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Abstract

This paper introduces a technique for proving the local optimality of packing con-
figurations. Applying this technique to a general convex polygon, we prove that the
construction of the optimal double lattice packing by Kuperberg and Kuperberg is also
locally optimal in the full space of packings.

1 Introduction

This paper began as an investigation of the optimality of the double lattice packing
for pentagons and heptagons. In [KK90], Kuperberg and Kuperberg describe a recipe
for finding the double lattice packing of congruent planar convex bodies with maxi-
mal density by solving an optimization problem over inscribed parallelograms. This
optimization problem is usually tractable, and in the case of convex polygons can be
solved by an algorithm with running time linear in the number of vertices [Mou91].
As examples, Kuperberg and Kuperberg construct the densest double lattice packing
for both regular pentagons and regular heptagons and show that these packings have
densities of (5−

√
5)/3 = 0.92131 . . . and 0.8926 . . . respectively. These are the current

records and possibly the best general packings of the plane by regular pentagons and
by regular heptagons.

Starting around the turn of the century, a significant push, both theoretical and
computational, arose to answer some of the most basic yet frustrating questions in
the theory of packing problems (for background on packing problems, see [BMP05],
[CGSS99], [Gro63]). Along with the proof and formal verification of the Kepler con-
jecture [HAB+15], a number of other results on sphere packing in higher dimensions
have proved illuminating [CE03, Van11, Ven13]. For packings by congruent anisotropic
bodies, sharp results are limited mostly to the plane, where the best packings of all
centrally-symmetric bodies are achieved by lattices [FT50], and a series of sparse results
in higher dimensions [BK13].
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Among general convex bodies, the problem of finding the best packing of regular
pentagons serves as a toy model for harder problems, like finding the best packing of
regular tetrahedra. However, the pentagon problem is still not a tractable one. Explicit
upper bounds for the packing density of regular tetrahedra and octahedra are better
than the trivial unity upper bound by minuscule margins [GEK11]. A semidefinite
programming (SDP) approach has been suggested by Oliveira and Vallentin to calculate
improved upper bounds [dOV13]. Though the SDP method has not yet yielded a
nontrivial upper bound for packing of tetrahedra, it has been used to obtain an upper
bound of 0.98103 on the density of regular pentagon packings. There remains a sizable
gap between the highest density achieved for pentagon packings and this upper bound.

A long-open problem, still wide open even in the plane, asks for the pessimal convex
body for packing, that is, the shape that has the lowest maximum packing density
[BMP05, BK13, Kal14]. In the class of centrally-symmetric bodies in the plane, it is
Reinhardt [Rei33] who conjectured that a smoothed octagon is the minimizer. In the
class of general convex bodies in the plane, it is conjectured to be the regular heptagon
[Kal15]. However, even though the maximum-density double lattice is conjectured to
achieve the maximum packing density for the regular heptagon, no sharp upper bound
has been proved.

The regular pentagon and heptagon are cases of special interest, and we initially
sought out to investigate whether their optimal double-lattice packing can be shown
to be also optimal among a broader class of packings. We were able to show that
these packings are optimal at least in some neighborhood in the space of all packings.
Furthermore, we discovered that our method can be generalized to all convex polygons.
We demonstrate that, while double lattices are in general not globally optimal, they
are always at least locally optimal.

Theorem. If a double lattice packing is an isolated local maximum for density among
double lattices and is not one of a two exceptional cases, then it is a local maximum
for density among all packings.

The precise meanings of the terms used will be elucidated in the rest of the paper.

2 Theoretical Preparations

2.1 Local Optimality

We will look at packings of congruent copies of a body K. That is, every element of
the packing is given by ξ(K), where ξ ∈ E(n) is an isometry of Euclidean space. It
will be convenient to assume that the reference body K is situated so that its interior
contains the origin. The isometry group E(n) of Rn can be considered as a subgroup
of SLn+1(R) that preserves the plane (x1, . . . , xn, 1) ∈ Rn+1. This identification gives
us the Frobenius norm N(ξ) = ‖ξ − Id‖ for ξ ∈ E(n). Some useful inequalities for this
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norm that we will use are

N(ξ−1) ≤ ‖ξ−1‖N(ξ)

N(ξξ′) ≤ N(ξ) +N(ξ′) +N(ξ)N(ξ′)

N(ψξψ−1) ≤ ‖ψ‖‖ψ−1‖N(ξ)

‖ξ(0)‖ ≤ N(ξ) ≤ ‖ξ(0)‖+ 2n1/2.

(1)

Definition 2.1. Let Ξ be a set of isometries. The limit

d(Ξ) = lim
t→∞

volB(0, t)

|{ξ ∈ Ξ : ξ(0) ∈ B(0, t)}|
, (2)

if it exists, is its mean volume. The limits superior and inferior are its upper and
lower mean volumes, denoted d(Ξ) and d(Ξ). We say Ξ is a (r,R)-set if the point set
{ξ(0) : ξ ∈ Ξ} has a packing radius at least r and a covering radius at most R.

Definition 2.2. Let K be a compact set with interior. We say that Ξ is admissible
for K if the interiors of ξ(K) and ξ′(K) are disjoint for any two distinct isometries
ξ, ξ′ ∈ Ξ. We say furthermore that Ξ is saturated if there is no ξ ∈ E(n) \ Ξ such that
Ξ ∪ {ξ} is again admissible.

There are r(K) and R(K) such that when Ξ is admissible and saturated, then Ξ is
a (r(K), R(K))-set. As a consequence, such sets are countable.

Definition 2.3. Given two (r′, R′)-sets Ξ and Ξ′ of isometries, we define the premetric

δR(Ξ,Ξ′) = inf
bij.

sup{N(ξ−1ψ(ψ′)−1ξ′) :

ξ, ψ ∈ Ξ such that ‖ξ(0)− ψ(0)‖ ≤ 2R or ‖ξ′(0)− ψ′(0)‖ ≤ 2R}.
(3)

The infimum is over all bijections (·)′ : Ξ→ Ξ′.

When R ≥ R′, δR(Ξ,Ξ′) = 0 if and only if ξ = ψξ′ for some ψ ∈ E(n) and some
bijection. Consider a body K. When R ≥ R(K), δR(Ξ,Ξ′) induces a metric on the
space of admissible (r,R)-sets up to overall isometry, which includes the saturated sets
as a subset.

Definition 2.4. We say an admissible and saturated set Ξ is strongly extreme for
K if there is R > 0 and ε > 0, such that whenever δR(Ξ,Ξ′) < ε, then either Ξ′ is
inadmissible or d(Ξ′) ≥ d(Ξ).

