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Abstract. We prove that every primary basic semialgebraic set is homotopy equivalent to the set
of inscribed realizations (up to Möbius transformation) of a polytope. If the semialgebraic set is
moreover open, then, in addition, we prove that (up to homotopy) it is a retract of the realization
space of some inscribed neighborly (and simplicial) polytope. We also show that all algebraic
extensions of Q are needed to coordinatize inscribed polytopes. These statements show that inscribed
polytopes exhibit the Mnëv universality phenomenon.

Via stereographic projections, these theorems have a direct translation to universality theorems for
Delaunay subdivisions. In particular, our results imply that the realizability problem for Delaunay
triangulations is polynomially equivalent to the existential theory of the reals.

1. Introduction

The Delaunay subdivision of a set of points in Rd plays a central role in computational geome-
try [Ede06]. A few applications are: nearest-neighbor search, pattern matching, clustering, and
mesh generation. Via stereographic projection, Delaunay subdivisions can be lifted to inscribed
polytopes [Bro79]—those with all vertices on the unit sphere—in one dimension higher, so that
Delaunay triangulations lift to simplicial inscribed polytopes. The study of inscribed polytopes,
and in particular the problem of deciding whether a polytope admits an inscribed realization, is a
classical subject [Ste32][Ste28][Riv94] in which many fundamental questions are still open [GZ11].
In this paper, we are interested in realization spaces of a fixed combinatorial type of Delaunay
subdivision/inscribed polytope. For a configuration A of n points in Rd, which we assume to be
labeled by [n] = {1, . . . , n}, the cells of its Delaunay subdivision are represented by a family T of
subsets of [n]. The realization space Rdel(T ) is a parametrization of the set of all configurations of n
labeled points whose Delaunay triangulation has the combinatorial structure of T (as a polytopal
complex with vertex set [n]).
Analogously, Rins(P ), the realization space of an inscribed polytope P , is a parametrization of
configurations of n points in the unit sphere whose convex hull has the same face lattice as P .
In dimension 2, results of [Riv94] imply that both of these realization spaces are homeomorphic to a
polytope (that depends on T only). This completely determines the topological structure of both
realization spaces. For example, they are always connected and contractible.

1.1. Universality for Delaunay subdivisions. Our main results show that, in higher dimensions,
the situation is completely different: the realization space of a d-dimensional Delaunay subdivision
(or triangulation) can be arbitrarily complicated.
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Theorem 3.1. For every primary basic semi-algebraic set there is a Delaunay subdivision and an
inscribed polytope whose realization space is homotopy equivalent to S.

Said differently, realization spaces of inscribed polytopes exhibit the topological universality in the
sense of Mnëv [Mnë88]. We also show that these realization spaces exhibit algebraic universality
(also a notion from [Mnë88]).
Corollary 3.5. For every finite field extension F/Q of the rationals, there is a realizable Delaunay
subdivision (equivalently, an inscribed polytope) that cannot be realized with coordinates in F .

1.2. Universality for Delaunay triangulations. The subdivisions constructed in proof of The-
orem 3.1 are far from being triangulations. To insist on triangulations and simplicial polytopes
requires different tools. We adapt a recent proof of the Universality Theorem for simplicial polytopes
[AP14] to obtain a weak universality theorem for Delaunay triangulations.
Theorem 4.15. For every open primary basic semi-algebraic set S there is a (neighborly) Delaunay
triangulation and an inscribed simplicial (neighborly) polytope, such that S is a retract of their
realization spaces, up to homotopy equivalence.

1.3. Complexity. The complete statements of these theorems provide linear bounds for the number
points of the triangulation and the dimension in terms of the arithmetic complexity of the correspond-
ing semi-algebraic sets. Moreover, S is non-empty if and only if Rdel(T ) is. Such a triangulation can
be computed from S in polynomial time, which shows that deciding whether a Delaunay triangulation
is realizable is hard. Indeed, the proof of Theorem 4.15 shows that deciding realizability of Delaunay
triangulations is as hard as deciding realizability of rank 3 oriented matroids [Mnë88][Sho91].
Corollary 4.16. The realizability problem for Delaunay triangulations and inscribed simplcial
polytopes is polynomially equivalent to the existential theory of the reals (ETR). In particular, it is
NP-hard.

Another consequence of this effective bound is that the number of connected components of the
realization space of a d-dimensional Delaunay triangulation can be exponential in d.
Corollary 4.17. For every m ≥ 1 there exist configurations of O(m) points in general position in
RO(m) whose realization spaces as Delaunay triangulations have at least 2m connected components.

Our smallest example of a triangulation with disconnected realization space is in R25, which leaves
open the existence of these configurations in Rd for each 3 ≤ d ≤ 24.
Corollary 4.18. There is a 25-dimensional configuration of 30 points whose Delaunay triangulation
has a disconnected realization space.

1.4. Context and related work. The realization spaces of 3-dimensional inscribed polyhedra are
well understood. On the other hand, there is a rich theory of the “wildness” of realization spaces of
higher-dimensional polyhedra can be quite wild. Here is the background and connection with our
results.

1.4.1. Dimension 2 and inscribable polyhedra. Theorems 3.1 and 4.15 and their corollaries should
be contrasted with fundamental results of Rivin [Riv94][Riv96][Riv03] that connect 2-dimensional
Delaunay subdivisions with metric properties of hyperbolic 3-dimensional polyhedra.
Rivin’s work in particular entailed that: (1) whether a (combinatorial) planar graph has a drawing
as a Delaunay triangulation can be tested in polynomial time; (2) that the realization space of a
planar Delaunay triangulation is homeomorphic to a polyhedron of so-called angle structures (see
[FG11] for an elementary introduction to the method), and, in particular, connected.
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In the language of polyhedra, (1) says that whether a graph is the 1-skeleton of an inscribable
polyhedron is efficiently checkable; and (2) says that the set of inscribed realizations is convex (and
in particular contractible) in the parameterization by dihedral angles.
The question of whether every polyhedron is inscribable had been first raised by Steiner in 1832 [Ste32],
with the first negative examples given by Steinitz in 1928 [Ste28]. This makes such a sharp
characterization of the inscribable types and their realization spaces a surprising breakthrough. In
contrast, Theorems 3.1 and 4.15 suggest that a polynomial time characterization for all dimensions
is, under standard conjectures, not possible.

