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Abstract

Given a set of points that sample a shape, the Rips complex of the points is often used to provide
an approximation of the shape easily-computed. It has been proved that the Rips complex captures the
homotopy type of the shape assuming the vertices of the complex meet some mild sampling conditions.
Unfortunately, the Rips complex is generally high-dimensional. To remedy this problem, it is tempting
to simplify it through a sequence of collapses. Ideally, we would like to end up with a triangulation of
the shape. Experiments suggest that, as we simplify the complex by iteratively collapsing faces, it should
indeed be possible to avoid entering a dead end such as the famous Bing’s house with two rooms. This
paper provides a theoretical justification for this empirical observation.

We demonstrate that the Rips complex of a point-cloud (for a well-chosen scale parameter) can
always be turned into a simplicial complex homeomorphic to the shape by a sequence of collapses,
assuming the shape is nicely triangulable and well-sampled (two concepts we will explain in the paper).
To establish our result, we rely on a recent work which gives conditions under which the Rips complex
can be converted into a Čech complex by a sequence of collapses. We proceed in two phases. Starting
from the Čech complex, we first produce a sequence of collapses that arrives to the Čech complex,
restricted by the shape. We then apply a sequence of collapses that transforms the result into the nerve of
some covering of the shape. Along the way, we establish results which are of independent interest. First,
we show that the reach of a shape can not decrease when intersected with a (possibly infinite) collection
of balls, assuming the balls are small enough. Under the same hypotheses, we show that the restriction of
a shape with respect to an intersection of balls is either empty or contractible. We also provide conditions
under which the nerve of a family of compact sets undergoes collapses as the compact sets evolve over
time. We believe conditions are general enough to be useful in other contexts as well.
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1 Introduction

This paper studies the problem of converting a Čech complex whose vertices sample a shape into a trian-
gulation of that shape using collapses. Even if the present paper focuses exclusively on the Čech Complex,
it has also implications on the simplification of Rips complexes by sequences of collapses, due to a recent
result in [6].

Imagine we are given a set of points that sample a shape and we want to build an approximation of the
shape from the sample points. An often used approach consists in outputting the Vietoris-Rips complex
of the points (see for instance [9, 14, 21]). Formally, the Vietoris-Rips complex of a set of points P at
scale α is the abstract simplicial complex whose simplices are subsets of points in P with diameter at
most 2α. For brevity, we shall refer to it as the Rips complex. The Rips complex is an example of a
flag complex — the maximal simplicial complex with a given 1-skeleton. As such, it enjoys the property
to be completely determined by its 1-skeleton which therefore offers a compact form of storage easy to
compute. Moreover, the Rips complex is able to reproduce the homotopy type of the shape in certain
situations [17, 18, 10, 4]. Precisely, Hausmann proved in [17] that if the shape A is a compact Riemannian
manifold, then the Rips complex with vertex set A is homotopy equivalent to A when the scale used to build
the Rips complex is small enough. In [18], Latschev extended this result to Rips complexes with vertex set
a metric space (possibly finite) whose Gromov-Hausdorff distance to the shape is small. In [6], a variant has
been established in a different framework: shapes are assumed to be subsets of Rd with a positive µ-reach
and Rips complexes are built on finite samples of the shapes using the Euclidean distance. The latter result
makes the Rips complex an appealing object for reconstructing shapes living in high dimensional spaces, as
for instance in machine learning.

Unfortunately, the dimension of the Rips complex can be very large, compare to the dimension of the
underlying shape it is suppose to approximate. This suggests a two-phase algorithm for shape reconstruc-
tion. The first phase builds the Rips complex of the data points, thus producing an object with the right
homotopy type. The second phase simplifies the Rips complex through a sequence of collapses. Ideally, af-
ter simplifying the Rips complex by repeatedly applying collapses, we would like to end up with a simplicial
complex homeomorphic to the underlying shape.

Yet it is not at all obvious that the Rips complex whose vertices sample a shape contains a subcomplex
homeomorphic to that shape. Even if such a subcomplex exists, is there a sequence of collapses that leads
to it? Certainly if we want to say anything at all, the geometry of the complex will have to play a key role.
As evidence for this, consider a simplicial complex whose vertex set is a noisy point-cloud that samples
a 0-dimensional manifold and suppose the complex is composed of a union of Bing’s houses with two
rooms, one for each connected component in the manifold. Each Bing’s house is a 2-dimensional simplicial
complex which is contractible but not collapsible. Thus, the complex carries the homotopy type of the 0-
dimensional manifold but is not collapsible. Fortunately, it seems that such bad things do not happen in
practice, when we start with the Rips complex of a set of points that samples “sufficiently well” a “nice
enough” space in Rd. The primary aim of the present work is to understand why. For this, we will focus
on the Čech complex, a closely related construction. Formally, the Čech complex of a point set P at scale
α consists of all simplices spanned by points in P that fit in a ball of radius α. In [6], it was proved that
the Rips complex can be reduced to the Čech complex by a sequence of collapses, assuming some sampling
conditions are met. This result shows that it suffices to study Čech complexes.

In this paper, we give some mild conditions under which there is a sequence of collapses that converts
the Čech complex (and therefore also the Rips complex) into a simplicial complex homeomorphic to the
shape. Our result assumes the shape to be a subset of the d-dimensional Euclidean space with the property
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to be nicely triangulable, a concept we will explain later in the paper.
Perhaps unfortunately, our proof that a sequence of collapses exists is not very constructive: it starts by

sweeping space with offsets of the shape — which are unknown — and builds a sequence of complexes
which have no reason to remain close to flag complexes and therefore cannot benefit from the data structure
developed in [5]. Nonetheless, even if results presented here do not give yet any practical algorithm, we
believe that they provide a better understanding as to why the Čech complex (and therefore the Rips com-
plex) can be simplified by collapses and how this ability is connected to the underlying metric structure of
the space. In the same spirit, we should mention [1], in which the authors prove that every complex that is
CAT(0) with a metric for which all vertex stars are convex, is collapsible.

We now list the principal results of the paper, materialized as brown arrows in Figure 1. We also
mention some auxiliary results, which are interesting in their own rights. In Section 3, we study how the
reach of a shape is modified when intersected with a (possibly infinite) collection of balls and establish
the contractibility of the intersection, assuming the balls are small enough. In Section 4, we introduce the
Čech complex restricted by the shape A and deduce conditions under which it is homotopy equivalent to A
(Theorem 1). In Section 5, we provide general conditions under which the nerve of a family of compact
sets undergoes collapses as the compact sets evolve over time. Applying this technical result to our context,
we obtain conditions under which there is a sequence of collapses that goes from the Čech complex to the
restricted Čech complex (Theorem 2). Combined with Theorem 1, this gives an alternative proof to a result
[20] recalled in Section 2 (Lemma 2). In Section 6, we define α-robust coverings and give conditions under
which the restricted Čech complex can be transformed into the nerve of an α-robust covering (Theorem
3). In Section 7, we define and study nicely triangulable spaces. Such spaces enjoy the property of having
triangulations that can be expressed as the nerve of α-robust coverings for a large range of α. Finally, we
provide examples of such spaces. Our list includes affine subspaces of the d-dimensional Euclidean space.
It also contains the 2-sphere, the flat torus and all surfaces C1,1 diffeomorphic to these two. Although our
list is quite short, it is conceivable that many more spaces could be added. Actually, we conjecture that all
compact smooth manifolds embedded in Rd are nicely triangulable and leave open this conjecture for future
research. Section 8 concludes the paper.

Rips(P, α) Cech(P, α) CechA(P, α) Nerve of an α-robust covering of A

P⊕α A

[6] Theorem 2

' Lemma 1
(Nerve Lemma)

Theorem 3

' Theorem 1

Lemma 2 [20]
≈?

Figure 1: Logical structure of our results. Brown arrows represent new results. The arrow ↪→ stands for “deformation
retracts to”. The arrow  stands for “can be transformed by a sequence of collapses into”. The symbol “'” means
“homotopy equivalent to” and “≈” means “homeomorphic to”.

2 Background

First let us explain some of our terms and introduce the necessary background. Rd denotes the d-dimensional
Euclidean space. ‖x− y‖ is the Euclidean distance between two points x and y of Rd. The closed ball with
center x and radius r is denoted by B(x, r) and its interior by B◦(x, r). Given a subset X ⊂ Rd, the
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α-offset of X is X⊕α =
⋃
x∈X B(x, α). The Hausdorff distance dH(X,Y ) between the two compact

sets X and Y of Rd is the smallest real number ε ≥ 0 such that X ⊂ Y ⊕ε and Y ⊂ X⊕ε. We write
d(x, Y ) = infy∈Y ‖x − y‖ for the distance between point x ∈ Rd and the set Y ⊂ Rd and d(X,Y ) =
infx∈X infy∈Y ‖x− y‖ for the distance between the two sets X ⊂ Rd and Y ⊂ Rd.

A convenient way to build a simplicial complex is to consider the nerve of a collection of sets. Specif-
ically, let P be a set of indices. Later on, elements of P will be points in Rd. Let C = {Cp | p ∈ P} be
a family of sets indexed by p ∈ P . The nerve of the family is the abstract simplicial complex that consists
of all non-empty finite subcollections whose sets have a non-empty common intersection. Formally, writing
cardσ for the number of elements in σ, we have Nrv C = {σ ⊂ P | 0 < cardσ < +∞ and

⋂
p∈σ Cp 6= ∅}.

In this paper, we shall consider nerves of coverings of a shape A. We recall that a covering of A is a col-
lection C = {Cp | p ∈ P} of subsets of A so that A =

⋃
p∈P Cp. It is a closed (resp. compact) covering

if each set in C is closed (resp. compact). It is a finite covering if the set of indices P is finite. The Nerve
Lemma gives a condition under which the nerve of a covering of a shape shares the topology of the shape.
It has several versions [7] and we shall use the following form:

Lemma 1 (Nerve Lemma). Consider a compact set A ⊂ Rd. Let C = {Cp | p ∈ P} be a finite closed
covering of A. If for every ∅ 6= σ ⊂ P , the intersection

⋂
z∈σ Cz is either empty or contractible, then the

underlying space of Nrv C is homotopy equivalent to A.