We stop to discuss why we define the topology in the space of packing arrangements
in the way that we do. A naive choice of topology is the one given by the metric

δH(Ξ,Ξ′) = inf
bij.,ψ∈E(n)

sup
ξ∈Ξ

N(ξ−1ψξ′), (4)

which we call the Hausdorff metric. However, under the Hausdorff topology the mean
volume is locally constant, and any packing is trivially locally optimal. For the topology
to allow the mean volume to vary locally, it must allow elements that are increasingly far
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Figure 1: Sample of the packing arrangement of cylinders with screws and screw holes
described in the text. The arrangement can be condensed, but in a way that is not
continuous in the topology given by δR.

apart to move by the action of increasingly different isometries. One metric satisfying
this criterion, similar to the one used in Ref. [Kup00], is

inf
bij.,ψ∈E(n)

sup
ξ∈Ξ

min(N(ξ−1ψξ′), 1/min(‖ξ(0)‖, ‖ξ′(0)‖)). (5)

While suited for the discussions of recurrence there, here this metric will yield the
result that any packing that is not as dense as the densest packing of K is not even
locally optimal, since the density can be improved by a finite amount at arbitrarily
small distance by completely changing the packing outside a ball of arbitrarily large
radius. Under our definition, for a family of packings to have a reference packing as
a limit, it must be the case that in every bounded region of space, there is a packing
in the family that agrees with the reference packing to an arbitrarily small Hausdorff
distance.

Importantly, there are deformations that intuitively feel continuous but are not
continuous under our topology. One example is constructed by decorating a cylinder
with a screw on its top base and a corresponding screw hole boring into its bottom
base. Consider the packing where each cylinder is screwed into a cylinder above it,
in such a way that the two cylinders are related to each other by a translation, and
the screw is not completely screwed in. This creates a column of cylinders, copies of
which we arrange in a triangular grid. Since every screw is not completely screwed in,
the density of the packing can be increased by screwing each screw in further. Since
the interlayer spacing is related to the relative rotation between cylinders on the two
layers, even an arbitrarily small consistent decrease in interlayer spacing will cause
some layers to be rotated by at least some finite angle. Because the orientation of
triangular grid remains unchanged, this means that there is always a cylinder whose
arrangement of neighbors, from the frame of reference in which it remains fixed, has
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changes by a finite extent. Therefore, this motion is not continuous in the topology we
defined. As we prove some packing arrangements strongly extreme, it is worth keeping
in mind what kinds of local improvement such a result rules out and what kinds are
not ruled out.

Nevertheless, compared to some previously introduced notions of local optimality,
our notion of strong extremality is both stronger and more widely applicable. The
notions of an extreme lattice packing [Mar03] and a periodic-extreme periodic packing
[Sch13] apply only to special classes of packings. We show that strong extremality,
which applies more generally, implies extremality and periodic-extremality in these
special classes.

Definition 2.5. A set of isometries Λ is called a (full rank) lattice if it is an (r,R)-set
for some r > 0 and R < ∞, it consists only of translations, and it is closed under
composition and inversion.

Definition 2.6. A lattice Λ is extreme for a compact set K if it is admissible for K and
there exists ε > 0 such that for all T ∈ GLn(R), either T [Λ] = {T [λ] = TλT−1 : λ ∈ Λ}
is inadmissible for K, detT ≥ 1, or ‖T − Id‖ > ε.

Theorem 2.1. If a lattice Λ is strongly extreme for K, then Λ is extreme for K.

Proof. If Λ is not extreme for K, then there for all ε > 0, there exists T ∈ GLn(R)
such that ‖T − Id‖ ≤ ε, detT < 1, and T [Λ] is admissible for K. We have N(λ−1

1 λ2

(T [λ2])−1T [λ1]) = N((T − Id)[λ1λ
−1
2 ]) ≤ ε‖λ1(0) − λ2(0)‖. Thus, δR(Λ, TΛ) < 2Rε,

and for arbitrarily small ε, TΛ is an admissible packing of lower mean volume in an
arbitrary neighborhood of Λ. Therefore, Λ is not strongly extreme.

Definition 2.7. A set Ξ ⊂ E(n) is periodic if it is of the form ΛΨ = {λψ : λ ∈ Λ, ψ ∈
Ψ}, where Λ is a lattice and Ψ is finite.

Definition 2.8. A periodic set Ξ = ΛΨ is periodic-extreme for K if it is admissible for
K and whenever Λ̃ ⊆ Λ is a sublattice of Λ and Ψ̃ is a set of |Λ/Λ̃| translations such
that Λ = Λ̃Ψ̃, there exists ε > 0 such that for all T ∈ GLn(R) and φ : Ψ̃×Ψ→ E(n) we
have either {T [λ̃]ψ̃ψφ(ψ̃, ψ) : λ̃ ∈ Λ̃, ψ̃ ∈ Ψ̃, ψ ∈ Ψ} is inadmissible for K, detT ≥ 1,
‖T − Id‖ > ε, or ‖φ(ψ̃, ψ)− Id‖ > ε for some ψ̃ ∈ Ψ̃, ψ ∈ Ψ.

Theorem 2.2. If a periodic set Ξ is strongly extreme for K, then it is periodic-extreme
for K.

Proof. If Ξ is not periodic-extreme, then there exists Λ̃ ⊆ Λ and Ψ̃ as in Definition
2.8, such that for all ε > 0 there exists T ∈ GLn(R) and φ : Ψ̃ × Ψ → E(n) such
that Ξ′ = {T [λ̃]ψ̃ψφ(ψ̃, ψ) : λ̃ ∈ Λ̃, ψ̃ ∈ Ψ̃, ψ ∈ Ψ} is admissible for K, detT < 1,
‖T − Id‖ ≤ ε, and ‖φ(ψ̃, ψ) − Id‖ ≤ ε for all ψ̃ ∈ Ψ̃, ψ ∈ Ψ. Since Ψ × Ψ′ is finite,
we have some bound ‖ψψ̃‖, ‖ψ̃−1ψ−1‖ < M . Consider the elements ξ1 = λ̃1ψ̃1ψ1,
ξ2 = λ̃2ψ̃2ψ2, ξ1, ξ2 ∈ Ξ and the corresponding elements ξ′1 = T [λ̃1]ψ̃1ψ1φ(ψ̃1, ψ1) ξ′2 =
T [λ̃2]ψ̃2ψ2φ(ψ̃2, ψ2), ξ′1, ξ

′
2 ∈ Ξ′. Using the inequalities (1), it is fairly straightforward

to see that ‖ξ−1
1 ξ2(ξ′2)−1ξ′1‖ ≤ Cε, where C depends on M and R. Therefore δR(Ξ,Ξ′)

can be made arbitrarily small, Ξ′ is admissible, and d(Ξ′) = detTd(Ξ) < d(Ξ), so Ξ is
not strongly extreme.
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We now derive a general method for proving strong extremality that we will use in
the following sections.

Definition 2.9. Let Ξ be an (r,R)-set of isometries. Let T be a simplicial complex
whose underlying space is T = Rn, whose vertices are in {ξ(0) : ξ ∈ Ξ}, and whose
simplices s have underlying space s = convξ(0)∈sξ(0) with diameter uniformly bounded
from above and inradius uniformly bounded from below. Let p : Tn → Ξ be a labeling
of the full-dimensional simplices, such that

• ξ(0) ∈ s whenever p(s) = ξ.

• volPξ = v for all ξ, where Pξ = p−1(ξ) =
⋃
s s.t. p(s)=ξ s.

Then (T , p) is called a honeycomb of Ξ, and Pξ, ξ ∈ Ξ, are the cells of the honeycomb.