1.4.2. Higher dimensions and universality. A general principle in the theory of realization spaces
for (semi-)algebraically defined objects is succinctly put in [Vak06]: “Unless there is some a priori
reason otherwise, the deformation space may be as bad as possible.”
Underlying a large number of these kinds of phenomena is a paradigmatic result of Mnëv. The
Universality Theorem states that for every [open] primary basic semi-algebraic set there is a
[uniform] oriented matroid of rank 3 whose realization space is stably equivalent to it. (The survey
[RG98] provides an accessible presentation of this and related results and their proofs, and a more
computationally oriented approach can be found in [Sho91].)
The Universality Theorem in particular entails a negative answer to Ringel’s 1956 isotopy problem,
which asked whether, given two point configurations A0 and A1 with the same oriented matroid
(order type), is it always possible to find a continuous path of point configurations {At}0≤t≤1 with
the same oriented matroid? (This weaker result also follows via examples from [JMLSW89] [Ric96]
[Suv88] [Tsu13] [Ver88] [Whi89].) Actually, the Universality Theorem shows that there are oriented
matroids that have realization spaces with arbitrarily many components.
Another straightforward consequence of the Universality Theorem is that determining realizability of
oriented matroids is polynomially equivalent to the existential theory of the reals, and in particular
NP-hard [Mnë88][Sho91].
Via a reduction given in [Mnë88], realization spaces of polytopes also exhibit universality: for every
semi-algebraic variety S ⊂ Rs, there is a polytope P whose realization space is stably equivalent
to S. Here, the realization space of a polytope P is the set of point configurations whose convex hull
is combinatorially equivalent to P . In principle, this polytope might be of a very high dimension.
However, Richter-Gebert [RG96] made a breakthrough when he proved that there is universality
already in realization spaces of 4-dimensional polytopes. Again, there is a contrast with 3-polytopes,
which have contractible realization spaces (see, e.g., [RG96, Part IV]).
When the semi-algebraic sets are open, one can furthermore require the polytopes to be simplicial
(and even neighborly), although only in arbitrarily high dimensions [AP14][Mnë88]. Universality for
simplicial polytopes in fixed dimension remains wide open.
However, the existence of Delaunay triangulations with a disconnected realization space is not a
direct consequence of the results of Richter-Gebert and Mnëv. Indeed, even if P is a polytope with
a disconnected realization space, it could be that the variety S that certifies that all the vertices lie
on the unit sphere does not intersect with all its connected components—or any of them. Hence,
to present a Delaunay triangulation with a disconnected realization space, one has to show that
S hits at least two of these connected components or that the intersection of S with a connected
component is disconnected.
On the other hand, some universality phenomena from the theory of general polytopes are already
known to carry over to the case of inscribed polytopes; for instance, there are infinitely many
projectively unique inscribed polytopes even in bounded dimension, and every inscribed polytope is
the face of some projectively unique inscribed polytope, cf. [AZ14].
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1.5. Open problem: universality in fixed dimension. Theorems 3.1 and 4.15 are the first step
towards a universality theory for Delaunay triangulations and leave several open questions. First of
all, a strong version of Theorem 4.15 should state homotopy equivalence between the realization
space of the Delaunay triangulation and the semi-algebraic set.
The main challenge is to prove a Universality Theorem for Delaunay Triangulations in fixed dimension.
Recall that polytopes present universality already in dimension 4 (for simplicial polytopes this is
also conjectured). Since the results here run more or less in parallel with the development of the
theory for polytopes, the strongest conjecture we can make is:

Conjecture 1.1. For every [open] primary basic semi-algebraic set S defined over Z there is a
3-dimensional Delaunay [triangulation] subdivision whose realization space is homotopy equivalent
to S.

Since connected sums, the main ingredient of Richter-Gebert’s proof of the Universality Theorem
for 4-polytopes [RG96], do not behave well with respect to inscribability, it seems that a new set of
tools will be needed to prove our conjecture.

1.6. Reading guide. The rest of this paper is organized as follows: Section 2 introduces some
necessary notation. Section 3 is devoted to the Universality Theorem for inscribed polytopes and
Delaunay subdivisions. Simplicial polytopes and triangulations require different tools, and are
studied in Section 4.

2. Preliminaries

2.1. Notation. For a quick reference for oriented matroids, polytopes and Delaunay triangulations,
we refer to the chapters [RGZ97], [HRGZ97] and [For97] of the handbook [GO04], respectively. Our
notation coincides mostly with theirs.
Let V be a configuration of n vectors in Rr, which are labeled by elements in [n] = {1, . . . , n}.
Consider the map χV : [n]r 7→ {0, 1,−1} that for each tuple (i1, . . . , ir) assigns the sign

χV (i1, . . . , ir) = sign det(vi1 , . . . , vir ).
The map χV is called the chirotope of V and determines its oriented matroid, which has rank r
(see [BLS+93] for a comprehensive introduction to oriented matroids).
Now, let A be a configuration of n points in Rd. The homogenization of A is a vector config-
uration hom(A) = {ā1, . . . , ān} ⊂ Rd+1 obtained by appending 1 as the last coordinate of the
points of A: āi = (ai, 1). The oriented matroid of A is defined to be the oriented matroid of its
homogenization hom(A).
The oriented matroid of a point configuration is always acyclic. A point configuration A is in general
position if no d+ 1 points of A lie in a common hyperplane, and then it defines a uniform matroid.
The convex hull of A is a polytope P = conv(A) ⊂ Rd and the intersection of P with a supporting
hyperplane is a face of P . Faces of dimensions 0 and d− 1 are called vertices and facets, respectively.
A point configuration A is in convex position if it coincides with vert(P ), the set of vertices of
P = conv(A). If A is in convex position, each face F of P can be identified with the set of labels
{i ∈ [n] | ai ∈ F}. The face lattice of P is then a poset of subsets of [n]. In this context, two
vertex-labeled polytopes are combinatorially equivalent, denoted P ' Q, if their face lattices coincide.
We call P inscribed if all its vertices lie in the unit sphere Sd−1, and inscribable if it is combinatorially
equivalent to an inscribed polytope.
The face lattice of a polytope P coincides with that of the convex cone obtained as the positive hull
of its homogenization pos(hom(P )) := {

