
ar
X

iv
:1

30
7.

35
43

v6
  [

m
at

h.
C

O
]  

25
 F

eb
 2

01
6

A Short Proof that the Extension Complexity of the Correlation
Polytope Grows Exponentially
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Abstract

We establish that the extension complexity of then× n correlation polytope is at least 1.5 n by a
short proof that is self-contained except for using the factthat every face of a polyhedron is the
intersection of all facets it is contained in. The main innovative aspect of the proof is a simple
combinatorial argument showing that the rectangle covering number of the unique-disjointness
matrix is at least 1.5n, and thus the nondeterministic communication complexity of the unique-
disjointness predicate is at least.58n. We thereby slightly improve on the previously best known
lower bounds 1.24n and.31n, respectively.
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1. Introduction

The concept of extended formulations aims at writing polytopes as affine images of polyhedra
of lower complexity. In particular, for a polytopeP, one is interested in itsextension complexity,
i.e., the smallest number of facets of any polyhedron whose affine image isP. As the first explicit
example of a 0/1-polytope whose extension complexity is not bounded by a polynomial in its
dimension, Fiorini et al. [1] showed that the extension complexity of thecorrelation polytope

CORR(n) := conv
{

y ∈ {0, 1}n×n : yi j = xi x j ∀ i, j ∈ [n], x ∈ {0, 1}n
}

grows exponentially inn. Since CORR(n) can be found as an affine image of a face of many
other combinatorial polytopes of similar dimension, this result has been used to show that the
extension complexities of polytopes such as traveling salesman polytopes [1], certain stable set
polytopes [1], certain knapsack polytopes [2, 3], and otherpolytopes associated with NP-hard
optimization problems [2] are also not bounded polynomially. Independently of the correlation
polytope, Rothvoß [4] recently even established an exponential lower bound on the extension
complexity of the perfect matching polytope.
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The proof of the statement on CORR(n) given in [1] follows a strategy developed in [5] and
uses a lower bound on the rectangle covering number of the unique-disjointness matrix obtained
in [6], which essentially is due to [7]. This amounts to a rather involved proof in total, leaving
it unclear how “deep” the result actually is (while its greatrelevance is out of discussion, of
course).

The aim of this paper is to provide a short combinatorial, self-contained (except for using the
fact that every face of a polyhedron is the intersection of all facets containing it) proof showing
that the extension complexity of CORR(n) is at least 1.5 n. The main new contribution of the
proof is a simple combinatorial argument (see the half-a-page proof of Thm. 1) instead of us-
ing [6, 7]. Furthermore, the lower bound 1.5 n improves slightly upon the previously best known
one 1.24n following from [8].

2. The Main Proof

For a nonnegative integern we set [n] := {1, . . . , n} and define 2[n] as the set of all subsets of [n].
The Euclidian scalar product of two vectorsv,w is denoted by〈v,w〉 =

∑

i viwi . Further, for a set
a ⊆ [n] let χ(a) ∈ {0, 1}n be its characteristic vector, i.e.,χ(a)i = 1 if and only if i ∈ a. For a set
b ⊆ [n] let yb ∈ {0, 1}n×n be the 0/1-matrix withyb

i j = 1 if and only if i ∈ b and j ∈ b hold. With

this notation, we have that CORR(n) = conv{yb : b ⊆ [n]}.
We first extract the single combinatorial property of CORR(n) that is relevant for the proof

and then, by a few polyhedral arguments, establish a generallower bound on the extension com-
plexity of CORR(n) in terms of sizes of so-called coverings. This part is basically a compact
reformulation of known arguments.

Lemma 1. For every a⊆ [n] there is a face Fa of CORR(n) such that

yb ∈ Fa ⇐⇒ |a∩ b| = 1

holds for all b⊆ [n].

Proof. For a seta ⊆ [n], let πa(x) ∈ R[xi : i ∈ [n]] be the quadratic polynomial (〈χ(a), x〉 − 1)2

with variable vectorx = (x1, . . . , xn). Denote byΠa(y) ∈ R[yi j : i, j ∈ [n]] the linear polynomial
arising fromπa(x) by substituting each monomialxi x j by yi j and each monomialxi by yii . Due
to yb

i j = χ(b)i· χ(b) j andyb
ii = χ(b)i we haveΠa(yb) = πa(χ(b)) ≥ 0 for eachb ⊆ [n]. This

implies that the linear inequalityΠa(y) ≥ 0 is valid for CORR(n) and hence defines a faceFa of
CORR(n). Note that a pointyb is contained inFa if and only if 〈χ(a), χ(b)〉 = 1, i.e.,|a∩ b| = 1
holds.

Let us define the setD(n) := {(a, b) ∈ 2[n] × 2[n] : a∩ b = ∅} of pairs of disjoint subsets of [n]. A
setR⊆ D(n) is calledvalid if it satisfies

∀ (a, b), (a′, b′) ∈ R : |a∩ b′| , 1. (1)

Further, we say that a setR1, . . . ,Rk of valid sets inD(n) is acoveringofD(n) of sizek if

D(n) ⊆
k
⋃

i=1

Ri

holds.
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Lemma 2. Let Q be a polyhedron having f facets such thatCORR(n) is an affine image of Q.
Then there exists a covering ofD(n) of size f .