It is easy to verify that if Ξ has a honeycomb with cells of volume v, then its mean
volume is d(Ξ) = v. We denote by Ξs,Ξξ ⊂ Ξ, the set of elements ξ ∈ Ξ, such that
ξ(0) is a vertex of s ∈ T , or respectively a vertex of any simplex in p−1(ξ). When we
consider another set Ξ′ in bijection (·)′ : Ξ→ Ξ′ with Ξ, such that δR(Ξ,Ξ′) < r/2, the
triangulation T gives us a new triangulation T ′ = {s′ = {ξ′(0) : ξ(0) ∈ s} : s ∈ T }.
The new triangulation gives new cells P ′ξ =

⋃
s,p(s)=ξ s

′.

For a specified honeycomb (T , p) of Ξ, we can consider the finite volume-minimization
problem for the individual cells Pφ:

minimize volP ′φ =
∑

s,p(s)=φ

vol convξ(0)∈sξ
′(0),

over (·)′ : Ξφ → E(n),

subj. to int ξ′1(K) ∩ int ξ′2(K) = ∅ for all ξ1, ξ2 ∈ Ξφ,

N(ξ−1ξ′) < ε for all ξ ∈ Ξφ.

(6)

Since, for a fixed ξ ∈ Ξ, ξ′ may appear in more than one cell-restricted problems, Ξ
might be strongly extreme for K without the restriction of Id: Ξ → E(n) optimizing
any of these restricted problems. However, it is reasonable to expect, and in fact we
prove, that if the restriction of the identity optimizes all of these problems, then Ξ is
strongly extreme.

Theorem 2.3. Let Ξ be admissible and saturated for K and let (T , p) be a honeycomb
of Ξ. If there exists ε > 0 such that ξ′ = ξ, ξ ∈ Ξφ, minimizes (6) for every cell Pφ,
then Ξ is strongly extreme.

Proof. Consider a set Ξ′ admissible for K with δM (Ξ,Ξ′) < ε′, where M is a uniform
bound on the distance between two vertices in the same cell. When ε′ is small enough,
then N(ξ−1φ(φ′)−1ξ′) < ε for all ξ ∈ Ξφ. Let ξ′′ = φ(φ′)−1ξ′ for all ξ ∈ Ξφ, then (·)′′
is feasible for (6) and we have volP ′φ = volP ′′φ ≥ volPφ = v.

We now wish to bound the lower mean volume d(Ξ′) from below. From the defi-
nition, d(Ξ′) = lim inft→∞ volB(0, t)/|Ξ′t|, where Ξ′t = {ξ ∈ Ξ : ξ′(0) ∈ B(0, t)}. The
limit does not change if we replace t in the numerator volB(0, t) by t + 2M . Since
B(0, t + 2M) includes all the cells P ′ξ for ξ ∈ Ξ′t, the volume of the ball must be at
least v|Ξ′t|, and d(Ξ′) ≥ v = d(Ξ). Therefore, Ξ is strongly extreme.
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Theorem 2.3 will be strong enough to prove that the densest known packing of reg-
ular pentagons is strongly extreme. However, to prove the same for regular heptagons,
we will need a stronger version that allows us to introduce auxiliary objectives. We
will consider instead of (6), a modified optimization problem:

minimize volP ′φ + fφ((ξ′)ξ∈Ξφ),

over (·)′ : Ξφ → E(n),

subj. to int ξ′1(K) ∩ int ξ′2(K) = ∅ for all ξ1, ξ2 ∈ Ξφ,

N(ξ−1ξ′) < ε for all ξ ∈ Ξφ.

(7)

We say that the set of auxiliary functions is negligible in the aggregate (cf. Ref.
[Hal12], p. 149) if there exist R, ε, C, and T such that whenever dR(Ξ,Ξ′) < ε, we have∑
φ∈Ξ′

t
fφ((ξ′)ξ∈Ξφ) ≤ Ctn−1 for all t > T . The auxiliary function is isometry-invariant

if fφ((ψξ′)ξ∈Ξφ) = fφ((ξ′)ξ∈Ξφ) for all ψ ∈ E(n). It is straightforward to extend the
proof of Theorem 2.3 to obtain

Theorem 2.4. Let Ξ be admissible and saturated for K, let (T , p) be a honeycomb of
Ξ, and let fφ, φ ∈ Ξ, be negligible in the aggregate and isometry-invariant. If there
exists ε > 0 such that ξ′ = ξ, ξ ∈ Ξφ, minimizes (7) for each cell Pφ, then Ξ is strongly
extreme.

2.2 Double lattices

In this section, we focus on convex bodies in 2 dimensions. We recapitulate some of
the theory of double lattices, due to Kuperberg and Kuperberg [KK90] and Mount
[Mou91].

Definition 2.10. A chord of a convex body K is a line segment whose endpoints lie on
the boundary of K. A chord is an affine diameter if there is no longer chord parallel
to it.

Definition 2.11. The convex hull of two parallel chords that are half the length of the
parallel affine diameter is called a half-length parallelogram.

An affine diameter of K does not in general uniquely determine a half-length paral-
lelogram (e.g., when a parallel edge of sufficient length exists), but it always uniquely
determines its area.

Definition 2.12. A set Λ ⊂ E(n) is called a (full rank) double lattice if it is an (r,R)-
set for some r > 0 and R < ∞, it consists of translations and point reflections, it is
closed under composition and inversion, and it is not a lattice (that is, includes at least
one point reflection).

An n-dimensional double lattice is generated by a lattice and a point reflection,
or alternatively by reflections about n + 1 affine-independent points or by reflections
about the 2n vertices of a parallelepiped.

Theorem 2.5 (Kuperberg and Kuperberg, Mount). For a planar convex body K,
an admissible double lattice of smallest mean area is generated by reflection about the
vertices of a half-length parallelogram.
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Figure 2: Half-length parallelograms in the regular 9-gon. That the minimum at y = 0 is
not the global minimum, and therefore that the densest double-lattice packing is not given
by the symmetric arrangement as for pentagons and heptagons, was possibly first noticed
by Graaf, Roij, and Dijkstra [dGvRD11].

Kuperberg and Kuperberg use extensive parallelograms, inscribed parallelograms
with all edge lengths greater than half the length of the parallel affine diameter. They
later restrict the analysis to the set of half-length parallelograms [KK90]. Mount gives
an explicit proof that it suffices to consider only the half-length parallelograms [Mou91].

Figure 2 illustrates some affine diameters and half-length parallelograms in the reg-
ular 9-gon. We denote one endpoint of the affine diameter by p1 and the parallelogram
vertices and other affine diameter endpoint as pi, i = 2, . . . , 6 in counterclockwise or-
der. The edges p2p3 and p5p6 will be the ones parallel to the affine diameter. The
space of such labeled half-length parallelograms of a body K is a circle, in the sense
that we can continuously parameterize pi(t), i = 1, . . . , 6, t ∈ S1. In fact, this param-
eterization can be piecewise linear [Mou91]. This parameterization specifies an affine
diameter, a specification that does not change the half-length parallelogram or the gen-
erated double lattice. In the interior of each linear piece of the parameterization, either
(1) one endpoint of the affine diameter is stationary at a vertex of K, and the other
points either move at a constant speed (possibly zero) along the interior of an edge
or are stationary at a vertex or (2) all parallelogram vertices are stationary while the
affine diameter moves along two parallel edges. The piecewise linear parameterization
of augmented parallelograms can be converted to a piecewise linear parameterization
of parallelograms by eliminating the intervals of type 2. A half-length parallelogram is
called pivotal if it sits at the boundary of two linear pieces, that is, there is a disconti-
nuity in the direction of motion of at least one point pi.

