
Space Exploration via Proximity Search∗

Sariel Har-Peled1, Nirman Kumar2, David M. Mount3, and
Benjamin Raichel1

1 Department of Computer Science, University of Illinois
201 N. Goodwin Avenue, Urbana, IL, 61801, USA
{sariel,raichel2}@illinois.edu

2 Department of Computer Science, University of California
2120B Harold Frank Hall, Santa Barbara, CA, 93106, USA
nirman@cs.ucsb.edu

3 Department of Computer Science, University of Maryland
College Park, MD, 20742, USA
mount@cs.umd.edu

Abstract
We investigate what computational tasks can be performed on a point set in Rd, if we are only
given black-box access to it via nearest-neighbor search. This is a reasonable assumption if the
underlying point set is either provided implicitly, or it is stored in a data structure that can
answer such queries. In particular, we show the following:
(A) One can compute an approximate bi-criteria k-center clustering of the point set, and more

generally compute a greedy permutation of the point set.
(B) One can decide if a query point is (approximately) inside the convex-hull of the point set.
We also investigate the problem of clustering the given point set, such that meaningful proximity
queries can be carried out on the centers of the clusters, instead of the whole point set.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, I.1.2 Algorithms,
I.3.5 Computational Geometry and Object Modeling

Keywords and phrases Proximity search, implicit point set, probing

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.374

1 Introduction

Many problems in Computational Geometry involve sets of points in Rd. Traditionally, such
a point set is presented explicitly, say, as a list of coordinate vectors. There are, however,
numerous applications in science and engineering where point sets are presented implicitly.
This may arise for various reasons: (I) the point set (which might be infinite) is a physical
structure that is represented in terms of a finite set of sensed measurements such as a point
cloud, (II) the set is too large to be stored explicitly in memory, or (II) the set is procedurally
generated from a highly compressed form. (A number of concrete examples are described
below.)

Access to such an implicitly-represented point set P is performed through an oracle that is
capable of answering queries of a particular type. We can think of this oracle as a black-box

∗ Work on this paper by S.H. and B.R. was partially supported by NSF AF awards CCF-1421231, and
CCF-1217462. N. K. was partially supported by a NSF AF award CCF-1217462 while at UIUC, and by
NSF grant CCF-1161495 and a grant from DARPA while at UCSB. D. M. was partially supported by
NSF award CCF-1117259 and ONR award N00014-08-1-1015. The full paper is available online [12].

© Sariel Har-Peled, Nirman Kumar, David Mount, and Benjamin Raichel;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 374–389

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.374
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

S. Har-Peled, N. Kumar, D.M. Mount, and B. Raichel 375

data structure, which is provided to us in lieu of an explicit representation. Various types of
probes have been studied (such as finger probes, line probes, and X-ray probes [19]). Most
of these assume that P is connected (e.g., a convex polygon) and cannot be applied when
dealing with arbitrary point sets. In this paper, we consider proximity probes – a natural
choice for probing general point sets based on computing nearest neighbors.

More formally, we assume that the point set P is a (not necessarily finite) compact subset
of Rd. The point set P is accessible only through a nearest-neighbor data structure, which
given a query point q, returns the closest point of P to q. Some of our results assume
that the data structure returns an exact nearest neighbor (NN) and others assume that the
data structure returns a (1 + ε)-approximate nearest-neighbor (ANN). (See Section 2 for
definitions.) In any probing scenario, it is necessary to begin with a general notion of the
set’s spatial location. The point set P is contained within a given domain, which is a compact
subset D of Rd.

The oracle is given as a black-box, and no deletions or insertions are allowed from the
data structure. Furthermore, the number of data points in P is not necessarily known, nor
is there any assumption on continuity or smoothness. Indeed, most of our results apply to
infinite point sets, including volumes or surfaces.

Prior Work and Applications
Implicitly-represented point sets arise in various applications. One example is that of
analyzing a geometric shape through probing. An example of this is Atomic Force Microscopy
(AFM) [22]. This technology can reveal the undulations of a surface at the resolution of
fractions of a nanometer. It relies on the principle that when an appropriately designed tip
(the probe) is brought in the proximity of a surface to scan it, certain atomic forces minutely
deflect the tip in the direction of the surface. Since the deflection of the tip is generally to
the closest point on the surface, this mode of acquisition is an example of proximity probing.
A sufficient number of such samples can be used to reconstruct the surface [2].

The topic of shape analysis through probing has been well studied within the field
of computational geometry. The most commonly assumed probe is a finger probe, which
determines the first point of contact of a ray and the set. Cole and Yap [6] pioneered this
area by analyzing the minimum number of finger probes needed to reconstruct a convex
polygon. Since then, various alternative probing methods have been considered. For good
surveys of this area, see Skiena [19, 20].

More recently, Boissonnat et al. [4] presented an algorithm for learning a smooth unknown
surface S bounding an object O in R3 through the use of finger probes. Under some reasonable
assumptions, their algorithm computes a triangulated surface Ŝ that approximates S to a
given level of accuracy. In contrast to our work, which applies to general point sets, all of
these earlier results assume that the set in question is a connected shape or surface.

Implicitly-represented point sets also arise in geometric modeling. Complex geometric
sets are often generated from much smaller representations. One example are fractals sets,
which are often used to model natural phenomena such as plants, clouds, and terrains [21].
Fractals are often expressed as the limit of an iterative process [16]. Due to their regular,
recursive structure it is often possible to answer proximity queries about such a set without
generating the set itself.

