∈ (π/2, π). This ensures that P is in
one of only 2n orientations as it travels between fences. We denote by (i, L) and (i, R)
the orientation of P with stable edge ei parallel to and facing the left and right walls of
the belt, respectively. Note that as viewed in the frame of reference attached to P , the
(+x)-axis of the belt points in the direction εi when P is in orientation (i, L), and in the
direction εi + π when P is in orientation (i, R). See Fig. 5.

Suppose P is initially in orientation (i, L). When P encounters a fence with fence
angle ϕ, it feels a push in direction εi + ϕ in its own frame. If γj < εi + ϕ < γj+1,
then the push function p(εi + ϕ) = εj dictates that edge ej aligns with the fence. If, on
the other hand, P is initially aligned to the right, say in orientation (i, R), then it feels a
push in the εi + ϕ + π direction, and the final orientation depends on p(εi + ϕ + π).
See Fig. 6.

The equivalent action in planar pushing is to reorient the fence by θ . The difference
here is that, although values of θ can in general lie anywhere in [0, 2π), we are restricted
to θ = ϕ or θ = ϕ+ π for any particular push, where ϕ ∈ (0, π). Thus, only half of the
possible reorientations are available at a given time, which implies that some orientations

� "i

"i + �

"i + �+ �

�"i

(i) (ii)

Fig. 6. The action of a fence: (i) If P is initially in orientation (i, L), it feels a push in direction α = εi + ϕ.
(ii) If P is initially in orientation (i, R), it feels a push in direction α = εi + ϕ + π .

A Near-Quadratic Algorithm for Fence Design 469

are unattainable from others. It is precisely this fact that makes fence design harder than
pushing.

Definition 2.1. Given polygon P with n stable edges, define its fence function

F : {0, . . . , n − 1} × {L , R} × (0, π)→ {0, . . . , n − 1} × {L , R}
so that if P is initially in position (i, s) when it encounters a fence with fence angle
ϕ ∈ (0, π), the resulting orientation is F(i, s, ϕ) = (j, t), where

εj =
{

p(εi + ϕ) if s = L ,
p(εi + ϕ + π) if s = R,

(2)

and

t =
{

L if ϕ ∈ (0, π/2),
R if ϕ ∈ (π/2, π). (3)

The following lemma was observed in [3]:

Lemma 2.2. F is monotonic, i.e., i1 ≤ i2 ≤ i3 implies thatF(i1, s, ϕ) ≤ F(i2, s, ϕ) ≤
F(i3, s, ϕ), for any pair (s, ϕ) ∈ {L , R} × (0, π).

The monotonicity property was crucial for the algorithm in [3], and it will be crucial for
ours as well.

The fence function can be represented by a family of n partitions of S1: For each
stable edge ei of P , let Ci denote the unit circle marked with the intervals χ i j = (γj −
εi , γj+1−εi), for 0 ≤ j < n; imagine rotating the circle in the clockwise direction by εi .
See Fig. 7. The intervals χ i j on Ci specify all triples s, t, ϕ for whichF(i, s, ϕ) = (j, t).
More precisely, the upper semicircle of Ci represents the orientation (i, L) of P and
the lower represents (i, R), in the following sense. Suppose θ ∈ (0, π) ∩ χ i j . Then
γj < εi + θ < γj+1, and, by (1), p(εi + θ) = εj ; thus, the fence at angle θ takes
the left orientation (i, L) to one of the orientations (j, t). Specifically, if θ ∈ (0, π/2),
then F(i, L , θ) = (j, L), while if θ ∈ (π/2, π), then F(i, L , θ) = (j, R). Similarly, if
θ ∈ (π, 2π) ∩ χ i j , then there exists a fence that takes the right orientation (i, R) to one
of the orientations (j, t). Of course, θ itself is not a valid fence angle, but ϕ = θ − π is,
and p(εi +ϕ+π) = εj . Thus, by (2) and (3), a fence at angle θ−π takes the orientation
(i, R) to (j, t) where t = L if θ ∈ (π, 3π/2), and t = R if θ ∈ (3π/2, 2π).

j�1 � "i

j�1
�

ij�1

j � "i

�
ij

j+1

j
"i

j+1 � "i

Fig. 7. The fence circle Ci is obtained by rotating the circle clockwise by εi .

470 P. K. Agarwal, R.-P. Berretty, and A. D. Collins

For example, consider the right circle in Fig. 7.χ i j intersects the first and second quad-
rants, so there exist fence angles ϕ1 and ϕ2 with F(i, L , ϕ1) = (j, L) and F(i, L , ϕ2) =
(j, R). Since χ i j does not intersect the lower semicircle, F(i, R, ϕ) �= (j, t) for any
ϕ ∈ (0, π) or t ∈ {L , R}. On the other hand, χ i j−1 does intersect the fourth quadrant,
so F(i, R, θ − π) = (j − 1, R) for some θ ∈ χ i j−1 ∩ (3π/2, 2π).

Note that when choosing ϕ for our push plans, we avoid the discrete set of values
γj − εi , π + γj − εi , for 0 ≤ i, j < n, since each can lead to an unstable equilibrium.

Lemma 2.3. There exists a family � ⊂ (0, π) of O(n2) orientations so that if there
is a valid fence sequence � = 〈ϕ1, . . . , ϕk〉, then there is another valid fence sequence
�′ = 〈ϕ′1, . . . , ϕ′k〉 in which ϕ′i ∈ � for all i ≤ k.

