A Linear-Time Algorithm for the Geodesic Center
of a Simple Polygon

Hee Kap Ahn*3, Luis Barba''2, Prosenjit Bose’,
Jean-Lou De Carufel', Matias Korman*®, and Eunjin Oh3

1  School of Computer Science, Carleton University, Ottawa, Canada
jit@scs.carleton.ca, jdecaruf@cg.scs.carleton.ca

2 Département d’Informatique, Université Libre de Bruxelles, Brussels, Belgium
lbarbafl@ulb.ac.be

3 Department of Computer Science and Engineering, POSTECH,
77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, Korea
{heekap, jin9082}@postech.ac.kr

4 National Institute of Informatics (NII), Tokyo, Japan
korman@nii.ac. jp

5 JST, ERATO, Kawarabayashi Large Graph Project

—— Abstract

Let P be a closed simple polygon with n vertices. For any two points in P, the geodesic distance
between them is the length of the shortest path that connects them among all paths contained
in P. The geodesic center of P is the unique point in P that minimizes the largest geodesic
distance to all other points of P. In 1989, Pollack, Sharir and Rote [Disc. & Comput. Geom.
89] showed an O(nlogn)-time algorithm that computes the geodesic center of P. Since then, a
longstanding question has been whether this running time can be improved (explicitly posed by
Mitchell [Handbook of Computational Geometry, 2000]). In this paper we affirmatively answer
this question and present a linear time algorithm to solve this problem.
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1 Introduction

Let P be a simple polygon with n vertices. Given two points x,y in P, the geodesic path
m(x,y) is the shortest path contained in P connecting = with y. If the straight-line segment
connecting x with y is contained in P, then 7 (z,y) is a straight-line segment. Otherwise,
m(x,y) is a polygonal chain whose vertices (other than its endpoints) are reflex vertices of P.
We refer the reader to [20] for more information on geodesic paths.

The geodesic distance between z and y, denoted by |m(x,y)|, is the sum of the Euclidean
lengths of each segment in 7(z,y). Throughout this paper, when referring to the distance
between two points in P, we mean the geodesic distance between them. To ease the
description, we assume that each vertex of P has a unique farthest neighbor. This general
position condition was also assumed by Aronov et al. [2] and can be obtained by applying a
slight perturbation to the positions of the vertices [10].
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Given a point z € P, a (geodesic) farthest neighbor of x, is a point fr(x) (or simply f(z))
of P whose geodesic distance to z is maximized.

Let Fp(z) be the function that maps each = € P to the distance to a farthest neighbor of
x (i.e., Fp(z) = |r(x, f(x))|). A point cp € P that minimizes Fy(z) is called the geodesic
center of P. Similarly, a point s € P that maximizes Fj(z) (together with f(s)) is called
a geodesic diametral pair and their distance is known as the geodesic diameter. Asano and
Toussaint [3] showed that the geodesic center is unique (whereas it is easy to see that several
geodesic diametral pairs may exist).

In this paper, we show how to compute the geodesic center of P in O(n) time. Due to
lack of space, some proofs are omitted. For a full version of this paper refer to [1].

1.1 Previous Work

Since the early 1980s the problem of computing the geodesic center (and its counterpart,
the geodesic diameter) has received a lot of attention from the computational geometry
community. Chazelle [7] gave the first algorithm for computing the geodesic diameter (which
runs in O(n?) time using linear space). Afterwards, Suri [25] reduced it to O(nlogn)-time
without increasing the space constraints. Finally, Hershberger and Suri [14] presented a fast
matrix search technique, one application of which is a linear-time algorithm for computing
the diameter. The first algorithm for computing the geodesic center was given by Asano and
Toussaint [3], and runs in O(n*logn)-time. In 1989, Pollack, Sharir, and Rote [23] improved
it to O(nlogn) time. Since then, it has been an open problem whether the geodesic center
can be computed in linear time (indeed, this problem was explicitly posed by Pollack et
al. [23] and later by Mitchell [20, Chapter 27]).

Several variations of these two problems have been considered. Indeed, the same problem
has been studied under different metrics. For example, the Ly geodesic distance [6], the link
distance [9, 15, 24] (where we look for the path with the minimum possible number of bends
or links), or even rectilinear link distance [21, 22] (a variation of the link distance in which
only isothetic segments are allowed). The diameter and center of a simple polygon for both
the L; and rectilinear link metrics can be computed in linear time (whereas O(nlogn) time is
needed for the link distance). Another natural extension is the computation of the diameter
and center in polygonal domains (i.e., polygons with one or more holes). Polynomial time
algorithms are known for both the diameter [4] and center [5], although the running times
are significantly larger (i.e., O(n”™) and O(n!2*¢), respectively).

1.2 Qutline

In order to compute the geodesic center, cp, Pollack et al. [23] introduce a linear time
chord-oracle. Given a chord C that splits P into two sub-polygons, this oracle determines
which sub-polygon contains cp. Combining this operation with an efficient search on a
triangulation of P, Pollack et al. narrow the search of ¢p within a triangle (and find the
center using optimization techniques). Their approach however, does not allow them to
reduce the complexity of the problem in each iteration, and hence it runs in O(nlogn) time.