∑
λixi |λi ≥ 0, xi ∈ hom(P )}.
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The oriented matroid of a polytope P is rigid if its face lattice of determines the oriented matroid of
its set of vertices (see [Zie95, Section 6.6]). In the language of the next section, a polytope P is rigid
if and only if Rom(vert(P )) = Rpol(P ).
A subdivision of a point configuration A is a collection T of polytopes with vertices in A, which
we call cells, that cover the convex hull of A and such that any pair of polytopes of T intersect
in a common face. A triangulation of A is a subdivision where all the cells are simplices. Again,
a subdivision of A can be identified with a poset of subsets of [n]. Two subdivisions T and T ′ of
two labeled configurations A and A′ are combinatorially equivalent, denoted by T ' T ′, if their
respective posets coincide.
The Delaunay subdivision D(A) of a point configuration A ⊂ Rd is the subdivision that consists
of all cells defined by the empty circumsphere condition: S ∈ D(A) if and only if there exists a
(d − 1)-sphere that passes through all the vertices of S and all other points of A lie outside this
sphere. If A is in general position and no d+ 2 points of A lie on a common sphere, then the empty
circumsphere condition always defines a simplex of A, and hence the Delaunay subdivision is a
triangulation, the Delaunay triangulation of A.
We denote homeomorphic sets S and T by S ∼= T and homotopic sets by S ∼ T (see [Mun75,
Section 58] for definitions). We also recall that a continuous map f : S → T is a retraction of S
onto T if there is a continuous map g : T → S such that f ◦ g = id. If a retraction exists, then T is
a retract of S. If moreover g ◦ f is homotopic to the identity, then T is a deformation retract of S,
and T ∼ S.

2.2. Realization spaces. We will work with the following realization spaces. Observe that for
oriented matroids and polytopes, we work with the acyclic vector configurations arising from
homogenization. (This approach is convenient for technical reasons, and used often, for example
in [BLS+93].) We also identify a d-dimensional configuration of n points or vectors with the
corresponding tuple in Rd×n containing the coordinates, ordered according to their labels.

• The realization space of an oriented matroid M (of rank d+ 1 with n elements), that we denote
Rom(M) ⊂ R(d+1)×n, is the set of vector configurations that realizeM , up to linear transformation:

Rom(M) =
{
V ∈ R(d+1)×n

∣∣∣V realizes M
}/

GL(Rd+1).

• The realization space of a polytope P (with n vertices in Rd), that we denote Rpol(P ) ⊂ R(d+1)×n,
is the set of acyclic configurations whose positive span is combinatorially equivalent to the cone
over P , up to linear transformation:

Rpol(P ) =
{
V ∈ R(d+1)×n

∣∣∣ pos(V ) ' P
}/

GL(Rd+1).

• The realization space of an inscribed polytope P (with n vertices in Rd), that we denote Rins(P ) ⊂
(Sd−1)n ⊂ Rd×n, is the set of inscribed point configurations whose convex hull is combinatorially
equivalent to P , up to Möbius transformation:

Rins(P ) =
{
A ∈ (Sd−1)n

∣∣∣ conv(A) ' P
}/

Möb(Sd−1).

• The realization space of a Delaunay subdivision T (of n points in Rd), that we denote Rdel(T ) ⊂
Rd×n, is the set of point configurations whose Delaunay triangulation is combinatorially equivalent
to T , up to similarity:

Rdel(T ) =
{
A ∈ Rdn

∣∣D(A) ' T}
/

Sim(Rd).
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For a given point configuration A, we abuse notation and use Rom(A), Rpol(A), Rins(A), and
Rdel(A) to denote the realization spaces Rom(χA), Rpol(conv(A)), Rins(conv(A)) and Rdel(D(A)),
respectively.

Remark 2.1. A number of alternative definitions are possible. For example, by factoring different
transformation groups or by considering non-homogenized configurations. Most of these definitions
are actually homotopy-equivalent, as we discuss below, and hence our results hold anyway. These
definitions are natural because the groups preserve spheres.
We also leave out the combinatorics of the boundary for Delaunay subdivisions, which amounts to
take also into account the empty spheres that go through the “point at infinity”. Although these
two definitions are not necessarily homotopy-equivalent, again, our results hold for both kinds of
definition, see also Remark 4.3.

It is sometimes useful to commute between different realization spaces; we state the straightforward
lemmata, without detailed proof, here:

Lemma 2.2 (Realization spaces of matroids). Let M be an acyclic oriented matroid. Then the
following three spaces are homotopy equivalent:
◦ The realization space of homogeneous configurations, modulo linear transformations:

(1) Rom(M) =
{
V ∈ R(d+1)×n

∣∣∣V realizes M
}/

GL(Rd+1)

◦ The realization space of affine configurations, modulo admissible projective transformations:

(2) Rproj
om (M) =

{
V ∈ Rd×n

∣∣∣V realizes M
}/

PGL(Rd)

◦ The realization space of affine configurations, modulo affine transformations:

(3) Raff
om(M) =

{
A ∈ Rd×n

∣∣∣A realizes M
}/

Aff(Rd)

Proof (sketch). To see (1)∼(2), consider the map Rlin
om(M)→ Rproj

om (M) that sends a vector config-
uration V to the intersection of its positive span with a hyperplane that intersects every positive
ray spanned by V . The map is well defined because two point configurations arising from different
hyperplanes are related by an admissible projective transformation, and all linear transformations
of V also induce admissible projective transformations of A. The homogenization map provides a
section, and the fibers are easily seen to be contractible.
For (2)∼(3), observe that each fiber of the quotient map Raff

om(M) → Rproj
om (M) is homeomorphic

to the set of admissible projective transformations up to affine transformation. That is, the set of
“hyperplanes at infinity” that do not cut conv(A). This, in turn, is homeomorphic to a polytope, the
polar polytope of conv(A), which depends continuously on A. Hence, a continuous section can be
defined by selecting its barycenter. �

Similarly, we have the following lemma for inscribed poltopes:

Lemma 2.3 (Realization spaces of inscribed polyopes). Let P be an inscribed polytope in Rd. Then
the following three spaces are homotopy equivalent:
◦ The realization space of all inscribed polytopes combinatorially equivalent to it, modulo Möbius
transformations:

(4) Rins(P ) =
{
A ∈ (Sd−1)n

∣∣∣ conv(A) ' P
}/

Möb(Sd−1).
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◦ The realization space of all inscribed polytopes combinatorially equivalent to it, modulo orthogonal
transformations:

(5) Rort
ins(P ) =

{
A ∈ (Sd−1)n

∣∣∣ conv(A) ' P
}/

O(Rd).

2.3. Mnëv’s universality theorem. A primary basic semi-algebraic set is a subset of Rd defined
by integer polynomial equations and inequalities

S =
{

x ∈ Rd
∣∣∣ f1(x) = 0, . . . , fk(x) = 0, fk+1(x) > 0, . . . , fr(x) > 0

}
, where fi ∈ Z[x].

Realization spaces of polytopes and oriented matroids are examples of primary basic semi-algebraic
sets. Mnëv’s Universality Theorem [Mnë88] is a reciprocal statement: every primary basic semi-
algebraic set appears as the realization space of some oriented matroid/polytope up to stable
equivalence, which implies homotopy equivalence (see [RG98]). We refer to [Mnë88][RG95][RG98]
for its proof.