Proof. Let p be an affine map such thatp(Q) = CORR(n). For every facetG of Q let us define
the set

RG :=
{

(a, b) ∈ D(n) : p−1(Fa) ∩ Q ⊆ G, p−1(yb) ∩ Q * G
}

.

First, note thatRG is valid because otherwise there exist (a, b), (a′, b′) ∈ RG with |a ∩ b′| = 1,
which impliesyb′ ∈ Fa, and hence we obtainp−1(yb′)∩Q ⊆ p−1(Fa)∩Q ⊆ G, a contradiction to
the definition ofRG.

Second, we claim that{RG : G facet ofQ} is a covering ofD(n). Towards this end, let (a, b) ∈
D(n). Observe thatp−1(Fa) ∩ Q is a face ofQ and letG1, . . . ,Gk be the facets ofQ containing
p−1(Fa) ∩Q. As yb

< Fa andp−1(Fa) ∩Q =
⋂k

i=1 Gi , we obtain that there exists somei ∈ [k] for
which p−1(yb) ∩ Q ⊆ Gi does not hold. Thus, we obtain (a, b) ∈ RGi .

We are now ready to prove our main result:

Theorem 1. The extension complexity ofCORR(n) is at least1.5 n.

Proof. By Lemma 2, it suffices to show that any covering ofD(n) has size at least 1.5 n. There-
fore, let̺(n) be the largest cardinality of any valid subset ofD(n). By the fact that any covering
of D(n) must have size of at least|D(n)|

̺(n) and the fact that|D(n)| = 3n, it remains to show that
̺(n) ≤ 2n, which we will establish by showing that̺(n) ≤ 2̺(n− 1) holds for alln ≥ 1. (Note
that̺(0) = 1 since the only valid subset ofD(n) is {(∅, ∅)}.)

Towards this end, letR⊆ D(n) be valid (withn ≥ 1) and let us define the following two sets:

R1 := ({(a, b) ∈ R : n ∈ a} ∪ {(a, b) ∈ R : (a∪ {n}, b) < R}) ∩ ([n] × [n− 1])

R2 := ({(a, b) ∈ R : n ∈ b} ∪ {(a, b) ∈ R : (a, b∪ {n}) < R}) ∩ ([n− 1] × [n])

Further, let us define the functionf : R→ D(n−1) with f (a, b) := (a\ {n}, b\ {n}). SinceR1 ⊆ R
is valid and sinceR1 ⊆ [n] × [n− 1], f (R1) is valid. Similarly, f (R2) is also valid. Further, by the
definition ofRi , f is injective onRi for i = 1, 2. By induction, we hence obtained that

|R1| + |R2| = | f (R1)| + | f (R2)| ≤ 2̺(n− 1) = 2n.

Thus, it suffices to show that each (a, b) ∈ R is contained inR1∪R2. Sincea∩b = ∅, we have that
(a, b) ⊆ ([n] × [n− 1]) ∪ ([n− 1] × [n]). Thus, ifn ∈ a∪ b, we clearly have that (a, b) ∈ R1 ∪R2.
It remains to show that for any (a, b) ∈ Rwith n < a∪ b, we cannot have that (a∪ {n}, b) ∈ Rand
(a, b∪ {n}) ∈ R. Indeed, this is true since, otherwise, the validity ofR would imply

1 , |(a∪ {n}) ∩ (b∪ {n})| = |{n}| = 1,

a contradiction.

3. Remarks on Related Results

From the Perspective of Communication Complexity
Using the terminology from the theory of communication complexity, the proof of Theorem 1
shows that therectangle covering numberof theunique-disjointness matrixUDISJ(n) (see, e.g.,
[9]) is at least 1.5 n. To see that, observe that our notion of valid sets corresponds to sets of
1-entries in UDISJ(n) that can be covered simultaneously by one rectangle. In particular, this
implies that thenondeterministic communication complexityof theunique-disjointnesspredicate
is at least log2(1.5 n) ≥ .58n. For the background of these remarks, we refer to [10] or [9].
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Applicability to the Matching Polytope
Most superpolynomial lower bounds on the extension complexities of combinatorial polytopes
are a direct consequence of the fact that the extension complexity of the correlation polytope
grows exponentially and hence can also be derived from our argumentation. In contrast to this,
Rothvoß’ [4] result on an exponential lower bound on the extension complexity of the (perfect)
matching polytope of the complete graph seems to be of a considerably more complicated nature.
It follows already from [5] that this result cannot be deduced from the results on the correlation
polytope in a similar manner as it is possible for, say, the TSP polytope. In fact, Rothvoß’
approach exploits more than the mere combinatorial structure of the matching polytopes. The
ideas underlying the proof presented in this paper seem to beof little use in that context, leaving
wide open the question for a similarly simple proof of the fact that the extension complexity of
the perfect matching polytope cannot be bounded polynomially.

Acknowledgements.We thank Yuri Faenza and Kanstantsin Pashkovich for their helpful remarks
on an earlier version of this paper.
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