The general approach of our algorithm described in Section 6 is similar: partition P
into O(1) cells, use an oracle to determine which cell contains cp, and recurse within the
cell. Our approach differs however in two important aspects that allows us to speed-up the
algorithm. First, we do not use the chords of a triangulation of P to partition the problem
into cells. We use instead a cutting of a suitable set of chords. Secondly, we compute a set
Y of O(n) functions, each defined in a triangular domain contained in P, such that their
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upper envelope, ¢, coincides with F. Thus, we can “ignore” the polygon P and focus only
on finding the minimum of the function ¢.

The search itself uses e-nets and cutting techniques, which guarantee that both the size of
the cell containing cp and the number of functions of ¥ defined in it decrease by a constant
fraction (and thus leads to an overall linear time algorithm). This search has however two
stopping conditions, (1) reach a subproblem of constant size, or (2) find a triangle containing
cp. In the latter case, we show that ¢ is a convex function when restricted to this triangle.
Thus, finding its minimum becomes an optimization problem that we solve in Section 7 using
cuttings in R3. The key of this approach lies in the computation of the functions in ¥ and
their triangular domains. Each function g € ¥ is defined in a triangular domain A contained
in P and is associated to a particular vertex w of P. Intuitively speaking, g maps points in
A to their (geodesic) distance to w. We guarantee that, for each point x € P, there is one
function g € ¥ defined in a triangle containing x, such that g(z) = Fr(x). To compute these
triangles and their corresponding functions, we proceed as follows.

In Section 2, we use the matrix search technique introduced by Hershberger and Suri [14]
to decompose the boundary of P, denoted by dP, into connected edge-disjoint chains. Each
chain is defined by either (1) a consecutive list of vertices that have the same farthest neighbor
v (we say that v is marked if it has such a chain associated to it), or (2) an edge whose
endpoints have different farthest neighbors (such edge is called a transition edge).

In Section 3, we consider each transition edge ab of P independently and compute
its hourglass. Intuitively, the hourglass of ab, Hgp, is the region of P between two chains,
the edge ab and the chain of P that contains the farthest neighbors of all points in ab.
Inspired by a result of Suri [25], we show that the sum of the combinatorial complexities of all
hourglasses defined on a transition edge is O(n). (The combinatorial complezity—or simply
complexity—of a geometric object is the total number of vertices and edges that define it.)
In addition, we provide a new technique to compute all these hourglasses in linear time.

In Section 5 we show how to compute the functions in ¥ and their respective triangles.
We distinguish two cases: (1) Inside each hourglass Hg, of a transition edge, we use a
technique introduced by Aronov et al. [2] that uses the shortest-path trees of a and b in
Hp to construct O(|Hgp|) triangles with their respective functions (for more information on
shortest-path trees refer to [11]). (2) For each marked vertex v we compute triangles that
encode the distance from v. Moreover, we guarantee that these triangles cover every point of
P whose farthest neighbor is v. Overall, we compute the O(n) functions of ¥ in linear time.

2 Decomposing the boundary

In this section, we decompose 0P into chains of consecutive vertices that share the same
farthest neighbor and edges of P whose endpoints have distinct farthest neighbors.

Using a result from Hershberger and Suri [14], in O(n) time we can compute the farthest
neighbor of each vertex of P. Recall that the farthest neighbor of each vertex of P is always
a convex vertex of P [3] and is unique by our general position assumption. The (farthest)
Voronoi region of a vertex v of P is the set of points R(v) = {x € P : Fp(z) = |n(x,v)|}
(including boundary points).

We mark the vertices of P that are farthest neighbors of at least one vertex of P.
Let M denote the set of marked vertices of P (clearly this set can be computed in O(n)
time after applying the result of Hershberger and Suri). In other words, M contains all
vertices of P whose Voronoi region contains at least one vertex of P. Given a vertex v
of P, the vertices of P whose farthest neighbor is v appear contiguously along 9P [2].
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Therefore, after computing all these farthest
neighbors, we effectively split the boundary
into subchains, each associated with a differ-
ent vertex of M; see Figure 1.

Given two points & and y on 9P, let
OP(x,y) be the polygonal chain that starts
at z and follows the boundary of P clockwise
until reaching y. We say that three (non-
empty) disjoint sets A, B and C contained in
OP are in clockwise order if B C OP(a, c) for
any a € A and any ¢ € C. (To ease notation, Figure 1 Each vertex of the boundary of P
we say that three points z,y,z € OP are in is assigned with a farthest neighbor which is

clockwise order if {z},{y} and {z} are in then marked. The boundary is then decomposed
into vertex-disjoint chains, each associated with a

marked vertex, joined by transition edges (blue)
whose endpoints have different farthest neighbors.

Vg

clockwise order).

Let a and b be the endpoints of a trans-
ition edge of P such that b is the clockwise
neighbor of a along OP. Because ab is a transition edge, we know that f(a) # f(b). Recall
that we have computed f(a) and f(b) in the previous step and note that a,b, f(a), f(b) are
in clockwise order.

For any vertex v € 9P such that f(a) # v # f(b) and f(a),v, f(b) are in clockwise order,
we know that there cannot be a vertex u of P such that f(u) =wv. As proved by Aronov et
al. [2, Corollary 2.7.4], if there is a point x on P whose farthest neighbor is v, then & must
lie on the open segment (a,b). In other words, the Voronoi region R(v) restricted to P is
contained in (a, b).