Two other examples of infinite sets generated implicitly from finite models include
(I) subdivision surfaces [1], where a smooth surface is generated by applying a recursive
refinement process to a finite set of boundary points, and (II) metaballs [3], where a surface
is defined by a blending function applied to a collection of geometric balls. In both cases, it

SoCG’15

376 Space Exploration via Proximity Search

is possible to answer nearest neighbor queries for the underlying object to arbitrarily high
precision without the need to generate its boundary.

Proximity queries have been applied before. Panahi et al. [18] use proximity probes on a
convex polygon in the plane to reconstruct it exactly. Goel et al. [8], reduce the approximation
versions of several problems like diameter, farthest neighbors, discrete center, metric facility
location, bottleneck matching and minimum weight matching to nearest neighbor queries.
They sometimes require other primitives for their algorithms, for example computation
of the minimum enclosing ball or a dynamic version of the approximate nearest-neighbor
oracle. Similarly, the computation of the minimum spanning tree [11] can be done using
nearest-neighbor queries (but the data structure needs to support deletions). For more
details, see the survey by Indyk [14].

Our contributions

In this paper we consider a number of problems on implicitly-represented point sets.

k-center clustering and the greedy permutation. Given a point set P, a greedy permutation
(informally) is an ordering of the points of P: p1, . . . , pk, . . . , such that for any k, the set of
points {p1, . . . , pk} is a O(1)-approximation to the optimal k-center clustering. This sequence
arises in the k-center approximation of Gonzalez [9], and its properties were analyzed by
Har-Peled and Mendel [13]. Specifically, if P can be covered by k balls of radius rk, then the
maximum distance of any point of P to its nearest neighbor in {p1, . . . , pk} is O(rk).

In Section 3, we show that under reasonable assumptions, in constant dimension, one can
compute a permutation that is a bi-criteria approximation to the optimal k center clustering.
More formally, we can compute a sequence of points from P, p1, p2, . . ., such for any k, the
radius of clustering using the centers in {p1, . . . , pck} is an O(1)-approximation to the optimal
k center clustering radius, where c is a constant depending only on the dimension. This
result uses exact proximity queries, and only one query per sequence point generated. If
the oracle answers (1 + ε)-ANN queries only, then for any k, the permutation generated is
competitive with the optimal k-center clustering, considering the first O

(
k log1/ε Φ

)
points

in this permutation, where Φ is (roughly) the spread of the point set. The hidden constant
factors grow exponentially in the dimension.

Approximate convex-hull membership. Given a point set P in Rd, consider the problem
of deciding whether a given query point q ∈ Rd is inside its convex-hull C = CH(P). The
answer for such a query is ε-approximately correct if the answer is correct whenever the
query point’s distance from the boundary of C is at least ε · diam(C). In Section 4, we show
that, given an oracle for (1 + ε2/c)-ANN queries, for some sufficiently large constant c, it is
possible to answer approximate convex-hull membership queries using O(1/ε2) proximity
queries. Remarkably, the number of queries is independent of the dimension of the data.

Our algorithm operates iteratively, by employing a gradient descent-like approach. It
generates a sequence of points, all within the convex hull, that converges to the query point.
Similar techniques have been used before, and are sometimes referred to as the Frank-Wolfe
algorithm. Clarkson provides a survey and some new results of this type [5]. A recent
algorithm of this type is the work by Kalantari [15]. Our main new contribution for the
convex-hull membership problem is showing that the iterative algorithm can be applied to
implicit point sets using nearest-neighbor queries.

S. Har-Peled, N. Kumar, D.M. Mount, and B. Raichel 377

Balanced proximity clustering. We study a problem that involves summarizing a point set
in a way that preserves proximity information. Specifically, given a set P of n points in Rd,
and a parameter k, the objective is to select m centers from P, such that if we assign every
point of P to its nearest center, no center has been selected by more than k points. This
problem is related to topic of capacitated clustering from operations research [17].

In Section 5, we show that in the plane there exists such a clustering consisting of O(n/k)
such centers, and that in higher dimensions one can select O((n/k) log(n/k)) centers (where
the constant depends on the dimension). This result is not directly related to the other
results in the paper.

Paper organization. In Section 2 we review some relevant work on k-center clustering.
In Section 3 we provide our algorithm to compute an approximate k-center clustering. In
Section 4 we show how we can decide approximately if a query point is within the convex hull
of the given data points in a constant number of queries, where the constant depends on the
degree of accuracy desired. Finally, in Section 5 we investigate balanced Voronoi partitions,
which provides a density-based clustering of the data. Here we assume that all the data is
known and the goal is to come up with a useful clustering that can help in proximity search
queries.

2 Preliminaries

2.1 Background – k-center clustering and the greedy permutation
The following is taken from [10, Chap. 4], and is provided here for the sake of completeness.

In the k-center clustering problem, a set P ⊆ Rd of n points is provided together
with a parameter k. The objective is to find a set of k points, C ⊆ P, such that the
maximum distance of a point in P to its closest point in C is minimized. Formally, define
price(C,P) = maxp∈P minc∈C ‖p− c‖ . Let Copt denote the set of centers achieving this
minimum. The k-center problem can be interpreted as the problem of computing the
minimum radius, called the k-center clustering radius, such that it is possible to cover the
points of P using k balls of this radius, each centered at one of the data points. It is known
that k-center clustering is NP-hard. Even in the plane, it is NP-hard to approximate to
within a factor of

(
1 +
√

7
)
/2 ≈ 1.82 [7].

The greedy clustering algorithm. Gonzalez [9] provided a 2-approximation algorithm for
k-center clustering. This algorithm, denoted by GreedyKCenter, repeatedly picks the point
farthest away from the current set of centers and adds it to this set. Specifically, it starts
by picking an arbitrary point, c1, and setting C1 = {c1}. For i > 1, in the ith iteration, the
algorithm computes

ri−1 = price(Ci−1,P) = max
p∈P

d(p,Ci−1) (2.1)

and the point ci that realizes it, where d(p,Ci−1) = minc∈Ci−1 ‖p− c‖ . Next, the algorithm
adds ci to Ci−1 to form the new set Ci. This process is repeated until k points have been
collected.

