ON THE NUMBER OF RICH LINES IN HIGH DIMENSIONAL REAL VECTOR SPACES

MÁRTON HABLICSEK AND ZACHARY SCHERR

Abstract

In this short note we use the Polynomial Ham Sandwich Theorem to strengthen a recent result of Dvir and Gopi about the number of rich lines in high dimensional Euclidean spaces. Our result shows that if there are sufficiently many rich lines incident to a set of points then a large fraction of them must be contained in a hyperplane.

1. Introduction

Let P be a set of points of size n in \mathbb{R}^{d}, and consider a set of lines L in \mathbb{R}^{d} so that each line in L contains at least r points of P. We investigate the possible size of L.

We begin our discussion with the case of $d=2$. The celebrated result of Szemerédi and Trotter (which was generalized to the complex plane by Tóth [8] and Zahl [9]) asserts the following.

Theorem 1.1 ([6]). Given P, a set of points in \mathbb{R}^{2}, and L, a set of lines, the number of incidences $I(L, P)$ between L and P satisfies

$$
I(L, P)=O\left(|L|^{2 / 3}|P|^{2 / 3}+|L|+|P|\right) .
$$

In our case, each line contains at least r points of P, therefore, $I(L, P) \geq$ $r|L|$. Rearranging the terms we obtain that

$$
|L|=O\left(\frac{n^{2}}{r^{3}}+\frac{n}{r}\right) .
$$

This bound is sharp. In a 2 -dimensional square grid of n points, for example, each line parallel to one of the sides of the square contains $O(\sqrt{n})$ points, and there are $O(\sqrt{n})=O\left(\frac{n^{2}}{(\sqrt{n})^{3}}\right)$ such lines.

In the higher dimensional case, the d-dimensional grid of n points contains $O\left(\frac{n^{2}}{r^{d+1}}\right)$ lines for $r=o\left(n^{1 / d}\right)$ 7]. Similar constructions can be given using low dimensional grids as well. Motivated by these examples, Dvir and Gopi conjectured the following.

Conjecture $1.2([1])$. Let P be a set of n points in \mathbb{C}^{d} and let L be a set of lines so that each line contains at least r points of P. There are constants

[^0]K and N, dependent only on d, so that if
$$
|L| \geq K\left(\frac{n^{2}}{r^{d+1}}+\frac{n}{r}\right)
$$
then there exists $1<\ell<d$ and a subset $P^{\prime} \subseteq P$ of size $N \frac{n}{r^{d-\ell}}$ which is contained in an ℓ-dimensional affine subspace.

In their paper [1], Dvir and Gopi show a weaker version of the conjecture.
Theorem 1.3 ([1]). Let P be a set of n points in \mathbb{C}^{d} and let L be a set of lines so that each line contains at least r points of P. There are constants K and N, dependent only on d, so that if

$$
|L| \geq K \frac{n^{2}}{r^{d}}
$$

then there exists a subset of P of size $N \frac{n}{r^{d-2}}$ contained in a $(d-1)$-dimensional hyperplane.

Their proof involves a clever use of design matrices in order to show that almost all the lines lie in a low degree hypersurface (the degree needs to be less than r). In our paper, we prove a stronger version of Theorem 1.3 but over \mathbb{R} rather than over \mathbb{C}. The strategy of our proof is similar to that of Dvir and Gopi, except working over \mathbb{R} allows us to use the Polynomial Ham Sandwich Theorem (Theorem 2.3) in place of design matrices.

2. Main Results

Our main result shows that if there are too many r-rich lines then most of the lines must lie in a low degree hypersurface.

Theorem 2.1. Let P be a set of n points in \mathbb{R}^{d} and let L be a set of lines so that each line contains at least r points of P. There is a constant K, dependent only on d, so that if

$$
|L| \geq K \frac{n^{2}}{r^{d+1}}
$$

then there exists a hypersurface of degree at most $\frac{r}{4}$ containing at least $4 \frac{n^{2}}{r^{d+1}}$ lines of L.

Remark. One can interpret the theorem above as follows. If a set of points is such that there exist a lot of non-generic large subsets, then a large fraction of the points must be non-generic. In our case we know that there are $K \frac{n^{2}}{r^{d+1}}$ non-generic subsets of size r, and we deduce that a large fraction of points lie in a low degree hypersurface.

As an easy consequence of Theorem 2.1 we obtain a better bound over \mathbb{R} than the bound in Theorem 1.3.

Theorem 2.2. Let P be a set of n points in \mathbb{R}^{d} and let L be a set of lines so that each line contains at least r points of P. There are constants K and N, dependent only on d, so that if

$$
|L| \geq K \frac{n^{2}}{r^{d+1}}
$$

then there exists a hyperplane containing $N \frac{n}{r^{d-1}}$ points of P.
The main technique in our proof is the Polynomial Ham Sandwich Theorem which we state below.