Hereafter, we shall omit the phrase “the underlying space of” and write X ' Y to say that X is homo-
topy equivalent to Y . Given a finite set of points P ∈ Rd and a real number α ≥ 0, the Čech complex of P at
scale α can be defined as Cech(P, α) = Nrv{B(p, α) | p ∈ P}. With this definition and the Nerve Lemma,
it is clear that Cech(P, α) ' P⊕α; see the black vertical arrow in Figure 1. Several recent results have ex-
pressed conditions under which P⊕α recovers the homotopy type of the shape A [20, 12, 11, 6]. Intuitively,
the data points P must sample the shape A sufficiently densely and accurately. One of the simplest ways to
measure the quality of the sample is to use the reach of the shape. Given a compact subsetA of Rd, recall that
the medial axisMA of A is the set of points in Rd which have at least two closest points in A. The reach of
A is the infimum of distances between points inA and points inMA, Reach (A) = infa∈A,m∈MA

‖a−m‖.
It is well-known that a compact subset C ⊂ Rd has infinite reach if and only if C is convex. We have
(horizontal black arrow in Figure 1):

Lemma 2 ([20]). Let A and P be two compact subsets of Rd. Suppose there exists a real number ε such
that dH(A,P ) ≤ ε < (3−

√
8) Reach (A). Then, P⊕α deformation retracts to A for α = (2 +

√
2)ε.

Combining Lemma 1 and Lemma 2, we thus get conditions under which Cech(P, α) ' A. The next
two sections will provide an alternative proof of this result along the way. We recall a result which will be
useful when establishing some of the intermediate geometric lemmas. For a point x ∈ A\MA, write πA(x)
for the unique point in A closest to x. We have:

Lemma 3 ([15, p. 305]). LetA be a compact subset of Rd and c a point such that 0 < d(c, A) < Reach (A).
Let ∆c be the half-line with end point πA(c) and containing c. For every point x ∈ ∆c, if d(x, πA(c)) <
Reach (A), then πA(x) = πA(c).

Before starting the paper, we recall that a collapse of an abstract simplicial complex K is the removal
of a simplex σmin ∈ K together with all its cofaces assuming σmin is non-maximal and its set of cofaces
contains a unique maximal element σmax ∈ K. A collapse produces a simplicial complex to which K
deformation retracts and thus is a simplification operation that preserves the homotopy type [13].
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3 Reach of spaces restricted by small balls

In this section, we consider a subset A ⊂ Rd such that Reach (A) > 0 and prove that as we intersect A
with balls of radius α < Reach (A) the reach of the intersection can only get bigger; see Figure 2. More
precisely, let A be a compact subset of Rd and σ ⊂ Rd. Write B(σ, α) =

⋂
z∈σ B(z, α) for the common

intersection of balls with radius α centered at σ and assume that A ∩ B(σ, α) 6= ∅. In this section, we
establish that Reach (A) ≤ Reach (A ∩ B(σ, α)) in the following situations: first when σ is reduced to a
single point z (Lemma 5), then when σ is finite (Lemma 6) and finally when σ is a compact subset of Rd
(Lemma 8). Although the first generalization (σ finite) is all we need for establishing Theorem 1 in Section
4, the second generalization (σ compact) will turn out to be useful later on in the paper. Let us start with a
preliminary geometric lemma:

A

MA

R
ea

ch
(A

) A

MA∩C

C

Reach (A ∩ C)

B

Figure 2: Left: Medial axisMA of a shape A. If we intersect A with a ball B whose radius is smaller than the reach of
A, the reach of the intersection A ∩ B can only get bigger. Right. This property does not hold if we replace the ball B
by another set, even with infinite reach such as the solid cube C.

Lemma 4. Let X ⊂ Rd be a non-empty compact set and B(c, ρ) its smallest enclosing ball. For all points
z ∈ Rd and all real numbers r ≥ ρ, the following implications hold

(i) X ⊂ B(z, r) =⇒ B(c, r −
√
r2 − ρ2) ⊂ B(z, r);

(ii) B(c, r −
√
r2 − ρ2) ⊂ B◦(z, r) =⇒ X ∩ B◦(z, r) 6= ∅.

Proof. To establish (i), assume for a contradiction that B(z, r) does not contain B(c, r −
√
r2 − ρ2) or

equivalently that ‖c − z‖ >
√
r2 − ρ2. This implies that the smallest ball enclosing B(c, ρ) ∩ B(z, r) has

radius less than ρ. Since this intersection contains X , this would contradict the definition of ρ as the radius
of the smallest ball enclosing X .

It is not hard to check (by contradiction) that the center of the smallest ball enclosing X lies on the
convex hull of X . It follows that for any half-space H whose boundary passes through c, the intersection
X ∩H ∩B(c, ρ) is non-empty. To establish (ii), we may assume that c 6= z for otherwise the result is clear.
Let H be the half-space containing z whose boundary passes through c and is orthogonal to the segment cz;
see Figure 3. If B(c, r−

√
r2 − ρ2) ⊂ B◦(z, r), then H ∩B(c, ρ) ⊂ B◦(z, r). Since X ∩H ∩B(c, ρ) 6= ∅,

it follows that X ∩ B◦(z, r) 6= ∅.
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r

z c

H

ρ

Figure 3: Notation for the proof of Lemma 4 when ‖c− z‖ =
√
r2 − ρ2.

Lemma 5. Let A ⊂ Rd be a compact set and B(z, α) a closed ball with center z and radius α. If 0 ≤ α <
Reach (A) and A ∩B(z, α) 6= ∅ then Reach (A) ≤ Reach (A ∩B(z, α)).

B(z, α)

B(z′, α′)

B(x, r)

r
r

α

α′

A A′′

c

z′

z

x

r −
√
r2 − ρ2

A
c

πA(c)

ρ
ρ

πA(c)

Figure 4: Notation for the proof of Lemma 5. The quantity r−
√
r2 − ρ2 represents the height of a spherical cap whose

base has radius ρ and which lies on a sphere with radius r.

Proof. See Figure 4 on the left. Assume, by contradiction, that Reach (A ∩B(z, α)) < Reach (A) and
consider a point z′ in the medial axis of A ∩B(z, α) such that

d(z′, A ∩B(z, α)) = α′ < Reach (A) .

Introduce A′′ = A ∩ B(z, α) ∩ B(z′, α′) and denote by c and ρ the center and the radius of the smallest
ball enclosing A′′. Because A′′ is contained in both B(z, α) and B(z′, α′), the radius of the smallest ball
enclosing A′′ satisfies ρ ≤ min{α, α′} < Reach (A). Because A′′ ⊂ A, we get d(c, A) ≤ d(c, A′′) ≤
ρ < Reach (A) and therefore c has a unique closest point πA(c) in A. Take r to be any real number
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such that max{α, α′} < r < Reach (A). We claim that r −
√
r2 − ρ2 < d(c, A); see Figure 4 for a

geometric interpretation of the quantity r −
√
r2 − ρ2. Indeed, for every (z0, r0) ∈ {(z, α), (z′, α′)}, since

A′′ ⊂ B(z0, r0) and r0 ≥ ρ, Lemma 4 (i) implies that the following inclusion holds:

B(c, r0 −
√
r2

0 − ρ2) ⊂ B(z0, r0).

Since the map r 7→ r −
√
r2 − ρ2 is strictly decreasing in [ρ,+∞) and ρ ≤ r0 < r, we get that

B(c, r −
√
r2 − ρ2) ⊂ B◦(z, α) ∩ B◦(z′, α′).

By construction, B◦(z′, α′) contains no points ofA∩B◦(z, α). It follows that B◦(z, α)∩B◦(z′, α′) contains
no points of A, and neither does B(c, r −

√
r2 − ρ2). Thus, r −

√
r2 − ρ2 < d(c, A) = ‖c − πA(c)‖ as

claimed. Let us consider the point x = πA(c)+ r
d(c,A)(c−πA(c)); see Figure 4 on the right. By construction

‖x− πA(c)‖ = r < Reach (A) and therefore x has a unique closest point πA(x) in A which, by Lemma 3,
satisfies πA(x) = πA(c). Since B(c, d(c, A)) ⊂ B(x, d(x,A)), we deduce that

B(c, r −
√
r2 − ρ2) ⊂ B◦(x, r).

Applying Lemma 4 (ii) we get that A′′ ∩ B◦(x, r) 6= ∅ and therefore B(x, r) contains points of A in its
interior. But this contradicts d(x,A) = r.

Lemma 6. Consider a compact set A ⊂ Rd and a finite set σ ⊂ Rd. If 0 ≤ α < Reach (A) and
A ∩ B(σ, α) 6= ∅ then Reach (A) ≤ Reach (A ∩ B(σ, α)).

Proof. By induction over the size of σ.

The following lemma is a milestone for the proof of Lemma 8.

Lemma 7. Let (An)n∈N be a sequence of non-empty compact subsets of Rd decreasing with respect to
the inclusion order. If there exists a real number r such that 0 ≤ r ≤ Reach (An) for all n ∈ N, then
r ≤ Reach

(⋂
n∈NAn

)
.

Proof. LettingA =
⋂
n∈NAn, we first show that the Hausdorff distance dH(An, A) tends to 0 as n→ +∞.

For ε > 0, introduce the set Lε = {x ∈ Rd | d(x,A) ≥ ε} and notice that
⋂
n∈N (Lε ∩An) = Lε ∩A = ∅.

Since the sequence of compact sets (Lε ∩ An)n∈N is decreasing, the only possibility is that Lε ∩ Ai = ∅
for some i ∈ N. Equivalently, dH(Ai, A) < ε which proves the convergence of An to A under Hausdorff
distance.