In order to prove our main theorem in Section 3.3, we will need to know that the
double lattice we wish to show is strongly extreme does not have any of the vertices
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Figure 3: Three examples of the exceptional cases defined in Definition 2.13. Left and
middle: exceptional half-length parallelograms of type I. Right: exceptional half-length
parallelogram of type II.

of the half-length parallelogram coincident with vertices of the polygon K. This will
generically follow from the fact that the double lattice packing is an isolated minimum.
In some exceptional cases, which must be treated separately, it does not. We define
the following exceptional types of parallelograms, illustrated in Figure 3:

Definition 2.13. 1. If p2 and p6 are in the interiors of edges that meet at p1 and
p3 and p5 are in the interiors of edges that meet at p4, then the parallelogram is
exceptional of type I.

2. If the affine diameter parallel to p2p3 is not unique, then if p2 and p3 are in the
interior of edges that have as endpoints the endpoints of one such affine diameter
and p5 and p6 are in the interior of edges that have as endpoints the endpoints of
another such affine diameter, the parallelogram will also be considered exceptional
of type I.

3. If p3 and p4 are in the interior of the same edge, and p2 is at a vertex, then
the parallelogram is exceptional of type II. It can also be exceptional of type II if
the same situation occurs with (p2,p1,p3), (p5,p4,p6), or (p6,p1,p5) in place
of (p3,p4,p2).

Theorem 2.6. When the half-length parallelogram p2p3p5p6 is an isolated local min-
imum of area in the space of half-length parallelograms of a convex polygon K, then
either (1) it is not pivotal, or (2) it is exceptional of type I.

Proof. Assume that the given parallelogram is pivotal. If the parallel affine diameter
is unique, then at least one endpoint is a vertex of K. If only one endpoint is a vertex
let it be p1. Otherwise, let p1 be the vertex that makes the smaller angle between
the adjoining counterclockwise edge and the affine diameter. If the affine diameter is
not unique, all of the subsequent analysis will be equivalent if we remove from K the
parallelogram traced out by the affine diameters and identify the two extreme affine
diameters. In the modified version of K, the affine diameter is unique. We may pick
our orientation, scale, and origin without loss of generality so that the affine diameter
is horizontal, of length 2, and bisected by the origin.
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4
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Figure 4: Extending the forward evolution of the half-length parallelogram to negative
times at a pivotal parallelogram. Left: when one of the parallelogram vertices becomes
external, we construct the parallel chord of the same length. Right: when an endpoint of
the affine diameter becomes external and the intersection with the polygon is still an affine
diameter, we construct the two parallel chords of half the length of that affine diameter
(bottom chord omitted).

We can evolve the parameterization forward (counterclockwise) or backward (clock-
wise) from the given parallelogram. For each i = 1, . . . , 6, let vi = (cosφi, sinφi) be
a unit vector pointing, in the counterclockwise direction, along the edge of K that
pi belongs to. If pi is at the intersection of two edges, we use the counterclockwise
adjoining edge. Let ui = (cosχi, sinχi) be defined exactly the same way, except we
use the clockwise adjoining edge in case of intersection. The forward evolution is by
velocities ci, i = 1, . . . , 6 satisfying

c1v1 − c4v4 = 2c2v2 − 2c3v3 = 2c6v6 − 2c5v5. (8)

Together with the fact that c1 = 0, which follows from our choice of which affine
diameter endpoint to label as p1, this equation determines ci, i = 1, . . . , 6, up to
multiplication by a common factor. The points evolves as qi(t) = pi + tcivi.

The area of the parallelogram is a quadratic function of t. If its slope for forward
evolution is negative, then the parallelogram is not a local minimum, and we are done.
Therefore, let it be nonnegative. We now extend the forward evolution to negative
times. We obtain parallelograms, not necessarily inscribed, of area A(t) ≤ A(0)+O(t2),
together with parallel segments not necessarily affine diameters, but double the length
of the parallel sides. Since the initial parallelogram is pivotal, at least one point qi(t),
i = 2, . . . , 5 will go into the exterior of K, and the distance between it and K will
grow linearly with t. We will argue that from these parallelograms, we can construct
half-length parallelograms of area A′(t) ≤ A(t) + at, with a > 0. When we have shown
those exist, it follows that the given parallelogram is not a local minimum.

We first treat the case where exactly one point becomes exterior. Suppose the
point that becomes exterior is q2(t). We find the points q′2(t) = p2 + tc′2u2 and
q′3(t) = p3 + tc′3v3 that form a segment that is parallel to and of the same length
as q2(t)q3(t). A trigonometric calculation gives c′2 = c2 sin(φ3 − φ2)/ sin(φ3 − χ2)
and c′3 = c3 − c2 sin(φ2 − χ2)/ sin(φ3 − χ2). At least up to some finite negative time
−T ≤ t < 0, q′2(t) is on the clockwise edge adjoining p2 (c′2 > 0), and q3(t) is either
on the interior of the same edge as p3, if the latter is in the interior of an edge, or else,
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if p3 is at a vertex and stationary for forward evolution, then c3 = 0 and c′3 < 0, so
q′3(t) is on the counterclockwise adjoining edge to p3. In any case, the parallelogram
q′2(t)q′3(t)q5(t)q6(t) is inscribed (therefore a half-length parallelogram), and its area is
A′(t) = A(t)− c2t sinφ3 sin(φ2−χ2)/ sin(φ3−χ2)+O(t2). If φ3 > π, the linear term is
negative for negative times, and we have our desired parallelogram. Otherwise, φ3 = π
and the edge p2p3 can be moved left while staying in K, so the given parallelogram
is not an isolated minimum. The same argument works, mutatis mutandis, when any
one of the other three parallelogram vertices becomes exterior.

Now suppose that q4(t) becomes exterior for t < 0. We distinguish two cases, (i)
if χ4 − χ1 ≥ π, then p1q

′
4, the intersection of p1q4(t) with K, is an affine diameter,

and (ii) otherwise, there is a parallel affine diameter q′1(t)p4, with q′1(t) on the clock-
wise adjoining edge to p1. In case (i), we have q′4(t) = p4 + l4(t)u4, where l4(t) =
c4t sinφ4/(sinχ4 + 1

2c4t sin(φ4−χ4)). We find points q′i(t) = qi(t)+li(t)vi, i = 2, 5 and
q′i(t) = qi(t)+li(t)ui, i = 3, 6, such that 2(q′2(t)−q′3(t)) = 2(q′6(t)−q′5(t)) = p1−q′4(t).
For small enough negative times, this construction will yield a half-length parallelo-
gram, and its area is

A′(t) = A(t) + 1
2c4

sin(φ4 − χ4)

sinχ4

[
h− 1

cotχ3 − cotφ2
− 1

cotχ6 − cotφ5

]
+O(t2), (9)

Where h is the height of the parallelogram. Since we chose 2 for the length of the
affine diameter p1p4, we have h ≤ 1

cotχ3−cotφ2
+ 1

cotχ2−cotφ5
, with equality only if the

parallelogram is exceptional of type I. In case (ii), we have q′1(t) = p1 + l1(t)u1, where
l1(t) = c4t sinφ4/(sin(χ1 + π) + 1

2c4t sin(φ4 −χ1 − π)). Again we find the points q′i(t),
i = 2, 3, 5, 6, that make up a half-length parallelogram with the new affine diameter,
and the area of this parallelogram is

A′(t) = A(t) + 1
2c4

sin(φ4 − χ1 − π)

sin(χ1 − π)

[
h− 1

cotχ3 − cotφ2
− 1

cotχ6 − cotφ5

]
+O(t2).