Theorem 2.4 (Universality Theorem [Mnë88]). For every primary basic semi-algebraic set S defined
over Z there is a rank 3 oriented matroid whose realization space is stably equivalent to S. If moreover
S is open, then the oriented matroid may be chosen to be uniform.
Given any presentation of S, such an oriented matroid of size linear in the size of the presentation
can be found in polynomial time. In particular, there is such a matroid whose size is linear in the
sum of the arithmetic complexities of the polynomials.

The arithmetic complexity of a polynomial f ∈ Z[x] is, roughly speaking, the minimal number of
operations + and × needed to compute it from x and 1, when we are allowed to reuse computations.
For example, (x+ 1)2 = (x+ 1)(x+ 1) can be computed with one addition and one multiplication.
See [BCS97][Val79] for details.
The following statements are among the consequences of the Universality Theorem:

Corollary 2.5. The realizability problem for oriented matroids of rank 3 is polynomially equivalent
to the existential theory of the reals (ETR).

Corollary 2.6. For every finite field extension F/Q of the rationals, there exists an oriented matroid
of rank 3 that cannot be realized with coordinates in F .

In other words, that “all algebraic numbers” are needed to coordinatize oriented matroids.

3. Universality for inscribed polytopes and Delaunay subdivisions.

In this section, we prove:

Theorem 3.1. For every primary basic semi-algebraic set there is a Delaunay subdivision and an
inscribed polytope whose realization space is homotopy equivalent to S.

To pass from realization spaces of oriented matroids to those of polytopes, we use (as in [Mnë88])
Lawrence extensions. The resulting polytopes are always inscribable, as observed in [AZ14].

3.1. Lawrence polytopes. We recall some properties of polytopes constructed from Lawrence
extensions.

Definition 3.2 (cf. [RG98]). Let A be a d-dimensional point configuration and let a ∈ A. The
Lawrence extension of A on a is the (d+ 1)-dimensional point configuration

Λ(A, a) := (A \ a) ∪ a ∪ a,
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where A is embedded in the hyperplane xd+1 = 0 and the new points are a := (a, 1) and a := (a, 2).
Let B ⊆ A, the Lawrence extension Λ(A,B) is the point configuration obtained by Lawrence lifting
the points of B one by one

Λ(A,B) := Λ(Λ(. . .Λ(Λ(A, b1), b2) . . . bk−1), bk),
where B = {b1, . . . , bk}.
The Lawrence polytope of a point configuration A is the polytope Λ(A) = conv(Λ(A,A)).

Lemma 3.3 (cf. [Zie95, Theorems 6.26 and 6.27]). For any point configuration A, Λ(A,A) is in
convex position and the Lawrence polytope conv(Λ(A,A)) is rigid.

3.2. Partially inscribed point configurations. Given an oriented matroid M and a subset of
its elements E, we consider the set of realizations of M such that the points of E lie on the boundary
of the unit ball Bd and all the remaining points are outside. We use the homogenized version and
consider such realizations up to orthogonal transformations fixing the hyperplane xd+1 = 0.

Rom,ins(M,E) =
{
V ∈ R(d+1)×n}

∣∣V realizes M , ∀e ∈ E, Ae ∈ ∂ pos(hom(Bd))
and ∀e /∈ E, Ae /∈ pos(hom(Bd))

}/
O(Rd).

Notice that with this definition we are implicitly allowing points at infinity, and negative points,
when we consider vectors that span rays not intersecting the homogenizing hyperplane.
The following lemma expands [AZ14, Proposition A.5.8] to make a statement about realization
spaces.

Lemma 3.4. For every planar point configuration A, Rom(A) ∼ Rins(Λ(A)).

Proof. Since Lawrence polytopes are rigid, and using Lemma 2.3, we have that Rins(Λ(A)) ∼
Rom,ins(Λ(A),Λ(A)). Therefore, we just need to prove that
(6) Rom(A) ∼ Rom,ins(Λ(A),Λ(A))

We prove first that for every subset B ⊆ A ⊂ Rd and for every a ∈ A \B,
(7) Rom,ins(A,B) ∼ Rom,ins(Λ(A, a), B ∪ {a, a}).
For every realization of Λ(A, a) one can recover a realization of A by intersecting the ray emanating
at a through a with the linear hyperplane H spanned by the remaining points. For the moment,
assume H is an equator of the unit sphere Sd−1. In this case, it is clear we recover a realization of A
with all the points of B on Sd−2 and all the remaining points outside Bd−1. In general, H will not
be an equator, but then there is a unique rescaling that sends H ∩ Sd−1 to Sd−2. This map is a
well-defined projection
(8) Rom,ins(Λ(A, a), B ∪ {a, a}) −→ Rom,ins(A,B)

because every orthogonal transformation of Rd induces an orthogonal transformation on H.
What’s left is to establish that the fibers of this continuous map are non-empty and contractible.
First, by reflection symmetry we may assume that a and a are in the positive half-space defined
by H. With this, we then see that a point in the fiber is parameterized by the center of the sphere
and the location of a, This is the product of a line and a non-empty (spherically) convex subset
of the sphere (points in the upper spherical cap visible from a), and so contractible. Hence, (7) is
established. Finally, we construct a continuous inverse by selecting a to be the barycenter of the
possible locations; since the fibers behave Hausdorff continuous on the pair, we are done.
To get to (6), we will prove that Rom(A) ∼ Rom,ins(Λ(A, a), {a, a}) for any a ∈ A (and then we only
need to apply (7) to the remainaing points). Here the fibers of the projection are the set of choices
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for the sphere (the spheres touching the upper half-space not containing any point of A) product
with the choices for a (again, a convex set). We can factor the projection map through the quotient
GL(Rd)/O(Rd). �

3.3. Topological universality. Now Theorem 3.1 follows directly from the combination of the
Universality Theorem 2.4 with Lemma 3.4.

Proof of Theorem 3.1. By the Universality Theorem 2.4, for every primary basic semi-algebraic set
S there is a point configuration whose realization space Rom(A) is homotopy equivalent to S. Now,
by Lemma 3.4, Rom(A) ∼ Rins(Λ(A)). Finally, if we consider the Delaunay subdivision T consisting
of a single cell combinatorially equivalent to Λ(A), one can easily see that Rdel(T ) ∼ Rins(Λ(A)). �

3.4. Algebraic universality. Corollary 2.6 follows at once from the Universality Theorem 2.4
because of stable equivalence. Although the exact notion of stable equivalence does not hold in our
situation, the statement analogous to Corollary 2.6 does.