Let r′ be a positive real number in the open interval (0, r) and let z′ be a point whose distance to A is r′.
Let us prove that z′ has a unique closest point in A. For n large enough, d(z′, An) < r and z′ has a unique
closest point an in An. All points an are contained in the closed ball B(z′, r) and therefore, we can extract
from (an)n∈N a subsequence (ani)i∈N that converges to a point a. Since dH(Ani , A) tends to 0 as i→ +∞,
we deduce that the point a must belong to A. Let us define the point zni by

zni = ani +
r

‖z′ − ani‖
(z′ − ani).

The sequence (zni) converges to the point z = a + r
‖z′−a‖(z

′ − a) and we get d(z,A) ≤ ‖z − a‖ = r.
By Lemma 3, the point zni shares with z′ the same closest point in Ani , namely ani and by construction
‖zni − ani‖ = r. Thus, B◦(zni , r) ∩ A = ∅ and by passing to the limit, we get that B◦(z, r) ∩ A = ∅, or
equivalently that d(z,A) ≥ r. Thus, d(z,A) = r = ‖z − a‖ and since z′ lies on the open line segment za,
it has a unique closest point in A, namely the point a. Since this is true for all r′ ∈ (0, r), we deduce that
Reach (A) ≥ r.
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Lemma 8. Let A and σ 6= ∅ be two compact sets of Rd. If 0 ≤ α < Reach (A) and A ∩ B(σ, α) 6= ∅ then
Reach (A) ≤ Reach (A ∩ B(σ, α)).

Proof. Consider a sequence {zi}i∈N which is dense in σ. Lemma 6 implies that for all n ≥ 0, we have
Reach (A ∩

⋂n
i=1 B(zi, α)) ≥ α. Applying Lemma 7 we get that Reach

(
A ∩

⋂
i∈N B(zi, α)

)
≥ α. We

claim that A ∩
⋂
i∈N B(zi, α) = A ∩

⋂
z∈σ B(z, α). One direction is trivial. If a ∈ A ∩

⋂
z∈σ B(z, α),

then a ∈ A ∩
⋂
i∈N B(zi, α). For the other direction, take a ∈ A ∩

⋂
i∈N B(zi, α) and let us prove that

∀z ∈ σ, ‖z − a‖ ≤ α. Assume, by contradiction, that for some z ∈ σ, one has ‖z − a‖ > α. Then, there is
i ∈ N such that ‖z− zi‖ < ‖z− a‖−α, yielding ‖zi− a‖ ≥ ‖z− a‖−‖z− zi‖ > α, which is impossible.
We have just shown that a ∈ A ∩

⋂
z∈σ B(z, α).

4 The restricted Čech complex

Given a subset A ⊂ Rd, a finite point set P and a real number α ≥ 0, let us define the Čech complex of
P at scale α, CechA(P, α), restricted by A as the set of simplices spanned by points in P that fit in a ball
of radius α whose center belongs to A. Equivalently, CechA(P, α) = Nrv{A ∩ B(p, α) | p ∈ P}. In
this section, we give conditions under which A and CechA(P, α) are homotopy equivalent (Theorem 1).
Recall that B(σ, α) =

⋂
z∈σ B(z, α) is the common intersection of balls with radius α centered at σ. In the

proof, we will argue that A ∩ B(σ, α) is either empty or contractible, whenever 0 ≤ α < Reach (A). This
argument is encapsulated in Lemma 10 and follows from Lemma 9. Let Radius (X) designate the radius of
the smallest ball enclosing the compact set X .

Lemma 9. If X ⊂ Rd is a non-empty compact set with Radius (X) < Reach (X), then X is contractible.

c

πX(c)

Reach (X
)

Radius (X)

x

H(t, x)
X

Figure 5: Notation for the proof of Lemma 9.

Proof. We recall that for every point m such that d(m,X) < Reach (X) there exists a unique point of X
closest to m, which we denote by πX(m). Furthermore, we know from [16, page 435] that for 0 < r <
Reach (X) the projection map πX onto X is Lipschitz for points at distance less than r from X . Denote by
c the center of the smallest ball enclosing X; see Figure 5. If x ∈ X and t ∈ [0, 1], one has

d((1− t)x+ tc,X) ≤ ‖(1− t)x+ tc− x‖ ≤ ‖c− x‖ ≤ Radius (X) < Reach (X) .

Thus, the map H : [0, 1] × X → X defined by H(t, x) = πX((1 − t)x + tc) is Lipschitz and defines a
deformation retraction of X onto {πX(c)}.
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We deduce immediately the following lemma. Besides being useful for proving Theorem 1, it will turn
out to be a key tool in Section 6.

Lemma 10. LetA be a compact set of Rd and α a real number such 0 ≤ α < Reach (A). For all non-empty
compact subsets σ ⊂ Rd, the intersection A ∩ B(σ, α) is either empty or contractible.

Proof. Suppose A ∩ B(σ, α) 6= ∅. By Lemma 8,

Radius (A ∩ B(σ, α)) ≤ α < Reach (A) ≤ Reach (A ∩ B(σ, α)) .

By Lemma 9, A ∩ B(σ, α) is contractible.

This lemma can be seen as a variant of Lemma 7 in [2], Proposition 12 in [8] and the local reach lemma
in [3] which all say that if A is a k-manifold that intersects a ball B with radius α < Reach (A), then A∩B
is a topological k-ball.

Theorem 1. Let A ⊂ Rd be a compact set, P ⊂ Rd a finite point set and α a real number such that
0 ≤ α < Reach (A) and A ⊂ P⊕α. Then, CechA(P, α) and A have the same homotopy type.

Proof. Since A ⊂ P⊕α, clearly A =
⋃
p∈P (A ∩ B(p, α)). By Lemma 10, for all ∅ 6= σ ⊂ P , the

intersection
⋂
z∈σ(A∩B(z, α)) is either empty or contractible. We conclude by applying the Nerve Lemma

to the collection {A ∩B(p, α) | p ∈ P}.

5 Restricting the Čech complex by collapses

In this section, we state our second theorem (horizontal brown arrow in Figure 1). The theorem describes
conditions under which there exists a sequence of collapses that transforms Cech(P, α) into its restricted
version CechA(P, α). It can be seen as a combinatorial version of Lemma 2 which says that, under the same
hypotheses, there is a deformation retraction of P⊕α onto A. Instrumental in proving the theorem, we need
several facts about the distance between a collection of balls and a shape A. These facts are formalized in
Lemma 11. As before, we let B(σ, α) denote the common intersection of balls with radius α centered at σ
and by convention, we set d(A, ∅) = +∞. Hence, when we write that d(A,B(σ, α)) = t for some t ∈ R,
this implies implicitly that B(σ, α) 6= ∅.

Lemma 11. Let A ⊂ Rd be a compact set, σ ⊂ Rd a finite set and α ≥ 0 such that d(A,B(σ, α)) = t for
some t ∈ R. If 0 < t < Reach (A)− α, we have the following properties (see Figure 6, left):

• There exists a unique point x ∈ B(σ, α) whose distance to A is t ;

• The set σ0 = {p ∈ σ | x ∈ ∂B(p, α)} is non-empty ;

• d(A,B(σ0, α)) = t.

Proof. Since A and B(σ, α) are both compact sets, there exists at least one pair of points (a, x) ∈ A ×
B(σ, α) such that ‖a− x‖ = t; see Figure 6. By definition, x belongs to B(p, α) for all p ∈ σ. Since x lies
on the boundary of B(σ, α), it lies on the boundary of B(p, α) for at least one p ∈ σ, showing that σ0 6= ∅.
By construction, a is the point of A closest to x and, by Lemma 3, it is also the point of A closest to point
z = x+ α x−a

‖x−a‖ . It follows that d(A, {z}) = ‖a− z‖ = ‖a− x‖+ ‖x− z‖ = t+ α is realized by the pair
of points (a, z) and the distance d(A,B(z, α)) = t is realized by the pair of points (a, x). To prove that x is
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x

α

x

y = u+ x

a

Figure 6: Notation for the proofs of Lemma 11 and Theorem 2. Black dots belong to σ and the ballB(z, α) is instrumental
in proving Lemma 11. We show that B(σ0, α) ⊂ B(z, α) (on the left) using the fact that

⋂
p∈σ0 H(p) ⊂ H(z) (on the

right), where H(m) designates the half-space which contains B(m, ‖x−m‖) and whose boundary passes through x.

the unique point of B(σ, α) whose distance to A is t, it suffices to show that B(σ, α) ⊂ B(z, α). Actually,
we will prove a stronger result, namely that B(σ0, α) ⊂ B(z, α) which will also imply the third item of the
lemma, that is, d(A,B(σ0, α)) = t.

Let us associate to every point m ∈ Rd the closed half-space H(m) whose boundary passes through x
and which contains the ball B(m, ‖m− x‖):

H(m) = {y ∈ Rd, 〈m− x, y − x〉 ≥ 0}.

We establish the following four statements:

(A)
⋂
p∈σ B(p, α) ⊂ H(z);

(B)
⋂
p∈σH(p) ⊂ H(z);

(C)
⋂
p∈σ0

H(p) ⊂ H(z);

(D)
⋂
p∈σ0

B(p, α) ⊂ B(z, α);

To establish (A), we note that, by construction, x is the point of B(σ, α) whose distance to a is smallest
and therefore B(σ, α) ∩B(a, t) = {x} from which statement (A) follows by convexity of B(σ, α). Indeed,
if there were y ∈ B(σ, α) \ H(z), then y 6= x and the segment xy would intersect the interior of B(a, t).
But, this is impossible since xy is contained in B(σ, α) and B(σ, α) does not intersect the interior ofB(a, t).
To prove (A)⇒ (B), we apply to the two sets on both sides of (A) an homothety with center x and ratio s.
Consider the half-line with origin at x and passing through p and let ps be the point on this half-line whose
distance to x is s ≥ 0. Clearly, the image of the left side is

⋂
p∈σ B(ps, sα) and the image of the right side

is H(z). We thus get that
⋂
p∈σ B(ps, sα) ⊂ H(z) for all s ≥ 0. Taking the limit as s tends to infinity (or

equivalently, taking the union of left sides for all values of s), we get (B). Statement (B) means that for all
y ∈ Rd, the following implication holds:

min
p∈σ
〈p− x, y − x〉 ≥ 0 =⇒ 〈z − x, y − x〉 ≥ 0.