(10)
In this case too, the given parallelogram is either not a local minimum or is exceptional
of type I.

To handle the case of multiple points becoming exterior upon extension of the for-
ward evolution to negative times, we can simply compose the operations we performed
in each of the cases of a single exterior point. In each step of the composed oper-
ation, we pretend that the exterior points we have not yet handled and we are not
handling right now are actually on the boundary of the polygon. Since in each step of
the operation we obtain a linear-order reduction to the area of the parallelogram, the
composition also provides a linear-order reduction. Therefore, the given parallelogram
cannot be an isolated local minimum.

Theorem 2.7. If the half-length parallelogram p2p3p5p6 is not pivotal and is an
isolated local minimum of area in the space of half-length parallelograms of a convex
polygon K then either (1) all its vertices and at least one affine diameter endpoint are
in the interior of polygon edges, or (2) it is exceptional of type II.

Proof. Since the parallelogram is not pivotal, forward and backward evolution use the

11



same linear velocities. The solution (up to common factor) to (8) is

c1 = 0

c2 = sin(φ4 − φ3) sin(φ6 − φ5)

c3 = sin(φ4 − φ2) sin(φ6 − φ5)

c4 = 2 sin(φ3 − φ2) sin(φ6 − φ5)

c5 = sin(φ3 − φ2) sin(φ6 − φ4)

c6 = sin(φ3 − φ2) sin(φ5 − φ4).

(11)

When the affine diameter is not unique, we perform the same modification as in the
previous proof. The only way one of the labeled points except p1 can be at a vertex,
is if its velocity ci vanishes. If φ3 = φ2 or φ5 = φ6, then one of the parallelogram
edges is strictly contained in a polygon edge and the parallelogram is not a local
minimum. Therefore, the only way a labeled point other than p1 can be stationary
is if φ4 = φ2 + π, φ3, φ5, or φ6 − π. If φ4 = φ2 + π, then necessarily also φ1 = φ2,
the affine diameter is not unique, reaching a contradiction. Similarly, we do not have
φ4 = φ6 − π. If φ4 = φ3 and p2 is stationary at a vertex or if φ4 = φ5 and p5 is
stationary at a vertex then the parallelogram is exceptional of type II.

2.3 Honeycomb construction

We now describe a honeycomb associated with any double lattice packing. Let K be
a convex polygon and let p2p3p5p6 be a half-length parallelogram, such that p2p3

and p6p5 are half the length of and parallel to the affine diameter p1p4. The double
lattice generated by reflections about the vertices of the parallelogram is Ξ and the
subgroup of translations is the lattice Λ. Let ξ0 = Id, ξ1 = Tranp1−p4 , ξ2 = Refp2 , and
ξ6 = Refp6 , where Refr is a reflection about r and Tranr is a translation by r. Let s2 =
{ξ0(0), ξ1(0), ξ2(0)} and s6 = {ξ0(0), ξ6(0), ξ1(0)}, then T2 = {ξ(s2), ξ(s6) : ξ ∈ Ξ} are
the full-dimensional simplices of a triangulation T of R2, and if p(ξ(s2)) = p(ξ(s6)) = ξ,
then (T , p) is a honeycomb of the double lattice Ξ. The optimization problem of
minimizing volP ′φ over (·)′ : Ξφ → E(n), is equivalent for every φ ∈ Ξ. Therefore, to
show that Theorem 2.3 applies, it suffices to show that the restriction of the identity
is optimal for the problem associated with the cell Pξ0 .

For every convex body K and double lattice Ξ we now have a concrete optimization
problem to solve: we wish to minimize the area of the quadrilateral ξ′0(0)ξ′6(0)ξ′1(0)ξ′2(0)
subject to the constraints that ξ′i(K) and ξ′j(K) do not overlap. Since the objective and
the constraints are invariant under common isometry, we may fix ξ′i = ξi for one i. We
parametrize ξ′i = TranriξiRotθi , where Rotθ is a rotation by θ about the origin. Since
we are only interested in certifying that the initial configuration is a local minimum,
we can replace the constraints with ones that are equivalent in a neighborhood.

Lemma 2.1. Let K and K ′ be two polygons that intersect at a segment, which is
not identical with a full edge of K or of K ′. The endpoints of the segments are x
a vertex of K and y a vertex of K ′. Let yy′ and xx′ be the edges of K and K ′

containing the intersection. Let x′yxy′ be oriented counterclockwise from the point of
view of the interior of K (otherwise switch K and K ′). There is some ε > 0 such that
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Figure 5: Honeycomb construction for the regular 9-gon. Each honeycomb cell (hatched
parallelogram) is composed of two triangles. The area minimization problem for each cell
involves only the four 9-gons centered at the cell vertices.

whenever N(ξ), N(ξ′) < ε, then ξ(K) and ξ′(K ′) have disjoint interiors if and only if
α(ξ(x)ξ(x′)ξ′(y)) ≥ 0 and α(ξ′(y′)ξ′(y)ξ(x)) ≥ 0, where α is the signed area of the
oriented triangle.

Lemma 2.2. Let K and K ′ be two polygons that intersect at a point and not at a
segment. The intersection point y is a vertex of one polygon, which we let be K ′, and
sits in the relative interior of the segment x′x, which in turn is contained in an edge
of K. We assume the segment x′x is oriented counterclockwise from the point of view
of the interior of K. There is some ε > 0 such that whenever N(ξ), N(ξ′) < ε, then
ξ(K) and ξ′(K ′) have disjoint interiors if and only if α(ξ(x)ξ(x′)ξ′(y)) ≥ 0.

Note that two cases are not treated: the case of an intersection at a point that
is a vertex of both polygons and the case of an intersection at a full edge of one or
both polygons. In the optimal double-lattice packings of the first two bodies we treat,
the regular pentagon and the regular heptagon, there are no such intersections. For
the application to more general convex polygons, we have already shown that the first
intersection case only arises in exceptional cases. The constraint arising in the second
case can be relaxed to a constraint of the form of Lemma 2.1 without affecting the
solution.

We will show that optimization problems that arise fall into a convenient form,
where linear stability holds along all but one direction. Along the direction of vanishing
linear stability, the theory of Kuperberg and Kuperberg will be shown to guarantee
stability.
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Consider the nonlinear optimization problem

minimize f(x),

over x ∈ Rn,

subject to gr(x) ≥ 0, r ∈ I,

‖x‖ ≤ ε.