3 Hourglasses

For any polygonal chain C' = 9P (pg, pr.), the hourglass of C, denoted by Hc, is the simple
polygon contained in P bounded by C, m(p, f(po)), OP(f(po), f(px)) and 7(f(px),po); see
Figure 2. We call C and 0P(f(po), f(pr)) the top and bottom chains of H¢, respectively,
while 7 (pk, f(po)) and 7(f(pk),po) are referred to as the walls of Hz. We say that the
hourglass He is open if its walls are vertex-disjoint. We say C is a transition chain if
f(po) # f(pr) and neither f(po) nor f(px) are interior vertices of C. In particular, if an edge
ab of OP is a transition chain, we say that it is a transition edge (see Figure 2).

» Lemma 1 (Restatement of Lemma 3.1.3 of [2]). If C is a transition chain of OP, then the
hourglass Ho is an open hourglass.

In the remainder of the paper, all the hourglasses considered are defined by a transition
chain. That is, they are open and their top and bottom chains are edge-disjoint.

The following lemma is depicted in Figure 2 and is a direct consequence of the Ordering
Lemma proved by Aronov et al. [2, Corollary 2.7.4].

» Lemma 2. Let Cp,C5, Cs be three edge-disjoint transition chains of OP in clockwise order.
Then, the bottom chains of Hec,, Ho, and He, are also edge-disjoint and are in clockwise
order.

Let v be a geodesic path joining two points on the boundary of P. We say that v separates
two points z1 and zo of JP if the points of X = {z1,22} and the endpoints of v alternate
along the boundary of P (z7 and x5 could coincide with the endpoints of + in degenerate
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J(p3)

f(po

Figure 2 Given two edge-disjoint transition chains, their hourglasses are open and the bottom
chains of their hourglasses are also edge-disjoint. Moreover, these bottom chains appear in the same
cyclic order as the top chains along OP.

cases). We say that a geodesic path v separates an hourglass H if it separates the points of
its top chain from those of its bottom chain.

» Lemma 3. Let C4,...,C, be edge-disjoint transition chains of OP. Then, there is a set
of t <10 geodesic paths ~y1,...,v: with endpoints on OP such that for each 1 <1i < r there
exists 1 < j <t such that y; separates Hc,. Moreover, this set can be computed in O(n)
time.

A chord of P is an edge joining two non-adjacent vertices a and b of P such that ab C P.
Therefore, a chord splits P into two sub-polygons.

» Lemma 4 (Restatement of Lemma 3.4.3 of [2]). Let C4,...,C, be a set of edge-disjoint
transition chains of OP in clockwise order. Then each chord of P appears in O(1) hourglasses
among He,,...,Hc,.

» Lemma 5. Let z,u,y,v be four vertices of P in clockwise order. Given the shortest-path
trees T, and T, of x and y in P, respectively, such that T, and T, can answer lowest common
ancestor (LCA) queries in O(1) time, we can compute the path 7(u,v) in O(|7(u,v)|) time.
Moreover, all edges of w(u,v), except perhaps one, belong to T, U Ty.

» Lemma 6. Let P be a simple polygon with n vertices. Given k disjoint transition chains
Ci,...,C, of OP, it holds that

k
> |He,| = O(n).
i=1
Proof. Because the given transition chains are edge-disjoint, Lemma 2 implies that the
bottom chains of their respective hourglasses are also edge-disjoint. Therefore, the sum of
the complexities of all the top and bottom chains of these hourglasses is O(n). To bound
the complexity of their walls we use Lemma 4. Since no chord is used more than a constant
number of times, it suffices to show that the total number of chords used by all these
hourglasses is O(n).

To prove this, we use Lemma 3 to construct O(1) splitting chains ~1, .. .,~: such that for
each 1 <¢ < k, there is a splitting chain v; that separates the top and bottom chains of Hg;.
For each 1 < j <t, let H/ = {Hg, : the top and bottom chain of He, are separated by ~;}.
Since the complexity of the shortest-path trees of the endpoints of «; is O(n) [11], and from
the fact that the chains C1, ..., C} are edge-disjoint, Lemma 5 implies that the total number
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of edges in all the hourglasses of H? is O(n). Moreover, because each of these edges appears

in O(1) hourglasses among C1, ..., C, we conclude that
> |H[=0(n).
HeHi
Since we have only O(1) splitting chains, our result follows. <

3.1 Building hourglasses

Let E be the set of transition edges of OP. Given a transition edge ab € E, we say that
H,yp is a transition hourglass. In this section, we present an algorithm that computes each
transition hourglass of P in O(n) time.

By Lemma 3 we can compute a set of O(1) separating paths such that for each transition
edge ab, the transition hourglass H,y, is separated by one (or more) paths in this set. For each
endpoint of the O(1) separating paths we compute its shortest-path tree in linear time [8, 11].
In addition, we preprocess these trees in linear time to support LCA queries [13]. Both
computations need linear time per endpoint and use O(n) space. Since we do this process
for a constant number of endpoints, overall this preprocessing takes O(n) time.