Proof. Let I = 〈I1, . . . , Iu〉 be the sequence of open intervals in

(0, π)\({γj − εi (mod π) | 0 ≤ i, j < n} ∪ {π/2}).
By the above discussion, for any pair (i, s) ∈ {0, . . . , n − 1} × {L , R} and for any
1 ≤ j ≤ u,F(i, s, ϕ) is the same for all ϕ ∈ Ij . Let θj be the midpoint of (the closure of)
the interval Ij . Then� = θ1 < θ2 < · · · < θu is the desired family of fence orientations.
Indeed, suppose there is a valid fence sequence � = 〈ϕ1, . . . , ϕk〉. If ϕl lies in Ijl ∈ I,
then�′ = 〈θj1 , . . . , θjk 〉 is also a valid fence sequence since F(i, s, ϕl) = F(i, s, θjl) for
all 0 ≤ i < n, s, t ∈ {L , R}, and 1 ≤ l ≤ k. This completes the proof of the lemma.

Fence Graph. Next, we show how the fence-design problem can be formulated as a
connectivity problem in a graph. The graph defined here is slightly different from the
one constructed in [3]. Not only does the modified definition provide an almost identical
O(m + n3) solution to the fence-design problem, it also allows us to compress the
graph to obtain a faster O(m + n2 log3 n) algorithm. By Lemma 2.3, we have a family
� = θ1 < · · · < θu of orientations, with θ1 ∈ (0, π/2) and θu = (π/2, π), which are
sufficient to represent all valid fence sequences. From here on, we assume that all fence
angles are selected from �.

Definition 2.4. Given a polygon P with n stable edges and fence functionF , we define
the fence graph G as follows:

• The nodes of G are sets of the form [i, j]s = {(i, s), (i + 1, s), . . . , (j, s)}, where
0 ≤ i, j < n, and s = L or R. Note that [i, j]s �= [j, i]s .
• For i ′ �= j ′, there is an edge e = ([i, j]s, [i ′, j ′]t) whenever there exists a fence

angle ϕ ∈ � such that F(i, s, ϕ) = (i ′, t) and F(j, s, ϕ) = (j ′, t). We refer to
these edges as non-sink edges.
• There is an edge e = ([i, j]s, [i ′, i ′]t) if there exists a fence angle ϕ ∈ � with
F(k, s, ϕ) = (i ′, t) for all i ≤ k ≤ j . We refer to these edges as sink edges.

In both cases we refer to ϕ as the witness of edge e and denote it by ω(e).

Lemma 2.5. Every node in the fence graph G has out-degree O(n), and the outgoing
edges from a vertex can be computed in O(n) time.

A Near-Quadratic Algorithm for Fence Design 471

Proof. By Definition 2.4, the neighbors of [i, j]s can be determined by overlaying the
fence circles Ci and Cj . Indeed, if [i ′, j ′]t is a neighbor of [i, j]s , then χ i i ′ ∩ χ j j ′ �= ∅.
The overlay of Ci and Cj induces a partition of the unit circle into 2n intervals whose
endpoints are the endpoints of intervals in Ci and Cj , i.e., γk−εi , γk−εj , for 0 ≤ k < n.
The same argument as in the proof of Lemma 2.3 implies that each of these intervals
corresponds to at most one edge of G, so there are at most 2n outgoing edges from the
node [i, j]s . Since we can overlay Ci and Cj in O(n) time, the outgoing edges of [i, j]s

can be computed in O(n) time.

Lemma 2.6. Every valid fence sequence of P corresponds to a path in the fence graph
G from a node of the form [i, i − 1]s to a sink node [j, j]t , and vice versa.

Proof. The monotonicity of F (see Lemma 2.2) and Definition 2.4 imply that if G
has an edge e = ([i, j]s, [i ′, j ′]t), then F(k, s, ω(e)) ∈ [i ′, j ′]t for all k ∈ [i, j]. Let
e1, . . . , ek be a path in G from [i, i − 1]s to [j, j]t . For 1 ≤ i ≤ k, let ϕi = ω(ei), and
let ϕ0 = θ1 (resp. ϕ0 = θu) if s = L (resp. s = R). Then � = 〈ϕ0, ϕ1, . . . , ϕk〉 is a
valid fence sequence. Indeed, the fence in orientation ϕ0 ensures that the orientation of
P after it passes through this fence is in the interval [i, i − 1]s . By the definition of the
edge witnesses, the final orientation of P is (j, t), regardless of its initial orientation.

The proof of the converse, that every valid fence sequence corresponds to a path of
the above form, is a bit more subtle. We adapt a result by Eppstein [8] relating some of
the feeder-design problems to finite monotonic automata. For the sake of completeness,
we sketch the proof in the Appendix.

We can compute the stable of edges of P in O(m) time, and, by Lemmas 2.5 and
2.6, we can compute a desired path in G in O(n3) time. Hence, we obtain the following
result, which gives a simpler proof of the same result in [3].

Theorem 2.7. Given a convex polygonal part P with m vertices and n stable edges, a
fence design can be constructed in O(m + n3) time.

Sink Edges. Before proceeding with the compression of the fence graph, we consider
the sink edges in more detail, i.e., edges of the form ([i, j]s, [i ′, i ′]t). Since we are dealing
with circular intervals, [i ′, i ′]t poses an ambiguity—whether it represents the singleton
orientation (i ′, t) or the set of all orientations aligned with side t . We therefore need to
take extra care with the nodes [i ′, i ′]t when we compress G in the next section because
we want to ensure that they represent sink nodes, i.e., singletons. To circumvent this
problem, we first dispose of a class of parts for which there is a trivial solution, and then
prove a property of the fence graph which applies to the remaining parts. In the next two
lemmas all arithmetic and logical operations on angles are performed modulo 2π .