Theorem 2.3 (Polynomial Ham Sandwich). Let S be a finite set of points in \mathbb{R}^{d}, and let $m \geq 1$. Then there exists a non-trivial polynomial f of degree m and a decomposition of $\left\{x \in \mathbb{R}^{d}: f(x) \neq 0\right\}$ into at most $O\left(m^{d}\right)$ cells each of which is an open set with boundary in $\left\{x \in \mathbb{R}^{d}: f(x)=0\right\}$, and each of which contains at most $O\left(\frac{|S|}{m^{d}}\right)$ points of S.

This poweful tool was invented by Guth and Katz in [2] to give a nearly complete solution to the Erdős distinct distance problem and has been applied, for instance, to give a new proof of the Szemerédi-Trotter theorem, the Pach-Sharir theorem [5] (see [3] for more details) and some variants of the joints problem [4.

We remark that the Polynomial Ham Sandwich Theorem relies on the topology of \mathbb{R}, and thus our proof only works over \mathbb{R}. On the other hand, we believe that Theorem 2.1 holds over any prime field \mathbb{F}_{p} and over \mathbb{C} as well, and hence it would be nice to see a proof of Theorem 2.1 which does not use the Polynomial Ham Sandwich Theorem.

Question 2.4. Let P be a set of n points in k^{d}, where k is either a prime field \mathbb{F}_{p} or the field of complex numbers. Let L be a set of lines so that each line contains at least r points of P. Is there a constant K, dependent only on d, so that if

$$
|L| \geq K \frac{n^{2}}{r^{d+1}}
$$

then there exists a hypersurface of degree at most $\frac{r}{4}$ containing at least $4 \frac{n^{2}}{r^{d+1}}$ lines of L ?

We remark that recently in [10, Zahl proved a slightly weaker version of Theorem 2.2 over \mathbb{C} using a version of the Polynomial Ham Sandwich Theorem over \mathbb{C} (see [8] or [9]).

3. Proof of the main theorems

In this section we prove Theorems 2.1 and 2.2 . We begin with the proof of Theorem 2.1 which we restate below.

Theorem 3.1. Let P be a set of n points in \mathbb{R}^{d}, and let L be a set of lines so that each line contains at least r points of P. There is a constant K, dependent only on d, so that if

$$
|L| \geq K \frac{n^{2}}{r^{d+1}}
$$

then there exists a hypersurface of degree at most $\frac{r}{4}$ containing at least $4 \frac{n^{2}}{r^{d+1}}$ lines of L.

Proof. Assume that $|L|=K \frac{n^{2}}{r^{d+1}}$ for a large constant K (which will be chosen in the end of the proof) and fix a positive integer m in the range $\frac{r}{8}<m<\frac{r}{4}$ (the interesting case of the theorem is when r is large). Using the Polynomial Ham Sandwich Theorem (Theorem[2.3), we can find a polynomial f of degree m partitioning \mathbb{R}^{d} into the zero locus of f as well as $M=O\left(m^{d}\right)$ open cells

$$
\mathbb{R}^{d}=\{x: f(x)=0\} \cup C_{1} \cup C_{2} \cup \ldots \cup C_{M}
$$

so that each cell contains at most $O\left(\frac{n}{m^{d}}\right)$ points of P and has boundary in the zero set of f. We denote $P_{i}:=C_{i} \cap P$.

Let

$$
L_{\text {cell }}=\left\{\ell \in L: \exists i \text { with }\left|\ell \cap P_{i}\right| \geq 2\right\} .
$$

Since the zero locus of f forms the boundary of the union of the cells, Bézout's theorem guarantees that every line in \mathbb{R}^{d} intersects at most m cells. If $\ell \in L \backslash L_{\text {cell }}$, then $\left|\ell \cap P_{i}\right| \leq 1$ for each i, so in particular

$$
\begin{equation*}
\left|\bigcup_{i=1}^{M} \ell \cap P_{i}\right|=\sum_{i=1}^{M}\left|\ell \cap P_{i}\right| \leq m<\frac{r}{2} . \tag{3.2}
\end{equation*}
$$

By assumption, every line in L contains r points of P so lines in $L \backslash L_{\text {cell }}$ must contain at least $\frac{r}{2}>m$ in the zero locus of f. We can again invoke Bézout to conclude that such a line is necessarily contained in the zero locus of f. Since what we are after is a lower bound on the number of lines in L which are contained in the zero locus of f, this discussion shows that it suffices to give an upper bound on the size of $L_{\text {cell }}$.