Let v be a separating path. Note that v separates the boundary of P into two chains S
and S’ such that SU S’ = 9P. Let H(y) be the set of transition hourglasses separated by ~
whose transition edge is contained in S (whenever an hourglass is separated by more than
one path, we pick one arbitrarily). Note that we can classify all transition hourglasses into
the sets H(v) in O(n) time (since O(1) separating paths are considered).

We claim that we can compute all transition hourglasses of H(y) in O(n) time. By
construction, the wall of each of these hourglasses consists of a (geodesic) path that connects
a point in S with a point in §’. Let u € S and v € S’ be two vertices such that 7(u,v) is
the wall of a hourglass in H(). Because LCA queries can be answered in O(1) time [13],
Lemma 5 allows us to compute this path in O(|7(u,v)|) time. Therefore, we can compute all
hourglasses of H(7) in O(}_ yre4(,) [H| +n) = O(n) time by Lemma 6. Because only O(1)
separating paths are considered, we obtain the following result.

» Lemma 7. The total complexity of the transition hourglasses of all transition edges of P
is O(n). Moreover, all these hourglasses can be constructed in O(n) time.

4 Funnels

Let C = (po,...,pr) be a chain of P and let v be a vertex of P not in C. The funnel
of v to C, denoted by S,(C), is the simple polygon bounded by C, n(pg,v) and 7 (v, po);
see Figure 3 (a). Note that the paths 7(v,px) and (v, pp) may coincide for a while before
splitting into edge-disjoint chains. A subset R C P is geodesically convez if for every z,y € R,
the path 7(z,y) is contained in R. This funnel S,(C) is then the minimum geodesically
convex set that contains v and C. See Lee and Preparata [16] or Guibas et al. [11] for more
details on funnels.

» Lemma 8. Let v be a vertex of P and let C be a transition chain such that R(v)NOP C C
and v & C. Then, R(v) is contained in the funnel S,(C)
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Vo

Su(C) Su(C)

v v

Figure 3 a) The funnel S, (C) of a vertex v and a chain C contained in 9P are depicted. b) The
decomposition of S, (C) into apexed triangles produced by the shortest-path map of v.

4.1 Funnels of marked vertices

Recall that for each marked vertex v € M, we know at least of one vertex on 9P such that v
is its farthest neighbor.

» Lemma 9. Let = be a point in P. If f(x) = v for some marked vertex v € M, then

xz € 8,(Cy).
For any marked vertex v, let uq,...,ux—1 be the vertices of P such that v = f(u;) and
assume that uq,...,ur_1 are in clockwise order. Let ug and ux be the neighbors of u; and

up_1 other than us and ug_o, respectively. Note that both ugu; and up_juy are transition
edges of P. Thus, we can assume that their transition hourglasses have been computed.

Let C, = (ug,...,ur) and consider the funnel S, (C,). We call C, the main chain
of S,(C,) while m(ug,v) and 7(v,ug) are referred to as the walls of the funnel. Because
v = f(u1) = f(ug—1), we know that v is a vertex of both H,,, and H,, ,.,. By definition,
we have (v, up) C Hygu, and w(v,ug) C Hy, _,4,. Thus, we can explicitly compute both
paths (v, up) and m(v,ux) in O(|Hugu, | + |[Hus_qus|) time. So, overall, the funnel S,(C,)
can be constructed in O(k + |Hygu, | + |Hu,_,u,,|) time. Recall that, by Lemma 6, the total
sum of the complexities of the transition hourglasses is O(n). In particular, we can bound
the total time needed to construct the funnels of all marked vertices by O(n).

Since the complexity of the walls of these funnels is bounded by the complexity of the
transition hourglasses used to compute them, by Lemma 7 we get that

> 18.(Cy)l =0 <n+ > IHab|> =0(n).

veEM abe

» Lemma 10. The total complexity of the funnels of all marked vertices of P is O(n).
Moreover, all these funnels can be constructed in O(n) time.

5 Covering the polygon with apexed triangles

An apezed triangle A = (a, b, c) with apez a is a triangle contained in P with an associated
distance function ga (), called the apex function of A, such that (1) a is a vertex of P, (2)
b,c € P, and (3) there is a vertex w of P, called the definer of A, such that

- ifo g,
|za| + |7(a,w)| = |7(x, w)| ifxeA.

ga(x) = {
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Figure 4 (left) A vertex v visible from the segment ab lying on the bottom chain of Hgp, and the
triangle A, which contains the portion of ab visible from v. (right) The children u; and u2 of v are
visible from ab while ws is not. The triangle /\, is split into apexed triangles by the rays going from
u1 and us to v.

In this section, we show how to find a set of O(n) apexed triangles of P such that the upper
envelope of their apex functions coincides with Fr(x). To this end, we first decompose the
transition hourglasses into apexed triangles that encode all the geodesic distance information
inside them. For each marked vertex v € M, we construct a funnel that contains the Voronoi
region of v. We then decompose this funnel into apexed triangles that encode the distance
from v.

5.1 Inside the transition hourglass

Let ab be a transition edge of P such that b is the clockwise neighbor of a along OP. Let
B, denote the open bottom chain of H,,. As noticed above, a point on P can be farthest
from a vertex in B, only if it lies in the open segment ab. That is, if v is a vertex of By,
such that R(v) # 0, then R(v) NOP C ab. In fact, not only is this Voronoi region inside Hyp
when restricted to the boundary of P, but we can further bound its location and show that
R(v) C Hgp. The next result follows directly from Lemma 8.