The majority of polygonal parts have the following property:

(∗) εj+1 − εj ≤ γi − γi+1 for all 0 ≤ i, j < n.

Parts that do not have property (∗) have a relatively large gap between two successive
stable edges, which allows for the following simple two-fence solution described in
Lemma 2.8; see Fig. 8 for an example.

472 P. K. Agarwal, R.-P. Berretty, and A. D. Collins

v2

e2 v3

e3

v0

v1

e1

e0

"2

"3

"0

"1

2

3

0

1
"2 + �

"3 + �

"1 + �

"0 + �

1
2

3

0

(i) (ii) (iii)

Fig. 8. (i) A part that does not satisfy (∗), with stable edges and vertices labeled. (ii) The angles corresponding
to local extrema of the radius function. (iii) In this case, ε2 − ε1 > γ1 − γ2, so there exists θ such that
p(εk + θ) = ε1 for all k, as εk + θ ∈ (γ1, γ2) for all k.

Lemma 2.8. Two fences are sufficient to orient any part that does not satisfy (∗).

Proof. For some i and j , we have εj+1−εj > γi−γi+1. Then there exists a θ ∈ [0, 2π)
so that γi < εj+1 + θ < εj + θ < γi+1; see Fig. 8. Since εk ∈ (εj+1, εj) for all k, we
have εk + θ ∈ (εj+1 + θ, εj + θ) ⊆ (γi , γi+1). Therefore, by (1), p(εk + θ) = εi for
all k. A reorientation by θ can be accomplished with exactly two fences, as follows.
If θ ∈ (0, π), then we set ϕ1 = π/4 and ϕ2 = θ ; if θ ∈ (π, 2π), then we set ϕ1 =
3π/4 and ϕ2 = θ − π . The first fence aligns the part with the left (resp. right) side
of the belt if θ ∈ (0, π) (resp. θ ∈ (π, 2π)), and the second fence orients the part in
direction εi .

For the rest of this paper we assume that P satisfies (∗). The next lemma proves a
property of sink edges that facilitates the compression of the fence graph in the next
section.

Lemma 2.9. Suppose P satisfies (∗), F(i, s, ϕ) = F(j, s, ϕ) = (i ′, t) for some ϕ ∈
(0, π), and γi ′+1 − γi ′ ≤ π . Then there is a sink edge [i, j]s → [i ′, i ′]t in G if and only
if εj − εi ≤ π .

Proof. Set θ = ϕ if s = L and θ = ϕ + π if s = R. Suppose first that εj − εi ≤ π .
Since εi + θ, εj + θ ∈ (γi ′ , γi ′+1), εj − εi ≤ π , and γi ′+1 − γi ′ ≤ π , we must have
γi ′ < εi + θ < εj + θ < γi ′+1; see Fig. 9(i). This implies that F(k, s, ϕ) = (i ′, t) for all
i ≤ k ≤ j , so G has a sink edge [i, j]s→ [i ′, i ′]t .

On the other hand, if εj − εi > π , then εi + θ < γi ′+1 < γi ′ < εj + θ ; Fig. 9(ii). If
[i, j]s → [i ′, i ′]t is an edge of G, i.e., p(εk + θ) ∈ (γi ′ , γi ′+1), for all i ≤ k ≤ j , then
there must be some k with i ≤ k < j such that εk + θ < γi ′+1 < γi ′ < εk+1 + θ ; but
this implies that εk+1 − εk > γi ′ − γi ′+1, violating (∗).

3. Fence Graph Compression

In this section we describe how to compute a compressed representation of the fence
graph for a polygon that satisfies (∗). The compressed representation needs considerably

A Near-Quadratic Algorithm for Fence Design 473

i0+1

"i + �
0

i

"j + �

"k + �

i0+1

"j + �
0

i

"i + �

"k + �

(i) (ii)

Fig. 9. For parts which satisfy (∗), the sink edge [i, j]s → [i ′, i ′]t exists if and only if εj − εi ≤ π . (i) If
εj −εi ≤ π , then εk+θ ∈ (γi ′ , γi ′+1) for all i ≤ k ≤ j , (ii) but if εj −εi > π , at least one εk+θ ∈ (γi ′+1, γi ′)
as P satisfies (∗).

less space but still allows us to compute a path between two vertices quickly. We first
explain the compression scheme in general and then apply it to the fence graph.

3.1. Bipartite Clique Covers

Given a directed graph G = (V, E), a bipartite clique cover of G is a collection

G = {(A1, B1), . . . , (Ak, Bk)}
such that

(i) Ai , Bi ⊆ V,
(ii) Ei = Ai × Bi ⊆ E,

(iii) E =⋃i Ei ,

(iv) Ei ∩ Ej = ∅, if i �= j.

Conditions (i) and (ii) imply that each bipartite clique (Ai ∪ Bi , Ei) is a complete
bipartite subgraph of G, while (iii) and (iv) imply that every edge of E is represented
exactly once. The size of G is |G| =∑k

i=1 |Ai | + |Bi |.
Given a bipartite clique cover G = {(A1, B1), . . . , (Ak, Bk)} of G, we can generate a

compressed representation G̃ = (Ṽ , Ẽ) of G by setting

Ṽ = V ∪ {1, . . . , k}, and

Ẽ =
k⋃

i=1

{(a, i) | a ∈ Ai } ∪ {(i, b) | b ∈ Bi }.

See Fig. 10.
There is an edge (a, b) ∈ Ai × Bi in G if and only if (a, i), (i, b) ∈ Ẽ , which

immediately implies the following.

