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Abstract Skeletal polyhedra are discrete structures made up of finite, flat or skew, or infinite, helical or
zigzag, polygons as faces, with two faces on each edge and a circular vertex-figure at each vertex. When a
variant of Wythoff’s construction is applied to the forty-eight regular skeletal polyhedra (Grünbaum-Dress
polyhedra) in ordinary space, new highly symmetric skeletal polyhedra arise as “truncations” of the original
polyhedra. These Wythoffians are vertex-transitive and often feature vertex configurations with an attractive
mix of different face shapes. The present paper describes the blueprint for the construction and treats the
Wythoffians for distinguished classes of regular polyhedra. The Wythoffians for the remaining classes of
regular polyhedra will be discussed in Part II, by the second author. We also examine when the construction
produces uniform skeletal polyhedra.
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1 Introduction

Since ancient times, mathematicians and scientists have been studying polyhedra in ordinary Euclidean
3-space E

3. With the passage of time, various notions of polyhedra have attracted attention and have
brought to light exciting new classes of highly symmetric structures including the well-known Platonic and
Archimedean solids, the Kepler-Poinsot polyhedra, the Petrie-Coxeter polyhedra, and the more recently
discovered Grünbaum-Dress polyhedra (see [5,7,18,19,22]). Over time we can observe a shift from the clas-
sical approach of viewing a polyhedron as a solid, to topological and algebraic approaches focussing on
the underlying maps on surfaces (see Coxeter-Moser [12]), to graph-theoretical approaches highlighting the
combinatorial incidence structures and featuring a polyhedron as a skeletal figure in space.

The skeletal approach to polyhedra in E
3 was pioneered by Grünbaum in [22] and has had an enormous

impact on the field. Skeletal polyhedra are discrete geometric structures made up of convex or non-convex,
flat (planar) or skew, finite or infinite (helical or zigzag) polygons as faces, with a circular vertex-figure at
each vertex, such that every edge lies in exactly two faces. There has been a lot of recent activity in this area:
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2 Schulte and Williams

the skeletal regular polyhedra were enumerated by Grünbaum [22] and Dress [18,19] (for a simpler approach
to the classification see McMullen & Schulte [40,41]); the skeletal chiral polyhedra were classified in [50,51]
(see also Pellicer & Weiss [47]); the regular polygonal complexes, a more general class of discrete skeletal
structures than polyhedra, were classified in Pellicer & Schulte [45,46]; and corresponding enumerations
for certain classes of regular polyhedra, polytopes, or apeirotopes (infinite polytopes) in higher-dimensional
Euclidean spaces were achieved by McMullen [35,37,38] (see also Arocha, Bracho & Montejano [1] and
Bracho [2]). All these skeletal structures are relevant to the study of crystal nets in crystal chemistry (see [16,
43,44,52,57]).

The present paper and its successor [58] by the second author are inspired by the quest for a deeper
understanding of the uniform skeletal polyhedra in E

3, that is, the skeletal analogues of the Archimedean
solids (see also [59]). There is a large body of literature on the traditional uniform polyhedra and higher-
dimensional polytopes (see [6,8,9,32,34]). Recall that a convex polyhedron in E

3 is said to be uniform if
its faces are convex regular polygons and its symmetry group is transitive on the vertices. The uniform
convex polyhedra are precisely the Archimedean solids and the prisms and antiprisms. The classification for
the finite, convex or non-convex, uniform polyhedra with planar faces was essentially obtained in a classical
paper by Coxeter, Longuet-Higgins and Miller [11], but the completeness of the enumeration was only proved
years later, independently, by Skilling [55,56] and Har’El [30]. The classification of arbitrary uniform skeletal
polyhedra is a challenging open problem. Even the finite polyhedra with skew faces have not been classified.

The Wythoffians of the regular skeletal polyhedra studied in this paper represent a tractable class of
skeletal polyhedra that contains a wealth of new examples of uniform polyhedra with non-planar faces. In
fact, our study actually goes a long way in classifying all the uniform skeletal polyhedra in E

3. The name
“Wythoffian” is derived from Wythoff’s construction (see [7,41]). Our approach takes a geometrically regular
polyhedron P in E

3 as input and then produces from it up to seven different kinds of geometric Wythoffians
by an analogue of Wythoff’s construction. The procedure applies to all forty-eight geometrically regular
polyhedra in E

3 and often produces amazing figures as output. Our goal is to analyze these Wythoffians.

The paper is organized as follows. In Section 2 we begin by reviewing the basic concept of a regular
polyhedron, both geometric and abstract, and discussing realizations as a means to connect the abstract
theory with the geometric theory. In Section 3 we introduce the seven Wythoffians at the abstract level
and then in Section 4 provide the blueprint for the realization as geometric Wythoffians in E

3. Finally, in
Section 5 we describe the geometric Wythoffians of various distinguished classes of regular polyhedra. The
subsequent paper [58] treats the geometric Wythoffians for the remaining classes of regular polyhedra.

2 Geometric and abstract polyhedra

We begin by defining a geometric polyhedron as a discrete structure in Euclidean 3-space E3 rather than as
a realization of an abstract polyhedron.

Given a geometric figure in E
3, its (geometric) symmetry group consists of all isometries of its affine hull

that map the figure to itself. When a figure is linear or planar we sometimes view this group as a subgroup
of the isometry group of E3, with the understanding that the elements of the group have been extended
trivially from the affine hull of the figure to the entire space E

3.

2.1 Geometric polyhedra

Informally, a geometric polyhedron will consist of a family of vertices, edges, and finite or infinite polygons,
all fitting together in a way characteristic for traditional convex polyhedra (see [22] and [41, Ch. 7E]). For
two distinct points u and u′ of E3 we let (u, u′) denote the closed line segment with ends u and u′.
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A finite polygon, or simply an n-gon, (v1, v2, . . . , vn) in E
3 is a figure formed by distinct points v1, . . . , vn,

together with the line segments (vi, vi+1), for i = 1, . . . , n−1, and (vn, v1). Similarly, an infinite polygon con-
sists of an infinite sequence of distinct points (. . . , v−2, v−1, v0, v1, v2, . . .) and of the line segments (vi, vi+1)
for each i, such that each compact subset of E3 meets only finitely many line segments. In either case the
points are the vertices and the line segments the edges of the polygon.

A polygon is geometrically regular if its geometric symmetry group is a (finite or infinite dihedral) group
acting transitively on the flags, that is, the 2-element sets consisting of a vertex and an incident edge.

Definition 1 A geometric polyhedron, or simply polyhedron (if the context is clear), P in E
3 consists of a

set of points, called vertices, a set of line segments, called edges, and a set of polygons, called faces, such
that the following properties are satisfied.

(a) The graph defined by the vertices and edges of P , called the edge graph of P , is connected.
(b) The vertex-figure of P at each vertex of P is connected. By the vertex-figure of P at a vertex v we mean

the graph whose vertices are the neighbors of v in the edge graph of P and whose edges are the line
segments (u,w), where (u, v) and (v, w) are adjacent edges of a common face of P .