If we run GreedyKCenter till it exhausts all the points of P (i.e., k = n), then this
algorithm generates a permutation of P; that is, 〈P〉 = 〈c1, . . . , cn〉. We will refer to 〈P〉
as the greedy permutation of P. There is also an associated sequence of radii 〈r1, . . . , rn〉,
and the key property of the greedy permutation is that for each i with 1 ≤ i ≤ n, all the

SoCG’15

378 Space Exploration via Proximity Search

points of P are within a distance at most ri from the points of Ci = 〈c1, . . . , ci〉. The greedy
permutation has applications to packings, which we describe next.

I Definition 1. A set S ⊆ P is an r-packing for P if the following two properties hold:
(i) Covering property: All the points of P are within a distance at most r from the points

of S.
(ii) Separation property: For any pair of points p, x ∈ S, ‖p− x‖ ≥ r.
(For most purposes, one can relax the separation property by requiring that the points of S
be at distance Ω(r) from each other.)

Intuitively, an r-packing of a point set P is a compact representation of P at resolution r.
Surprisingly, the greedy permutation of P provides us with such a representation for all
resolutions.

I Lemma 2 ([10]).
(A) Let P be a set of n points in Rd, and let its greedy permutation be 〈c1, . . . , cn〉 with the

associated sequence of radii 〈r1, . . . , rn〉. For any i, Ci = 〈c1, . . . , ci〉 is an ri-packing of
P. Furthermore, ri is a 2-approximation for the optimal i-center clustering radius of P.

(B) For any k, let rkopt be the radius of the optimal k-center clustering of P. Then, for any
constant c, rO(cdk)

opt ≤ rkopt/c.

(C) Computing the optimal k-center clustering of the first O(k/εd) points of the greedy
permutation, after appropriate rescaling, results in a (1 + ε)-approximation to the
optimal k-center clustering of P.

2.2 Setup
Our algorithms operate on a (not necessarily finite) point set P in Rd. We assume that
we are given a compact subset of Rd, called the domain and denoted D, such that P ⊆ D.
Throughout we assume that D is the unit hypercube [0, 1]d. The set P (not necessarily finite)
is contained in D.

Given a query point q ∈ [0, 1]d, let nn(q,P) = arg minp∈P ‖q− p‖ denote the nearest
neighbor (NN) of q. We say a point x is a (1 + ε)-approximate nearest-neighbor (ANN)
for q if ‖q− x‖ ≤ (1 + ε) ‖q− nn(q,P)‖. We assume that the sole access to P is through
“black-box” data structures Tnn and Tann, which given a query point q, return the NN and
ANN, respectively, to q in P.

3 Using proximity search to compute k-center clustering

The problem. Our purpose is to compute (or approximately compute) a k-center clustering
of P through the ANN black box we have, where k is a given parameter between 1 and n.

3.1 Greedy permutation via NN queries: GreedyPermutNN

Let q0 be an arbitrary point in D. Let ν0 be its nearest-neighbor in P computed using the
provided NN data structure Tnn. Let b0 = ball(q0, ‖q0 − ν0‖) be the open ball of radius
‖q0 − ν0‖ centered at q0. Finally, let G0 = {ν0}, and let D0 = D \ b0.

In the ith iteration, for i > 0, let qi be the point inDi−1 farthest away fromGi−1. Formally,
this is the point in Di−1 that maximizes d(qi, Gi−1), where d(q, X) = minc∈X ‖c− q‖. Let
νi = nn(qi,P) denote the nearest-neighbor νi to qi in P, computed using Tnn. Let

ri = d(qi, Gi−1), bi = ball(qi, ri), Gi = Gi−1 ∪ {νi} , and Di = Di−1 \ bi.

S. Har-Peled, N. Kumar, D.M. Mount, and B. Raichel 379

Left to its own devices, this algorithm computes a sequence of not necessarily distinct
points ν0, ν1, . . . of P. If P is not finite then this sequence may also have infinitely many
distinct points. Furthermore, D0 ⊇ D1 ⊇ . . . is a sequence of outer approximations to P.

The execution of this algorithm is illustrated in Figure 1.

3.2 Analysis
Let O = {o1, . . . , ok} be an optimal set of k centers of P. Formally, it is a set of k points in P
that minimizes the quantity rkopt = maxq∈P d(q,O). Specifically, rkopt is the smallest possible
radius such that k closed balls of that radius centered at points in P, cover P. Our claim is
that after O(k) iterations of the algorithm GreedyPermutNN, the sequence of points provides
a similar quality clustering of P.

For any given point p ∈ Rd we can cover the sphere of directions centered at p by narrow
cones of angular diameter at most π/12. We fix such a covering, denoting the set of cones
by Cp, and observe that the number of such cones is a constant cd that depends on the
dimension. Moreover, by simple translation we can transfer such a covering to be centered at
any point p′ ∈ Rd.

I Lemma 3. After µ = kcd iterations, for any optimal center oi ∈ O, we have d(oi, Gµ) ≤
3ropt, where ropt = rkopt.

Proof. If for any j ≤ µ, we have rj ≤ 3ropt then all the points of Dj−1 ⊇ P are in distance
at most 3ropt from Gj , and the claim trivially holds as O ⊆ P.

