Skip to main content
Log in

Lattice Embeddings of Planar Point Sets

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

Let \(\mathcal {M}\) be a finite non-collinear set of points in the Euclidean plane, with the squared distance between each pair of points integral. Considering the points as lying in the complex plane, there is at most one positive square-free integer D, called the “characteristic” of \(\mathcal {M}\), such that a congruent copy of \(\mathcal {M}\) embeds in \(\mathbb {Q}(\sqrt{-D})\). We generalize the work of Yiu and Fricke on embedding point sets in \(\mathbb {Z}^2\) by providing conditions that characterize when \(\mathcal {M}\) embeds in the lattice corresponding to \(\mathcal {O}_{-D}\), the ring of integers in \(\mathbb {Q}(\sqrt{-D})\). In particular, we show that if the square of every ideal in \(\mathcal {O}_{-D}\) is principal and the distance between at least one pair of points in \(\mathcal {M}\) is integral, then \(\mathcal {M}\) embeds in \(\mathcal {O}_{-D}\). Moreover, if \(\mathcal {M}\) is primitive, so that the squared distances between pairs of points are relatively prime, and \(\mathcal {O}_{-D}\) is a principal ideal domain, then \(\mathcal {M}\) embeds in \(\mathcal {O}_{-D}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Beeson, M.: Triangles with vertices on lattice points. Am. Math. Mon. 99, 243–252 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  2. Brass, P., Moser, W., Pach, J.: Research Problems in Discrete Geometry. Springer, New York (2005)

    MATH  Google Scholar 

  3. Cohn, H.: Advanced Number Theory. Dover, New York (1980)

    MATH  Google Scholar 

  4. Conway, J., Radin, C., Sadun, L.: On angles whose squared trigonometric functions are rational. Discrete Comput. Geom. 22, 321–332 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Fricke, J.: On Heronian simplices and integer embedding. arXiv:math/0112239v1 (2001)

  6. Guy, R.: Unsolved Problems in Number Theory, 3rd edn. Springer, New York (2004)

    Book  MATH  Google Scholar 

  7. Kani, E.: Idoneal numbers and some generalizations. Ann. Sci. Math. Qué. 35, 197–227 (2011)

    MATH  MathSciNet  Google Scholar 

  8. Kemnitz, A.: Punktmengen mit ganzzahligen Abständen. Habilitationsschrift. TU Braunschweig, Braunschweig (1988)

    MATH  Google Scholar 

  9. Kreisel, T., Kurz, S.: There are integral heptagons, no three points on a line, no four on a circle. Discrete Comput. Geom. 39, 786–790 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kurz, S.: On the characteristic of integral point sets in \(\mathbb{E}^m\). Australas. J. Comb. 36, 241–248 (2006)

    MATH  MathSciNet  Google Scholar 

  11. Kurz, S., Noll, L., Rathbun, R., Simmons, C.: Constructing 7-clusters. Serdica J. Comput. 8, 47–70 (2014)

    MathSciNet  Google Scholar 

  12. Lunnon, F.: Lattice embedding of Heronian simplices. arXiv:1202.3198v2 (2012)

  13. Marshall, S., Perlis, A.: Heronian tetrahedra are lattice tetrahedra. Am. Math. Mon. 120, 140–149 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  14. Noll, L., Bell, D.: \(n\)-Clusters for \(1< n < 7\). Math. Comput. 53, 439–444 (1989)

  15. Solymosi, J., de Zeeuw, F.: On a question of Erdős and Ulam. Discrete Comput. Geom. 43, 393–401 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Stark, H.M.: On the ‘gap’ in a theorem of Heegner. J. Number Theory 1, 16–27 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  17. Weinberger, P.J.: Exponents of the class groups of complex quadratic fields. Acta Arith. 22, 117–124 (1973)

    MATH  MathSciNet  Google Scholar 

  18. Yiu, P.: Heronian triangles are lattice triangles. Am. Math. Mon. 108, 261–263 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We thank Sascha Kurz for introducing us to this problem in the context of his work on integer distance problems, and for confirming Conjecture 1 numerically. We thank several anonymous referees for their helpful corrections and suggestions to improve the exposition. We also thank Kiran Kedlaya for pointing out a connection between the 65 characteristics listed in Sect. 5.1 and Euler’s idoneal numbers (see Sect. 2.6 of [7]). Supported by NSF Grant DMS-1063070.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek Smith.

Additional information

Editor in Charge: János Pach

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knopf, M., Milzman, J., Smith, D. et al. Lattice Embeddings of Planar Point Sets. Discrete Comput Geom 56, 693–710 (2016). https://doi.org/10.1007/s00454-016-9812-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-016-9812-4

Keywords

Mathematics Subject Classification

Navigation