(c) Each edge of P is contained in exactly two faces of P .
(d) P is discrete, meaning that each compact subset of E3 meets only finitely many faces of P .

Note that the discreteness assumption in Definition 1(d) implies that the vertex-figure at every vertex of
a polyhedron P is a finite polygon. Thus vertices have finite valency in the edge graph of P . The edge graph
is often called the 1-skeleton of P .

A flag of a geometric polyhedron P is a 3-element set containing a vertex, an edge, and a face of P , all
mutually incident. Two flags of P are called adjacent if they differ in precisely one element. An apeirohedron
is an infinite geometric polyhedron.

A geometric polyhedron P in E
3 is said to be (geometrically) regular if its symmetry group G(P ) is

transitive on the flags of P . The symmetry group G(P ) of a regular polyhedron P is transitive, separately,
on the vertices, edges, and faces of P . In particular, the faces are necessarily regular polygons, either finite,
planar (convex or star-) polygons or non-planar, skew , polygons, or infinite, planar zigzags or helical polygons
(see [10, Ch. 1] or [22]). Linear apeirogons do not occur as faces of regular polyhedra.

We also briefly touch on chiral polyhedra. These are nearly regular polyhedra. A geometric polyhedron
P is called (geometrically) chiral if its symmetry group has two orbits on the flags of P , such that adjacent
flags are in distinct orbits.

The geometric polyhedra in E
3 which are regular or chiral all have a vertex-transitive symmetry group

and regular polygons as faces. They are particular instances of uniform polyhedra. A geometric polyhedron
P is said to be (geometrically) uniform if P has a vertex-transitive symmetry group and regular polygons as
faces. The uniform polyhedra with planar faces have attracted a lot attention in the literature. Our methods
will provide many new examples of uniform skeletal polyhedra with nonplanar faces.

At times we encounter geometric figures which are not polyhedra but share some of their properties.
Examples are the polygonal complexes described in [45,46]. Roughly speaking, a polygonal complex K in E

3

is a structure with the defining properties (a), (b) and (d) of Definition 1 for polyhedra, but with property
(c) replaced by the more general property, (c’) say, requiring that each edge of K be contained in exactly r
faces of K, for a fixed number r > 2. The polygonal complexes with r = 2 are just the geometric polyhedra.
The vertex-figures of polygonal complexes need not be simple polygons as for polyhedra; they even can be
graphs with double edges (edges of multiplicity 2). A polygonal complex is regular if its geometric symmetry
group is transitive on the flags.

The Wythoffians we construct from geometrically regular polyhedra P in E
3 will usually be generated

from the orbit of a single point inside the fundamental region of the symmetry group of P . Given a discrete
groupG of isometries of an n-dimensional Euclidean space En, an open subsetD of En is called a fundamental
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region for G if r(D)∩D = ∅ for r ∈ G \ {1} and E
n =

⋃
r∈G r(cl(D)), where cl(D) denotes the closure of D

(see [21]). Note that our notion of fundamental region is not quite consistent with the notion of a fundamental
simplex used in the theory of Coxeter groups or related groups (see [41, Ch. 3]), where a fundamental simplex
by definition is a closed simplex (its interior is a fundamental region according to our definition).

Some of the groups we encounter have complicated fundamental regions. The following procedure pro-
duces a possible fundamental region for any given discrete group G of isometries of En. Let u ∈ E

n be a
point that is not held invariant under any non-identity transformation in G. For r ∈ G define H [r(u)] as
the open half space containing u bounded by the hyperplane which perpendicularly bisects the line segment
between u and r(u). Then D :=

⋂
r∈GH [r(u)] is a fundamental region of G in E

n. In other words, D is the
open Dirichlet-Voronoi region, centered at u, of the orbit of u under G in E

n (see [3]).

2.2 Abstract polyhedra

While our focus is on geometric polyhedra it is often useful to view a geometric polyhedron as a realization
of an abstract polyhedron in Euclidean space. We begin with a brief review of the underlying abstract theory
(see [41, Ch. 2]).

An abstract polyhedron, or abstract 3-polytope, is a partially ordered set P with a strictly monotone rank
function with range {−1, 0, 1, 2, 3}. The elements of rank j are the j-faces of P . For j = 0, 1 or 2, we also
call j-faces vertices, edges and facets , respectively. When there is little chance of confusion, we use standard
terminology for polyhedra and reserve the term “face” for “2-face” (facet). There is a minimum face F−1 (of
rank −1) and a maximum face F3 (of rank 3) in P ; this condition is included for convenience and is often
omitted as for geometric polyhedra. The flags (maximal totally ordered subsets) of P each contain, besides
F−1 and F3, exactly one vertex, one edge and one facet. In practice, when listing the elements of a flag we
often suppress F−1 and F3. Further, P is strongly flag-connected , meaning that any two flags Φ and Ψ of P
can be joined by a sequence of flags Φ = Φ0, Φ1, . . . , Φk = Ψ , where Φi−1 and Φi are adjacent (differ by one
face), and Φ ∩ Ψ ⊆ Φi for each i. Finally, if F and G are a (j − 1)-face and a (j + 1)-face with F < G and
0 6 j 6 2, then there are exactly two j-faces H such that F < H < G. As a consequence, for 0 6 j 6 2,
every flag Φ of P is adjacent to just one flag, denoted Φj , differing in the j-face; the flags Φ and Φj are said
to be j-adjacent to each other.

When F and G are two faces of an abstract polyhedron P with F 6 G, we call G/F := {H | F 6 H 6 G}
a section of P . We usually identify a face F with the section F/F−1. The section F3/F is the co-face of P
at F , or the vertex-figure at F if F is a vertex.

If all facets of an abstract polyhedron P are p-gons for some p, and all vertex-figures are q-gons for some
q, then P is said to be of (Schläfli) type {p, q}; here p and q are permitted to be infinite. We call an abstract
polyhedron locally finite if all its facets and all its vertex-figures are finite polygons.

An automorphism of an abstract polyhedron P is an incidence preserving bijection of P (that is, if ϕ is
the bijection, then F 6 G in P if and only if ϕ(F ) 6 ϕ(G) in P .) By Γ (P) we denote the (combinatorial)
automorphism group of P .

We call an abstract polyhedron P regular if Γ (P) is transitive on the flags of P . Let Φ := {F0, F1, F2}
be a base flag of P . The automorphism group Γ (P) of a regular polyhedron P is generated by distinguished
generators ρ0, ρ1, ρ2 (with respect to Φ), where ρj is the unique automorphism which fixes all faces of Φ but
the j-face. These generators satisfy the standard Coxeter-type relations

ρ20 = ρ21 = ρ22 = (ρ0ρ1)
p = (ρ1ρ2)

q = (ρ0ρ2)
2 = 1 (1)

determined by the type {p, q} of P (when p = ∞ or q = ∞ the corresponding relation is superfluous and
hence is omitted); in general there are also other independent relations. Note that, in a natural way, the
automorphism group of the facet of P is 〈ρ0, ρ1〉, while that of the vertex-figure is 〈ρ1, ρ2〉.
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An abstract polyhedron P is said to be chiral if Γ (P) has two orbits on the flags, such that adjacent flags
are in distinct orbits. Note that the underlying abstract polyhedron of a geometrically chiral (geometric)
polyhedron must be (combinatorially) chiral or (combinatorially) regular.