Lemma 3.1. There is a path of length l in G from a vertex µ to another vertex ν if and
only if there is a path of length 2l from µ to ν in G̃.

We now present a method for generating a bipartite clique cover for G = (V, E).
Suppose that we have a familyN = {B1, . . . , Bk} of subsets Bi ⊆ V , with the property

474 P. K. Agarwal, R.-P. Berretty, and A. D. Collins

Ai Bi

i

Ai Bi

Fig. 10. G and G̃ store the same connectivity information, but G̃ has fewer edges.

that the set of neighbors N (µ) = {ν ∈ V | (µ, ν) ∈ E} of a vertexµ can be expressed as
a disjoint union of subsets ofN . That is, for each µ ∈ V , there is a subfamilyNµ ⊆ N
such that

(i) N (µ) =⋃Bi∈Nµ
Bi , and

(ii) Bi ∩ Bj = ∅ if Bi , Bj ∈ Nµ and i �= j.

We refer to N as a family of canonical subsets. For each 1 ≤ i ≤ k, define

Ai = {µ ∈ V | Bi ∈ Nµ},

and set G = {(A1, B1), . . . , (Ak, Bk)}.

Lemma 3.2. G is a bipartite clique cover for G.

Proof. It is clear that (Ai , Bi) is a complete bipartite subgraph of G. Indeed, Ai , Bi ⊆
V , and (µ, ν) ∈ Ai × Bi implies that ν ∈ Bi ⊆ N (µ), i.e., (µ, ν) ∈ E . Conversely,
if (µ, ν) ∈ E , then there exists a subset Bi ∈ Nµ such that ν ∈ Bi , implying (µ, ν) ∈
Ai × Bi . Finally, if there are two indices i, j such that (µ, ν) ∈ Ai × Bi ∩ Aj × Bj ,
then ν ∈ Bi ∩ Bj and both Bi , Bj ∈ Nµ, contradicting the assumption (ii) ofNµ. Hence,
(i)–(iv) are satisfied, and G is a bipartite clique cover of G.

3.2. Compressing the Fence Graph

We now describe how we compress the fence graph G for a polygon that satisfies
(∗), i.e., εj+1 − εj ≤ γi − γi+1 for all i, j . Recall that the nodes of G are of the
form [i, j]s = {(i, s), . . . , (j, s)}, where (i, s) is the orientation of the part with stable
edge ei aligned with side s of the belt, and if there is an edge [i, j]s → [i ′, j ′]t , then
F(i, s, ϕ) = (i ′, t) and F(j, s, ϕ) = (j ′, t) for some ϕ ∈ (0, π). Recall from the
discussion in Section 2 that the sink edges need to be handled carefully. If there is an
index i ′ such that γi ′+1−γi ′ > π (there is at most one such i ′), we check in O(1) time for
each vertex [i, j]s of G and for each pair s, t ∈ {L , R} whether [i, j]s → [i ′, i ′]t . If the
answer is yes, we add the pair ([i, j]s, [i ′, i ′]t) to G. There are only O(n2) such pairs and
we spend O(n2) time on them. Therefore, from now on we are interested in computing a
compressed representation of only those neighbors of a vertex that correspond to either
a non-sink edge or a sink edge with γi ′+1 − γi ′ ≤ π .

A Near-Quadratic Algorithm for Fence Design 475

We first describe how we compute the family of canonical subsets and then show how
to represent these neighbors of a vertex as a disjoint union of canonical subsets.

Constructing Canonical Subsets. We first give an overview of the construction and
postpone description of the necessary data structures until Section 4. Let [i : j] denote
the set of integers {i, i + 1, . . . , j}, mod n.

The construction ofN proceeds in two phases. In the first phase we construct a family
I of O(n) canonical subsets of [0 : n − 1] with the following properties:

(F.1) Each Ia ∈ I is of the form Ia = [la : ra].
(F.2) |I| =∑Ia

na = O(n log n), where na = ra − la + 1.
(F.3) For any interval A = (α1, α2) of push angles, there is a subfamily IA ⊆ I of

O(log n) disjoint subsets such that p(A) =⋃Ia∈IA

⋃
i∈Ia

εi .

We show in Section 4 how we compute in O(n log n) time the family I, and in
O(log n) time the subfamily IA for an arbitrary angular interval A ⊆ S1.

For each pair of canonical subsets Ia, Ib ∈ I, we define the function Vab : S1 → 2Ia×Ib

as follows: For a given shift angle δ, Vab(δ) is the set of pairs (i, j) ∈ Ia × Ib such that
the angular intervals (γi , γi+1) and (γj + δ, γj+1 + δ) intersect on S1. We also define
another function V̄ab, which is the same as Vab except that we remove all nodes that
would represent sink edges; that is, V̄ab(δ) = Vab(δ)\{[i, i] | 1 ≤ i < n}.

The second phase of the algorithm constructs a family N ab of canonical subsets of
Ia × Ib, for each pair Ia, Ib ∈ I, with the following properties:

(S.1) |N ab| =∑N∈N ab |N | = O(nanb log n).
(S.2) Given a shift angle δ, there are two subfamilies N ab

δ , N̄ ab
δ ⊆ N ab of O(log n)

disjoint canonical subsets each such that

Vab(δ) =
⋃

N∈N ab
δ

N and V̄ab(δ) =
⋃

N̄∈N̄ ab
δ

N̄ .

Again, we describe in Section 4 how to compute the families N ab.