Let o be an optimal center and let Po be the set of points of P that are closest to o among
all the centers of O, i.e., Po is the cluster of o in the optimal clustering. Fix a cone φ from
Co (φ’s apex is at o). Consider the output sequence ν0, ν1, . . ., and the corresponding query
sequence q0, q1, . . . computed by the algorithm. In the following, we use the property of the
algorithm that r1 ≥ r2 ≥ · · · , where ri = d(qi, Gi−1). A point qj is admissible if (i) νj ∈ Po,
and (ii) qj ∈ φ (in particular, νj is not necessarily in φ).

We proceed to show that there are at most
O(1) admissible points for a fixed cone, which
by a packing argument will imply the claim
as every qj is admissible for exactly one cone.
Consider the induced subsequence of the output
sequence restricted to the admissible points of
φ: ν′1, ν′2, . . ., and let q′1, q′2, . . . be the corres-
ponding query points used by the algorithm.

φ

o

ropt

ν ′i

q′i

Formally, for a point ν′i in this sequence, let iter(i) be the iteration of the algorithm it was
created. Thus, for all i, we have q′i = qiter(i) and ν′i = νiter(i).

Observe that Po ⊆ P ∩ ball(o, ropt). This implies that
∥∥ν′j − o∥∥ ≤ ropt, for all j.

Let `′i = ‖q′i − ν′i‖ and r′i = d
(
q′i, Giter(i)−1

)
. Observe that for i > 1, we have `′i ≤ r′i ≤

`′i + 2ropt, as ν′i−1 ∈ Po. Hence, if `′i ≤ ropt, then r′i ≤ 3ropt, and we are done. This implies
that for any i, j, such that 1 < i < j, it must be that

∥∥q′i − q′j
∥∥ ≥ `′i > ropt, as the algorithm

carves out a ball of radius `′i around q′i, and q′j must be outside this ball.
By a standard packing argument, there can be only O(1) points in the sequence q′2, q′3, . . .

that are within distance at most 10ropt from o. If there are no points beyond this distance,
we are done. Otherwise, let i > 1 be the minimum index, such that q′i is at distance larger
than 10ropt from o. We now prove that the points of φ \ ball(q′i, `′i) are of two types – those
contained within ball(o, 3ropt) and those that lie at distance greater than (4/3)`′i from o.

SoCG’15

380 Space Exploration via Proximity Search

(1) (2) (3) (4)

(5) (6) (7) (8)

(9) (10) (11) (12)

(13) (14) (15) (16)

Figure 1 An example of the execution of the algorithm GreedyPermutNN of Section 3.1.

S. Har-Peled, N. Kumar, D.M. Mount, and B. Raichel 381

To see this, observe that since the angle of the cone was chosen to
be sufficiently small, ball(q′i, `′i) splits φ into two components, where
all the points in the component containing o are distance < 3ropt
from o. The minimum distance to o (from a point in the component
not containing o) is realized when q′i is on the boundary of φ and o

o φ
`iβ

is on the boundary of ball(q′i, `′i). Then the distance of any point of φ \ ball(q′i, `′i) from o

is at least 2`′i cos(β) ≥ 2`′i
√

3/4 ≥ 1.73`i, as the opening angle of the cone is at most π/12.
(See the figure on the right.) The general case is somewhat more complicated as o might be
in distance at most ropt from the boundary of ball(q′i, `′i), but as `i ≥ 10ropt, the claim still
holds – we omit the tedious but straightforward calculations.

In particular, this implies that any later point q′k in the sequence (i.e., k > i) is either
one of the O(1) close points, or it must be far away, but then it is easy to argue that r′k must
be larger than r′i, which is a contradiction as r2 ≥ r3 ≥ · · · (as r′i appears before r′k in this
sequence). J

The above lemma readily implies the following.

I Theorem 4. Let P ⊆ D be a given set of points in Rd (not necessarily finite), where D is
a bounded set in Rd. Furthermore, assume that P can be accessed only via a data structure
Tnn that answers exact nearest-neighbor (NN) queries on P. The algorithm GreedyPermutNN,
described in Section 3.1, computes a permutation 〈ν0, . . .〉 of P, such that, for any k > 0,
P ⊆

⋃ck
i=1 ball

(
νi, r

k
opt
)
, where c is a constant (independent of k), and rkopt is the minimum

radius of k balls (of the same radius) needed to cover P.
The algorithm can be implemented, such that running it for i iterations, takes polynomial

time in i and involves i calls to Tnn.

Proof. Using Lemma 2b in Lemma 3 implies the result. As for the running time, naively
one needs to maintain the arrangement of balls inside the domain, and this can be done in
polynomial time in the number of balls. J

I Observation 5. If P is finite of size n, the above theorem implies that after i ≥ cn

iterations, one can recover the entire point set P (as rnopt = 0). Therefore cn is an upper
bound on the number of queries for any problem. Note however that in general our goal is to
demonstrate when problems can be solved using a significantly smaller amount of NN queries.

The above also implies an algorithm for approximating the diameter.

I Lemma 6. Consider the setting of Theorem 4 using an exact nearest-neighbor oracle.
Suppose that the algorithm is run for m = cd + 1 iterations, and let ν1, . . . , νm be the
set of output centers and r1, . . . , rm be the corresponding distances. Then, diam(P)/3 ≤
max(diam(ν1, . . . , νm), rm) ≤ 3 · diam(P).

Proof. Since the discrete one-center clustering radius lies in the interval [diam(P)/2,diam(P)],
the proof of Lemma 3 implies that rm ≤ 3ropt ≤ 3 · diam(P). Moreover, each νi is in P, and
so diam(ν1, . . . , νm) ≤ diam(P). Thus the upper bound follows.