In analogy with the geometric case we could define an abstract polyhedron P to be (combinatorially)
“uniform” if P has regular facets and Γ (P) acts transitively on the vertices of P . However, the facets of
any abstract polyhedron trivially are combinatorially regular, so being uniform just reduces to being vertex-
transitive under the automorphism group.

The Petrie dual of a (geometric or abstract) regular polyhedron P has the same vertices and edges as P ;
its facets are the Petrie polygons of P , which are paths along the edges of P such that any two successive
edges, but not three, belong to a facet of P .

2.3 Realizations

The abstract theory is connected to the geometric theory through the concept of a realization. Let P be an
abstract polyhedron, and let Fj denote its set of j-faces for j = 0, 1, 2. Following [41, Sect. 5A], a realization
of P is a mapping β : F0 → E of the vertex-set F0 into some Euclidean space E. Then define β0 := β and
V0 := β(P0), and write 2X for the family of subsets of a set X . The realization β recursively induces two
surjections: a surjection β1 : F1 → V1, with V1 ⊂ 2V0 consisting of the elements

β1(F ) := {β0(G) | G ∈ F0 and G 6 F}

for F ∈ F1; and a surjection β2 : F2 → V2, with V2 ⊂ 2V1 consisting of the elements

β2(F ) := {β1(G) | G ∈ F1 and G 6 F}

for F ∈ F2. Even though each βj is determined by β, it is helpful to think of the realization as given by all
the βj . A realization β is said to be faithful if each βj is a bijection; otherwise, β is degenerate. Note that
not every abstract polyhedron admits a realization in a Euclidean space. (In different but related contexts,
a realization is sometimes called a representation [27,49].)

In our applications, E = E
3 and all realizations are faithful (and discrete). In this case, the vertices, edges

and facets of P are in one-to-one correspondence with certain points, line segments, and (finite or infinite)
polygons in E

3, and it is safe to identify a face of P with its image in E
3. The resulting family of points,

line segments, and polygons then is a geometric polyhedron in E
3 and is denoted by P ; it is understood that

P inherits the partial ordering of P . We frequently identify P and P . Note that the symmetry group of a
faithful realization is a subgroup of the automorphism group.

Conversely, all geometric polyhedra as defined above arise as realizations of abstract polyhedra. In par-
ticular, the geometrically regular polyhedra in E

3 are precisely the 3-dimensional realizations of abstract
regular polyhedra which are discrete and faithful and have a flag-transitive symmetry group. These polyhe-
dra have been extensively studied (see [41, Sect. 7E]). We briefly review them in Section 4 as they form the
basis of our construction.

For geometrically regular polyhedra P in E
3 we prefer to denote the distinguished generators of G(P ) by

r0, r1, r2. Thus, if Φ = {F0, F1, F2} is again a base flag of P , and rj the involutory symmetry of P fixing all
faces of Φ but the j-face, then G(P ) = 〈r0, r1, r2〉 and the Coxeter-type relations

r20 = r21 = r22 = (r0r1)
p = (r1r2)

q = (r0r2)
2 = 1 (2)

hold, where again {p, q} is the type of P . Here q must be finite since P is discrete; however, p still can
be infinite. When P is geometrically regular the groups Γ (P ) and G(P ) are isomorphic; in particular, the
mapping ρj 7→ rj (j = 0, 1, 2) extends to an isomorphism between the groups.
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Two realizations of an abstract regular polyhedron P can be combined to give a new realization of P in a
higher-dimensional space. Suppose we have two (not necessarily faithful) realizations of P in two Euclidean
spaces, say P with generators r0, r1, r2 in E and P ′ with generators r′0, r

′
1, r

′
2 in E′ (possibly some rj = 1 or

r′j = 1 if P or P ′ is not faithful). Then their blend, denoted P#P ′, is a realization of P in E × E′ obtained
by Wythoff’s construction as an orbit structure as follows (see [7] and [41, Ch. 5A]). Write Rj and R′

j for the
mirror (fixed point set) of a distinguished generator rj in E or r′j in E′, respectively. The cartesian products
R0 ×R′

0, R1 ×R′
1 and R2 ×R′

2, respectively, then are the mirrors for involutory isometries s0, s1 and s2 of
E ×E′ which generate the symmetry group G(P#P ′) of the blend. Indeed, if v ∈ R1 ∩R2 and v′ ∈ R′

1 ∩R′
2

are the base (initial) vertices of the two realizations, then the point w := (v, v′) in E × E′ can be chosen
as the base (initial) vertex for the blend P#P ′. Then the base edge and base face are determined by the
orbits of w under the subgroups 〈s0〉 and 〈s0, s1〉, respectively. Finally, the vertices, edges, and faces of the
entire polyhedron P#P ′ are the images of the base vertex, base edge, or base face under the entire group
〈s0, s1, s2〉. A realization which cannot be expressed as a blend in a non-trivial way is called pure.

3 Wythoffians of abstract polyhedra

Every abstract polyhedron P naturally gives rise to generally seven new abstract polyhedra, the abstract
Wythoffians of P . These Wythoffians have appeared in many applications, usually under different names (see
[3,48]); they are often called truncations of the respective polyhedron or map (see [7]). (In the literature, the
word “Wythoffian” is mostly used as an adjective, not a noun, to describe a figure obtained by Wythoff’s
construction. The use of “Wythoffian” in [17] is similar to ours.)

3.1 Wythoffians from the order complex

It is convenient to construct the Wythoffians from the order complex of P . The order complex C := C(P)
of an abstract polyhedron P is the 2-dimensional abstract simplicial complex, whose vertices are the proper
faces of P , and whose simplices are the chains (totally ordered subsets) of P which only contain proper faces
of P (see [41, Ch. 2C]). The maximal simplices in C are in one-to-one correspondence with the flags of P , and
are 2-dimensional. The type of a vertex of C is its rank as a face of P . More generally, the type of a simplex
Ω of C is the set of types of the vertices of Ω. Thus every 2-simplex has type {0, 1, 2}. Two 2-simplices of
C are j-adjacent if and only if they differ in their vertices of type j. With this type function on chains, the
order complex acquires the structure of a labelled simplicial complex.

The defining properties of P translate into strong topological properties of C. In particular, each 2-
simplex of C is j-adjacent to exactly one other 2-simplex, for j = 0, 1, 2. When rephrased for C, the strong
flag-connectedness of P says that, for any two 2-simplices Φ and Ψ of C which intersect in a face Ω (a simplex
or the empty set) of C, there exists a sequence Φ = Φ0, Φ1, . . . , Φk−1, Φk = Ψ of 2-simplices of C, all containing
Ω, such that Φi−1 and Φi are adjacent for i = 1, . . . , k.