(12)

We will prove that the following conditions are sufficient for the origin to be the unique
solution of (12) for some ε > 0. Let e1 denote the standard unit vector (1, 0, . . . , 0) ∈
Rn, E = {te1} its span, and H the orthogonal complement, so that Rn = E ⊕H.

Conditions 2.1.

1. I is a finite set.

2. f(x) and gr(x), r ∈ I, are continuously differentiable. Denote their derivatives
F (t) = ∇f(te1) and Gr(t) = ∇gr(te1).

3. f(0) = gr(0) = 0 for all r in I.

4. The linear program

minimize x∈RnF (0) · x subject to Gr(0) · x ≥ 0, r ∈ I (13)

has E as the set of solutions.

5. There is an ε > 0 so the functions gr(te1) = 0 for all −ε < t < ε, r ∈ I.

6. f(te1) has an isolated local minimum at t = 0.

Theorem 2.8. Given Conditions 2.1, there exists ε > 0 such that the origin is the
unique solution of (12).

Proof. Consider the sliced problem with t fixed,

minimize f(x),

over x ∈ H + te1,

subject to gr(x) ≥ 0, r ∈ I
‖x‖ ≤ ε.

(14)

For t = 0, the local minimum at x = 0 is guaranteed by the LP (13) [BSS06]. The
LP implies, by duality, that F (0) lies in the interior (relative to H) of the cone finitely
generated by Gr(0), r ∈ I. By continuity, we have that F (t) also lies in the interior
of the cone generated by Gr(t), r ∈ I, for all |t| < ε, for some ε > 0. Therefore, in
each slice, the minimum of (14) occurs at x = te1. From the final condition of 2.1, we
conclude that the origin is the unique solution of (12) for some ε > 0.

3 Calculations

3.1 Pentagons

Let us fix a regular pentagon K = conv{ki : i = 0, . . . 4}, where ki = Rot2πi/5(1, 0).
In this subsection, we do all the calculations in the extension field Q(u, v), where
u = cosπ/5 and v = sinπ/5.
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Figure 6: Half-length parallelograms in the regular pentagon.

One minimum-area half-length parallelogram corresponds to the affine diameter
p1p4, where p1 = k0 and p4 = 1

2 (k2 +k3). The vertices of the parallelogram are given
by p2 = 1

4k0+ 3
4k1, p3 = 3−2u

4 k1+ 1+2u
4 k2, p5 = 1+2u

4 k3+ 3−2u
4 k4, and p6 = 3

4k4+ 1
4k0.

This half-length parallelogram is illustrated in Figure 6.
The four pentagons that surround our primitive honeycomb cell are ξi(K), i =

0, 1, 2, 6, where ξ0 = Id, ξ1 = Tranp1−p4 , ξ2 = Refp2 , and ξ6 = Refp6 . We are
interested in showing that the assignment ξ′i = ξi, i = 0, 1, 2, 6, locally minimizes the
area of the quadrilateral ξ0(0)ξ6(0)ξ1(0)ξ2(0), subject to the nonoverlap constraints.
As explained in the previous section, we may fix ξ′1 = ξ1 and replace the nonoverlap
constraints by signed area constraints. We obtain the following optimization problem:

minimize f(z) = α(ξ′0(0), ξ′1(0), ξ′2(0)) + α(ξ′0(0), ξ′6(0), ξ′1(0)),

subj. to g1(z) = α(ξ′0(k1), ξ′0(k0), ξ′2(k1)) ≥ 0

g2(z) = α(ξ′2(k1), ξ′2(k0), ξ′0(k1)) ≥ 0

g3(z) = α(ξ′0(k0), ξ′0(k4), ξ′6(k4)) ≥ 0

g4(z) = α(ξ′6(k0), ξ′6(k4), ξ′0(k4)) ≥ 0

g5(z) = α(ξ′1(k2), ξ′1(k1), ξ′2(k2)) ≥ 0

g6(z) = α(ξ′2(k2), ξ′2(k1), ξ′1(k2)) ≥ 0

g7(z) = α(ξ′1(k4), ξ′1(k3), ξ′6(k3)) ≥ 0

g8(z) = α(ξ′6(k4), ξ′6(k3), ξ′1(k3)) ≥ 0

g9(z) = α(ξ′1(k3), ξ′1(k2), ξ′0(k0)) ≥ 0,

(15)

where ξ′i = Tran(xi,yi)ξiRotθ for i = 0, 2, 6, and ξ′1 = ξ1. We adopt a condensed
notation for the free variables z = (x0, y0, θ0, x2, y2, θ2, x6, y6, θ6).

We consider the linearization of (15) around the point z = 0 ∈ R9. This gives a
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G =



−2uv −3
2 + u 0 2uv 3

2 − u
3
2 − u 0 0 0

−2uv −3
2 + u 3

2 − u 2uv 3
2 − u 0 0 0 0

−2uv 3
2 − u 0 0 0 0 2uv −3

2 + u −3
2 + u

−2uv 3
2 − u −3

2 + u 0 0 0 2uv −3
2 + u 0

0 0 0 v − 2uv −1
2 + 2u 3

2 − u 0 0 0
0 0 0 v − 2uv −1

2 + 2u −7
2 + 4u 0 0 0

0 0 0 0 0 0 v − 2uv 1
2 − 2u −3

2 + u
0 0 0 0 0 0 v − 2uv 1

2 − 2u 7
2 − 4u

−2v 0 0 0 0 0 0 0 0


ηT =

(
1
4 ,

1
4 ,

1
4 ,

1
4 ,

1
10 + u

10 ,
2
5 + 9

10u,
1
10 + u

10 ,
2
5 + 9

10u, 2u
)

cT =
(
−6uv, 0, 0, 0, 1 + u, 0, 0, −1− u, 0

)
zT0 =

(
0, 2 + 4u, 0, 2v + 4uv, 1, 0, −2v − 4uv, 1, 0

)
Table 1: Constraint Jacobian and objective gradient for the pentagon packing problem.

problem of the form
minimize c · z subject to Gz ≥ 0, (16)

where c ∈ R9, G ∈ R9×9 and we use the line programming notation ≥ 0 to denote
a vector lying in the closed positive orthant. The exact numeric values of G and c
are given in Table 1. We can show by direct calculation a vector η > 0 lying in the
open positive orthant exists such that c = ηTG. Such a vector is given in Table 1. By
the fundamental theorem of linear algebra, this observation implies that Gz ≥ 0 and
c · z ≤ 0 if and only if Gz = 0 and c · z = 0, and so the program (16) is minimized
exactly by the null space of G and is suboptimal elsewhere in the cone Gz ≥ 0. We
calculate the rank of G to be 8, and so the null space is one-dimensional, and it is
generated by the vector z0 given in Table 1. The null space corresponds precisely to the
rearrangement given by evolving the half-length parallelogram according to the locally
linear parameterization discussed in Section 2.2. Importantly, this motion involves no
rotations. We can verify directly that f(tz0) is a quadratic function of t minimized
at t = 0, and that gr(tz0) = 0 identically for r = 1, . . . , 9. Indeed, perturbing the
half-length parallelogram away from the minimum-area one increases the area of the
resulting cell and maintains all the contacts.