Corollary 3.5. For every finite field extension F/Q of the rationals, there is a realizable Delaunay
subdivision (equivalently, an inscribed polytope) that cannot be realized with coordinates in F .

Proof. By Corollary 2.6, for every algebraic extension F of the rational numbers, there is a point
configuration A that cannot be coordinatized in F . Now, by Lemma 3.4, the Lawrence polytope
Λ(A) is inscribable. Any inscribed realization of Λ(A) encodes a realization of A, which can be
obtained through a series of radial projections (see the proof of Lemma 3.4). Hence, if Λ(A) had a
realization with coordinates in F , so would A. �

4. Universality for inscribed simplicial polytopes and Delaunay triangulations

To obtain universality results for simplicial polytopes and triangulations, we cannot use Lawrence
extensions, which produce configurations with a lot of non-simplicial faces. Instead, we will use
neighborly polytopes, which are also rigid. This is possible, by a result of Kortenkamp, which implies
that we can embed the oriented matroids of a planar point configuraitons inside the oriented matroid
of a neighborly polytope.

4.1. Stereographic projections. The stereographic projection φ : Sd \N ⊂ Rd+1 → Rd is the map
defined by

φ(x1, . . . , xd+1) =
(

x1
1− xd+1

, . . . ,
xd

1− xd+1

)
,

where N is the north pole of the unit sphere Sd.
The sterographic projection and its inverse are classical tools to translate from Delaunay triangulations
to inscribed polytopes, and vice versa [Bro79]. The following lemma explains how to relate realizations
of the Delaunay triangulations and inscribed realizations of polytopes.

Lemma 4.1. A = {a1, . . . , an} be a configuration of n points in Rd, and let Å = {̊a1, . . . , ån} be its
image under the inverse stereographic projection, Å = φ−1(A).
Then

(i) åi is above (resp. on, below) the hyperplane spanned by {̊aj1 , . . . , åjd+1} if and only if ai is
outside (resp. on, inside) the circumsphere spanned by {aj1 , . . . , ajd+1}; and

(ii) for every hyperplane H ⊂ Rd, there is a hyperplane H̊ ⊂ Rd+1 with N ∈ H̊ such that åi in H̊
(resp. H̊±) if and only if ai in H (resp. H±).



10 KARIM A. ADIPRASITO, ARNAU PADROL, AND LOUIS THERAN

Lemma 4.2. Let T be a d-dimensional polytopal subdivision with n vertices whose boundary is a
d-simplex P , and let Q be polytopal complex (homeomorphic to a sphere) obtained by adding to T
the cones with apex an+1 over the faces of P . Then the stereographic projection from an+1 induces a
homeomorphism

Rins(Q) ∼= Rdel(T ).

Proof. Let A = {a1, . . . , an, an+1} ⊂ Sd be an inscribed realization of Q. By a Möbius transformation,
we can assume that the last point lies at the north pole, an+1 = N. Now, by Lemma 4.1, the
Delaunay subdivision of the stereographic projection of the points ai, 1 ≤ i ≤ n, coincides with T .
Indeed, if S ⊂ A is the set of vertices of a facet F of conv(A ∪N) that does not contain N, then S
spans a supporting hyperplane that has all the remaining points above it (at the same side as N).
According to Lemma 4.1(i), its stereographic projection S = φ(S) spans an empty circumsphere, and
hence is the set of vertices of a cell of the Delaunay subdivision of A. Additionaly, by Lemma 4.1(ii)
facets of conv(A ∪N) that contain N are in bijection with facets of conv(A), which by hypothesis is
a simplex in any realization of T .
Moreover, every Möbius transformation of Sd that fixes the north pole induces a similarity of Rd.
To conclude the proof, observe that every realization of T as Delaunay triangulation can be lifted
with the inverse stereographic projection to a unique inscribed realization of Q. �

Remark 4.3. Notice that the exactly the same proof shows a bijection between realization spaces
of inscribed polytopes and realization spaces of Delaunay subdivisions with prescribed boundary.
Indeed, Lemma 4.1(ii) implies that the vertex figure of N is combinatorially equivalent to the convex
hull of the Delaunay triangulation. Since a general triangulation (as a simplicial complex) does not
prescribe the convex hull of the realization, we have to focus only in those whose convex hull is a
simplex.

4.2. Lexicographic liftings. A central tool for our construction are lexicographic liftings, which
are a way to derive (d+ 1)-dimensional point configurations from d-dimensional point configurations.

Definition 4.4. A lexicographic lifting of a point configuration A = {a1, . . . , an} ⊂ Rd (with respect
to the order induced by the labels) with a sign vector (s1, . . . , sn) ∈ {+,−}n is a configuration
Â = {â1, . . . , ân, ân+1} of n+ 1 labeled points in Rd+1 such that:

(i) for 1 ≤ i ≤ d, âi = (ai, 0) ∈ Rd+1,
(ii) for d+ 1 ≤ i ≤ n, the point âi lies in the half-line that starts at ân+1 and goes through (ai, 0),
(iii) for d+ 1 ≤ i ≤ n, and for every hyperplane H spanned by d+ 1 points of {â1, . . . , âi−1}, the

points ân+1 and âi lie at the same side of H when si = +, and at opposite sides if si = −.

If si = + for every 1 ≤ i ≤ n, the lexicographic lifting is called positive.

The proof of the following lemma is straightforward, since one can easily compute the chirotope of
Â from that of A (compare [BLS+93, Chapter 7]).

Lemma 4.5. The oriented matroid of a lexicographic lifting Â of A only depends on the oriented
matroid of A and the sequence of signs.

An alternative way to see this is to observe that lexicographic liftings are dual to lexicographic
extensions (cf. [BLS+93, Section 7.2]).

Remark 4.6. A lexicographic lifting of A with signs si realizes the dual oriented matroid of a
lexicographic extension of the Gale dual of A with signature [a−sn

n , . . . , a
−sd+2
d+2 ].
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(a) A (b) Â (c) Check (iii) (d) Check Delaunay

Figure 4.1. A Delaunay lexicographic lifting Â ⊂ R2 of a configuration A ⊂ R1. In 4.1(c)
one can check that (iii) is fulfilled, and in 4.1(d) that it is a Delaunay lexicographic lifting.
This lifting is not positive.

We use lexicographic liftings because they preserve homotopy of realization spaces (although for
our proof we only need the surjectivity of the map Rom(Â)→ Rom(A)). This fact can be found in
[BLS+93, Lemma 8.2.1 and Proposition 8.2.2].