To do so, we take advantage of the fact that every line $\ell \in L_{\text {cell }}$ has the property that $\left|\ell \cap P_{i}\right| \geq 2$ for some i. The total number of lines, counted with multiplicity, in \mathbb{R}^{d} which intersect some P_{i} in at least two points is

$$
\begin{equation*}
\sum_{i=1}^{M}\binom{\left|P_{i}\right|}{2} \tag{3.3}
\end{equation*}
$$

where each such line ℓ is counted with multiplicity

$$
k_{\ell}:=\sum_{i=1}^{M}\binom{\left|\ell \cap P_{i}\right|}{2}=\frac{1}{2}\left(\sum_{i=1}^{M}\left|\ell \cap P_{i}\right|^{2}-\sum_{i=1}^{M}\left|\ell \cap P_{i}\right|\right) .
$$

We have already observed that a line not contained in the zero locus of f can only intersect at most m cells. If

$$
a_{i}= \begin{cases}0, & \ell \cap P_{i}=\emptyset \\ 1, & \text { otherwise }\end{cases}
$$

then this observation, combined with the the Cauchy-Schwarz inequality, gives

$$
\begin{aligned}
\left(\sum_{i=1}^{M}\left|\ell \cap P_{i}\right|\right)^{2} & =\left(\sum_{i=1}^{M} a_{i}\left|\ell \cap P_{i}\right|\right)^{2} \\
& \leq \sum_{i=1}^{M} a_{i}^{2} \cdot \sum_{i=1}^{M}\left|\ell \cap P_{i}\right|^{2} \\
& \leq m \sum_{i=1}^{M}\left|\ell \cap P_{i}\right|^{2}
\end{aligned}
$$

Therefore we get a lower bound

$$
\begin{equation*}
k_{\ell} \geq \frac{1}{2}\left(\frac{\left(\sum_{i=1}^{M}\left|\ell \cap P_{i}\right|\right)^{2}}{m}-\sum_{i=1}^{M}\left|\ell \cap P_{i}\right|\right) \tag{3.4}
\end{equation*}
$$

If $\ell \in L_{\text {cell }}$, then (3.2) guarantees that

$$
\sum_{i=1}^{M}\left|\ell \cap P_{i}\right| \geq \frac{r}{2}
$$

For such ℓ, (3.4) becomes

$$
k_{\ell} \geq \frac{r}{4}\left(\frac{r}{2 m}-1\right)=\frac{r^{2}-2 m r}{8 m}
$$

Since $m<\frac{r}{4}$, it follows that

$$
k_{\ell} \geq \frac{r^{2}-r^{2} / 2}{8 m} \geq \frac{r^{2}}{16 m}
$$

when r is large enough.
Every $\ell \in L_{\text {cell }}$ is counted with multiplicity k_{ℓ} in (3.3). Thus

$$
\begin{equation*}
\sum_{i=1}^{M}\binom{\left|P_{i}\right|}{2} \geq \sum_{\ell \in L_{\text {cell }}} k_{\ell} \geq\left|L_{\text {cell }}\right| \frac{r^{2}}{16 m} \tag{3.5}
\end{equation*}
$$

We know that $M=O\left(m^{d}\right)$ and $\left|P_{i}\right|=O\left(\frac{n}{m^{d}}\right)$, so we can rewrite (3.5) as

$$
\left|L_{c e l l}\right|=\frac{16 m}{r^{2}} O\left(m^{d} \frac{n^{2}}{m^{2 d}}\right)=\frac{1}{r^{2}} O\left(\frac{n^{2}}{m^{d-1}}\right)
$$

Since $\frac{r}{8}<m$, this last equation becomes

$$
\left|L_{\text {cell }}\right|=O\left(\frac{n^{2}}{r^{d+1}}\right) .
$$

The set of lines in L which are contained in the zero locus of f has size

$$
|L|-\left|L_{\text {cell }}\right| \geq K \frac{n^{2}}{r^{d+1}}-\left|L_{\text {cell }}\right|
$$

and so we can choose K large enough so as to ensure that this last quantity is bounded below by $4 \frac{n^{2}}{r^{d+1}}$.

As an easy corollary we prove Theorem [2.2. In order to do so, we use the following standard graph theoretic lemma which can also be found in the paper of Dvir and Gopi.