Computing the Neighbors. With these families of canonical subsets in hand, we are
now ready to compute the neighbor sets of each vertex in the fence graph G. For a vertex
[i, j]L ∈ G, let NL([i, j]L) be the set of neighbors [i ′, j ′]L of [i, j]L such that either
i ′ �= j ′, or i ′ = j ′ and γi ′+1 − γi ′ ≤ π . We refer to NL as the set of left neighbors. Recall
that if there is an edge [i, j]L → [i ′, j ′]L in E , then we must have F(i, L , ϕ) = (i ′, L)
and F(j, L , ϕ) = (j ′, L) for some ϕ ∈ (0, π/2). Furthermore, [i, j]L → [i ′, i ′]L with
γi ′+1 − γi ′ ≤ π is a sink edge if and only if F(i, L , ϕ) = F(j, L , ϕ) = (i ′, L) and
εj − εi ≤ π , by Lemma 2.9.

We compute NL([i, j]L), the set of left neighbors of [i, j]L , as follows. Set Ai =
(εi , εi + π/2), Aj = (εj , εj + π/2), and δi j = εi − εj . Using the family I of canonical
subsets, we compute subfamilies IAi and IAj . For each pair Ia ∈ IAi , Ib ∈ IAj , we
compute the subfamilyN ab

δ ⊆ N ab, representing the pairs [i ′, j ′] ∈ Vab(δi j) if εj −εi ≤
π ; and the subfamily N̄ ab

δ ⊆ N ab, representing the non-sink pairs [i ′, j ′] ∈ V̄ab(δi j) if
εj − εi > π .

476 P. K. Agarwal, R.-P. Berretty, and A. D. Collins

Lemma 3.3. The set of left neighbors of a left node [i, j]L ∈ V is

NL([i, j]L) =

⋃
Ia∈IAi

⋃
Ib∈IAj

⋃
N∈N ab

δ

N if εj − εi ≤ π,
⋃

Ia∈IAi

⋃
Ib∈IAj

⋃
N∈N̄ ab

δ

N if εj − εi > π.

Proof. We assume that εj − εi ≤ π . Since P satisfies (∗), by Lemma 2.9, the left-
neighbor set of [i, j]L is the set of all [i ′, j ′]L such that χ i i ′ ∩ χ j j ′ ∩ [0, π/2] �= ∅ in the
overlay of the fence circles Ci and Cj .

The family IAi partitions the first quadrant of Ci into O(log n) intervals, and similarly
for Cj . For each pair Ia ∈ IAi and Ib ∈ IAj , we want to list the pairs [i ′, j ′] such that
(γi ′ −εi , γi ′+1−εi) and (γj ′ −εj , γj ′+1−εj) intersect for some i ′ ∈ Ia and j ′ ∈ Ib, which
is equivalent to saying that (γi ′ , γi ′+1) and (γj ′ + (εi − εj), γj ′+1 + (εi − εj)) overlap.
This is equivalent to determining Vab(δ), where δ = εi − εj , which we can express as
the disjoint union of O(log(mamb)) canonical subsets in the subfamily N ab

δ ⊆ N ab.
The argument for the case εj − εi > π is the same, except that [i, j] does not have any
outgoing sink edges, and we use V̄ab and N̄ ab

δ .

In the preceding argument, we focused on edges [i, j]s → [i ′, j ′]t with s = t = L .
The three other cases can be handled similarly. For s = L , t = R, we set Ai = (εi +
π/2, εi +π); for s = R, t = L , we set Ai = (εi +π, εi +3π/2); and for s = R, t = R,
we set Ai = (εi + 3π/2, εi + 2π). We do the same for Aj in each case, and then follow
the above procedure.

Theorem 3.4. Given a convex m-gon P with n stable edges, we can determine in
O(m + n2 log3 n) time whether a valid fence sequence exists for P .

Proof. We first compute the families I and N ab of canonical subsets of nodes of
the fence graph G, as described above. Next, define the bipartite clique cover G =
{(A1, B1), . . . , (Ak, Bk)}, where the Bi are the canonical subsets that make up theN ab.
Then the compressed graph G̃, described in Section 3.1, has |Ṽ | = |V | + k nodes and
|Ẽ | =∑i |Ai | + |Bi | edges.

We initially added O(n2) pairs in G corresponding to the sink edges [i, j]s → [i ′, i ′]t

such that γi ′+1 − γi ′ > π . Next, for each pair Ia , Ib, there are O(nanb) subsets in N ab,
so the total number of canonical subsets, using (F.2), is

k = O(n2)+
∑

Ia ,Ib∈I
O(nanb) =

∑
Ia∈I

O(nan log n) = O
(
n2 log2 n

)
.

Hence |Ṽ | = O(n2 log2 n).
Recall that µ ∈ Ai if and only if Bi ∈ Nµ, so

∑
i |Ai | =

∑
µ∈V |Nµ|. For µ = [i, j],

we first compute IAi and IAj . Each contains O(log n) canonical subsets Ia , but only
O(log n) pairs will overlap at a given shift. For each overlapping pair, we collect O(log n)

A Near-Quadratic Algorithm for Fence Design 477

canonical subsets from N ab, so Nµ contains O(log2 n) subsets total. Therefore

k∑
i=1

|Ai | =
∑
µ∈V

|Nµ| = O(n2 log2 n).

Moreover, by (S.1),∑
i

|Bi | =
∑
a,b

∑
N∈N ab

|N | =
∑
a,b

O(nanb log(nanb)) = O(n2 log3 n).