10



Noting that if the above implication holds for all y in a small neighborhood of x, then it holds for all y ∈ Rd,
we deduce that (B)⇒ (C). To prove (C)⇒ (D), we observe that (C) implies that for all y ∈

⋂
p∈σ0

H(p),
the distance between y and the boundary of H(z) is always larger than or equal to the distance between y
and the boundary of H(p) for some p ∈ σ0. Formally, this means that for all u ∈ Rd and all δ ≥ 0, the
following implication holds:

min
p∈σ0

〈p− x, u〉 ≥ δ =⇒ 〈z − x, u〉 ≥ δ

Plugging δ = ‖u‖2
2 in the above implication and noting that for all m ∈ σ0 ∪ {z}, the following inequality

2〈m− x, u〉 ≥ ‖u‖2 can be rewritten as ‖(m − x) − u‖2 ≤ α2, we get that for all u ∈ Rd, the following
implication holds:

max
p∈σ0

‖p− u− x‖2 ≤ α2 =⇒ ‖z − u− x‖2 ≤ α2.

Equivalently, (D) holds and B(σ0, α) ⊂ B(z, α), as required.

Theorem 2. Let ε ≥ 0, α ≥ 0, and r ≥ 0. Consider a compact set A ⊂ Rd with Reach (A) ≥ r. Let
P ⊂ Rd be a finite set such that dH(A,P ) < ε. There exists a sequence of collapses from Cech(P, α) to
CechA(P, α) whenever ε, α and r satisfy the following two conditions:

(i)
√

2α < r − ε;

(ii) r −
√

(r − ε)2 − α2 < α− ε.

In particular, for ε < (3−
√

8)r and α = (2 +
√

2)ε, conditions (i) and (ii) are fulfilled.

Proof. Letting β = r−
√

(r − ε)2 − α2, we observe that condition (i) implies β < r−α and condition (ii)
is equivalent to β < α−ε. For t ≥ 0, we define the simplicial complexKt = Nrv{A⊕t∩B(p, α) | p ∈ P}.
Notice thatK0 = CechA(P, α) andK+∞ = Cech(P, α). Using the fact thatKt can equivalently be defined
as Kt = {σ ⊂ P | d(A,B(σ, α)) ≤ t}, we deduce that, as t continuously decreases from +∞ to 0, the
complex Kt can only loose simplices and the set of simplices that disappear at time t is:

∆t = {σ ⊂ P | d(A,B(σ, α)) = t}.

Generic case. We first establish the theorem under the following generic condition:

(?) For all s ∈ R+, the set of simplices ∆s is either empty or has a unique inclusion-minimal element.

At the end of the proof, we will explain what to do if the above condition is not satisfied. Assuming we are
in the generic case, we proceed in two stages:

(a) First, we prove that Kt does not change at all as t decreases continuously from +∞ to β. In other
words, Kt = Cech(P, t) for all t ≥ β. Note that this is equivalent to proving that for all non-empty subsets
σ ⊂ P and all t ≥ β, ⋂

p∈σ
B(p, α) 6= ∅ ⇐⇒ A⊕t ∩

⋂
p∈σ

B(p, α) 6= ∅.

One direction is trivial: if a point belongs to the intersection on the right, then it belongs to the intersection
on the left. If the intersection on the left is non-empty, then it contains the center z of the smallest ball
enclosing σ and Radius (σ) ≤ α <

√
2α < r − ε. Lemma 14 in [4] states that if a subset σ satisfies the

following two conditions: (1) σ ⊂ A⊕ε and (2) Radius (σ) < r − ε, then Conv(σ) ⊂ A⊕t for all t ≥ β.
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Since z belongs to Conv(σ), it follows that z also belongs to the t-offset A⊕t and therefore the intersection
on the right is non-empty.

(b) Second, we prove that as t decreases continuously from β to 0, the deletion of simplices ∆t from Kt

is a collapse for all t ∈ (0, β]. Suppose ∆t 6= ∅ for some t ∈ (0, β] and let σmin be the unique inclusion-
minimal element of ∆t. Since σmin disappears at time t, so does all its cofaces and it follows that ∆t is the
set of cofaces of σmin. Since 0 < t ≤ β < r − α ≤ Reach (A) − α, Lemma 11 implies that there exists
a unique point x ∈ B(σmin, α) whose distance to A is t; see Figure 6, left. It is easy to see that ∆t has a
unique inclusion-maximal element σmax = {p ∈ P | x ∈ B(p, α)}. Thus, ∆t consists of all cofaces of
σmin and these cofaces are all faces of σmax. To prove that removing ∆t from Kt is a collapse, it suffices to
establish that σmin 6= σmax. By Lemma 11, we know that σ0 = {p ∈ σmin | x ∈ ∂B(p, α)} is non-empty
and belongs to ∆t. By the choice of σmin as the minimal element of ∆t, we have σmin ⊂ σ0 and therefore
x lies on the boundary of B(p, α) for all p ∈ σmin. Since d(x,A) = t ≤ β < Reach (A), there exists a
unique point a ∈ A such that ‖a− x‖ = t. Because dH(A,P ) < ε, we know that there exists a point q ∈ P
such that ‖q − a‖ ≤ ε. Since ‖q − x‖ ≤ ‖q − a‖+ ‖a− x‖ ≤ ε+ t ≤ ε+ β < α, we get that x lies in the
interior of B(q, α). Therefore, q belongs to σmax but not to σmin. Hence, σmin 6= σmax.

Getting rid of the genericity assumption. We need first some definitions and notations. Given a collec-
tion of maps ξp : R+ → R+, one for each p ∈ P , we define the simplicial complex

Kξ
t = Nrv{A⊕ξp(t) ∩ B(p, α) | p ∈ P}.

If each ξp is an increasing continuous bijection, the simplicial complex Kξ
t can only loose simplices as t

continuously decreases from +∞ to 0. Precisely, the set of simplices that disappear at time t is:

∆ξ
t = {σ ⊂ P | d(A,B(σ, α)) = min

p∈σ
ξp(t)}.

Given η > 0, we say that the map α : R+ → R+ is a standard η-perturbation of the identity map if (1) α is a
continuous bijection; (2) α(0) = 0; (3) limp→+∞ α(t) = +∞; (4) t ≤ α(t) ≤ t+η for all t ∈ R+. One can
easily check that the composition of two standard η-perturbations is a standard (2η)-perturbation. Suppose
now that each ξp is a standard η-perturbation and notice that Kξ

0 = CechA(P, α) and Kξ
+∞ = Cech(P, α).

By slightly adapting the first part of the proof above, it is not difficult to establish that for η > 0 small
enough, the simplicial complex Kξ

t only undergoes collapses as t continuously decreases from +∞ to 0
under the following generic condition:

(?ξ) For all s ∈ R+, the set of simplices ∆ξ
s is either empty or has a unique inclusion-minimal element.

We start by setting ξp to the identity map for all p ∈ P . If the generic condition (?ξ) is not satisfied, we
apply a small perturbation to the maps ξp so that after perturbation the generic condition (?ξ) is satisfied and
each ξp is a standard η-perturbation. The construction can be made so that η > 0 is as small as desired and
we can apply our previous findings. For this, we proceed as follows. We say that two simplices σ1 and σ2

are in conjunction at time t if they are both inclusion-minimal elements of ∆ξ
t for some t ∈ R+. We say

that t is an event time if ∆ξ
t 6= ∅. Consider two simplices that are in conjunction at time t, say σ1 and σ2.

Suppose q ∈ σ1 and q 6∈ σ2. Consider an increasing continuous bijection ψ : [0, 1] → [0, 1] that differs
from identity only in a small neighborhood of t that does not include any other event times. Furthermore,
we choose ψ such that ψ(t) ≥ t. Replacing ξq by ξq ◦ ψ and leaving unchanged ξp for all p ∈ P \ {q}, we
change the time at which σ1 disappears while keeping unchanged the time at which σ2 disappears. After
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this operation, σ1 and σ2 are not in conjunction anymore. Furthermore, the operation does not create any
new pair of simplices in conjunction. By repeating this operation a finite number of times, we thus get a
new collection of maps ξp as required.

6 Collapsing the restricted Čech complex

In this section, we find conditions under which there is a sequence of collapses transforming the restricted
Čech complex CechA(P, α) into the nerve of an α-robust covering of A. We define α-robust coverings
and state our result in Section 6.2. Our proof technique consists in introducing a family of compact sets
D = {Dp(t) | (p, t) ∈ P × [0, 1]} and monitoring the evolution of its nerve as the parameter t increases
continuously from 0 to 1. In Section 6.1, we give some general conditions on D that guarantee that the
simplicial complex K(t) = Nrv{Dp(t) | p ∈ P} only undergoes collapses as t increases from 0 to 1.
We believe that these conditions are sufficiently general to be applied to other situations and therefore
are interesting in their own right. Armed with this tool, we establish our third result in Section 6.2, that
is, we find a family of compact sets D which enjoys the properties required in Section 6.1 and such that
K(0) = CechA(P, α) and K(1) is isomorphic to the nerve of an α-robust covering of A.