» Corollary 11. Let v be a vertex of Bap. If R(v) # 0, then R(v) C Hgyp.

Our objective is to compute O(|H,p|) apexed triangles contained in Hy;, each with its
distance function, such that the upper envelope of these apex functions coincides with Fp(z)
restricted to H,, where it “matters”.

The same approach was already used by Pollack et al. in [23, Section 3]. Given a segment
contained in the interior of P, they show how to compute a linear number of apexed triangles
such that Fp(z) coincides with the upper envelope of the corresponding apex functions in
the given segment. While the construction we follow is analogous, we use it in the transition
hourglass H,;, instead of the full polygon P. Therefore, we have to specify what is the
relation between the upper envelope of the computed functions and Fp(x). We will show
that the upper envelope of the apex functions computed in H,; coincides with Fp(x) inside
the Voronoi region R(v) of every vertex v € Bgp.

Let T, and Ty be the shortest-path trees in H,p from a and b rooted at a and b, respectively.
We can compute these trees in O(|Hyp|) time [11]. For each vertex v such that f(a),v and
f(b) are in clockwise order, let v, and v, be the neighbors of v in the paths 7(v,a) and
m(v,b), respectively. We say that a vertex v is visible from ab if v, # v,. Note that if a vertex
is visible, then the extension of these segments must intersect the top segment ab. Therefore,
for each visible vertex v, we obtain a triangle A\, as shown in Figure 4.

We further split A, into a series of triangles with apex at v as follows: Let u be a child
of v in either T, or Ty. As noted by Pollack et al., v can be of three types, either (1) w is not
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visible from ab (and is hence a child of v in both T, and T}); or (2) w is visible from ab, is a
child of v only in T}, and vyvu is a left turn; or (3) w is visible from ab, is a child of v only in
T,, and vgvu is a right turn.

Let uq,...,ug—1 be the children of v of type (2) sorted in clockwise order around v. Let
¢(v) be the maximum distance from v to any invisible vertex in the subtrees of T, and T}
rooted at v; if no such vertex exists, then c¢(v) = 0. Define a function d;(v) on each vertex v
of Hyp in a recursive fashion as follows: If v is invisible from ab, then d;(v) = ¢(v). Otherwise,
let d;(v) be the maximum of ¢(v) and max{d;(u;) + |u;v| : u; is a child of v of type (2)}.
Symmetrically, we define a function d,.(v) using the children of type (3) of v.

For each 1 <17 < k — 1, extend the segment w;v passed v until it intersects ab at a point
s;- Let sg and s be the intersections of the extensions of vv, and vv, with the segment ab.
We define k apexed triangles contained in A, as follows. For each 0 < i < k — 1, consider
the triangle A(s;,v, s;41) whose associated apexed (left) function is

Fi() = { |zv| + max;s{c(v), jvu;| + di(u;)} ifre 4(51‘,'[],81:4'_1) ,
—00 otherwise .
In a symmetric manner, we define a set of apexed triangles induced by the type (3) children
of v and their respective apexed (right) functions.

Let g1,...,g- and Aq,...,/\, respectively be an enumeration of all the generated apex
functions and apexed triangles such that g; is defined in the triangle /\;. Because each
function is determined uniquely by a pair of adjacent vertices in T, or in Tp, and since these
trees have O(|Hgp|) vertices, we conclude that r = O(|Hgp|).

Note that for each 1 <1 < r, the apexed triangle /A; has two vertices on the segment ab
and a third vertex, say a;, being its apex such that for each © € A;, g;(x) = |r(x,w;)| for
some vertex w; of Hy,. Recall that w; is called the definer of /\;. Intuitively, /A\; defines a
portion of the geodesic distance function from w; in a constant complexity region.

» Lemma 12. Given a transition edge ab of P, we can compute a set Aqp of O(|Hap|) apezed
triangles in O(|Hgp|) time with the property that for any point p € P such that f(p) € Bap,
there is an apexed triangle /N € Aqp, with apex function g and definer equal to f(p) such
that

1. pe A and

2. g(p) = Fr(p).

In other words, Lemma 12 says that no information on farthest neighbors is lost if we
only consider the functions of A, within H,,. In the next section we construct a set of
apexed triangles (and their corresponding apex functions), so as to encode the distance from
the vertices of M.

5.2 Inside the funnels of marked vertices

We now proceed to split a given funnel into O(|S,(C,)|) apexed triangles that encode the
distance function from v. To this end, we use the algorithm described by Guibas et al. [12,
Section 2] to compute the shortest-path map of v in S,(C,) in O(|S,(C,)|) time. This
algorithm produces a partition of S,(C,) into O(]S,(C,)|) interior disjoint triangles with
vertices on 0P, such that each triangle consists of all points in S, (C,) whose shortest path
to v consists of the same sequence of vertices; see Figure 3 (b). Let A be a triangle in this
partition and let a be its apex, i.e., the first vertex found along each path 7(z,v), where
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x € A. We define the apex function ga(z) of A as follows:

|za| + |7(a,v)| ifxel,
—00 otherwise .

gn(z) = {

Therefore, for each z € A, ga(z) = | (x,v)].