Hence |Ẽ | = O(n2 log3 n) and G can be computed in time O(m + n2 log3 n). Finally,
once G̃ is computed, the time to find a path in G̃ from one of the nodes [i, i − 1]s to a
singleton node [j, j]t is O(|Ṽ | + |Ẽ |), using a simple breadth-first search.

4. Data Structures

In this section we present the data structures needed to generate the families of canonical
subsets. In particular, we introduce two tree data structures, the fence tree and the shift
tree, which generate the canonical families I and N ab, respectively.

Fence Tree. We describe the construction of a family I of O(n) canonical subsets that
satisfies properties (F.1)–(F.3). Let T be a minimum-height binary tree whose leaves
store {γi | 0 ≤ i < n}. In order to guide the search, each internal node of T stores
the value of the leftmost leaf of its right subtree. We associate the canonical interval
Ia = [la : ra] with each node a of T , where γla , . . . , γra are the leaves in the subtree
rooted at a. We set I = {Ia | a ∈ T }. Since each index is stored in exactly one Ia at
each level of T and the height of T is O(log n), we have |I| = ∑a |Ia| = O(n log n).
Hence (F.1) and (F.2) hold.

Let A = (α1, α2) be a push-angle interval. If 0 ∈ (α1, α2) (mod 2π), we split A
into two intervals (α1, 2π] and [0, α2), and work with each of them separately, so we
assume that 0 �∈ (α1, α2). Recall that p(α) = εi if and only if α ∈ (γi , γi+1). Then
p(A) = {εl , . . . , εr }, where l and r are the maximum values for which γl ≤ α1 and
γr < α2.

In order to compute IA, we regard T as a one-dimensional range tree [7], and query T
with α1 and α2 to determine l and r . We then report the set of indices [l : r] as a disjoint
union of O(log n) canonical intervals as follows: Let u be the least common ancestor in
T of the leaves zl and zr storing γl and γr , respectively. For any node on the path from
u to zl (resp. zr), if its right (resp. left) child v is not on the path, we add [lv : rv] to IA.
Since all the intervals we add to IA lie along two paths of T , |IA| = O(log n).

Lemma 4.1. Given a polygon P with n stable edges, we can construct in O(n log n)
time a family I of O(n) canonical subsets that satisfy (F.1)–(F.3), and for an interval A,
IA can be computed in O(log n) time.

Shift Trees. For each pair Ia , Ib of canonical subsets in I, we show how to construct
a familyN ab of O(nanb) subsets of Ia × Ib with properties (S.1) and (S.2). Notice that

478 P. K. Agarwal, R.-P. Berretty, and A. D. Collins

the angular intervals (γi , γi+1) and (γj + δ, γj+1 + δ) intersect if and only if the shift
angle δ is in the interval�i j = (γi − γj+1, γi+1 − γj). SetDab = {�i j | i ∈ Ia, j ∈ Ib}.
The following lemma is straightforward.

Lemma 4.2. Let i ∈ Ia and j ∈ Ib. Then (i, j) ∈ Vab(δ) if and only if δ ∈ �i j .

Thus, computing Vab(δ) is reduced to the following one-dimensional stabbing query:
determine which of the intervals in Dab contain the query point δ ∈ S1.

To this end, we build a segment tree Tab on the set Dab of intervals; see [7]. As with
the fence tree, if�i j contains 0, it is split into two intervals and each of them is inserted
separately. We associate two subsets N ab

c , N̄ ab
c with each node c of Tab. Suppose the

interval�i j is stored at a node c of Tab. If i �= j , then we add [i, j] to both N ab
c and N̄ ab

c .
If i = j and γi+1−γi ≤ π , we add [i, i] to N ab

c only. We setN ab = {N ab
c , N̄ ab

c | c ∈ Tab}.
There are nanb intervals in Dab, so there are O(nanb) nodes in Tab, and thus O(nanb)

canonical subsets N ab
c , N̄ ab

c ∈ N ab. Since each [i, j] ∈ Ia × Ib is stored in O(log n)
canonical subsets, |N ab| = O(nanb log n), as claimed in (S.1).

To compute Vab(δ) (resp. V̄ab(δ)) for a query shift δ, we follow the path from the
root to the leaf whose associated interval contains δ and report N ab

c (resp. N̄ ab
c) for all

O(log n) nodes c on this path. The correctness of the procedure follows from Lemma 4.2.
Hence, (S.2) is also satisfied.

Lemma 4.3. Given a pair Ia, Ib ∈ I, we can construct in O(nanb log n) time a family
N ab of O(nanb) canonical subsets that satisfy (S.1)–(S.2). For a given shift angle δ,
N ab
δ and N̄ ab

δ can be computed in O(log n) time.

5. Conclusion

In this paper we presented a new technique for fence design that, given a polygonal
part P with m edges and n stable edges, can compute in O(m + n2 log3 n) time a valid
fence sequence if one exists. We believe our approach is general and a number of other
part-feeder problems can benefit from this approach. We conclude by mentioning two
open problems:

• Can the problem of orienting a polygonal part by applying a sequence of pull oper-
ations [4] be solved in near-quadratic time using our graph-compression scheme?
• Is there a near-linear algorithm for fence design? Such an algorithm has to compress

the vertices of the fence graph as well.

Acknowledgements

The authors thank Ken Goldberg and John Harer for many useful discussions and two
referees for their helpful comments.

A Near-Quadratic Algorithm for Fence Design 479

Appendix. Proof of Lemma 2.6

In this appendix we sketch the proof of the second half of Lemma 2.6, i.e., every valid
fence sequence corresponds to a path in the fence graph from a node [i, i −1]s to [j, j]t ,
for some 0 ≤ i, j < n and s, t ∈ {L , R}. We adapt the proof by Eppstein [8] for a similar
claim involving some other part-feeder problems.