6.1 Evolving families of compact sets

In this section, we present a tool that will be useful in the next section for establishing Theorem 3. Consider
a covering of a topological space and suppose this covering evolves over time. We state conditions under
which the evolution of the nerve of this covering only undergoes collapses. Conditions are formulated in a
very general setting. We do not even need to endow the topological space with a metric structure. We only
require the topological space to be compact and T1 separable. Recall that a topological space X is said to
be T1 separable if for every pair of distinct points (a, b) ∈ X2, there exist two open sets Ua and Ub such
that a ∈ Ua \ Ub and b ∈ Ub \ Ua. For instance, metric spaces are T1 separable.

In Lemma 12, we will use the notion of connectedness as defined in general topology: a topological
space (resp. subspace) is connected if it cannot be represented as the union of two disjoint non-empty open
subsets (resp. relatively open subsets). Observe that if X is a topological T1 space, then for any point
a ∈ X , the subspace X \ {a} is open. It follows that if X is connected and X \ {a} is non-empty, then {a}
cannot be open and {a}◦ = ∅. Indeed, if {a} were open, then X = (X \ {a}) ∪ {a} would be expressed as
the union of two disjoint non-empty open subsets, a contradiction.

Before stating our lemma, let us introduce one additional piece of notation. Given a finite set σ and a
map φ : σ → [0, 1), we write φ′ � φ to designate a map φ′ : σ → [0, 1] such that φ′(p) > φ(p) for all
p ∈ σ. We will say that the map φ is constant if φ(p) = φ(q) for all (p, q) ∈ σ2.

Lemma 12. Let A be a compact topological T1 space and P a finite set. Consider a family of compact
subsets of A, D = {Dp(t) | (p, t) ∈ P × [0, 1]} which satisfies the following five properties:

(a) For all 0 ≤ t < t′ ≤ 1 and all p ∈ P , we have Dp(t
′) ⊂ Dp(t)

◦;

(b)
⋃
p∈P Dp(1) = A;

(c) For all ∅ 6= σ ⊂ P and all maps φ : σ → [0, 1], the intersection D(σ, φ) =
⋂
p∈σDp ◦ φ(p) is either

empty or connected;

(d) For all ∅ 6= σ ⊂ P and all maps φ : σ → [0, 1), the following implication holds: D(σ, φ) 6= ∅ and
D(σ, φ′) = ∅ for all φ′ � φ implies that D(σ, φ) is reduced to a single point.

13



(e) For all 0 < τ ≤ 1 and all p ∈ P , one has Dp(τ) =
⋂
t∈[0,τ)Dp(t)

Then, as t increases continuously from 0 to 1, the simplicial complex Kt = Nrv{Dp(t) | p ∈ P} only
undergoes collapses.

Proof. To prove the lemma, we may assume that A is neither disconnected nor reduced to a single point.
Indeed, if A is not connected then condition (c) implies that for each p ∈ P , the subset Dp(0) is contained
entirely within one connected component of A and the connected components of A can be considered
separately. If A is reduced to a single point, then the result is clear.

AssumingA is neither disconnected nor reduced to a single point, we study the changes that occur inKt

as t increases continuously from 0 to 1. Because of condition (a), some simplices may disappear fromKt but
no simplices can ever appear in Kt. Given a simplex σ ∈ K0 \K1, we call τσ = sup{t ∈ [0, 1] | σ ∈ Kt}
the death time of σ and claim that σ ∈ Kτσ . Indeed, if τσ = 0 then σ ∈ K0 = Kτσ . Now if 0 < τσ ≤ 1,
condition (e) gives⋂

p∈σ
Dp(τσ) =

⋂
p∈σ

⋂
t∈[0,τσ)

Dp(t) =
⋂

t∈[0,τσ)

⋂
p∈σ

Dp(t) =
⋂
n∈N∗

⋂
p∈σ

Dp(τσ − τσ/n).

Since the intersection of a sequence of decreasing non-empty compact sets is non-empty, the right-hand
side above is non-empty and so is the left-hand side. Hence σ ∈ Kτσ and since σ ∈ K0 \ K1, one has
0 ≤ τσ < 1. In other words, the simplex σ belongs to the complex till its death time and disappears from
the complex right after. For t ∈ [0, 1), let ∆t be the set of simplices with death time t.

Generic case. We first establish the lemma under the following generic condition:

(?) For all s ∈ [0, 1), the set of simplices ∆s is either empty or has a unique inclusion-minimal element.

At the end of the proof, we will explain how to get rid of this genericity assumption. Consider t ∈ [0, 1)
and suppose ∆t 6= ∅. We prove that the deletion of simplices ∆t from Kt is a collapse. Let σmin be the
unique inclusion-minimal element of ∆t. Assuming we are in the generic situation, we do not need anymore
conditions (c) and (d) but can replace them with the weaker conditions (c’) and (d’) obtained by considering
constant maps for φ and φ′. Since

⋂
p∈σmin

Dp(t) 6= ∅ and
⋂
p∈σmin

Dp(t + η) = ∅ for all 0 < η ≤ 1 − t,
condition (d’) implies that

⋂
p∈σmin

Dp(t) = {a} for some a ∈ A. It is easy to see that ∆t has a unique
inclusion-maximal element σmax = {p ∈ P | a ∈ Dp(t)}. Hence, ∆t consists of all cofaces of σmin and
these cofaces are faces of σmax. To prove that removing ∆t from Kt is a collapse, it suffices to establish
that σmin 6= σmax. We proceed in two steps:

Step 1: Let us prove that a lies on the boundary of Dp(t) for all p ∈ σmin. For this, we start by proving
that a lies on the boundary of at least one Dp(t) for some p ∈ σmin. Suppose for a contradiction that a
belongs to the interior of Dp(t) for all p ∈ σmin. This implies that, for all p ∈ σmin, there exists an open
neighborhood Up of a such that a ∈ Up ⊂ Dp(t) and a ∈ U =

⋂
p∈σmin

Up ⊂
⋂
p∈σmin

Dp(t) = {a}.
It follows that U = {a} and therefore a is an isolated point of A. Since A is assumed to be connected, it
entails that A = {a}. We thus reach a contradiction since we obtain a case we have excluded. Defining
σ0 = {p ∈ σmin | a ∈ ∂Dp(t)}, we have just proved that σ0 6= ∅.

Let us now prove that σ0 = σmin. Suppose for a contradiction that σ0 is a proper subset of σmin. As
before, we can define an open set U such that a ∈ U ⊂ Dp(t) for all p ∈ σmin \ σ0. We have

a ∈
⋂
p∈σ0

Dp(t) ∩ U ⊂
⋂

p∈σmin

Dp(t) = {a}.
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Setting X =
⋂
p∈σ0

Dp(t), we thus have X ∩ U = {a} which is open in the subspace topology on X .
Since A is T1 separable, the subset X \ {a} is also open in the subspace topology on X . It follows that
X = {a}∪(X \{a}) is the union of two disjoint relatively open subsets. SinceX is connected by condition
(c’), one of the two subsets must be empty. The only possibility is thatX\{a} = ∅ andX =

⋂
p∈σ0

Dp(t) =
{a}.

Because of (a), for all t < t′ ≤ 1, we get that
⋂
p∈σ0

Dp(t
′) ⊂

⋂
p∈σ0

Dp(t)
◦ = {a}◦ = ∅. It follows

that the death time of σ0 is t and the minimality of σmin implies that σ0 = σmin, yielding a contradiction.
Thus, a lies on the boundary of Dp(t) for all p ∈ σmin.

Step 2: Let us prove that σmax 6= σmin. By condition (b), we have a ∈ A =
⋃
p∈P Dp(1) and therefore

a belongs to Dq(1) for some q ∈ P . Since t < 1, condition (a) implies that a ∈ Dq(1) ⊂ Dq(t)
◦ and

therefore q ∈ σmax. On the other hand, a 6∈ ∂Dq(t) and therefore q 6∈ σmin. It follows that σmax 6= σmin.

Getting rid of the genericity assumption. If we are not in the generic case, the idea is to apply a small
perturbation to the family D which will leave unchanged K0 and K1 and such that after perturbation (1)
D will still satisfy the hypotheses of the lemma; (2) the generic condition (?) will hold. We say that two
simplices σ1 and σ2 are in conjunction at time t if they are both inclusion-minimal elements of ∆t for some
t ∈ [a, b). We say that t is an event time if ∆t 6= ∅. Consider two simplices that are in conjunction at time t,
say σ1 and σ2. Suppose q ∈ σ1 and q 6∈ σ2. Consider an increasing continuous bijection ψ : [0, 1]→ [0, 1]
that differs from identity only in a small neighborhood of t that does not include any other event times.
Replacing Dq(t) by Dq ◦ ψ(t) and leaving unchanged Dp(t) for all p ∈ P \ {q}, we change the time
at which σ1 disappears while keeping unchanged the time at which σ2 disappears. After this operation,
σ1 and σ2 are not in conjunction anymore. Furthermore, the operation does not create any new pair of
simplices in conjunction. By repeating this operation a finite number of times, we thus get a new collection
as required.

Remark. Somewhat surprisingly, condition (c) of Lemma 12 is weaker than the condition required by
the Nerve Lemma for guaranteeing that the simplicial complex Kt = Nrv{Dp(t) | p ∈ P} is homotopy
equivalent to A at some particular value of t ∈ [0, 1]. In particular, if the Nerve Lemma applies at time
t = 0, that is, if

⋂
p∈σDp(0) is either empty or contractible for all ∅ 6= σ ⊂ P and if furthermore the five

conditions of Lemma 12 hold, then Kt will have the right homotopy type for all t ∈ [0, 1].

6.2 Towards the nerve of α-robust coverings

To state and prove our third theorem, we need some definitions. Given a subset X ⊂ Rd, we call the inter-
section of all balls of radius α containing X the α-hull of X and denote it by Hullα(X). By construction,
Hullα(X) is convex and Hull+∞(X) is the convex hull of X . Setting Clenchersα(X) = {z ∈ Rd | X ⊂
B(z, α)}, we have

Hullα(X) =
⋂

z∈Clenchersα(X)

B(z, α).