For the lower bound, observe that if diam(ν1, . . . , νm) < diam(P)/3, as well as rm <

diam(P)/3, then it must be true that P ⊆ Dm−1 ⊆
⋃l
j=1 ball(νj , rm) has diameter less than

diam(P), a contradiction. J

SoCG’15

382 Space Exploration via Proximity Search

3.3 Using approximate nearest-neighbor search

If we are using an ANN black box Tann to implement the algorithm, one can no longer scoop
away the ball bi = ball(qi, ‖qi − νi‖) at the ith iteration, as it might contain some of the points
of P. Instead, one has to be more conservative, and use the ball b′i = ball(qi, (1− ε) ‖qi − νi‖)
Now, we might need to perform several queries till the volume being scooped away is
equivalent to a single exact query.

Specifically, let P be a finite set, and consider its associated spread: Φ = diam(D0)
minp,x∈P‖p−x‖ .

We can no longer claim, as in Lemma 3, that each cone would be visited only one time (or
constant number of times). Instead, it is easy to verify that each query point in the cone,
shrinks the diameter of the domain restricted to the cone by a factor of roughly ε. As such,
at most O

(
log1/ε Φ

)
query points would be associated with each cone.

I Corollary 7. Consider the setting of Theorem 4, with the modification that we use a
(1 + ε)-ANN data structure Tann to access P. Then, for any k, P ⊆

⋃f(k)
i=1 ball

(
νi, r

k
opt
)
, where

f(k) = O
(
k log1/ε Φ

)
.

3.4 Discussion

Outer approximation. As implied by the algorithm description, one can think about the
algorithm providing an outer approximation to the set: D1 ⊇ D2 ⊇ · · · ⊇ P. As demonstrated
in Figure 1, the sequence of points computed by the algorithm seems to be a reasonable
greedy permutation of the underlying set. However, the generated outer approximation seems
to be inferior. If the purpose is to obtain a better outer approximation, a better strategy
may be to pick the ith query point qi as the point inside Di farthest away from ∂Di−1 ∪Gi−1

Implementation details. We have not spent any effort to describe in detail the algorithm of
Theorem 4, mainly because an implementation of the exact version seems quite challenging
in practice. A more practical approach would be to describe the uncovered domain Di
approximately, by approximating from the inside, every ball bi by an O

(
1/εd

)
grid of cubes,

and maintaining these cubes using a (compressed) quadtree. This provides an explicit
representation of the complement of the union of the approximate balls. Next, one would
need to maintain for every free leaf of this quadtree, a list of points of Gi that might serve
as its nearest neighbors – in the spirit of approximate Voronoi diagrams [10].

4 Convex-hull membership queries via proximity queries

Let P be a set of n points in Rd, let ∆ denote P’s diameter, and let ε > 0 be a prespecified
parameter. We assume that the value of ∆ is known, although a constant approximation
to this value is sufficient for our purposes. (See Lemma 6 on how to compute this under
reasonable assumptions.)

Let C = CH(P) denote P’s convex hull. Given a query point q ∈ Rd, the task at hand is
to determine whether q is in C. As before, we assume that our only access to P is via an
ANN data structure. There are two possible outputs:
(A) In: if q ∈ C, and
(B) Out: if q is at distance greater than ε∆ from C,
Either answer is acceptable if q lies within distance ε∆ of ∂C.

S. Har-Peled, N. Kumar, D.M. Mount, and B. Raichel 383

4.1 Convex hull membership queries using exact extremal queries
We first solve the problem using exact extremal queries and then later show these queries
can be answered approximately with ANN queries.

4.1.1 The algorithm
We construct a sequence of points p0, p1, . . . each guaranteed to
be in the convex hull C of P and use them to determine whether
q ∈ C. The algorithm is as follows. Let p0 be an arbitrary
point of P. For i > 0, in the ith iteration, the algorithm checks
whether ‖pi−1 − q‖ ≤ ε∆, and if so the algorithm outputs In
and stops.

Otherwise, consider the ray ψi emanating from pi−1 in the

pi−1

q

C ψi

z′ipi

zi

direction of q. The algorithm computes the point zi ∈ P that is extremal in the direction
of this ray. If the projection z′i of zi on the line supporting ψi is between pi−1 and q, then
q is outside the convex-hull C, and the algorithm stops and returns Out. Otherwise, the
algorithm sets pi to be the projection of q on the line segment pi−1zi, and continues to the
next iteration. (See the figure on the right and Figure 2.)

For a suitable constant c (see Lemma 9), if the algorithm does not terminate after c/ε2

iterations, it stops and returns Out.

4.1.2 Analysis

I Lemma 8. If the algorithm runs for more than i iterations, then di <
(

1− ε2

2

)
di−1, where

di = ‖q− pi‖.

Proof. By construction, pi, pi−1, and q form a right angle triangle. The proof now follows
by a direct trigonometric argument. Consider Figure 2. We have the following properties:

pi−1

q z′ipi

zi

β

Figure 2

(A) The triangles 4pi−1z′izi and 4pi−1piq are similar.
(B) Because the algorithm has not terminated in the ith iteration,

‖pi−1 − q‖ > ε∆.
(C) The point q must be between pi−1 and z′i, as otherwise the

algorithm would have Thus, ‖pi−1 − z′i‖ ≥ ‖pi−1 − q‖ > ε∆.
(D) We have ‖pi−1 − zi‖ ≤ ∆, since both points are in C.

We conclude that cosβ = ‖pi−1 − z′i‖
‖pi−1 − zi‖

>
ε∆
∆ = ε. Now, we have

‖q− pi‖ = ‖q− pi−1‖ sin β = ‖q− pi−1‖
√

1− cos2 β <
√

1− ε2 ‖q− pi−1‖

<

(
1− ε2

2

)
‖q− pi−1‖ ,

since (1− ε2/2)2 > 1− ε2. J

I Lemma 9. Either the algorithm stops within O
(
1/ε2) iterations with a correct answer, or

the query point lies at distance more than ε∆ from the convex hull C; in the latter case, since
the algorithm says Out its output is correct.