Natarajan [13] showed that a part feeder can be viewed as a finite automaton A =
(S, �, δ) as follows: The states S are the possible orientations of the part, and the symbols
in the alphabet � correspond to the possible operations of the feeder. The transition
function δ: � × S→ S describes the action of a symbol on a state; that is, if the feeder
applies operation σ to orientation s of the part, the resulting orientation is δ(σ, s). Let�∗

be the family of all words derived from�. We extend the definition of δ to τ ∈ �∗: If τ is
the empty string, then δ(τ, s) = s, and if τ = σ τ̄ for σ ∈ �, then δ(τ, s) = δ(τ̄ , δ(σ, s)).
For X ⊆ S, we use δ(τ, X) to denote the set {δ(τ, s) | s ∈ X} and δ−1(τ, X) to denote the
set {s | δ(τ, s) ∈ X}. Note that for any τ ∈ �∗, X ⊆ δ−1(τ, δ(τ, X)). A word τ ∈ �∗ is
called a reset sequence of X ⊆ S with respect toA if |δ(τ, X)| = 1. A successful feeder
design is a sequence of operations that produces the same final orientation, regardless of
the initial orientation of the part, therefore it corresponds to a reset sequence of S with
respect to the finite automaton associated with the feeder.

Although computing a reset sequence of a subset X ⊆ S with respect to a general
automata is PSPACE-complete [13], polynomial-time algorithms are known for the so-
called monotonic automata [8]. A is called monotonic if there exists a cyclic ordering
on S so that if s1, . . . , sk appear in this order, then for any σ ∈ �, δ(σ, s1), . . . , δ(σ, sk)

also appear in this cyclic order. We also define the notion of a quasi-monotonic automa-
ton. A = (S, �, δ) is called a quasi-monotonic finite automaton if the following two
properties hold:

(Q1) S can be partitioned into two subsets SL and SR , and � can be partitioned into
two subsets �L and �R so that

δ: �L × S→ SL and δ: �R × S→ SR .

(Q2) There is a cyclic ordering of each of SL and SR so that if s1, . . . , sk ∈ SL

appear along this cyclic ordering, then for all σ ∈ �L (resp. σ ∈ �R),
δ(σ, s1), . . . , δ(σ, sk) appear along the cyclic ordering of SL (resp. SR). The
same holds if s1, . . . , sk ∈ SR .

Lemma A.1. The fence-design problem can be formulated as finding a reset sequence
in a quasi-monotonic finite automaton.

Proof. Let SL = {(i, L) | 0 ≤ i < n} and SR = {(i, R) | 0 ≤ i < n}, � = � (see
Lemma 2.3), and δ(ϕ, (i, s)) = F(i, s, ϕ) for any (i, s) ∈ SL ∪ SR and ϕ ∈ �. Then any
valid fence sequence is a reset sequence ofA = (SL ∪ SR, �, δ). Let�L = �∩ (0, π/2)
and �R = � ∩ (π/2, π). By (2) and (3), δ(σ, (i, s)) ∈ SL for any σ ∈ �L and
δ(σ, (i, s)) ∈ SR for any σ ∈ �R . Moreover, Lemma 2.2 implies that there exists a
cyclic ordering of each of SL and SR that satisfies (Q2). Hence, A is quasi-monotonic,
as desired.

480 P. K. Agarwal, R.-P. Berretty, and A. D. Collins

We define an interval [si , sj] in SL to be the set of all those states of SL that lie
between si and sj in the cyclic ordering of SL . We say that an interval J = [si , sj] is
contained in another interval I = [sg, sh], and denote it by J ≺ I , if the endpoints of
the intervals appear in the cyclic order sg, si , sj , sh . Similarly, we define intervals and
their containment property for SR . In order to prove the equivalence between a reset-
sequence in the automata induced by an instance of fence design and a path of the desired
form in the corresponding fence graph, we introduce a new automatonA′ = (S′, �, δ′),
where S′ = {[si , sj] | si , sj ∈ SL} ∪ {[si , sj] | si , sj ∈ SR} ∪ {∞}. The new transition
function δ′: � × S′ → S′ is defined as follows: Suppose I = [si , sj], δ(σ, si) = ti and
δ(σ, sj) = tj . If ti �= tj , then set δ′(σ, I) = [ti , tj]. If ti = tj and δ(σ, sk) = ti for all
si ≤ sk ≤ sj , then set δ′(σ, I) = [ti , ti]. Otherwise, set δ′(σ, I) = ∞. If σ ∈ �L (resp.
�R), then [ti , tj] is in SL (resp. SR).

We extend Eppstein’s argument to show that a reset sequence in a quasi-monotonic
automatonA corresponds to a path in the graph induced by the automatonA′, as follows.
The following lemma can be proved by induction, using the quasi-monotonic property
of A.

Lemma A.2. For all τ ∈ �∗, for any interval I ∈ S′\{∞}, and for any p ∈ {L , R},
δ−1(σ, I) ∩ Sp is an interval.

The next lemma can be proved using the same argument as in [8].

Lemma A.3. For all σ ∈ �L , for all intervals J ⊆ SL , and for p ∈ {L , R}, if
I = δ−1(σ, J)∩ Sp is not all of Sp, then δ′(σ, I) �= ∞ and δ′(σ, I) ≺ J . The same holds
for σ ∈ �R and J ⊆ SR .