» Lemma 13. The shortest-path map of v in S,(C,) can be computed in O(|S,(Cy)|) time
and produces O(|S,(Cy)|) interior disjoint apexed triangles such that their union covers

S,(Cy). Moreover, for each point x € R(v), there is an apezxed triangle /\ with apex function
g(x) such that (1) x € A and (2) g(x) = Fp(x).

Proof. The above procedure splits S, (C,) into O(]S,(C,)|) apexed triangles, such that the
apex function in each of them is defined as the geodesic distance to v. By Lemma 9, if
x € R(v), then x € S,(C,). Therefore, there is an apexed triangle A with apex function g(z)
such that x € A and g(z) = |7(x,v)| = Fp(x). Thus, we obtain properties (1) and (2). <«

6 Prune and search

With the tools introduced in the previous sections, we can describe a prune and search
algorithm to compute the geodesic center. The idea of the algorithm is to partition P into
O(1) cells using e-nets, determine in which cell of P the center lies and recurse on that cell
as a new subproblem with smaller complexity.

We can discard all apexed triangles that do not intersect the new cell containing the
center. Using cuttings to produce this partition of P, we can show that both the complexity
of the cell containing the center, and the number of apexed triangles that intersect it decrease
by a constant fraction in each iteration of the algorithm. This process is then repeated until
either of the two objects has constant descriptive size.

Let 7 be the set of all apexed triangles computed in previous sections. Lemmas 6 and 12
bound the number of apexed triangles constructed inside the transition hourglasses, while
Lemmas 10 and 13 do so inside the funnels of the marked vertices. We obtain the following.

» Corollary 14. The set T consists of O(n) apezxed triangles.

Let ¢(z) be the upper envelope of the apex functions of the triangles in 7 (i.e., ¢(x) =
max{g(x) : A € 7 and g(z) is the apex function of A}). The following result is a direct
consequence of Lemmas 12 and 13, and shows that the O(n) apexed triangles of 7 not only
cover P, but their apex functions suffice to reconstruct the function Fy(x).

» Lemma 15. The functions ¢(x) and Fp(z) coincide in the domain of points of P, i.e., for
each p € P, ¢(p) = Fp(p).

Given a chord C of P, a half-polygon of P is one of the two simple polygons in which C
splits P. A k-cell of P is a simple polygon obtained as the intersection of at most k half-
polygons. Because a k-cell is the intersection of geodesically convex sets, it is also geodesically
convex. The recursive algorithm described in this section takes as input a 4-cell R (initially
equal to P) containing the geodesic center of P and the set of apexed triangles of 7 that
intersect R. In each iteration, it produces a new 4-cell of smaller complexity that intersects
just a fraction of the apexed triangles and contains the geodesic center of P. By recursing
on this new cell, the complexity of the problem is reduced in each iteration.

Let R be a 4-cell of P containing the geodesic center of P and let 7z be the set of
apexed triangles of 7 that intersect R. Let mj, = max{|R|,|Tr|}, where |R| denotes the
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T
dp
P

Figure 5 The e-net N splits R into O(1) sub-polygons that are further refined into a 4-cell
decomposition using O(1) ray-shooting queries from the vertices of the arrangement defined by N.

combinatorial complexity of R. Recall that, by construction of the apexed triangles, for each
triangle of 7p at least one and at most two of its boundary segments are chords of P. Let C
be the set containing all chords that belong to the boundary of a triangle of 7z. Therefore,
IC| < 2|7r| < 2my.

To construct e-nets, we need some definitions (for more information on e-nets refer to [18]).
Let ¢ be the set of all open 4-cells of P. For each t € ¢, let C; = {C € C: CNt#0} be the
set of chords of C induced by ¢. Finally, let ¢c = {C; : t € ¢} be the family of subsets of C
induced by ¢. Consider the set system (C, pc) (denoted by (C, ¢) for simplicity).

Let € > 0 (the exact value of € will be specified later). Because the VC-dimension of
the set system (C, ) is finite [1], we can compute an e-net N of (C, ) in O(|C|/e) = O(my)
time [18]. The size of N is O(2log 1) = O(1) and its main property is that any 4-cell that
does not intersect a chord of N will intersect at most ¢|C| chords of C.

Observe that N partitions R into O(1) sub-polygons (not necessarily 4-cells). We further
refine this partition to obtain 4-cells. That is, we shoot vertical rays up and down from
each endpoint of IV, and from the intersection point of any two segments of N, see Figure 5.
Overall, this partitions R into O(1) 4-cells such that each either (7) is a convex polygon
contained in P of at most four vertices, or otherwise (i) contains some chain of P. Since
|IN| = O(1), the whole decomposition can be computed in O(my) time (the intersections
between segments of N are done in constant time, and for the ray shooting operations we
walk along the boundary of R once).

In order to determine which 4-cell contains the geodesic center of P, we extend each edge
of a 4-cell to a chord C. This can be done with two ray-shooting queries (each of which
takes O(my) time). We then use the chord-oracle from Pollack et al. [23, Section 3] to decide
which side of C' contains ¢p. The only requirement of this technique is that the function
Fr(x) coincides with the upper envelope of the apex functions when restricted to C, which
is true by Lemma 15 and from the fact that 7z consists of all the apexed triangles of 7 that
intersect R. Because the chord-oracle described by Pollack et al. [23, Section 3] runs in time
linear in the number of functions defined on C, we can decide in total O(my) time in which
side of C' the geodesic center of P lies. Since our decomposition into 4-cells has constant
complexity, we need to perform O(1) calls to the oracle before determining the 4-cell R’ that
contains the geodesic center of P.