SoCG’15

384 Space Exploration via Proximity Search

q

pi z′i

pi−1

zi

∆
(ε/2)∆

Figure 3 Worse case if extremal queries are approximate.

Proof. If the algorithm stops before it completes the maximum number of iterations, it can
be verified that the output is correct as there is an easy certificate for this in each of the
possible cases.

Otherwise, suppose that the query point is within ε∆ of C. We argue that this leads to a
contradiction; thus the query point must be more than ε∆ far from C and the output of the
algorithm is correct. Observe that di is a monotone decreasing quantity that starts at values
≤ ∆ (i.e, d0 ≤ ∆), since otherwise the algorithm terminates after the first iteration, as z′1
would be between q and p0 on ψ1.

Consider the jth epoch to be block of iterations of the algorithm, where 2−j∆ < di ≤
2−j+1∆. Following the proof of Lemma 8, one observes that during the jth epoch one can
set εj = 1/2j in place of ε, and using the argument it is easy to show that the jth epoch
lasts O(1/ε2

j) iterations. By assumption, since the algorithm continued for the maximum
number of iterations we have di > ε∆, and so the maximum number of epochs is dlg(1/ε)e.
As such, the total number of iterations is

∑dlg(1/ε)e
j=1 O(1/ε2

j) = O(1/ε2). Since the algorithm
did not stop, this is a contradiction. J

4.1.3 Approximate extremal queries
For our purposes, approximate extremal queries on P are sufficient.

I Definition 10. A data structure provides ε-approximate extremal queries for P, if for any
query unit vector v, it returns a point p, such that

∀x ∈ P, 〈v, x〉 ≤ 〈v, p〉+ ε · diam(P),

where 〈v, x〉 denotes the dot-product of v with x.

One can now modify the algorithm of Section 4.1.1 to use, say, ε/4-approximate extremal
queries on P. Indeed, one modifies the algorithm so it stops only if zi is on the segment
pi−1q, and it is in distance more than ε∆/4 away from q. Otherwise the algorithm continues.
It is straightforward but tedious to prove that the same algorithm performs asymptotically
the same number of iterations (intuitively, all that happens is that the constants get slightly
worse). The worse case as far progress in a single iteration is depicted in Figure 3.

I Lemma 11. The algorithm of Section 4.1.1 can be modified to use ε/4-approximate extremal
queries and output a correct answer after performing O

(
1/ε2) iterations.

4.2 Convex-hull membership via ANN queries
4.2.1 Approximate extremal queries via ANN queries
The basic idea is to replace the extremal empty half-space query, by an ANN query. Specifically,
a (1 + δ)-ANN query performed at q returns us a point p, such that

∀x ∈ P, ‖q− p‖ ≤ (1 + δ) ‖q− x‖ .

S. Har-Peled, N. Kumar, D.M. Mount, and B. Raichel 385

pi−1
q

yi
`

(1 + δ)`

y′i
qi

h

zi

z′i

u

Figure 4 Illustration of the proof of Lemma 12.

Namely, ball
(

q, ‖q−p‖
1+δ

)
does not contain any points of P. Locally, a ball looks like a halfspace,

and so by taking the query point to be sufficiently far and the approximation parameter to
be sufficiently small, the resulting empty ball and its associated ANN can be used as the
answer to an extremal direction query.

4.2.2 The modified algorithm
Assume the algorithm is given a data structure Tann that can answer (1 + δ)-ANN queries on
P. Also assume that it is provided with an initial point p0 ∈ P, and a value ∆′ that is, say, a
2-approximation to ∆ = diam(P), that is ∆ ≤ ∆′ ≤ 2∆.

In the ith iteration, the algorithm considers (again) the ray ψi starting from pi, in the
direction of q. Let qi be the point within distance, say,

τ = c∆′/ε (4.1)

from pi−1 along ψi, where c is an appropriate constant to be determined shortly. Next, let zi
be the (1 + δ)-ANN returned by Tann for the query point qi, where the value of δ would be
specified shortly. The algorithm now continues as before, by setting pi to be the nearest point
on pi−1zi to q. Naturally, if ‖q− pi‖ falls below ε∆′/2, the algorithm stops, and returns
In, and otherwise the algorithm continues to the next iteration. As before, for a suitable
constant c, if the algorithm does not terminate after c/ε2 iterations, it stops and returns
Out.

4.2.3 Analysis
I Lemma 12. Let 0 < ε ≤ 1 be a prespecified parameter, and let δ = ε2/(32− ε)2 = O(ε2).
Then, a (1 + δ)-ANN query done using qi (as defined in Section 4.2.2), returns a point zi
which is a valid ε-approximate extremal query on P, in the direction of ψi.

Proof. Consider the extreme point yi ∈ P in the direction of ψi. Let y′i be the projection of
yi to the segment pi−1qi, and let ` = ‖qi − yi‖. See Figure 4.

The (1 + δ)-ANN to qi (i.e., the point zi), must be inside the ball b = ball(qi, (1 + δ)`),
and let z′i be its projection to the segment pi−1qi.