Notice that Clenchersα(X) is also convex; see Figure 7, left. Indeed, if two balls B(z1, α) and B(z2, α)
contain X , then any ball B(λ1z1 + λ2z2, α) with λ1 + λ2 = 1, λ1 ≥ 0 and λ2 ≥ 0 also contains X .
Furthermore, if X is compact, so is Clenchersα(X).

Definition 1 (α-robust coverings). A covering C = {Cv | v ∈ V } of A is α-robust if (1) each set in C can
be enclosed in an open ball with radius α; (2) Nrv C = Nrv{A ∩Hullα(Cv) | v ∈ V }.
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Of course, one may wonder if α-robust coverings of a shape A often arise in practice. Section 7 will
address this issue. For now we focus on establishing properties of α-robust coverings.

Lemma 13. If C is a finite compact α-robust covering of A and 0 ≤ α < Reach (A), then Nrv C ' A.

Proof. We apply the Nerve Lemma to the collection {A ∩ Hullα(Cv) | v ∈ V }. Clearly, A =
⋃
v∈V (A ∩

Hullα(Cv)). By Lemma 10, for all ∅ 6= σ ⊂ V , the intersection A ∩
⋂
v∈σ Hullα(Cv) is either empty or

contractible.

Combining the above lemma and Theorem 1 we thus get that Nrv C ' CechA(P, α) for all finite com-
pact α-robust coverings C = {Cv | v ∈ V } of A with 0 ≤ α < Reach (A). Next theorem strengthens this
result and states mild conditions on P and V under which there exists a sequence of collapses transforming
CechA(P, α) into a simplicial complex isomorphic to Nrv C.

Theorem 3. Let A be a compact set of Rd and α a real number such that 0 ≤ α < Reach (A). Let
C = {Cv | v ∈ V } be a compact α-robust covering of A. Let P be a finite point set and suppose there exists
an injective map f : V → P such that Cv ⊂ B◦(f(v), α) for all v ∈ V . Then, there exists a sequence of
collapses from CechA(P, α) to f(Nrv C) = {f(σ) | σ ∈ Nrv C}.

Proof. We build a family of compact sets D = {Dp(t) | (p, t) ∈ P × [0, 1]} in such a way that if we let
K(t) = Nrv{Dp(t) | p ∈ P}, then CechA(P, α) = K(0) and f(Nrv C) = K(1). We then prove that this
family meets the hypotheses of Lemma 12, implying that CechA(P, α) can be transformed into f(Nrv C)
by a sequence of collapses obtained by increasing continuously t from 0 to 1. To define the family D, let us
first associate to every point p ∈ P the set

Split(p) =

{
Clenchersα(Cv) if f−1(p) = {v},
{p+, p−} if f−1(p) = ∅,

where p+ and p− are two points which are symmetric with respect to p and chosen such that B(p+, α) ∩
B(p−, α) = ∅. We then set

Dp(t) = A ∩
⋂

s∈Split(p)

B((1− t)p+ ts, α).

Let us check that CechA(P, α) = K(0) and f(Nrv C) = K(1). We claim that Split(p) 6= ∅ for all
p ∈ P . Let us consider two cases. First, if f−1(p) = ∅, then by definition Split(p) = {p+, p−} 6= ∅.
Second, if f−1(p) = {v}, then Split(p) contains at least p since Cv ⊂ B◦(p, α) by hypothesis. Thus,
Dp(0) = A ∩

⋂
s∈Split(p)B(p, α) = A ∩ B(p, α) and K(0) = CechA(P, α). On the other hand, we have

Dp(1) = A ∩
⋂
s∈Split(p)B(s, α) which we can rewrite as

Dp(1) =

{
A ∩Hullα(Cv) if f−1(p) = {v},
∅ if f−1(p) = ∅.

Thus,K(1) = f(Nrv C). Let us make some more remarks. WritingZ(p, t) = {(1−t)p+ts | s ∈ Split(p)},
we can expressDp(t) asA∩B(Z(p, t), α). Since Split(p) is compact, so isZ(p, t) and by Lemma 10,Dp(t)
is either empty or contractible. Furthermore, Cv ⊂ Dp(t) for all p ∈ f(V ), showing that the collection of
cells Dp(t) cover the shape. Applying the Nerve Lemma, we thus get that K(t) ' A for all t ∈ [0, 1].
We are now ready to prove a stronger result, namely that as t increases continuously from 0 to 1, the only
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Clenchersα(Cv)

Cv

Hullα(Cv)

Z(p, 0)

Z(p, 1)

Z(p, t)

Figure 7: Left: α-hull and α-clenchers of a planar cell Cv. Right: Z(p, t) is the image of Z(p, 1) by an homothety
centered at p with scale factor t.

changes that may occur in K(t) are collapses. For this, it suffices to establish that the family D defined
above satisfies conditions (a), (b), (c), (d) and (e) of Lemma 12.

(a) Let us prove that for all 0 ≤ t < t′ ≤ 1 and all p ∈ P , we have Dp(t
′) ⊂ Dp(t)

◦. If f−1(p) = ∅, this
is easy to see. Suppose f−1(p) = {v}; see Figure 7. We note that Z(p, 1) = Split(p) = Clenchersα(Cv)
is convex and by construction, so are all Z(p, t) for all t ∈ [0, 1]. Since Cv ⊂ B◦(p, α), it follows that
p belongs to the interior of Z(p, 1) and Z(p, t) ⊂ Z◦(p, t′) for all 0 ≤ t < t′ ≤ 1. This implies that
Dp(t

′) ⊂ Dp(t). It remains to show that no point of Dp(t
′) is in ∂Dp(t).

Suppose for a contradiction that d ∈ ∂Dp(t) ∩ Dp(t
′) and let r = max{‖d − z‖ | z ∈ Z(p, t)}. The

real number r is well-defined since Z(p, t) is compact. From d ∈ ∂Dp(t) we can easily deduce that r ≥ α.
Indeed, otherwise some neighborhood of d would belong to Dp(t) which is impossible. Let z ∈ Z(p, t) be
such that ‖z − d‖ = r. Since Z(p, t) ⊆ Z◦(p, t′), there is z′ ∈ Z(p, t′) such that ‖z′ − d‖ > r ≥ α. But,
this contradicts d ∈ Dp(t

′).

(b) Clearly,
⋃
p∈P Dp(1) = A.

(c) Given σ ⊂ P and a map φ : σ → [0, 1], we introduce the set

D(σ, φ) =
⋂
p∈σ

Dp ◦ φ(p) = A ∩
⋂
p∈σ

⋂
z∈Z(p)

B((1− φ(p))p+ φ(p)z, α).

By Lemma 10, the intersection D(σ, φ) is either empty or connected.

(d) Consider σ ⊂ P and a map φ : σ → [0, 1) such that D(σ, φ) 6= ∅. Let us prove that if D(σ, φ′) = ∅ for
all maps φ′ : σ → [0, 1] with φ′ � φ, then D(σ, φ) is a singleton. Assume, by contradiction, that D(σ, φ)
contains two points x1 and x2 and let us prove that we can find a map φ′ : σ → [0, 1] such that φ′ � φ
and D(σ, φ′) 6= ∅. Take α′ such that α < α′ < Reach (A). Since A ∩ Hullα′({x1, x2}) contains both
x1 and x2, it is non-empty and therefore contractible by Lemma 10; see Figure 8. In particular, there is a
path connecting the points x1 and x2 in A ∩ Hullα′({x1, x2}). This path has to intersect the largest ball B
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contained in Hullα′({x1, x2}) and therefore A ∩B 6= ∅. For ξ > 0 sufficiently small we have

A ∩B⊕ξ ⊂ A ∩Hullα({x1, x2}) ⊂ D(σ, φ).

By moving slightly the centers of the balls definingD(σ, φ), that is, by replacing the map φ by a map φ′ � φ
such that φ′(p)− φ(p) is small enough for all p ∈ σ, we get a new set D(σ, φ′) that still contains B. Since
∅ 6= A ∩B, we thus get that D(σ, φ′) 6= ∅, reaching a contradiction.

B

α

α′
Bξ

x1

x2

Hullα′({x1, x2})

Figure 8: Notation for the proof of Theorem 3.

(e) It is not difficult to see that
⋂
t∈[0,τ) Z(p, t) = Z(p, τ) and Dp(τ) =

⋂
t∈[0,τ)Dp(t) for 0 < τ ≤ 1.

7 Nicely triangulable spaces

Given a space A and a finite sample P of A, we are seeking a sequence of collapses that transform the
Čech complex of P with scale parameter α into a triangulation of A. We recall that a triangulation of
A is a simplicial complex whose underlying space is homeomorphic to A. If A has a triangulation, then
A is said to be triangulable. In particular, we know that compact smooth manifolds are triangulable [22].
Unfortunately, the proof involves barycentric subdivisions whose dual meshes are not likely to have convex
cells and therefore have little chance of being α-robust coverings. And yet, we know that if a triangulation
T of a space A is the nerve of an α-robust covering of A, then the previous section provides conditions
under which CechA(P, α) can be transformed into T by a sequence of collapses. This raises the question
of whether, given a space A and a scale parameter α, it is possible to find a triangulation T of A which is
the nerve of some α-robust covering of A. In this section, we focus on the question and present examples of
spaces enjoying this property.

As a warm-up, we study the easy case A = R2; see Figure 9. Consider a Delaunay triangulation T of
R2 with vertex set V and write Cv = {x ∈ R2 | ‖x− v‖ ≤ ‖x− u‖ for all u ∈ V } for the Voronoi cell of
v ∈ V . Setting C = {Cv | v ∈ V } for the collection of Voronoi cells, we have that T = Nrv C. If all angles
in T are acute, then the Voronoi cell Cv is contained in the star of v and so is Hullα(Cv) for α large enough.
In particular, by choosing carefully V and α, we can ensure that C is an α-robust covering of the plane.