Lemma 4.7. For any lexicographic lifting Â of A, Rom(Â) is homotopy equivalent to Rom(A).

Proof (sketch). Any vector configuration V̂ = {v̂1, . . . , v̂n+1} with the same oriented matroid as of
hom(Â) can be mapped to a configuration V = {v1, . . . , vn} that realizes hom(A), just by taking
vi to be the orthogonal projection of v̂i onto the hyperplane orthogonal to v̂n+1. This defines a
continuous map from Rom(Â) to Rom(A), which is easily seen to be surjective (compare Lemma 4.9).
To see that this is indeed a homotopy equivalence, we can check that the fibers of this projection
are balls. Indeed, once the position of v̂n+1, v̂n, . . . , v̂i+1 is fixed, the set of valid positions of v̂i is a
convex subset of the line that goes through v̂n+1 and vi. �

To control their Delaunay triangulations, we use a particular family of lexicographic liftings (see also
[GP13] and [Sei85]).

Definition 4.8. A Delaunay lexicographic lifting of A is a lexicographic lifting Â such that for each
d+ 2 < i ≤ n+ 1, âi is not contained in any of the circumspheres of any simplex spanned by d+ 2
points of {â1, . . . , âi−1}.
Lemma 4.9. For any point configuration A and any s ∈ {+,−}n, there is Delaunay lexicographic
lifting.

Proof. To construct one, just replace ai by âi = (ai, hi) ∈ Rd+1 for some hi large enough so that âi

is above or below every hyperplane spanned by {â1, . . . , âi−1} and outside any of the circumspheres
spanned by {â1, . . . , âi−1}. Finally, set ân+1 to be the “point at infinity” ân+1 = (0,+∞) and apply
a projective transformation that preserves the hyperplane spanned by {a1, . . . , ad} and sends ân+1
to (0, hn+1) for some large hn+1 > 0. (This is possible, because the âi are chosen so that the empty
sphere condition will hold after a small perturbation.) �

We end with the following straightforward consequence of Lemma 4.1.
Corollary 4.10. Let A = {a1, . . . , an} be a configuration of n labeled points in general position
in Rd and let Â be a Delaunay lexicographic lifting of A. Then φ−1(Â)∪N is a positive lexicographic
lifting of Â (with respect to the same order) inscribed on Sd+1.
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Proof. The condition that Â is a Delaunay lexicographic lifting implies that aj is outside every
circumsphere spanned by points in {a1, . . . , aj−1}, which by Lemma 4.1 implies that aj is above (i.e.
at the same side as N) every hyperplane spanned by points in {a1, . . . , aj−1}. �

4.3. Neighborly oriented matroids. A crucial property of even-dimensional neighborly configu-
rations is that their oriented matroids are rigid.

Theorem 4.11 ([Stu88, Theorem 4.2][She82]). If A is an even-dimensional neighborly point config-
uration, then the oriented matroid of A is rigid, i.e. Rom(A) = Rpol(A).

Kortenkamp [Kor97] found a way to use lexicographic liftings to construct neighborly point configu-
rations.

Theorem 4.12 ([Kor97, Theorem 1.2]). For any point configuration A with d+ 4 points in general
position in Rd there is an even-dimensional neighborly configuration Â of 2d + 8 points in R2d+4

obtained from A by a sequence of lexicographic liftings.

Finally, the following result can be found in [Pad13] (compare also [GP13]), where it is used to
construct many neighborly polytopes.

Theorem 4.13 ([Pad13, Theorem 4.2]). Let A be a neighborly point configuration in general position,
let Â be a lexicographic lifting of A and let ̂̂A be a positive lexicographic lifting of Â (with respect to
the same order). Then ̂̂A is neighborly.

4.4. The construction. Here is the main technical result of this section.

Lemma 4.14. For every configuration A of n points in general position in Rn−4 there exists an
inscribed neighborly polytope P with 2n+ 2 vertices in R2n−2 and sets X and Y , homotopy equivalent
to Rins(P ) and Rom(A) respectively, such that Y is a retract of X.

Proof. For convenience, set d = n− 4. Since A is a d-dimensional configuration of d+ 4 points, we
can apply the sequence of lexicographic liftings of Theorem 4.12 to obtain a neighborly configuration
A2 of 2n points in general position in R2n−4. This configuration is obtained by lexicographic liftings
and hence the corresponding realization spaces are homotopy equivalent, Rom(A) ∼ Rom(A2), by
Lemma 4.7.
Now, we can apply a lexicographic lifting and a positive lexicographic lifting successively to ob-
tain A3 = ̂̂A2, which is a configuration of N = 2n + 2 points in general position in RD, where
D = 2n− 2. The convex hull of A3 is a neighborly polytope P by Theorem 4.13. We will build a
continuous surjection from Rins(P )× RN−1

>0 onto Rom(A2).

Let B ⊂ RN×D be an inscribed realization of P , which is even-dimensional and neighborly. By
Theorem 4.11, its oriented matroid is rigid, and hence the matroid of the vertices of P coincides
with the matroid of A3. Therefore, the stereographic projection φ(B) of B from aN is always a
realization of Â2. Consider then the map ϕ : Rins(P )×RN−1

>0 → Rom(Â2) that maps (B, λ) onto the
configuration of vectors {(λiφ(Bi), λi)}1≤i≤N−1 ∈ Rom(Â2) ⊆ R(N−1)×D. The map is well defined,
because Möbius transformations of B induce similarities of φ(B), which are affine transformations
and hence induce linear transformations on ϕ(B, λ).

Now we can use the projection map ψ : Rom(Â3)→ Rom(A3) of Lemma 4.7 to obtain a realization
of A3. From Corollary 4.10 we deduce that the composition map ψ ◦ϕ : Rins(P )×RN−1

>0 → Rom(A3)
is surjective. To conclude that ψ ◦ϕ is a retraction, we have to exhibit a continuous inverse injection.
But the construction of Corollary 4.10 can easily be performed in a continuous way. For example, one
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can use Hadamard’s determinant inequalities to find continuous heights that fulfill the constraints of
Delaunay lexicographic liftings. �

Figure 4.2. Any point in the shaded area gives rise to the same Delaunay triangulation.

The reason why we cannot strengthen the statement to homotopy equivalence between Rins(P ) and
Rom(A), is that we do not understand the fibers of the map Rins(P ) � Rom(A3). We can prove
that they are non-empty with Corollary 4.10 but we cannot control their topology. (Figure 4.2 shows
an example of how disconnected fibers might arise.)