Now, if we interpret zi as the returned answer for the approximate extremal query, then
the error is the distance ‖z′i − y′i‖, which is maximized if z′i is as close to pi−1 as possible. In

SoCG’15

386 Space Exploration via Proximity Search

particular, let u be the point in distance (1 + δ)` from qi along the segment pi−1qi. We then
have that ‖z′i − y′i‖ ≤ h = ‖u− y′i‖ . Now, since ‖y′i − yi‖ ≤ ‖pi−1 − yi‖ ≤ ∆′, we have

h = ‖u− y′i‖ ≤ (1 + δ)`− ‖y′i − qi‖ = (1 + δ)`−
√
`2 − ‖y′i − yi‖2

≤ (1 + δ)`−
√
`2 − (∆′)2 = (1 + δ)2`2 − `2 + (∆′)2

(1 + δ)`+
√
`2 − (∆′)2

≤
(2δ + δ2)`2 +

(√
δ`
)2

`

≤ 4δ`2

`
= 4δ`,

since δ ≤ 1, and assuming that ∆′ ≤
√
δ`. For our purposes, we need that 4δ` ≤ ε∆. Both

of these constraints translate to the inequalities,
(

∆′

`

)2
≤ δ ≤ ε∆

4` . Observe that, by the

triangle inequality, it follows that

` = ‖qi − yi‖ ≤ ‖qi − pi−1‖+ ‖pi−1 − yi‖ ≤ τ + ∆.

A similar argument implies that ` ≥ τ−∆. In particular, it is enough to satisfy the constraint(
∆′
τ−∆

)2
≤ δ ≤ ε∆

4(τ+∆) , which is satisfied if
(

∆′
τ−∆′

)2
≤ δ ≤ ε∆′/2

4(τ+∆′) , as ∆ ≤ ∆′ ≤ 2∆.

Substituting the value of τ = c∆′/ε, see Eq. (4.1), this is equivalent to
(

1
c/ε−1

)2
≤ δ ≤

ε/2
4(c/ε+1) , which holds for c = 32, as can be easily verified, and setting δ = ε2/(32 − ε)2 =
O(ε2). J

I Theorem 13. Given a set P of n points in Rd, let ε ∈ (0, 1] be a parameter, and let ∆′ be
a constant approximation to the diameter of P. Assume that you are given a data structure
that can answer (1 + δ)-ANN queries on P, for δ = O(ε2). Then, given a query point q, one
can decide, by performing O(1/ε2) (1 + δ)-ANN queries whether q is inside the convex-hull
C = CH(P). Specifically, the algorithm returns

In: if q ∈ C, and
Out: if q is more than ε∆ away from C, where ∆ = diam(P).

The algorithm is allowed to return either answer if q /∈ C, but the distance of q from C is at
most ε∆.

5 Density clustering

5.1 Definition
Given a set P of n points in Rd, and a parameter µ, with 1 ≤ µ ≤ n, we are interested in
computing a set C ⊆ P of “centers”, such that each center is assigned at most µ points, and
the number of centers is (roughly) n/µ. In addition, we require that:
(A) A point of P is assigned to its nearest neighbor in C (i.e., C induces a Voronoi partition

of P).
(B) The centers come from the original point set.
Intuitively, this clustering tries to capture the local density – in areas where the density is
low, the clusters can be quite large (in the volume they occupy), but in regions with high
density the clusters have to be tight and relatively “small”.

S. Har-Peled, N. Kumar, D.M. Mount, and B. Raichel 387

Formally, given a set of centers C, and a center c ∈ C, its cluster is

Pc =
{

p ∈ P
∣∣∣ ‖c− p‖ < d

(
p,C \ {c}

)}
,

where d(p, X) = minx∈X ‖p− x‖ (and assuming for the sake of simplicity of exposition that
all distances are distinct). The resulting clustering is Π(P,C) = {Pc | c ∈ C}. A set of points
P, and a set of centers C ⊆ P is a µ-density clustering of P if for any c ∈ C, we have |Pc| ≤ µ.
As mentioned, we want to compute a balanced partitioning, i.e., one where the number
of centers is roughly n/µ. We show below that this is not always possible in high enough
dimensions.

5.1.1 A counterexample in high dimension

I Lemma 14 (For proof see [12]). For any integer n > 0, there exists a set P of n points in
Rn, such that for any µ < n, a µ-density clustering of P must use at least n− µ+ 1 centers.

5.2 Algorithms

5.2.1 Density clustering via nets

I Lemma 15. For any set of n points P in Rd, and a parameter µ < n, there exists a
µ-density clustering with O

(
n
µ log n

µ

)
centers (the O notation hides constants that depend

on d).

Proof. Consider the hypercube [−1, 1]d. Cover its outer faces (which are (d− 1)-dimensional
hypercubes) by a grid of side length 1/3

√
d. Consider a cell C in this grid – it has diameter

≤ 1/3, and it is easy to verify that the cone φ = {tp | p ∈ C, t ≥ 0} formed by the origin and
C has angular diameter < π/3. This results in a set C of N = O(dd) cones covering Rd.

Fix a cone φ ∈ C. For a point p ∈ Rd, let φp denote the translation of φ such that
p is its apex. Note that φ is formed by the intersection of 2(d − 1) halfspaces. As such,
the range space consisting of all ranges φp, such that p ∈ Rd, has VC dimension at most
d′ = O(d2 log d) [10, Theorem 5.22]. For a radius r and point p, let a φ-slice be the set
sφ(p, r) = φp ∩ ball(p, r), i.e. the set formed by intersecting φp with a ball centered at p
and of radius r. The range space of all φ-slices, Sφ =

{
sφ(p, r)

∣∣ p ∈ Rd, r ≥ 0
}
, has VC

dimension d′′ = O(d+ 2 + d′) = O(d2 log d), since the VC dimension of balls in Rd is d+ 2,
and one can combine range spaces as done above, see the book [10] for background on this.