Therefore, (15), after a change in coordinates, satisfies all the conditions of Theorem
2.8, and following directly from Theorem 2.3 we have:

Theorem 3.1. The optimal double-lattice packing of regular pentagons, illustrated in
Figure 6, is strongly extreme.

3.2 Heptagons

The calculation for the regular heptagon starts out in the same manner as the calcu-
lation presented above for regular pentagons. However, it will turn out that the linear
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Figure 7: Half-length parallelograms in the regular heptagon. The dashed configuration
is the local minimum at y > 0.

program equivalent to (16) is in this case not minimized at z = 0, and so we will need
to add an auxiliary objective to the area as allowed for in Theorem 2.4.

We fix a regular heptagon K = conv{ki : i = 0, . . . 6}, where ki = Rot2πi/7(1, 0).
In this case, our calculations are performed in the extension field Q(u, v), where u =
cosπ/7 and v = sinπ/7. A minimum-area half-length parallelogram corresponds to
the affine diameter p1p4, where p1 = k0 and p4 = 1

2 (k3 + k4). The vertices of
the parallelogram are given by p2 = (1 − a)k1 + ak2, p3 = (1 − b)k2 + bk3, p5 =
bk4 + (1− b)k5, and p6 = ak5 + (1−a)k6. This half-length parallelogram is illustrated
in Figure 7.

Following the same steps as in the previous sections, we obtain the following opti-
mization problem:

minimize f(z) = α(ξ′0(0), ξ′1(0), ξ′2(0)) + α(ξ′0(0), ξ′6(0), ξ′1(0)),

subj. to g1(z) = α(ξ′0(k2), ξ′0(k1), ξ′2(k1)) ≥ 0

g2(z) = α(ξ′2(k2), ξ′2(k1), ξ′0(k1)) ≥ 0

g3(z) = α(ξ′0(k6), ξ′0(k5), ξ′6(k6)) ≥ 0

g4(z) = α(ξ′6(k6), ξ′6(k5), ξ′0(k6)) ≥ 0

g5(z) = α(ξ′1(k3), ξ′1(k2), ξ′2(k3)) ≥ 0

g6(z) = α(ξ′2(k3), ξ′2(k2), ξ′1(k3)) ≥ 0

g7(z) = α(ξ′1(k5), ξ′1(k4), ξ′6(k4)) ≥ 0

g8(z) = α(ξ′6(k5), ξ′6(k4), ξ′1(k4)) ≥ 0

g9(z) = α(ξ′1(k4), ξ′1(k3), ξ′0(k0)) ≥ 0.

(17)
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G =



v + 2uv − 4u2v 3
2 + u− 4u2 11 + 2u− 16u2 −v − 2uv + 4u2v −3

2 − u+ 4u2

v + 2uv − 4u2v 3
2 + u− 4u2 −2 + 2u2 −v − 2uv + 4u2v −3

2 − u+ 4u2

v + 2uv − 4u2v −3
2 − u+ 4u2 −11− 2u+ 16u2 0 0

v + 2uv − 4u2v −3
2 − u+ 4u2 2− 2u2 0 0

0 0 0 2v − 4u2v 1
2 + 2u− 2u2

0 0 0 2v − 4u2v 1
2 + 2u− 2u2

0 0 0 0 0
0 0 0 0 0
−2v 0 0 0 0

ηT =
(

1
2 , −2 + 4u2, 1

2 , −2 + 4u2, 1
71(70 + 45u− 66u2),

cT =
(

7v + 2uv − 20u2v, 0, 0, 0, 1 + u, 0, 0, −1− u, 0
)

zT0 =
(

0, 2− 8u+ 8u2, 0, −4uv + 8u2v, 1, 0, 4uv − 8u2v, 1, 0
)

Table 2: Constraint Jacobian and objective gradient for the heptagon packing problem
(continued on opposite page).

The linearization of (17) around z = 0 gives

minimize c · z subject to Gz ≥ 0. (18)

The values of G and c are given in Table 2. Unfortunately, (18) is unbounded. This
can be shown by producing some zu such that c · zu < 0 and Gzu ≥ 0. In the dual
setting, this implies that there is no η such that c = ηTG and η > 0.

Due to Theorem 2.4, we are allowed to modify the cost function f(z) by adding aux-
iliary functions as long as they are negligible in the aggregate and isometry-invariant.
In order for the new problem to be locally minimized, we need the new gradient c′ to
lie in the cone {ηTG : η > 0}. We will take the following simple form for our modified
problem

minimize f ′(z) = f(z) +

9∑
r=1

µrgr(z),

subj. to same constraints as in (17).

(19)

For a cell Pξ other than the primitive cell Pξ0 , the modified version is the same as
(19), except we replace ξ′i everywhere with ξ ◦ ξ′i. Since the problem is invariant
under common isometry, the problem is equivalent for all the cells and it is enough
to show that (19) is locally minimized. Note that ξ2 ◦ ξ0 = ξ2 and ξ2 ◦ ξ2 = ξ0,

so g
Pξ0
1 (z) = g

Pξ2
2 (z) and g

Pξ0
2 (z) = g

Pξ2
1 (z). Therefore, if µ1 = −µ2, the auxiliary

addition µ1g1(z) +µ2g2(z) is equal in magnitude and opposite in sign for the two cells
Pξ0 and Pξ2 sharing the edge ξ0(0)ξ2(0). Similar cancellation occurs across the three
other edges if µ3 = −µ4, µ5 = −µ6, and µ7 = −µ8. The term µ9g9(z) does not cancel
with any neighboring cells, and so we set µ9 = 0. Therefore, when µi = −µi+1 for
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−2 + 2u2 0 0 0
11 + 2u− 16u2 0 0 0

0 −v − 2uv + 4u2v 3
2 + u− 4u2 2− 2u2

0 −v − 2uv + 4u2v 3
2 + u− 4u2 −11− 2u+ 16u2

2− 2u2 0 0 0
−19

2 − u+ 12u2 0 0 0
0 2v − 4u2v −1

2 − 2u+ 2u2 −2 + 2u2

0 2v − 4u2v −1
2 − 2u+ 2u2 19

2 + u− 12u2

0 0 0 0


1
71(−141− 45u+ 208u2), 1

71(70 + 45u− 66u2), 1
71(−141− 45u+ 208u2), −5− 2u+ 12u2

)
Table 2: cont.

i = 1, 3, 5, 7 and µ9 = 0, the sum of the auxiliary objectives of a collection of cells
only has contributions from unmatched edges at the boundary of the collection and
the auxiliary objectives are negligible in the aggregate. A choice for µr satisfying these
conditions and such that c′ lies in the cone {ηTG : η > 0} exists if and only if there is
some η such that c = ηTG and η1 + η2 > 0, η3 + η4 > 0, η5 + η6 > 0, η7 + η8 > 0, and
η9 > 0. We can show directly that such η exists, and we give an example in Table 2.

We now have that Gz ≥ 0 and c′ · z ≤ 0 if and only if Gz = 0 and c′ · z = 0.
The rank of G is again 8, and so the program (19) is minimized exactly at the one-
dimensional null space of G, which is generated by the vector z0 given in Table 2. We
can verify directly that f(tz0) is a quadratic function of t minimized at t = 0, and that
gr(tz0) = 0 identically for r = 1, . . . , 9.