The chord-oracle computes the minimum of Fj(z) restricted to the chord before determ-
ining the side containing the minimum. In particular, if cp lies on any chord bounding R,
then the chord-oracle will find it. Therefore, we can assume that cp lies in the interior of R’.
Moreover, since N is a e-net, we know that at most €|C| chords of C intersect R'.

We can show that the complexity of R’ also decreases: since |C| < 2|7r| < 2mp, at most
2emy apexed triangles intersect R'. Because Fp(z) is defined in each point of R’, Lemma 15
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implies that each vertex of R’ is covered by at least one apexed triangle of 7. Since each
apexed triangle can cover at most three vertices, by the pigeonhole principle we conclude
that R’ can have at most 6emy vertices. Otherwise, an apexed triangle would contain at
least four vertices of R’. Thus, if we choose e = 1/12, we guarantee that both the size of the
4-cell R' and the number of apexed triangles in 7p/ are at most mp/2.

In order to proceed with the algorithm on R’ recursively, we need to compute the set
TR with the at most ¢|C| apexed triangles of T that intersect R’ (i.e., prune the apexed
triangles that do not intersect with R’). For each apexed triangle A € 7, we can determine
in constant time if it intersects R’ (either one of the endpoints is in R’ N dP or the two
boundaries have non-empty intersection in the interior of P). Overall, we need O(my) time
to compute the at most €|C| triangles of 7 that intersect R'.

By recursing on R’, we guarantee that after O(logmpz) iterations, we reduce the size of
either 7g or R’ to constant. In the former case, the minimum of Fr(x) can be found by
explicitly constructing ¢ in O(1) time. In the latter case, we triangulate R’ and apply the
chord-oracle to determine which triangle will contain cp. The details needed to find the
minimum of ¢(z) inside this triangle are given in the next section.

» Lemma 16. In O(n) time we can find either the geodesic center of P or a triangle
containing the geodesic center.

7 Finding the center within a triangle

In order to complete the algorithm it remains to show how to find the geodesic center of P
for the case in which R’ is a triangle. If this triangle is in the interior of P, it may happen
that several apexed triangles of 7 fully contain R’. Thus, the pruning technique used in the
previous section cannot be further applied. We solve this case with a different approach.
Recall that ¢(x) denotes the upper envelope of the apex functions of the triangles in 7,
and the geodesic center is the point that minimizes ¢. The key observation is that, as it
happened with chords, the function ¢(x) restricted to R’ is convex.
Let Ay, Ao, ..., Ay be the set of m = O(n) apexed triangles of 7 that intersect R’. Let
a; and w; be the apex and the definer of A;, respectively. Let g;(z) be the apex function of
/\; such that
g(x)—{ |za;| + ki ifx e,
—00 otherwise ,
where k; = |m(a;, w;)| is a constant.
By Lemma 15, ¢(x) = Fp(x). Therefore, the problem of finding the center is equivalent
to the following optimization problem in R3:

(P1). Find a point (z,r) € R® minimizing r subject to x € R’ and

gi(z) <7, for 1 <i<m.

Thus, we need only to find the solution to (P1) to find the geodesic center of P. We use
some remarks described by Megiddo in order to simplify the description of (P1) [19].
To simplify the formulas, we square the equation |za;| < r — k;:
2|2 — 22 - a; + ||as]|® = |zas)® < (r — k) = 1% — 2rk; + K2
And finally for each 1 < i < m, we define the function h;(x,r) as follows:
hi(w,r) = |z]|? = 22 - a; + ||a;||* — r* + 2rk; — K7 ifexeld;,
ST~ otherwise .
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Therefore, our optimization problem can be reformulated as:

(P2). Find a point (z,7) € R? such that r is minimized subject to x € R’ and
hi(z,7) <0 and r > max{k;}, for 1 <i < m.

Let hl(x,r) = ||z]|?> — 22 - a; + ||a;]|> — 7? + 2rk; — 2 be a function defined in the entire
plane and let (P2’) be an optimization problem analogous to (P2) where every instance of
hi(z,r) is replaced by h}(z,r). The optimization (P2’) was studied by Megiddo in [19]. We
provide some of the intuition used by Megiddo to solve this problem.

Although the functions hf(x,r) are not linear, they all have the same non-linear terms.
Therefore, for i # j, we get that hi(z,r) = h'y(z,r) defines a separating plane

i = (@) € R 2 2(k; — wy)r — 2(a; — aj) - x + [lail|* — flas||* — 7 + &7 = 0} .

As noted by Megiddo [19], this separating plane has the following property: If the solution
(x,7) to (P2') is known to lie to one side of ~; j, then we know that one of the constraints is
redundant. Thus, to solve (P2’) it sufficed to have a side-decision oracle to determine in
which side of a plane v; ; the solution lies. Megiddo showed how to implement this oracle in
a way that the running time is proportional to the number of constraints [19].