Lemma 3.6 (Lemma 2.8, [1]). Let $G=(A \sqcup B, E)$ be a bipartite graph with a non-empty edge set $E \subset A \times B$. Then there exist non-empty subsets $A^{\prime} \subset A$ and $B^{\prime} \subset B$ such that if we consider the induced subgraph $G^{\prime}=\left(A^{\prime} \sqcup B^{\prime}, E^{\prime}\right)$, then

- The minimum degree in A^{\prime} is at least $\frac{|E|}{4|A|}$,
- The minimum degree in B^{\prime} is at least $\frac{|E|}{4|B|}$,
- $\left|E^{\prime}\right| \geq|E| / 2$.

We are ready to prove the theorem.
Theorem 3.7. Let P be a set of n points in \mathbb{R}^{d}, and let L be a set of lines so that each line contains at least r points of P. There are constants K and N, dependent only on d, so that if

$$
|L| \geq K \frac{n^{2}}{r^{d+1}}
$$

then there exists a hyperplane containing $N \frac{n}{r^{d-1}}$ points of P.
Proof. We may use the previous theorem to conclude that if K is large enough then there exists at least $4 \frac{n^{2}}{r^{d+1}}$ lines contained in a degree $m<\frac{r}{4}$ hypersurface. Let us denote the set of these lines by L_{Z} and the set of points of P on the lines of L_{Z} by P_{Z}. Each line of L_{Z} is still r-riched, thus the total number of incidences between L_{Z} and P_{Z} satisfies

$$
I\left(L_{Z}, P_{Z}\right) \geq r\left|L_{Z}\right|=4 \frac{n^{2}}{r^{d}} .
$$

By Lemma 3.6 we may, after removing lines and points, therefore assume without loss of generality that each point of P_{Z} is incident to at least $\frac{n}{r^{d}}$ lines in L_{Z}.

Let g be a non-zero polynomial of minimum degree vanishing on L_{Z}. We know that f vanishes on L_{Z}, therefore the degree of g is less than r.

Now, we call a point $p \in P_{Z}$ a joint if the directions of the lines in L_{Z} incident to p span \mathbb{R}^{d}. If every $p \in P_{Z}$ is a joint, then surely the gradient
of g must vanish on all of P_{Z}. Pick a component of the gradient which is non-zero on the vanishing locus of g. This component vanishes on all the points in P_{Z} and is of degree less than r. Therefore, by Bézout's theorem, this component vanishes on all the lines in L_{Z} as well, but the component is of smaller degree than of g which is a contradiction.

Thus there must be a point $p \in P_{Z}$ which is not a joint, whence all the lines of L_{Z} going through p lie in the same hyperplane. We know that there are $\frac{n}{r^{d}}$ lines going through p, and on each such line there are $r-1$ other points, implying that there are at least

$$
(r-1) \frac{n}{r^{d}}+1=\Omega\left(\frac{n}{r^{d-1}}\right)
$$

points in one hyperplane.

References

[1] Dvir, Z., Gopi, S., On the number of rich lines in truly high dimensional sets, 31st International Symposium on Computational Geometry (SoCG 2015), Leibniz International Proceedings in Informatics (LIPIcs), 34, 584-598, 2015
[2] Guth, L., Katz, N., On the Erdős distinct distances problem in the plane, Annals of Math., Volume 181, 155-190, 2015
[3] Kaplan, H., Matous̆ek, J., Sharir, M., Simple Proofs of Classical Theorems in Discrete Geometry via the Guth-Katz Polynomial Partitioning Technique, Discrete \& Computational Geometry, (3), 499-517, 2012
[4] Iliopoulou, M., Incidence bounds on multijoints and generic joints, Discrete Comput. Geom. 54 (2), 481-512, 2015
[5] Pach, J., Sharir, M., On the number of incidences between points and curves, Combinat. Probab. Comput., (7), 121-127, 1998
[6] Szemerédi, E., Trotter, W.T., Extremal problems in discrete geometry, Combinatorica, (3), 381-392, 1983
[7] Solymosi, J., Vu, VH., Distinct distances in high dimensional homogeneous sets, Cont. Math., (342) 259-268, 2004
[8] Toth, Cs., The Szemerédi-Trotter theorem in the complex plane, preprint, 2003
[9] Zahl, J., A Szemerédi-Trotter type theorem in \mathbb{R}^{4}, Discrete. Comput. Geom. 54 (3), 513-572, 2012
[10] Zahl, J., A note on rich lines in truly high dimensional sets, FoM, Sigma. 4 (e2), 1-13, 2016

Department of Mathematics, Leiden University, Snellius Building, Niels
Bohrweg 1, 2333 CA Leiden, Netherlands
Email address: hablicsekhm@math.leidenuniv.nl
Department of Mathematics and Computer Science, Fisher Hall Susquehanna University, 514 University Ave., Selinsgrove, Pa. 17870 USA

Email address: scherr@susqu.edu

[^0]: Date: February 16, 2021.