Theorem 4.15. For every open primary basic semi-algebraic set S there is a (neighborly) Delaunay
triangulation and an inscribed simplicial (neighborly) polytope such that S is a retract of their
realization spaces, up to homotopy equivalence.

Proof. A straightforward consequence of the Universality Theorem 2.4 is that realization spaces of
oriented matroids of configurations of d+ 4 points in Rd exhibit universality. In particular, for every
open primary basic semi-algebraic set S there is a configuration A of d+ 4 points in general position
in Rd whose realization space is homotopy equivalent to S. The proof is direct using oriented matroid
duality (see [BLS+93, Chapter 8]) after reorienting some elements (compare [Zie95, Corollary 6.16]).
Hence, by Lemma 4.14, there is an inscribed simplicial neighborly d-polytope P whose realization
space admits a continuous surjection onto a set homotopy equivalent to S.
For the claim concerning Delaunay triangulations, we consider the polytope P ′ obtained by stacking
a vertex on the facet F = {a1, . . . , ad} of P . (The face lattice of P ′ coincides with that of P , except
that F is replaced with its stellar subdivision.)
We claim that every realization of A can be lifted to an inscribed realization of P ′ (and by construction,
every realization of P ′ can be projected to a realization of A). Indeed, to the configuration A2 of
Lemma 4.14, add a point a0 in the relative interior of conv(a1, . . . , ad−1) and then apply a positive
Delaunay lexicographic lifting with order a1, . . . , ad−1, a0, ad, ad+1, . . . . The Delaunay triangulation
of this configuration clearly contains the stellar subdivision of the simplex {a1, . . . , ad}.
An application of Lemma 4.2 then concludes the proof. �

4.5. Complexity. A closer look into the proof of Lemma 4.14 shows that all the operations that we
use are at the oriented matroid level (i.e., can be also applied to non-realizable matroids) and take only
polynomial time. Therefore, for each rank 3 oriented matroid M we can construct a (combinatorial)
Delaunay triangulation that is realizable if and only if M is. An important consequence of the
Universality Theorem is Corollary 2.5, which states that realizability of rank 3 oriented matroids is
polynomially equivalent to ETR [Mnë88][Sho91]. Lemma 4.14 implies that realizability of Delaunay
triangulations is equally hard.

Corollary 4.16. The realizability problem for Delaunay triangulations and simplicial inscribed
polytopes is polynomially equivalent to the existential theory of the reals (ETR).
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Another consequence of the universality theorem for Delaunay triangulations is that realization
spaces can have an exponential number of connected components.

Corollary 4.17. For every m ≥ 1 there exist configurations of O(m) points in general position in
RO(m) whose realization spaces as Delaunay triangulations have at least 2m connected components.

Proof. Consider the polynomial fm(x) obtained recursively as follows:
f0(x) = x2 − 2, fk+1(x) = fk(f0(x)).

That is, f1(x) = (x2 − 2)2 − 2, f2(x) = ((x2 − 2)2 − 2)2 − 2, f3(x) = (((x2 − 2)2 − 2)2 − 2)2 − 2, and
so on. It is not hard to check that fm(x) has 2m+1 distinct simple real roots and that its arithmetic
complexity is O(m). The semi-algebraic set of points fulfilling fm(x) > 0 has at least 2m connected
components.
Our claim now follows by the Universality Theorem 2.4 and Lemma 4.14. �

As a final remark in this section, we provide our smallest example of a Delaunay triangulation
with disconnected realization space. It can constructed by applying Lemma 4.14, together with
the stacking technique of the proof Theorem 4.15, to the uniform rank 3 oriented matroid with 14
elements found by Suvorov in 1988 [Suv88] (see also [BLS+93, Chapter 8]), which has a disconnected
realization space.

Corollary 4.18. There is a 25-dimensional configuration of 30 points whose Delaunay triangulation
has a disconnected realization space.

References
[AP14] Karim A. Adiprasito and Arnau Padrol, The universality theorem for neighborly polytopes, Preprint,

arXiv:1402.7207, February 2014.
[AZ14] K. A. Adiprasito and G. M. Ziegler, Many polytopes with low-dimensional realization space, Inventiones

Mathematicae (2014), In press. Preprint available at arXiv:1212.5812v2.
[BCS97] Peter Bürgisser, Michael Clausen, and M. Amin Shokrollahi, Algebraic complexity theory, Berlin: Springer,

1997, With the collaboration of Thomas Lickteig.
[BLS+93] Anders Björner, Michel Las Vergnas, Bernd Sturmfels, Neil White, and Günter M. Ziegler, Oriented

matroids., Encyclopedia of Mathematics and Its Applications. 46. Cambridge: Cambridge University
Press. 516 p. , 1993 (English).

[Bro79] Kevin Q. Brown, Voronoi diagrams from convex hulls., Inf. Process. Lett. 9 (1979), 223–228.
[Ede06] Herbert Edelsbrunner, Geometry and topology for mesh generation. 1st paperback ed., 1st paperback ed.

ed., Cambridge: Cambridge University Press, 2006.
[FG11] David Futer and François Guéritaud, From angled triangulations to hyperbolic structures, Interactions

between hyperbolic geometry, quantum topology and number theory, Contemp. Math., vol. 541, Amer.
Math. Soc., Providence, RI, 2011, pp. 159–182. MR 2796632 (2012j:57038)

[For97] Steven Fortune, Voronoi diagrams and Delaunay triangulations, Handbook of discrete and computational
geometry, CRC Press Ser. Discrete Math. Appl., CRC, Boca Raton, FL, 1997, pp. 377–388.

[GO04] Jacob E. Goodman and Joseph O’Rourke (eds.), Handbook of discrete and computational geometry, second
ed., Discrete Mathematics and its Applications (Boca Raton), Chapman & Hall/CRC, Boca Raton, FL,
2004.

[GP13] Bernd Gonska and Arnau Padrol, Neighborly inscribed polytopes and Delaunay triangulations, Preprint,
arXiv:1308.5798, Aug 2013.

[GZ11] Bernd Gonska and Günter M Ziegler, Inscribable stacked polytopes, Preprint, arXiv:1111.5322, Nov 2011.
[HRGZ97] Martin Henk, Jürgen Richter-Gebert, and Günter M. Ziegler, Basic properties of convex polytopes,

Handbook of discrete and computational geometry, CRC Press Ser. Discrete Math. Appl., CRC, Boca
Raton, FL, 1997, pp. 243–270.

[JMLSW89] Beat Jaggi, Peter Mani-Levitska, Bernd Sturmfels, and Neil White, Uniform oriented matroids without
the isotopy property., Discrete Comput. Geom. 4 (1989), no. 2, 97–100.