Therefore, (19) satisfies all the conditions of Theorem 2.8, and we have:

Theorem 3.2. The optimal double-lattice packing of regular heptagons, illustrated in
Figure 7, is strongly extreme.

3.3 General polygons

The structure of the solution in the cases of pentagons and heptagons suggests that
it might be possible to extend the result to general convex polygons. We will con-
sider a general convex polygon and a double-lattice packing generated by a half-length
parallelogram. We will assume that this half-length parallelogram is an isolated lo-
cal minimum of the area among half-length parallelograms. Due to Theorem 2.6 and
Theorem 2.7, this assumption implies that, except in the exceptional cases, all the
contacts in the double-lattice packing fall into the vertex-to-edge and the edge-to-edge
types. Moreover, when the affine diameter is not unique, the contact between K and
Tranp1−p4

(K) is edge-to-edge, but the associated constraint can be relaxed to a vertex-
to-edge constraint so that our analysis may follow the generic case. We find that the
only data about the polygon that enters into the calculation are the following:

1. The coordinates of vertices of the minimum-area half-length parallelogram and
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the endpoints of a corresponding affine diameter, with at least one endpoint
in the interior of an edge. Without loss of generality, we may assume the affine
diameter is horizontal, of length 2, and bisected by the origin. The remaining data
are encoded into the following parameters: h is the height of parallelogram and
a is the horizontal shift between the top and bottom sides of the parallelogram.
The position of the parallelogram center, not determined by these parameters, is
eliminated during the calculation.

2. The angle of the polygon edges on which the vertices of the parallelogram and
the endpoint of the affine diameter lie, φi, i = 2, 3, 4, 5, 6.

3. The distance and direction along the edge from those points to the nearest polygon
vertex, that is, half the length of the contact. We denote these distances li,
i = 2, 3, 4, 5, 6. For the directions, we will assume the nearest polygon vertex is
counterclockwise from the parallelogram vertex, but we will argue later that this
assumption has no effect on the subsequent analysis.

The assumption that the area of the half-length parallelogram is minimized can be
written as

a = h cotφ4 −
sinφ3 sin(φ4 − φ2)

sinφ4 sin(φ3 − φ2)
+

sinφ5 sin(φ6 − φ4)

sinφ4 sin(φ6 − φ5)
(20)

As in the previous sections the objective is given by the area of the quadrilateral
ξ′0(0)ξ′6(0)ξ′1(0)ξ′2(0), and we parameterize the search space using z = (x0, . . . , θ6) ∈ R9

and ξ′1 = ξ1. The oriented triangles to be used to represent the nonoverlap constraints
depend on the directions of li, i = 2, 3, 5, 6. With the contact directions assumed, the
optimization problem is:

minimize f(z) = α(ξ′0(0), ξ′1(0), ξ′2(0))− α(ξ′0(0), ξ′6(0), ξ′1(0)),

subj. to g1(z) = α(ξ′0(p2 + l2u2), ξ′0(p2 − l2u2), ξ′2(p2 + l2u2))/l22 ≥ 0

g2(z) = α(ξ′2(p2 + l2u2), ξ′2(p2 − l2u2), ξ′0(p2 + l2u2))/l22 ≥ 0

g3(z) = α(ξ′2(p3 + l3u3), ξ′2(p3 − l3u3), ξ′1(p3 + l3u3))/l23 ≥ 0

g4(z) = α(ξ′1(p3 + l3u3), ξ′1(p3 − l3u3), ξ′2(p3 + l3u3))/l23 ≥ 0

g5(z) = α(ξ′1(p5 + l5u5), ξ′1(p5 − l5u5), ξ′6(p5 + l5u5))/l25 ≥ 0

g6(z) = α(ξ′6(p5 + l5u5), ξ′6(p5 − l5u5), ξ′1(p5 + l5u5))/l25 ≥ 0

g7(z) = α(ξ′6(p6 + l6u6), ξ′6(p6 − l6u6), ξ′0(p6 + l6u6))/l26 ≥ 0

g8(z) = α(ξ′0(p6 + l6u6), ξ′0(p6 − l6u6), ξ′6(p6 + l6u6))/l26 ≥ 0

g9(z) = α(ξ′1(p4 + l4u4), ξ′1(p4 − l4u4), ξ′0(p1))/l24 ≥ 0.

(21)

We linearize the problem to obtain a problem of the form (18). The constraint
matrix G is singular, and we can obtain right and left null space vectors z0 and η0,
whose values are given in Table 3. In fact, the null spaces are one-dimensional, as can be
seen by calculating det(G−η0z

T )/(z0 ·z0) = 214 sin(φ3−φ2) sin(φ6−φ5)/(l2l3l4l5l6) 6=
0. Note that the variables associated with the rotations θi in z0 are zero, and the
assignment z = tz0 corresponds to evolving the half-length parallelogram. We therefore
will have that f(tz0) has an isolated local minimum at t = 0 and that gr(tz0) = 0 for
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z0 =
(

cosφ4, sinφ4, 0, cos(φ3) sin(φ2 − φ4)/ sin(φ2 − φ3), sin(φ3) sin(φ2 − φ4)/ sin(φ2 − φ3),
0, cos(φ5) sin(φ4 − φ6)/ sin(φ5 − φ6), sin(φ5) sin(φ4 − φ6)/ sin(φ5 − φ6), 0

)
η0 =

(
1 −1 1 −1 1 −1 1 −1 0

)
Table 3: Right and left null space generators of the constraint matrix in the general polygon
packing problem.

all t. We note also that z0 · c = 0 and so c is contained in the row space of G. We solve
for the vector η such that η ·G = c and η · η0 = 0. We obtain the following values:

η1 + η2 = −l2 sinφ3/ sin(φ3 − φ2)

η3 + η4 = l3 sinφ2/ sin(φ3 − φ2)

η5 + η6 = l5 sinφ6/ sin(φ6 − φ5)

η7 + η8 = −l6 sinφ5/ sin(φ6 − φ5)

η9 = − l4
sinφ4

(
h− 1

cotφ3 − cotφ2
− 1

cotφ6 − cotφ5

)
.

(22)

Since all the above are positive, we can proceed as in the case of heptagons to include
auxiliary functions that would make all the ηi’s individually positive and be negligible
in the aggregate and isometry-invariant. Therefore, we have shown that the packing is
strongly extreme.

To see that the directions of the contacts do not matter, simply relax the correct
signed-area constraints to the signed-area constraints derived from a proper subinterval
of the contact with the contact direction as assumed in the proof. This change is in
fact a relaxation in an appropriate neighborhood. Since the relaxed problem is still
solved uniquely at ξ′i = ξi, the same is true of the original. The same argument also
takes care of contacts at full edges.

We have therefore proved that any double-lattice packing that is an isolated local
minimum among double-lattice packings and is not one of the exceptional types of
Definition 2.13 is also strongly extreme. In practice, we have a procedure which,
when combined with the Mount algorithm, takes a general polygon as input, produces
the densest double lattice packing, and certifies it as local maximum among general
packings. If the densest double lattice packing is not an isolated maximum or is of
exceptional type, further analysis is necessary.
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