Recall that the star of a face Ω in a simplicial complex is the subcomplex consisting of all the simplices
which contain Ω, and all their faces. The link of Ω is the subcomplex consisting of all the simplices in the
star of Ω which do not intersect Ω. For an abstract polyhedron P , the structure of the link of a vertex in
its order complex C depends on the number of 2-simplices it is contained in. Every vertex of C of type 1 has
a link isomorphic to a 4-cycle. If a vertex F of C is of type 2, and the 2-face F/F−1 of P is a p-gon, then
the link of F in C is a 2p-cycle if p is finite, or an infinite path (an infinite 1-dimensional simplicial complex
in which every vertex lies in exactly two 1-simplices) if p is infinite. Similarly, if F is a vertex of C of type
0, and the vertex-figure F3/F of P at F is a q-gon, then the link of F in C is a 2q-cycle if q is finite, or an
infinite path if q is infinite.

If P is a locally finite abstract polyhedron with order complex C, then P can be viewed as a face-
to-face tessellation on a (compact or non-compact) closed surface S by topological polygons, and C as a
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triangulation of S refining P in the manner of a “barycentric subdivision”. If P has faces or vertex-figures
which are apeirogons, then the link of the corresponding vertices in C is not a 1-sphere and so P is not
supported by a closed surface; however, C still has the structure of a 2-dimensional pseudo-manifold, which
we again denote by S. (A 2-dimensional pseudo-manifold is a topological space X with a 2-dimensional
triangulation K such that the following three conditions hold: first, X is the union of all triangles of K;
second, every edge of K lies in exactly two triangles of K; and third, any two triangles of K can be joined by
a finite sequence of triangles of K such that successive triangles in the sequence intersect in an edge [53].) In
our applications, the vertex-figures of P are always finite polygons, whereas the faces are often apeirogons.

If P is regular and ρ0, ρ1, ρ2 are the generators of Γ (P) associated with a base flag Φ of P , then Γ (P)
acts on S as a group of homeomorphisms of S and the distinguished generators appear as “combinatorial
reflections” in the sides of the 2-simplex Φ of C. The 2-simplex Φ is a fundamental triangle for the action of
Γ (P) on S, meaning that the orbit of every point of S under Γ (P) meets Φ in exactly one point. (Recall
our previous remark about the notion of fundamental simplex, or in this case, fundamental triangle.) In
fact, every 2-simplex of C is a fundamental triangle for Γ (P) on S, with a conjugate set of distinguished
generators occurring as “combinatorial reflections” in its sides. For a regular polyhedron, the order complex
can be completely described in terms of Γ (P) since this is already true for P itself (see [41, Sect. 2C]).

For example, consider the regular tessellation P = {4, 4} of the Euclidean plane by squares, four coming
together at a vertex. Here C appears as the actual barycentric subdivision of the tessellation, and any triangle
in C can serve as the fundamental region for the symmetry group, which in this case is a Euclidean plane
reflection group.

An alternative approach to abstract Wythoffians using dissections of fundamental triangles is described
in Pisanski & Zitnik [49] (see also [15]).

3.2 Wythoffians of abstract regular polyhedra

The Wythoffians of an abstract regular polyhedron P are derived as orbit structures from the order complex
C, or equivalently, from the underlying surface or pseudo-manifold S. The construction can be carried out
at a purely combinatorial level for arbitrary abstract polyhedra without reference to automorphism groups
(by exploiting the action of the monodromy groups [42]). However, as we are mainly interested in geometric
Wythoffians derived from geometrically regular polyhedra, we will concentrate on regular polyhedra and
exploit their groups. The method employed is known as Wythoff’s construction (see [7,41]).

Now let P be an abstract regular polyhedron with order complex C and surface or pseudo-manifold S.
Suppose the base flag Φ = {F0, F1, F2} of P is realized as a fundamental triangle on S with vertices F0, F1, F2.
This fundamental triangle Φ naturally partitions into seven subsets: its vertices, the relative interiors of its
edges, and its relative interior. The closure of each of these subsets is a simplex in C and hence has a type
I. Thus each subset is naturally associated with a nonempty subset I of {0, 1, 2} specifying the generators
which move the points of Φ in the subset; more precisely, the subset belonging to I consists of the points of
Φ which are transient under the generators ρi with i ∈ I but invariant under the generators ρi with i /∈ I.
More explicitly, for the vertex Fi of Φ the type I is {i}; for the relative interior of the edge joining Fi and
Fj it is {i, j}; and for the relative interior it is {0, 1, 2}.

The abstract Wythoffians to be defined will be in one-to-one correspondence with the seven subsets
in the partition of Φ and hence be parametrized by subsets I of {0, 1, 2}. Each subset in the partition is
characterized as the set of possible locations for the initial vertex of the corresponding Wythoffian; different
choices of initial vertices within each subset will produce isomorphic Wythoffians. Thus a subset I indexing
an abstract Wythoffian of P specifies precisely the generators, namely the generators ρi with i ∈ I, under
which the corresponding initial vertex is transient. The generators ρi with i /∈ I then leave the initial vertex
invariant; in fact, the choice of initial vertex within the fundamental triangle is such that its stabilizer in
Γ (P) is precisely given by the subgroup 〈ρi | i /∈ I〉. It then follows that the vertices of the Wythoffian are
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I Initial vertex Ringed diagram Wythoffian Vertex Symbol

{0} P 0 (pq)

{1} P 1 (p.q.p.q)

{2} P 2 (qp)

{0, 1} P 01 (p.q.q)

{0, 2} P 02 (p.4.q.4)

{1, 2} P 12 (2p.2p.q)

{0, 1, 2} P 012 (2p.2q.4)

Table 1 Notation for the Wythoffian, PI , based on choice of I.

in one-to-one correspondence with the left cosets of this subgroup in Γ (P). We write PI for the Wythoffian
associated with I.

Table 1 indicates the seven possible placements for the initial vertex inside the fundamental triangle. We
have adopted an analogue of Coxeter’s [7] diagram notation for truncations of regular convex polyhedra,
and have included the corresponding diagrams in the third column; following Coxeter’s convention, a node
of the diagram for PI is ringed if and only if its label belongs to I. We also refer to these diagrams as ringed
diagrams. The fourth column shows the Wythoffian (in Latin letters, for the realizations), where we have
written P i, P ij and P ijk in place of P{i}, P{i,j} or P{i,j,k}, respectively. The final column gives the vertex
symbol for each Wythoffian. These symbols will discussed in further detail in Section 4.2. Note that in the
present context the basic, “unringed” Coxeter diagrams are not generally representing Coxeter groups [41,
Ch. 3] as for regular convex polyhedra. Here they are representing symmetry groups of arbitrary regular
polyhedra in E

3. For a regular convex polyhedron, the seven Wythoffians correspond to the seven possible
ways of “truncating” the given polyhedron [7].