Once we have such an oracle, Megiddo’s problem can be solved using a prune and search
approach: pair the functions arbitrarily, and consider the set of m/2 separating planes
defined by these pairs. For some constant ¢, compute a 1/t-cutting in R? of the separating
planes. A 1/t-cutting is a partition of the plane into O(t3) = O(1) convex regions each of
which is of constant complexity and intersects at most m/2t separating planes. A cutting
of planes can be computed in linear time in R3 for any ¢t = O(1) [17]. After computing the
cutting, determine in which of the regions the minimum lies by performing O(1) calls to the
side-decision oracle. Because at least (¢t — 1)m/2t separating planes do not intersect this
constant complexity region, for each of them we can discard one of the constraints as it
becomes redundant. Repeating this algorithm recursively we obtain a linear running time.

To solve (P2) we follow a similar approach, but our set of separating planes needs to be
extended in order to handle apex functions as they are only defined in the same way as in
(P2') in a triangular domain. Note that no vertex of an apexed triangle can lie inside R’.

7.1 Optimization problem in a convex domain

In this section we describe our algorithm to solve the optimization problem (P2). To this
end, we pair the apexed triangles arbitrarily to obtain m/2 pairs. By identifying the plane
where P lies with the plane Zy = {(z,y, ) : z = 0}, we can embed each apexed triangle in
R3. A plane-set is a set consisting of at most five planes in R3. For each pair of apexed
triangles (A;, AA;) we define its plane-set as follows: For each chord of P bounding either A;
or A\; (at most two chords on each triangle), consider the line extending this chord and the

vertical extrusion of this line in R3, i.e., the plane containing this chord orthogonal to Z;.

Moreover, consider the separating plane «y; ;. The set containing these planes is the plane-set
of the pair (A;, A;).

Let T" be the union of all the plane-sets defined by the m/2 pairs of apexed triangles.

Because the plane-set of each pair (A;, AA;) consists of at most five planes and contains at
least one plane unique to this pair, say ~; j, we infer that m/2 < |T'| < 5m/2.

Compute a 1/t-cutting of T' in O(m) time for some constant ¢ to be specified later. Because
t is constant, this 1/t-cutting splits the space into O(1) convex regions, each bounded by a
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constant number of planes [17]. Using a side-decision algorithm (to be specified later), we

can determine the region @ of the cutting that contains the solution to (P2). Because @

is the region of a 1/t-cutting of I', we know that at most |I'|/t planes of T intersect Q. In
particular, at most |T'|/t plane-sets intersect @ and hence, at least (¢t — 1)|T'|/t plane-sets do

not intersect Q). Since |T'| > m/2, at least (¢t — 1)m/2t plane-sets do not intersect Q.

Let (A;,AA;) be a pair such that its plane-set does not intersect Q. Let Q' be the
projection of @ on the plane Z,. Because the plane-set of this pair does not intersect @), we
know that @' intersects neither the boundary of A; nor that of A;. Two cases arise:

Case 1. If either A; or A, does not intersect @', then we know that their apex function is
redundant and we can drop the constraint associated with this apexed triangle.

Case 2. If Q' C A; N A, then we need to decide which constraint to drop. To this end, we
consider the separating plane ; ;. Notice that inside the vertical extrusion of A; N A;
(and hence in @), the plane ~; ; has the property that if we know which side of it contains
the solution, then one of the constraints can be dropped. Since «y; ; does not intersect @
as 7, ; belongs to the plane-set of (A;, A;), we can decide which side of v; ; contains the
solution to (P2) and drop one of the constraints.

Regardless of the case, if the plane-set of a pair (A;, A\;) does not intersect ), then we
can drop one of its constraints. Since at least (¢t — 1)m/2¢ plane-sets do not intersect @,
we can drop at least (¢t — 1)m/2t constraints. By choosing ¢ = 2, we are able to drop at
least (t — 1)m/2t = m/4 constraints. Consequently, after O(m) time, we are able to drop
m/4 apexed triangles. By repeating this process recursively, we end up with a constant size
problem in which we can compute the upper envelope of the functions explicitly and find the
solution to (P2) using exhaustive search. Thus, the running time of this algorithm is bounded
by the recurrence T'(m) = T'(3m/4) + O(m) which solves to O(m). Because m = O(n), we
can find the solution to (P2) in O(n) time.

It remains to describe the side-decision algorithm. Given a plane 7, we want to decide in
which side of + lies the solution to (P2). To this end, we solve (P2) restricted to v, i.e., with
the additional constraint (z,r) € . This approach was used by Megiddo [19], the idea is
to recurse by reducing the dimension of the problem. Another approach is to use a slight
modification of the chord-oracle described by Pollack et al. [23, Section 3].

Once the solution to (P2) restricted to 7 is known, we can follow the same idea used by
Megiddo [19] to find the side of v containing the global solution to (P2). That is, we find
the apex functions that define the minimum restricted to 7. Since ¢(x) = Fp(z) is locally
defined by these functions, we can decide in which side the minimum lies using convexity.
We obtain the following result.

» Lemma 17. Let R’ be a convex trapezoid contained in P such that R' contains the geodesic
center of P. Given the set of all apexed triangles of T that intersect R, we can compute the
geodesic center of P in O(n) time.

The following theorem summarizes the result presented in this paper.

» Theorem 18. We can compute the geodesic center of any simple polygon P of n vertices
in O(n) time.
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