[Kor97] Ulrich H. Kortenkamp, Every simplicial polytope with at most d + 4 vertices is a quotient of a neighborly
polytope., Discrete Comput. Geom. 18 (1997), no. 4, 455–462.

http://arxiv.org/abs/1402.7207
http://arxiv.org/abs/1212.5812v2
http://arxiv.org/abs/1308.5798
http://arxiv.org/abs/1111.5322


UNIVERSALITY THEOREMS FOR INSCRIBED POLYTOPES AND DELAUNAY TRIANGULATIONS 15

[Mnë88] Nikolai E. Mnëv, The universality theorems on the classification problem of configuration varieties and
convex polytopes varieties, Topology and geometry—Rohlin Seminar, Lecture Notes in Math., vol. 1346,
Springer-Verlag, Berlin Heidelberg, 1988, pp. 527–544.

[Mun75] James R. Munkres, Topology: a first course, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1975.
[Pad13] Arnau Padrol, Many neighborly polytopes and oriented matroids., Discrete Comput. Geom. 50 (2013),

no. 4, 865–902.
[PT14] Arnau Padrol and Louis Theran, Delaunay triangulations with disconnected realization spaces, Symposium

on Computational Geometry (Siu-Wing Cheng and Olivier Devillers, eds.), ACM, 2014, p. 163.
[RG95] Jürgen Richter-Gebert, Mnëv’s universality theorem revisited, Sém. Lothar. Combin. 34 (1995), Art.

B34h, approx. 15 pp. (electronic).
[RG96] , Realization spaces of polytopes, Lecture Notes in Mathematics, vol. 1643, Springer-Verlag, Berlin,

1996.
[RG98] , The universality theorems for oriented matroids and polytopes, Advances in Discrete and Computa-

tional Geometry (Mount Holyoke 1996) (B. Chazelle, J. E. Goodman, and R. Pollack, eds.), Contemporary
Mathematics, vol. 223, Amer. Math. Soc., Providence RI, 1998, pp. 269–292.

[RGZ97] Jürgen Richter-Gebert and Günter M. Ziegler, Oriented matroids, Handbook of discrete and computational
geometry, CRC Press Ser. Discrete Math. Appl., CRC, Boca Raton, FL, 1997, pp. 111–132.

[Ric96] Jürgen Richter-Gebert, Two interesting oriented matroids., Doc. Math., J. DMV 1 (1996), 137–148.
[Riv94] Igor Rivin, Euclidean structures on simplicial surfaces and hyperbolic volume., Ann. Math. (2) 139 (1994),

no. 3, 553–580.
[Riv96] , A characterization of ideal polyhedra in hyperbolic 3-space, Ann. of Math. (2) 143 (1996), no. 1,

51–70.
[Riv03] , Combinatorial optimization in geometry., Adv. Appl. Math. 31 (2003), no. 1, 242–271.
[Sei85] Raimund Seidel, A method for proving lower bounds for certain geometric problems, Computational

Geometry (G. T. Toussaint, ed.), North-Holland, Amsterdam, Netherlands, 1985, pp. 319–334.
[She82] Ido Shemer, Neighborly polytopes., Isr. J. Math. 43 (1982), 291–314.
[Sho91] Peter W. Shor, Stretchability of pseudolines is NP-hard, Applied geometry and discrete mathematics,

DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 4, Amer. Math. Soc., Providence, RI, 1991,
pp. 531–554.

[Ste32] Jacob Steiner, Systematische Entwicklung der Abhängigkeit geometrischer Gestalten von einander, Fincke,
Berlin, 1832, Also in: Gesammelte Werke, Vol. 1, Reimer, Berlin 1881, pp. 229–458.

[Ste28] Ernst Steinitz, Über isoperimetrische Probleme bei konvexen Polyedern., J. f. M. 159 (1928), 133–143
(German).

[Stu88] Bernd Sturmfels, Neighborly polytopes and oriented matroids., Eur. J. Comb. 9 (1988), no. 6, 537–546.
[Suv88] P. Suvorov, Isotopic but not rigidly isotopic plane systems of straight lines, Topology and geometry—Rohlin

Seminar, Lecture Notes in Math., vol. 1346, Springer-Verlag, Berlin Heidelberg, 1988, pp. 545–556.
[Tsu13] Yasuyuki Tsukamoto, New examples of oriented matroids with disconnected realization spaces., Discrete

Comput. Geom. 49 (2013), no. 2, 287–295.
[Vak06] Ravi Vakil, Murphy’s law in algebraic geometry: badly-behaved deformation spaces, Invent. Math. 164

(2006), no. 3, 569–590.
[Val79] Leslie G. Valiant, Completeness classes in algebra, Conference Record of the Eleventh Annual ACM

Symposium on Theory of Computing (Atlanta, Ga., 1979), ACM, New York, 1979, pp. 249–261.
[Ver88] Anatoly M. Vershik, Topology of the convex polytopes’ manifolds, the manifold of the projective configu-

rations of a given combinatorial type and representations of lattices, Topology and geometry—Rohlin
Seminar, Lecture Notes in Math., vol. 1346, Springer-Verlag, Berlin Heidelberg, 1988, pp. 557–581.

[Whi89] Neil L. White, A nonuniform matroid which violates the isotopy conjecture, Discrete Comput. Geom. 4
(1989), no. 1, 1–2.

[Zie95] Günter M. Ziegler, Lectures on polytopes, Graduate Texts in Mathematics, vol. 152, Springer-Verlag, New
York, 1995.

Institut des Hautes Études Scientifiques, Bures-sur-Yvette, France

E-mail address: adiprasito@math.fu-berlin.de, adiprasito@ihes.fr

Institut für Mathematik, Freie Universität Berlin, Germany

E-mail address: arnau.padrol@fu-berlin.de, theran@math.fu-berlin.de


	1. Introduction
	1.1. Universality for Delaunay subdivisions
	1.2. Universality for Delaunay triangulations
	1.3. Complexity
	1.4. Context and related work
	1.5. Open problem: universality in fixed dimension
	1.6. Reading guide

	2. Preliminaries
	2.1. Notation
	2.2. Realization spaces
	2.3. Mnëv's universality theorem

	3. Universality for inscribed polytopes and Delaunay subdivisions.
	3.1. Lawrence polytopes
	3.2. Partially inscribed point configurations
	3.3. Topological universality
	3.4. Algebraic universality

	4. Universality for inscribed simplicial polytopes and Delaunay triangulations
	4.1. Stereographic projections
	4.2. Lexicographic liftings
	4.3. Neighborly oriented matroids
	4.4. The construction
	4.5. Complexity

	References