The abstract Wythoffian PI for a given subset I ⊆ {0, 1, 2} then is constructed as follows. Choose a
point v, the initial vertex of PI , inside the fundamental chamber Φ on S such that ρi(v) 6= v for i ∈ I and
ρi(v) = v for i /∈ I. We first generate the base faces for PI . Here we need to broaden the term base l-face to
include any l-face of PI incident with v whose vertex set on S is the orbit of v under precisely l distinguished
generators of Γ (P). Unlike in the case of regular polyhedra we now can have up to three different kinds
of base l-face for l = 1, 2. For instance, when I = {0, 1, 2} there is a base 1-face corresponding to each
distinguished generator in Γ (P). To fully define the poset of faces obtained by Wythoff’s construction we
will give explicit definitions of each type of base l-face for l = 0, 1, 2.

There is only one base 0-face, namely

F0 := v. (3)

For each i ∈ I we define the base 1-face

F i
1 := {ρ(v) | ρ ∈ 〈ρi〉} = {v, ρi(v)}. (4)
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Thus the number of base 1-faces in PI is |I|. The base 2-faces of PI will be parametrized by the set I2 of
2-element subsets of {0, 1, 2} given by

I2 :=





{{i, j} | j = i± 1} if I = {i}, i = 0, 1, 2,
{{0, 1}, {1, 2}} if I = {0, 1}, {1, 2},
{{0, 1}, {1, 2}, {0, 2}} if I = {0, 2}, {0, 1, 2}.

(5)

Now for each {i, j} ∈ I2 we can define a base 2-face

F ij
2 := F ji

2 := {ρ(F k
1 ) | ρ ∈ 〈ρi, ρj〉, k ∈ I ∩ {i, j}}. (6)

The full Wythoffian PI then is the union (taken over l = 0, 1, 2) of the orbits of the base l-faces under
Γ (P). In PI , vertices are points on S, edges are 2-element subsets consisting of vertices, and 2-faces are sets
of edges. The partial order between faces of consecutive ranks is given by containment (meaning that the
face of lower rank is an element of the face of higher rank), and the full partial order then is the transitive
closure. When a least face (of rank −1) and a largest face (of rank 3) are appended PI becomes an abstract
polyhedron. Note that when P is locally finite the abstract Wythoffian PI can be realized as a face-to-face
tessellation on the surface S in much the same way in which the geometric Wythoffians of the regular plane
tessellation {4, 4} were derived; then edges are simple curves and faces are topological polygons on S.

The Wythoffian P{0} is isomorphic to P itself, and P{2} is isomorphic to the dual P∗ of P . Thus both are
regular. The Wythoffian P{1} is isomorphic to the medial of P ; it has p-gonal faces and q-gonal faces, if P
is of type {p, q}, and its vertices have valency 4. Recall that the medial of a polyhedron is a new polyhedron
(on the same surface), with vertices at the “midpoints” of the old edges and with edges joining two new
vertices if these are the midpoints of adjacent edges in an old face (see [48,49]).

The two Wythoffians P{0,1} and P{1,2} each have two base 2-faces and thus two kinds of 2-face: P{0,1}

has 2p-gons and q-gons, and P{1,2} has p-gons and 2q-gons. Each has 3-valent vertices. On the other hand,
P{0,2} and P{0,1,2} each have three base 2-faces and thus three kinds of 2-face: P{0,2} has p-gons, 4-gons
and q-gons, and P{0,1,2} has 2p-gons, 4-gons and 2q-gons. The vertices of P{0,2} are 4-valent and those of
P{0,1,2} 3-valent.

Observe that the exchange of indices 0 ↔ 2 on an index set I for a Wythoffian, results in the index set
for the Wythoffian of the dual polyhedron P∗; that is, if I∗ = {2− i|i ∈ I} then PI∗

= (P∗)I . Thus the dual
P∗ has the same set of seven Wythoffians as the original polyhedron P . Moreover, if P is self-dual then the
Wythoffians PI and PI∗

are isomorphic for each I.

It is worth noting that the abstract Wythoffians PI described in this section can be described purely
combinatorially without any explicit reference to the underlying surface. This is of little interest when P is
locally finite, since then the 2-faces of the Wythoffians are topological polygons with finitely many edges.
However, if P has apeirogonal 2-faces or vertex-figures, respectively, the base 2-face of PI generated from
the subgroup 〈ρ0, ρ1〉 or 〈ρ1, ρ2〉 of Γ (P) is an apeirogon and does not bound a disk in S. In our applications,
while the 2-faces of P may be infinite, the vertex-figures of P will always be finite. In this case, if P has
apeirogons as 2-faces then PI also has an apeirogonal 2-face, except when I = {2} and PI = P∗.

Note that the Wythoffians of an abstract polyhedron P can also described in terms of the monodromy
group of the polyhedron (see [42]). In the case of a regular polyhedron P , the monodromy group and
automorphism group are isomorphic and either can be chosen to define the Wythoffians PI . However, as we
will work in a geometric context where automorphisms become isometries, we have adopted an automorphism
based approach to Wythoffians.

4 Wythoffians of geometric polyhedra

In this section we discuss Wythoffians for geometrically regular polyhedra P in E
3. In particular, we explain

how an abstractWythoffian associated with P as an abstract polyhedron, can often itself be realized faithfully
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in E
3 in such a way that all combinatorial symmetries of P are realized as geometric symmetries, and thus

be viewed as a geometric Wythoffian of P . In fact, whenever a realization exists there are generally many
such realizations. For a point u ∈ E

3 we let Gu(P ) denote the stabilizer of u in G(P ).

The key idea is to place the initial vertex for the realization inside a specified fundamental region of the
symmetry group G(P ) in E

3 and then let Wythoff’s construction applied with the generating reflections of
G(P ) produce the desired geometric Wythoffian. The precise construction is detailed below. The fundamental
region of G(P ) can be quite complicated and is generally not a simplicial cone as for the Platonic solids.
The generating symmetries r0, r1, r2 of G(P ) corresponding to the abstract symmetries ρ0, ρ1, ρ2 of Γ (P )
are involutory isometries in E

3 and therefore are point reflections, halfturns (line reflections), or plane
reflections, with mirrors of dimension 0, 1 or 2, respectively. In order to realize an abstract Wythoffian P I

(with I ⊆ {0, 1, 2}) of the given geometric polyhedron P in E
3, the initial vertex v must be chosen such that

Gv(P ) = 〈ri | i /∈ I〉. (7)

This initial placement condition will allow us to construct a faithful realization of P I . In fact, (7) is a
necessary and sufficient condition for the existence of a faithful realization of P I in E

3 which is induced by
the given realization of P in the sense that all geometric symmetries of P are also geometric symmetries of
P I . Note that condition (7) implies the more easily verifiable condition

ri(v) 6= v (i ∈ I), ri(v) = v (i /∈ I), (8)

which for specific points v usually is equivalent to (7).

The shape of the geometric Wythoffians will vary greatly with the choice of initial vertex. Our assumption
that v be chosen inside the fundamental region for G(P ) is, strictly speaking, not required. The initial
placement condition for v alone guarantees that a faithful realization of P I can be found by Wythoff’s
construction. However, if the initial vertex v is chosen inside the fundamental region, then the original
polyhedron P and its Wythoffian P I are similar looking in shape and so their intrinsic relationship is
emphasized.