Lemma A.4. Given τ ∈ �∗ and X ⊆ S, δ(τ, X) = {s} if and only if for p ∈ {L , R},
there is a representation of δ−1(τ, δ(τ, X)) ∩ Sp as an interval Ip such that δ′(τ, Ip) =
[s, s].

Proof. For p ∈ {L , R}, let Ip be a representation of δ−1(τ, δ(τ, X)) ∩ Sp such that
δ′(τ, Ip) = [s, s]. Since X ⊆ IL ∪ IR , the quasi-monotonicity property implies that
δ(τ, X) ⊆ δ(τ, IL ∪ IR) = [s, s]. Conversely, suppose δ(τ, X) = {s}. We prove the
existence of a desired interval by induction on the length of τ . Indeed, if τ is the empty
word, then X = {s} and [s, s] is the desired interval. Next, let τ = στ ′. Without loss
of generality, assume that σ ∈ �L . By the induction hypothesis, there is an interval
J ⊆ SL representing δ−1(τ ′, s)∩ SL . If Ip = δ−1(σ, J)∩ Sp is not all of Sp, then Lemma
A.3 implies that δ(τ, Ip) = [s, s]. On the other hand, if Ip is all of Sp, then we follow
the same argument as in [8] to prove that there exists an interval I ′p ⊆ Sp such that
δ(τ, I ′p) = [s, s]. We refer the reader to the original paper for further details.

Putting everything together, we can now prove the main claim of this appendix.

Lemma A.5. A valid fence sequence corresponds to a path in the fence graph from a
vertex [i, i − 1]s to [j, j]t for some 0 ≤ i, j < n, and s, t ∈ {L , R}.

A Near-Quadratic Algorithm for Fence Design 481

Proof. By Lemma A.1, there is a quasi-monotonic finite automaton A = (S, �, δ) so
that a valid fence sequence for P corresponds to a reset sequence τ of S with respect
to A. Since SL ⊆ S, τ is also a reset sequence for SL . Therefore, by Lemma A.4, there
is a representation of δ−1(τ, δ(τ, SL)) = SL as an interval Ip so that δ′(τ, Ip) = [j, j]t

for some 0 ≤ j < n. Since any representation of SL as an interval in S′ is of the form
[i, i − 1]L , for some 0 ≤ i < n, τ corresponds to a path from [i, i − 1]L to [j, j]t in the
graph GA induced by A′. Note that the fence graph is the same as GA except that the
node∞ and the edges connected to∞ have been removed. Since there is no out-going
edge from∞, a path from [i, i − 1]L to [j, j]t in GA is also a path in the fence graph.
Hence, the lemma is true.

References

1. P. K. Agarwal and K. R. Varadarajan, Efficient algorithms for approximating polygonal chains, Discrete
& Computational Geometry, 23 (2000), 273–291.

2. R.-P. Berretty, Geometric Design of Part Feeders, Ph.D. Thesis, Utrecht University, Utrecht, 2000.
3. R.-P. Berretty, K. Goldberg, M. Overmars, and A. F. van der Stappen, Algorithms for fence design, in:

Robotics: The Algorithmic Perspective (P. K. Agarwal, L. E. Kavraki, and M. T. Mason, eds.), AK Peters,
Natick, MA, 1998, pp. 279–296.

4. R.-P. Berretty, K. Goldberg, M. Overmars, and A. F. van der Stappen, Orienting parts by inside-out pulling,
Proceedings of the 2001 IEEE International Conference on Robotics and Automation, 2001, pp. 1053–
1058.

5. M. E. Brokowski, M. A. Peshkin, and K. Goldberg, Optimal curved fences for part alignment on a belt,
ASME Journal of Mechanical Design, 117 (1995), 27–34.

6. Y.-B. Chen and D. Ierardi, The complexity of oblivious plans for orienting and distinguishing polygonal
parts, Algorithmica, 14 (1995), 367–397.

7. M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf, Computational Geometry: Algorithms
and Applications, Springer-Verlag, Berlin, 1997.

8. D. Eppstein, Reset sequences for monotonic automata, SIAM Journal on Computing, 19 (1990), 500–510.
9. T. Feder and R. Motwani, Clique partitions, graph compression, and speeding-up algorithms, Proceedings

of the 23rd ACM Symposium on Theory of Computing, 1991, pp. 123–133.
10. K. Y. Goldberg, Orienting polygonal parts without sensors, Algorithmica, 10 (1993), 210–225.
11. M. T. Mason, Manipulator Grasping and Pushing Operations, Ph.D. Thesis, MIT, 1982.
12. M. T. Mason, Mechanics of Robotic Manipulation, MIT Press, Cambridge, MA, 2001.
13. B. K. Natarajan, Some paradigms for the automated design of parts feeders, International Journal of

Robotics Research, 8 (1989), 98–109.
14. M. A. Peshkin and A. C. Sanderson, Planning robotic manipulation strategies for workpieces that slide,

IEEE Journal of Robotics and Automation, 4 (1988), 524–531.
15. A. F. van der Stappen, R.-P. Berretty, K. Goldberg, and M. H. Overmars, Geometry and part feeding, in:

Sensor Based Intelligent Robot Systems (G. D. Hager, H. I. Christensen, H. Bunke, and R. Klein, eds.),
Lecture Notes in Computer Science 2238, Springer-Verlag, Berlin, 2002, pp. 259–281.

16. J. Wiegley, K. Goldberg, M. Peshkin, and M. Brokowski, A complete algorithm for designing passive
fences to orient parts, Assembly Automation, 17 (1997), 129–136.

Received September 9, 2003, and in revised form June 30, 2004. Online publication January 21, 2005.