Now, for ε = (µ/N)/n = µ/(nN), consider an ε-net R of the point set P for φ-slices. The
size of such a net is |R| = O

(
(d′′/ε) log ε−1) = O

(
nNd2 log d

µ log nN
µ

)
= O

(
dO(d) n

µ log n
µ

)
=

O
(
n
µ log n

µ

)
, by the ε-net theorem.

Consider a point p ∈ P that is in R. Let νφ be the nearest point to p in the set{
R \ {p}

}
∩φp. The key observation is that any point in P∩φp that is farther away from p than

νφ, is closer to νφ than to p; that is, only points closer to p than νφ might be assigned to p in the
Voronoi clustering. Since R is an ε-net for φ-slices, sφ(p, ‖p− νφ‖) = φp ∩ ball

(
p, ‖p− νφ‖

)
,

contains at most εn = µ/N points of P. It follows that at most µ/N points of P ∩ φp are
assigned to the cluster associated with p. By summing over all N cones, at most (µ/N)N = µ

points are assigned to p, as desired. J

SoCG’15

388 Space Exploration via Proximity Search

5.2.2 The planar case
I Lemma 16 (For proof see [12]). For any set of n points P in R2, and a parameter µ with
1 ≤ µ ≤ n, there exists a µ-density clustering with O(n/µ) centers.

Acknowledgments. N.K. would like to thank Anil Gannepalli for telling him about Atomic
Force Microscopy.

References
1 L.-E. Andersson and N. F. Stewart. Introduction to the Mathematics of Subdivision Surfaces.

SIAM, 2010.
2 G. Binnig, C. F. Quate, and Ch. Gerber. Atomic force microscope. Phys. Rev. Lett.,

56:930–933, Mar 1986.
3 J. F. Blinn. A generalization of algebraic surface drawing. ACM Trans. Graphics, 1:235–256,

1982.
4 J.-D. Boissonnat, L. J. Guibas, and S. Oudot. Learning smooth shapes by probing. Comput.

Geom. Theory Appl., 37(1):38–58, 2007.
5 K. L. Clarkson. Coresets, sparse greedy approximation, and the frank-wolfe algorithm.

ACM Trans. Algo., 6(4), 2010.
6 R. Cole and C. K. Yap. Shape from probing. J. Algorithms, 8(1):19–38, 1987.
7 T. Feder and D. H. Greene. Optimal algorithms for approximate clustering. In Proc. 20th

Annu. ACM Sympos. Theory Comput. (STOC), pages 434–444, 1988.
8 A. Goel, P. Indyk, and K. R. Varadarajan. Reductions among high dimensional proximity

problems. In Proc. 12th ACM-SIAM Sympos. Discrete Algs. (SODA), pages 769–778, 2001.
9 T. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoret. Comput.

Sci., 38:293–306, 1985.
10 S. Har-Peled. Geometric Approximation Algorithms, volume 173 of Mathematical Surveys

and Monographs. Amer. Math. Soc., 2011.
11 S. Har-Peled, P. Indyk, and R. Motwani. Approximate nearest neighbors: Towards remov-

ing the curse of dimensionality. Theory Comput., 8:321–350, 2012. Special issue in honor
of Rajeev Motwani.

12 S. Har-Peled, N. Kumar, D. Mount, and B. Raichel. Space exploration via proximity search.
CoRR, abs/1412.1398, 2014.

13 S. Har-Peled and M. Mendel. Fast construction of nets in low dimensional metrics, and
their applications. SIAM J. Comput., 35(5):1148–1184, 2006.

14 P. Indyk. Nearest neighbors in high-dimensional spaces. In J. E. Goodman and J. O’Rourke,
editors, Handbook of Discrete and Computational Geometry, chapter 39, pages 877–892.
CRC Press LLC, 2nd edition, 2004.

15 B. Kalantari. A characterization theorem and an algorithm for A convex hull problem.
CoRR, abs/1204.1873, 2012.

16 B. B. Mandelbrot. The fractal geometry of nature. Macmillan, 1983.
17 J. M. Mulvey and M. P. Beck. Solving capacitated clustering problems. Euro. J. Oper.

Res., 18:339–348, 1984.
18 F. Panahi, A. Adler, A. F. van der Stappen, and K. Goldberg. An efficient proximity

probing algorithm for metrology. In Proc. IEEE Int. Conf. Autom. Sci. Engin. (CASE),
pages 342–349, 2013.

19 S. S. Skiena. Problems in geometric probing. Algorithmica, 4:599–605, 1989.
20 S. S. Skiena. Geometric reconstruction problems. In J. E. Goodman and J. O’Rourke,

editors, Handbook of Discrete and Computational Geometry, chapter 26, pages 481–490.
CRC Press LLC, Boca Raton, FL, 1997.

S. Har-Peled, N. Kumar, D.M. Mount, and B. Raichel 389

21 R. M. Smelik, K. J. De Kraker, S. A. Groenewegen, T. Tutenel, and R. Bidarra. A survey
of procedural methods for terrain modelling. In Proc. of the CASA Work. 3D Adv. Media
Gaming Simul., 2009.

22 Wikipedia. Atomic force microscopy – wikipedia, the free encyclopedia, 2014.

SoCG’15

	Introduction
	Preliminaries
	Background – k-center clustering and the greedy permutation
	Setup

	Using proximity search to compute k-center clustering
	Greedy permutation via NN queries: GreedyPermutNN
	Analysis
	Using approximate nearest-neighbor search
	Discussion

	Convex-hull membership queries via proximity queries
	Convex hull membership queries using exact extremal queries
	The algorithm
	Analysis
	Approximate extremal queries

	Convex-hull membership via ANN queries
	Approximate extremal queries via ANN queries
	The modified algorithm
	Analysis

	Density clustering
	Definition
	A counterexample in high dimension

	Algorithms
	Density clustering via nets
	The planar case