By the very nature of the construction, Wythoffians are vertex-transitive and have vertex-transitive faces.
If the faces are actually regular polygons, then the Wythoffian is a geometrically uniform polyhedron in E

3.

4.1 Regular polyhedra in E
3

We briefly review the classification of the geometrically regular polyhedra in E
3 following the classification

scheme of [41, Sect. 7E] (or [40]). There are 48 such regular polyhedra, up to similarity and scaling of
components (if applicable): 18 finite polyhedra, 6 planar apeirohedra, 12 blended apeirohedra, and 12 pure
(non-blended) apeirohedra. They are also known as the Grünbaum-Dress polyhedra.

The finite regular polyhedra comprise the five Platonic solids {3, 3}, {3, 4}, {4, 3}, {3, 5}, {5, 3} and the
four Kepler-Poinsot star-polyhedra {3, 5

2
}, { 5

2
, 3}, {5, 5

2
}, { 5

2
, 5}, where the faces and vertex-figures are planar

but are permitted to be star polygons (the entry 5

2
indicates pentagrams as faces or vertex-figures); and the

Petrie-duals of these nine polyhedra.

The planar regular apeirohedra consist of the three regular plane tessellations {4, 4}, {3, 6} and {6, 3},
and their Petrie-duals {∞, 4}4, {∞, 6}3 and {∞, 3}6, respectively.

There are twelve regular apeirohedra that are “reducible” and have components that are lower-dimensional
regular figures. These apeirohedra are blends of a planar regular apeirohedron P and a line segment { } or
linear apeirogon {∞}. The notion of a blend used in this context is a variant of the notion of a blend of two
realizations of abstract polyhedra described earlier (but is technically not the same). The formal definition
is as follows. We let P ′ denote the line segment { } or the linear apeirogon {∞}.



Wythoffian Skeletal Polyhedra in Ordinary Space, I 11

Suppose the symmetry groups of P and P ′ are, respectively, G(P ) = 〈r0, r1, r2〉 and G(P ′) = 〈r′0〉 or
〈r′0, r

′
1〉. For our purposes, G(P ) acts on a plane in E

3 while G(P ′) acts on a line perpendicular to that plane;
in particular, these two groups commute at the level of elements. The blending process requires us first to
take the direct product of the groups, G(P ) × G(P ′), viewed as a subgroup of the full isometry group of
E
3. The new regular apeirohedron, the blend P#P ′, then is obtained from the subgroup of G(P ) × G(P ′)

generated by the set of involutions

(r0, r
′
0), (r1, 1), (r2, 1)

or

(r0, r
′
0), (r1, r

′
1), (r2, 1),

respectively; this subgroup is the symmetry group of the blend, and the involutions are the distinguished
generators. Thus G(P#P ′) is a subgroup of G(P ) × G(P ′). In particular, if the plane of P and line of
P ′ meet at the origin, and v and v′ are the initial vertices of P and P ′ for Wythoff’s construction, then
the point (v, v′) in E

3 is the initial vertex of the blend. More explicitly, the blend, P#{ }, of P and { }
has symmetry group 〈(r0, r

′
0), (r1, 1), (r2, 1)〉 while the blend, P#{∞}, of P and {∞} has symmetry group

〈(r0, r
′
0), (r1, r

′
1), (r2, 1)〉. Throughout we will simplify the notation from (r, r′) to rr′ for an element of

G(P )×G(P ′).

For example, the blend of the standard square tessellation {4, 4} and the linear apeirogon {∞}, denoted
{4, 4}#{∞}, is an apeirohedron in E

3 whose faces are helical apeirogons (over squares), rising as “spirals”
above the squares of {4, 4} such that 4 meet at each vertex; the orthogonal projections of {4, 4}#{∞} onto
their component subspaces recover the original components, that is, the square tessellation and the linear
apeirogon. Each blended apeirohedron represents an entire family of apeirohedra of the same kind, where the
apeirohedra in a family are determined by a parameter describing the relative scale of the two component
figures; our count of 12 refers to the 12 kinds rather than the individual apeirohedra.

Finally there are twelve regular apeirohedra that are “irreducible”, or pure (non-blended). These are listed
in Table 2 (see [41, p. 225]). The first column gives the mirror vector of an apeirohedron; its components,
in order, are the dimensions of the mirrors of the generating symmetries r0, r1 and r2 of G(P ) (this is the
dimension vector of [41, Ch. 7E]). The last two columns say whether the faces and vertex-figures are planar,
skew, or helical regular polygons. In the second, third, and fourth columns, the (rotation or full) symmetry
group of the Platonic solid at the top indexing that column is closely related to the special group of each
apeirohedron listed below it; the special group is the quotient of the symmetry group by the translation
subgroup. The three polyhedra in the first row are the well-known Petrie-Coxeter polyhedra (see [5]), which
along with those in the third row comprise the pure regular polyhedra with finite faces. The pure polyhedra
with helical faces are listed in the second and last row. Infinite zigzag polygons do not occur as faces of pure
polyhedra.

The fine Schläfli symbol used to designate a polyhedron signifies extra defining relations for the symmetry
group (see [41, Ch. 7E]). For example, the parameters l,m and n in the symbols {p, q}l, {p, q}l,m and {p, q |n}
indicate the relations (r0r1r2)

l = 1, (r0(r1r2)
2)

m
= 1, or (r0r1r2r1)

n = 1, respectively; together with the
standard Coxeter relations they form a presentation for the symmetry group of the corresponding polyhedron.
Note that l, m and n, respectively, give the lengths of the Petrie polygons (1-zigzags), the 2-zigzags (paths
traversing edges where the new edge is chosen to be the second on the right, but reversing orientation on
each step, according to some local orientation on the underlying surface), and the holes (paths traversing
edges where the new edge is chosen to be the second on the right on the surface).

4.2 Geometric Wythoffians of regular polyhedra

Let P be a geometrically regular polyhedron in E
3 with symmetry group G(P ) = 〈r0, r1, r2〉, and let I ⊆

{0, 1, 2}. If we write Ri for the mirror of a distinguished generator ri in E
3, and X for the complement in E

3
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mirror vector {3, 3} {3, 4} {4, 3} faces vertex-figures

(2,1,2) {6, 6|3} {6, 4|4} {4, 6|4} planar skew

(1,1,2) {∞, 6}4,4 {∞, 4}6,4 {∞, 6}6,3 helical skew

(1,2,1) {6, 6}4 {6, 4}6 {4, 6}6 skew planar

(1,1,1) {∞, 3}(a) {∞, 4}·,∗3 {∞, 3}(b) helical planar

Table 2 The pure apeirohedra in E
3

of a subset X of E3, then the weaker form (8) of the initial placement condition in (7) for the initial vertex
v is equivalent to requiring that v lies in

MI :=
⋂

i∈I

Ri ∩
⋂

i/∈I

Ri . (9)

Thus, if M̂I denotes the set of permissible choices of initial vertices v, then M̂I is a subset of MI . In general
we would expect the complement of M̂I in MI to be “small”. If I 6= {0, 1, 2} the affine hull of MI is a proper
affine subspace of E3 given by

⋂
i/∈I Ri; in this case, MI must lie in a plane. If I = {0, 1, 2} the affine hull of

MI is E3.