To facilitate our discussion for more general spaces A, we first introduce some more notations and
definitions. Given an abstract simplicial complex T , we let g : V → R|V |−1 be an injective map that sends
the vertex set V of T to affinely independent points of R|V |−1. The underlying space of T is the point set
|T | =

⋃
σ∈T |σ|, where |σ| is the geometric simplex obtained by taking the convex hull of g(σ). If v is a

vertex of T , the open star of v in T , denoted by StT (v), is the union of the relative interiors of |σ| for all σ
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α
h(v)Cv

A ∩Hullα(Cv) A ∩ [Conv(Cv)]
⊕η0ρ

h(StT (v))

ρ

Figure 9: Left: the collection of disks and the collection of Voronoi regions both form an α-robust covering of the plane.
Right: A triangulation is nice in our context when, among other things, it is the nerve of a collection of cells Cv with size
ρ such that A∩ [Conv(Cv)]⊕η0ρ ⊂ h(StT (v)) for some η0 > 0. This property will be preserved by C1,1 diffeomorphisms
for ρ small enough.

of T that contain v [19]. By definition, the set StT (v) is thus an open subset of |T |. For brevity, we shall
write h(v) instead of h(|v|) and h(σ) instead of h(|σ|). Writing Conv(X) = Hull+∞(X) for the convex
hull of X ⊂ Rd, we introduce the following definition:

Definition 2 (nice triangulation). Let ρ and δ be two positive real numbers. A triangulation T of A ⊂ Rd is
said to be (ρ, δ)-nice with respect to (h, C) if h is a homeomorphism from |T | to A, C = {Cv | v ∈ V } is a
finite compact covering of A such that Nrv C = T and the following conditions hold:

(i) h(σ) ⊂
⋃
v∈σ Cv for all simplices σ ∈ T ;

(ii) Cv ⊂ B◦(h(v), ρ) for all v ∈ V ;

(iii) A ∩ [Conv(Cv)]
⊕δ ⊂ h(StT (v)) for all v ∈ V .

The use of Conv(Cv) in the last item of the definition is motivated by the following geometric lemma:

Lemma 14. Let X ⊂ Rd be a non-empty compact set and B(c, ρ) its smallest enclosing ball. For all α and
δ such that α ≥ ρ and α−

√
α2 − ρ2 ≤ δ, the following inclusion holds: Hullα(X) ⊂ [Conv(X)]⊕δ.

α

c

ρ

Bu+∞

u

X

Buα

Lu
Cuα

Figure 10: Notation for the proof of Lemma 14.
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Proof. See Figure 10. Consider a unit vector u ∈ Sd−1 and let Lu be the half-line emanating from c
in direction u. Let Bu

α denote the ball with radius α centered on Lu containing X and whose center is
furthest away from c. By construction, X is contained in the intersection of the two balls Bu

α and B(c, ρ).
The boundary of Bu

α ∩ B(c, ρ) consists of two spherical caps and we let Cuα be the one lying on the sphere
boundingBu

α. Observe thatX has a non-empty intersection withCuα and for all β ≥ α, the ballBu
β intersects

Cuα. The largest distance between a point of Cuα and Bu
β is upper bounded by the height of Cuα which is less

than or equal to α −
√
α2 − ρ2 ≤ δ. We thus get that Bu

α ⊂ [Bu
β ]⊕δ. Considering this inclusion over all

directions u for β = +∞ yields the result.

It follows that if T is a (ρ, δ)-nice triangulation of A with respect to (h, C), we are able to derive
conditions on α, ρ and δ which guarantee that C is an α-robust covering of A.

Lemma 15. Let A be a compact set of Rd and suppose T is a (ρ, δ)-nice triangulation of A with respect to
(h, C). Then C is an α-robust covering of A whenever the following two conditions are fulfilled: (1) ρ ≤ α
and (2) α−

√
α2 − ρ2 ≤ δ.

Proof. Suppose C = {Cv | v ∈ V } and let v ∈ V . By Lemma 14, Hullα(Cv) ⊂ [Conv(Cv)]
⊕δ; see

Figure 9, right. It follows that Cv ⊂ A ∩ Hullα(Cv) ⊂ h(StT (v)) from which we deduce the sequence of
inclusions

T = Nrv C ⊂ Nrv{A ∩Hullα(Cv) | v ∈ V } ⊂ Nrv{h(StT (v)) | v ∈ V } = T.

The nerves on the left and on the right are equal, showing that Nrv C = Nrv{A∩Hullα(Cv) | v ∈ V }.

Observe that if T is a (ρ, η0ρ)-nice triangulation of A for some η0 > 0, then conditions (1) and (2) of
Lemma 15 are satisfied for δ = η0ρ as soon as ρ is small enough. Of course, the difficult question is whether
such a triangulation T can always be found for arbitrarily small ρ.

Definition 3 (nicely triangulable). We say that A ⊂ Rd is nicely triangulable if we can find ρ0 > 0 and
η0 > 0 such that for all 0 < ρ < ρ0, there is a (ρ, η0ρ)-nice triangulation of A.

Theorem 4. Suppose A ⊂ Rd is nicely triangulable. For every 0 < α < Reach (A), there exists ε0 > 0
such that for all finite point set P ⊂ Rd and all 0 < ε < ε0 satisfying A ⊂ P⊕ε, the complex CechA(P, α)
can be transformed into a triangulation of A by a sequence of collapses.

Proof. By definition, we can find ρ0 > 0 and η0 > 0 such that for all 0 < ρ < ρ0, there is a (ρ, η0ρ)-nice
triangulation T ofAwith respect to (h, C). Let us choose ρ small enough so that ρ < α and α−

√
α2 − ρ2 ≤

η0ρ. Lemma 15 then implies that C is a compact α-robust covering ofA. Set e(T, h) = 1
2 inf ‖h(v1)−h(v2)‖

where the infimum is over all pairs of vertices v1 6= v2 of T and let ε0 be the minimum of e(T, h) and α−ρ.
Consider a function f : Vert(T ) → P that maps each vertex v to a point of P closest to h(v). Note that
f is injective, ‖h(v) − f(v)‖ ≤ ε and Cv ⊂ B◦(f(v), α) for all v ∈ V . Applying Theorem 3 yields the
existence of a sequence of collapses from CechA(P, α) to f(T ).

The next theorem provides a few examples of nicely triangulable manifolds.

Theorem 5. The following embedded manifolds are nicely triangulable:

1. The unit 2-sphere S2 = {x = (x1, x2, x3) ∈ R3 |
∑3

i=1 x
2
i = 1};

2. The flat torus T2 = {x = (x1, x2, x3, x4) ∈ R4 | x2
1 + x2

2 = 1 and x2
3 + x2

4 = 1};
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3. The m-dimensional Euclidean space Rm, embedded in Rd for some m ≤ d.

Proof. For A ∈ {S2,T2,Rm}, we proceed as follows. We build a triangulation T parameterized by some
integer n and consider a map h : |T | → A. The integer n will control the size of elements in h(T ): the
larger n the smaller the image of simplices under h. We then consider the barycentric subdivision K of T
and associate to each vertex v of T the cell Cv =

⋃
σ3v h(σ). The collection of cells Cv forms a covering

C of A. In the three cases, it is not difficult to see that we can find η0 > 0 such that T is (ρ, η0ρ)-nice with
respect to (h, C) for some ρ > 0. Furthermore, the value of ρ can be made as small as desired by increasing
n. We thus conclude that A is nicely triangulable. Below, we just describe how T and h are chosen in each
case.

b

a

1
n

Figure 11: Triangulating T2 (left) and R2 (right).

1. S2 is nicely triangulable. We start with an icosahedron centered at the origin and subdivide each
triangular face into 4n equilateral triangles. Notice that all vertices of the resulting triangulation T have
degree 6 but the 12 vertices in the original icosahedron which have degree 5. The triangulation T is then
projected onto the sphere, using the projection map h : |T | → S2 defined by h(x) = x

‖x‖ .

2. T2 is nicely triangulable. The map H : R2 → T2 defined by H(s, t) = (cos s, sin s, cos t, sin t) is
locally isometric and its restriction h : [0, 2π)2 → T2 is an homeomorphism. The idea is to build a periodic
tiling of R2 made up of identical isosceles triangles as in Figure 11, left. Let a and b be the respective height
and basis of the triangles. Consider two integers n and k such that na = kb = 2π. Taking k = b

√
3

2 nc
we get that the ratio a

b tends to
√

3
2 as n → +∞. Thus, the map H turns the periodic tiling of R2 into a

triangulation of T2 whose triangles become arbitrarily close to equilateral triangles with edge length b as
n→ +∞.

3. Rm is nicely triangulable. We start with a cubical regular grid and define T as the barycentric subdivision
of that grid; see Figure 11, right. Precisely, for each cell in the grid, we insert one vertex at its centroid.
So each edge is subdivided into 2 edges sharing the inserted vertex. We then recursively subdivide the cells
by ascending dimension. Each cubical k-cell has 2k cubical (k − 1)-cells on its boundary. We subdivide
each k-cell as a cone whose apex is the inserted vertex and whose basis is the subdivided boundary of that
cell. We claim that all stars in T are convex. Indeed each vertex in T is the centroid of an initial cubical cell
of dimension between 0 and m. Consider the vertex v that was inserted at the center of the k-dimensional
cubical cell Dv and let us describe the set of vertices Vv in the link of v in T . The vertices of Vv can be
partitioned in two subsets. The first subset contains vertices in the k-flat that supports Dv while the second
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subset contains vertices in the (d − k)-flat passing through v and orthogonal to the k-flat supporting Dv.
The vertices in the first subset lie on the boundary of Dv and the vertices in the second subset lie on the
boundary of a (m− k)-cube. Since in both flats of respective dimension k and m− k the vertices in Vv are
in convex position, it results that vertices in Vv are in convex position in Rm. As a result, it can be proved
(details are skipped) that the star of v is the convex hull of Vv. Finally, we let h be the identity map and n
the inverse of the size of the grid.