Now suppose the initial vertex v is chosen in M̂I (and also lies in a specified fundamental region of G(P )
in E

3). To construct the geometric Wythoffians of P we follow the same pattern as in (3), (4), (5) and (6).
We often write P I(v) in place of P I in order to emphasize the fact that P I is generated from v. The base
0-face of P I(v) is again given by

F0 := v. (10)

For each i ∈ I there is a base 1-face,
F i
1 := (v, ri(v)), (11)

which is a line segment; and for each {i, j} ∈ I2 there is a base 2-face,

F ij
2 := F ji

2 := {r(F k
1 ) | r ∈ 〈ri, rj〉, k ∈ I ∩ {i, j}}, (12)

which forms a finite or infinite polygon according as 〈ri, rj〉 is a finite or infinite dihedral group. The full
geometric Wythoffian P I(v) then is the union (taken over l = 0, 1, 2) of the orbits of the base l-faces under
G(P ).

We often write P i(v), P ij(v), P ijk(v) in place of P {i}(v), P {i,j}(v) or P {i,j,k}(v), respectively, and
similarly without v as qualification.

Observe that our construction of geometric Wythoffians always uses a geometrically regular polyhedron
in E

3 as input and then produces from it a realization of its abstract Wythoffian. Thus the pair of abstract
polyhedra (P ,PI) is simultaneously realized in E

3 as a pair of geometric polyhedra (P, P I). The following
lemma shows that the geometric Wythoffians are indeed faithful realizations of the abstract Wythoffians.

Lemma 1 Let P be a geometrically regular polyhedron in E
3, and let I ⊆ {0, 1, 2}. Then for each v ∈ M̂I

the geometric Wythoffian P I(v) is a faithful realization of the abstract Wythoffian PI .

Proof The initial placement condition in (7) for v implies that there is a one-to-one correspondence between
the vertices of PI and P I(v). In fact, by construction, the vertices of PI and P I(v), respectively, are in
one-to-one correspondence with the left cosets of the stabilizers of the initial vertices in Γ (P) or G(P ),
which are given by 〈ρi | i /∈ I〉 and Gv(P ). But the group isomorphism between Γ (P) and G(P ) naturally
takes the vertex stabilizer 〈ρi | i /∈ I〉 to 〈ri | i /∈ I〉, and by (7) the latter subgroup of G(P ) coincides with
Gv(P ). Thus there is a bijection between the two vertex sets, and the number of vertices is the index of
〈ri | i /∈ I〉 in G(P ).
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As for both the abstract and geometric Wythoffian the base edges and base faces are entirely determined
by their vertices, and the overall construction method for the two polyhedra is the same, the one-to-one
correspondence between the two vertex sets extends to an isomorphism between the two polyhedra. ✷

By construction, the Wythoffian P I(v) inherits all geometric (and combinatorial) symmetries of P and
is (trivially) vertex-transitive under G(P ). Thus all vertices are surrounded alike (and in particular in the
same way as v). Following standard notation for classical Archimedean solids and tilings we will introduce
a vertex symbol for P I(v) that describes the neighborhood of a vertex and hence collects important local
data.

Let u be a vertex of P I(v) of valency k, let G1, . . . , Gk (in cyclic order) be the 2-faces containing u, and
let Gj be a qj-gon for j = 1, . . . , k (with qj = ∞ if Gj is an apeirogon). Then we call (G1, G2, G3, . . . , Gk)
and (q1.q2.q3 . . . qk) the vertex configuration and vertex symbol of P I(v) at u, respectively. The vertex
configuration and vertex symbol at a vertex are determined up to cyclic permutation and reversal of order.
By the vertex-transitivity, the vertex symbols of P I(v) at different vertices are the same and so we can
safely call the common symbol the vertex symbol of P I(v) (or P I). If a vertex symbol contains a string of
m identical entries, q, we simply shorten the string to qm.

As we will see there are several instances where certain abstract Wythoffians of geometrically regular
polyhedra cannot be realized as geometric Wythoffians. This is already true for the geometrically regular
polyhedra themselves. Not every geometrically regular polyhedron has a geometrically regular polyhedron
as a dual. There are several possible obstructions to this. If the original polyhedron has infinite faces, then
the dual would have to have vertices of infinite valency, which is forbidden by our discreteness assumption.
Thus local finiteness is a necessary condition for pairs of geometric duals to exist. However, local finiteness
is not a sufficient condition. For example, the (abstract) dual of the Petrie dual of the cube, {3, 6}4, cannot
be realized as a geometric polyhedron in E

3 while the Petrie dual of the cube itself, {6, 3}4, is one of the
finite regular polyhedra in E

3. The abstract polyhedron {3, 6}4 is a triangulation of the torus; since its edges
have multiplicity 2, they cannot be geometrically represented by straight line segments in E

3. Geometric
polyhedra must necessarily have a simple edge graph.

In practice we often employ a padded vertex symbol to describe the finer geometry of the vertex-
configuration. We use symbols like pc, ps, ∞k, or t∞2, respectively, to indicate that the faces are (not
necessarily regular) convex p-gons, skew p-gons, helical polygons over k-gons, or truncated planar zigzag.
(The k = 2 describes a planar zigzag viewed as a helical polygon over a “2-gon”, where here a 2-gon is a
line segment traversed in both directions. A truncated planar zigzag is obtained by cutting off the vertices
of a planar zigzag, while maintaining segments of the old edges as new edges.) There are other shorthands
that we introduce when they occur. For example, a symbol like (82s.6c.3

2.6s) would say that each vertex is
surrounded (in cyclic order) by a skew octagon, another skew octagon, a convex hexagon, a triangle, another
triangle, and a skew hexagon.

We should point out that there are uniform skeletal polyhedra that cannot occur as geometric Wythoffians
of regular polyhedra in E

3. The simplest example is the snub cube, which is an Archimedean solid whose
symmetry group is the octahedral rotation group and hence does not contain plane reflections. On the
other hand, all 18 finite regular polyhedra and thus their geometric Wythoffians have reflection groups as
symmetry groups. Note that the snub cube can be derived by Wythoff’s construction from the octahedral
rotation group rather than the full octahedral group.

The geometrically chiral polyhedra in E
3 are also examples of uniform skeletal polyhedra that cannot arise

as geometric Wythoffians of regular polyhedra (see [50,51]). This immediately follows from a comparison of
the structure of the faces and the valencies of the vertices for the Wythoffians and chiral polyhedra, except
possibly when I = {0} or {2}. In these two cases the Wythoffians are regular and thus cannot coincide with
a chiral polyhedron.

We have not yet fully explored the “snub-type” polyhedra that arise from regular skeletal polyhedra
P via Wythoff’s construction applied to the “rotation subgroup” G+(P ) of the symmetry group G(P ).
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This subgroup is generated by the symmetries r0r1, r1r2 and consists of all symmetries of P that realize
combinatorial rotations of P ; that is, G+(P ) is the image of the combinatorial rotation subgroup Γ+(P ) :=
〈ρ0ρ1, ρ1ρ2〉 of Γ (P ) = 〈ρ0, ρ1, ρ2〉 under the representation Γ (P ) 7→ G(P ) in E

3. Note that r0r1 and r1r2
may not actually be proper isometries and hence G+(P ) may not only consist of proper isometries.