We now establish that the property of being nicely triangulable is preserved by C1,1 diffeomorphisms
between manifolds. Let us make precise what we mean in Theorem 6 by embedded C1,1 k-manifolds. A
C1,1 function is a differentiable function with a Lipschitz derivative. A C1,1 structure on a manifold is an
equivalence class of atlases whose transition functions are C1,1. Finally, C1,1 diffeormorphisms between
C1,1 manifolds are defined accordingly. In Theorem 6, we restrict our attention to shapes which are C1,1

compact manifolds without boundary embedded in Rd and whose embeddings are themselves regular and
C1,1 (for the differential structure induced by Rd) , where “regular” means that the derivative of the embed-
ding has full rank everywhere. We will say that such shapes are compact C1,1 manifolds embedded in Rd
for short. The assumption of regular embeddings entails the existence of well-defined tangent affine spaces.
A compact manifold embedded in Rd is C1,1 if and only if it has a positive reach [16].

Theorem 6. Let M and M ′ be two compact C1,1 k-manifolds without boundary embedded respectively in
Rd and Rd′ and Φ : M → M ′ a C1,1 diffeomorphism. M is nicely triangulable if and only if M ′ is nicely
triangulable.

The proof is given in the Appendix.

8 Discussion

The paper leaves unanswered a few questions that we discuss now:

(1) Our result assumes the shape to be nicely triangulated. In the paper, we list a few simple spaces which
enjoy this property. Is it possible to extend the list to a larger class of spaces? We conjecture that
compact smooth k-manifolds embedded in Rd are nicely triangulable. Indeed, for k = 2, it is known
that any compact connected surface (without boundary) embedded in R3 is homeomorphic to either the
2-sphere or a connected sum of g tori for g ≥ 1. Hence, thanks to Theorem 6, it would suffice to provide
a template of nicely triangulable surface of genus g for each g ≥ 2, in a way similar to what we did
for g = 0 and g = 1. Unfortunately, for higher dimensional manifolds, one cannot rely anymore on an
existing classification. Another approach has to be considered.

(2) Our proof is not constructive. Indeed, the order in which to collapse faces in the Čech complex is
determined by sweeping space with a t-offset of the shape for decreasing values of t. Since the common
setting consists in describing the shape through a finite sample, the knowledge of the t-offsets of the
shape is lost. Nonetheless, is it possible to turn our proof into an algorithm? Can we do the same for
Rips complexes? A positive answer is even more desirable for the second class of complexes due to
their computational tractability. We leave those questions open for future work.
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A C1,1 diffeomorphisms preserve nicely triangulable manifolds

The goal of this section is to prove Theorem 6.

Proof of Theorem 6. Let x ∈ M . Since M is a compact C1,1 k-manifold embedded in Rd, there exists a
k-dimensional affine space TM (x) ⊂ Rd tangent to M at x. Let πx : M → TM (x) be the orthogonal
projection onto the tangent space TM (x) and let π′Φ(x) : M ′ → TM ′(Φ(x)) the orthogonal projection onto
TM ′(Φ(x)). Since M and M ′ are compact, we can find two constants K and K ′ independent of x such that:

∀y ∈M, ‖y − πx(y)‖ < K‖y − x‖2 (1)

∀y ∈M ′, ‖y − π′Φ(x)(y)‖ < K ′‖y − Φ(x)‖2 (2)

Given t0 > 0, we consider the open set Ux = M ∩ B◦(x, t0) and adjust t0 in such a way that

1. The restriction πx : Ux → πx(Ux) is an homeomorphism for all x ∈M ;

2. The restriction π′Φ(x) : Φ(Ux)→ π′Φ(x)(Φ(Ux)) is also an homeomorphism for all x ∈M .

For sake of conciseness, we only sketch a justification for the existence of such a t0 > 0. The local
property (i.e. the existence of t0 > 0 for a given x ∈ M ) follows easily from the definition of embedded
C1,1 k-manifolds. Indeed, the assumption of a regular embedding entails that πx has full rank derivative at
x and the inverse function theorem can be applied to get the local property. In order to get a uniform t0 > 0
(the requested global property) one can establish first the following strengthening of the local property: For
any x ∈ M , there is tx > 0 such that for any y ∈ M ∩ B◦(x, tx), the restriction of πy to M ∩ B◦(x, tx) is
a C1 homeomorphism. Compactness of M can then be used in the usual manner to get a uniform t0.

The collection of pairs {(Ux, πx)}x∈M forms an atlas in the C1,1 structure of M . Similarly, the collec-
tion of pairs {(Φ(Ux), π′Φ(x))}x∈M forms an atlas in the C1,1 structure ofM ′. Let TM (x) be the linear space
associated to TM (x) and denote by DΦx the derivative of Φ at x, seen as a linear map between TM (x) and
TM ′(Φ(x)). Since M is compact, there is a constant KΦ independent of x such that:

∀y ∈M, ‖Φ(y)− Φ(x)−DΦx(πx(y)− x)| < KΦ‖y − x‖2, (3)

and two positive numbers κ2 ≥ κ1 > 0, again independent of x by compactness of M , such that

∀u ∈ TM (x), κ1‖u‖ ≤ ‖DΦx(u)‖ ≤ κ2‖u‖. (4)

Consider the affine function Φ̂x : TM (x) → TM ′(Φ(x)) defined by Φ̂x(y) = Φ(x) + DΦx(y − x). Com-
bining Equations (1) (2) and (3), we can find a constant LΦ independent of x such that for all t < t0 and all
compact sets A ⊂M ∩B(x, t) :

dH(Φ̂x ◦ πx(A), π′Φ(x) ◦ Φ(A)) < LΦt
2 (5)

Now, assume that M is nicely triangulable and let us prove that M ′ is also nicely triangulable. By
definition, we can find ρ0 > 0 and η0 > 0 such that, for all 0 < ρ < ρ0, there is a (ρ, η0ρ)-nice triangulation
T of M with respect to some (h, C). Suppose C = {Cv | v ∈ V } and consider the covering C′ = {Φ(Cv) |
v ∈ V }, the homeomorphism h′ = Φ◦h : |T | →M ′, the real numbers ρ′ = 2κ2ρ and η′0 = κ1η0−5LΦρ

2κ2
. Let

us prove that by choosing ρ small enough, T is a (ρ′, η′0ρ
′)-nice triangulation of M ′ with respect to (C′, h′).

In other words, we need to check that conditions (ii) and (iii) of Definition 2 are satisfied for C = C′, h = h′,
ρ = ρ′ and δ = η′0ρ

′. Take v ∈ V and set x = h(v), C = Cv, S = h(StT (v)).
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(ii) By definition of T , we have x ∈ C ⊂ B◦(x, ρ). Taking the image of this relation under Φ and
choosing ρ > 0 small enough, we get that Φ(x) ∈ Φ(C) ⊂ Φ(B◦(x, ρ)) ⊂ B◦(Φ(x), ρ′). The last inclusion
is obtained by combining Equations (1), (3) and (4).

(iii) Let us choose a positive real number ρ < min {ρ0,
t0
2 } small enough to ensure that η′0 > 0 and let

us prove that M ′ ∩ [Conv(C)]⊕η
′
0ρ
′
⊂ S. By choice of T as a (ρ, η0ρ)-nice triangulation of M with respect

to (h, C), we have that M ∩ Conv(C)⊕η0ρ ⊂ S. Furthermore, C ⊂ B(x, ρ) and S ⊂ B(x, 2ρ). Thus, by
choosing ρ < t0

2 , we have S ⊂ Ux and

Ux ∩ Conv(C)⊕η0ρ ⊂ S.

Taking the image by the homeomorphism πx : Ux → πx(Ux) on both sides and using πx(A ∩ B) =
πx(A) ∩ πx(B) we get

πx(Conv(C)⊕η0ρ) ⊂ πx(S).

Let Bk(0, r) denote the k-dimensional ball of TM (x) centered at the origin with radius r. Writing A ⊕
B = {a + b | a ∈ A, b ∈ B} for the Minkowski sum of A and B, it is not too difficult to prove that
πx(A⊕δ) = πx(A)⊕Bk(0, δ). It follows that

πx(Conv(C))⊕Bk(0, η0ρ) ⊂ πx(S).

Taking the image under Φ̂x on both sides we get

Φ̂x ◦ πx(Conv(C))⊕DΦxBk(0, η0ρ) ⊂ Φ̂x ◦ πx(S)).

Let B′k(0, r) denote the k-dimensional ball of TM ′(Φ(x)) centered at the origin with radius r. Using Equa-
tion (4) we get that B′k(0, κ1η0ρ) ⊂ DΦxBk(0, η0ρ). Since Φ̂x and πx are both affine, so is the composition
and therefore Φ̂x ◦ πx(Conv(C)) = Conv(Φ̂x ◦ πx(C)). It follows that

Conv(Φ̂x ◦ πx(C))⊕B′k(0, κ1η0ρ) ⊂ Φ̂x ◦ πx(S).

Recalling that C ⊂ B(x, ρ) and S ⊂ B(x, 2ρ) and combining the above inclusion with Equation (5) we
obtain

Conv(π′x ◦ Φ(C))⊕Bk(0, κ1η0ρ− 5LΦρ
2) ⊂ π′x ◦ Φ(S).

Interchanging Conv and π′x, noting that η′0ρ
′ = κ1η0ρ − 5LΦρ

2 and using π′x(A⊕δ) = π′x(A) ⊕ Bk(0, δ)
we get

π′x(Conv(Φ(C))⊕η
′
0ρ
′
) ⊂ π′x ◦ Φ(S).

Since π′x : Φ(Ux) → π′Φ(x)(Φ(Ux)) is homeomorphic, we thus obtain M ′ ∩ Conv(Φ(C))⊕η
′
0ρ ⊂ Φ(S) as

desired.
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