A similar remark also applies to possible geometric “snub-type” Wythoffians of the chiral polyhedra
in E

3.

5 The Wythoffians of various regular polyhedra

In this section we treat the Wythoffians of a number of distinguished classes of regular polyhedra in E
3,

including in particular the four finite polyhedra with octahedral symmetry and various families of apeirohedra
(the two planar and the two blended apeirohedra derived from the square tiling, as well as the three Petrie-
Coxeter polyhedra). As the fundamental regions of the symmetry groups vary greatly between the various
kinds of polyhedra, we address the possible choices of initial vertices in the subsections. The geometric shape
of a geometric Wythoffian will greatly depend on the choice of initial vertex, and different choices may lead
to geometric Wythoffians in which corresponding faces look quite differently and may be planar versus skew.
Figures of distinguishing features of the resulting Wythoffians are included; the pictures show the base faces
in different colors.

We leave the analysis of the Wythoffians for the remaining classes of regular polyhedra to the subsequent
paper [58] by the second author.

5.1 Finite polyhedra with octahedral symmetry

There are four regular polyhedra in E
3 with an octahedral symmetry group: the octahedron {3, 4} and cube

{4, 3}, and their Petrie-duals {6, 4}3 and {6, 3}4, respectively. The octahedron and cube produce familiar
figures as Wythoffians each related to an Archimedean solid (see [54]), but already their Petrie duals produce
interesting new structures. The sets of distinguished generators for the four individual symmetry groups can
all be expressed in terms of the set for the octahedron {3, 4}. We write G({3, 4}) = 〈s0, s1, s2〉, where s0, s1, s2
are the distinguished generators. All of the initial vertices used for Wythoffians with octahedral symmetry
are chosen from within the standard fundamental region of the octahedral group, which is a closed simplicial
cone bounded by the reflection planes of s0, s1 and s2. (Recall our previous remark about the notion of
fundamental simplex, or in this case, fundamental simplicial cone.) Each of the Wythoffians in this section is
related to an Archimedean solid, as the figures will show. In fact, for the Wythoffians of the convex regular
polyhedra we can choose the initial vertex so that the resulting polyhedron is uniform. That is not the case
with all skeletal regular polyhedra. For example, the Wythoffians P 02 and P 012 derived from {6, 4}3 cannot
be uniform, though we can still see a relationship between them and the Archimedean solids.

The Wythoffians of the octahedron are shown in Figure 1. The first Wythoffian, P 0, is the regular
octahedron {3, 4} itself. The Wythoffian P 1 is a uniform cuboctahedron. Examining P 2 we get the dual to
the octahedron, the regular cube. The Wythoffian P 01 is a polyhedron which is isomorphic to the truncated
octahedron. For a particular choice of initial vertex P 01 is the uniform truncated octahedron. The polyhedron
P 02 is isomorphic to the rhombicuboctahedron, and for a carefully chosen initial vertex P 02 is the uniform
rhombicuboctahedron. For P 12 Wythoff’s construction yields a polyhedron isomorphic to the truncated cube
which for a specifically chosen initial vertex is the uniform truncated cube. The Wythoffian P 012 is isomorphic
to the truncated cuboctahedron, and for a certain initial vertex is the uniform truncated cuboctahedron.

For the Wythoffians of the cube {4, 3} we can exploit the duality between the cube and the octahedron
(using the generators s2, s1, s0 for {4, 3}). In fact, interchanging 0 and 2 in the superscripts from the Wythof-
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P 0 P 1 P 2 P 01

P 02 P 12 P 012

Fig. 1 The Wythoffians derived from {3, 4}.

fians of the octahedron (of Figure 1) results in the Wythoffians of the cube, and vice versa. We will not
reproduce the results for the cube in detail.

The Petrie dual {6, 4}3 of {3, 4} has a group of the form G({6, 4}3) = 〈r0, r1, r2〉, where r0 = s0s2,
r1 := s1, r2 := s2 and s0, s1, s2 are as above. Given these generators, we are limited in our choice of initial
vertex. As the rotation axis of the halfturn r0 lies in the reflection plane of r2, any point invariant under r0
is also invariant under r2. Thus there is no point that is invariant under only r0 or under both r0 and r1
and not r2. As such there is no polyhedron P 2 nor a polyhedron P 12. For pictures of the Wythoffians, see
Figure 2.

The first Wythoffian, P 0, is the regular polyhedron {6, 4}3 itself which has four regular, skew hexagonal
faces which all meet at each vertex; the vertex symbol is (64s). The vertex figure is then a convex square, as
for the octahedron with which P 0 shares an edge graph.

The Wythoffian P 1 shares its edge graph with the cuboctahedron. The faces are four convex, regular

hexagons of type F
{0,1}
2 (the equatorial hexagons of the cuboctahedron) and six convex squares of type

F
{1,2}
2 . The vertex symbol is (4c.6c.4c.6c). The hexagons all intersect leading to a vertex figure which is a

crossed quadrilateral (like a bowtie). This is a uniform polyhedron with planar faces, in the notation of [11]
it is 4

3
4 | 3.

The polyhedron P 01 shares an edge graph with a polyhedron which is isomorphic to a truncated octa-

hedron. It has four skew dodecagons of type F
{0,1}
2 (truncations of skew hexagonal faces of {6, 4}3) and six

convex squares of type F
{1,2}
2 . The vertex symbol is (4c.12

2
s) with an isosceles triangle as the vertex figure.

The Wythoffian P 02 shares a vertex set with a polyhedron which is isomorphic to a rhombicuboctahedron.

There are four skew hexagons of type F
{0,1}
2 , six convex squares of type F

{1,2}
2 , and twelve crossed quadri-

laterals of type F
{0,2}
2 . At each vertex a crossed quadrilateral, a square, a crossed quadrilateral, and a skew

hexagon occur in cyclic order yielding a convex quadrilateral vertex figure with vertex symbol (4 ⊲⊳.4c.4.6s),
where 4 ⊲⊳ indicates a crossed quadrilateral.

For P 012 the resulting polyhedron shares a vertex set with a polyhedron which is isomorphic to the trun-

cated cuboctahedron. The figure has four skew dodecagonal faces of type F
{0,1}
2 (truncated skew hexagons),

six convex octagons of type F
{1,2}
2 (truncated squares), and twelve crossed quadrilaterals of type F

{0,2}
2 . The

vertex symbol is (4 ⊲⊳.8c.12s) with a triangular vertex figure.
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Fig. 2 The Wythoffians derived from {6, 4}3.

The final geometrically regular polyhedron with octahedral symmetry is the Petrie-dual of the cube,
{6, 3}4. Its symmetry group is G({6, 3}4) = 〈r0, r1, r2〉, where r0 = s2s0, r1 := s1, r2 := s0 and s0, s1, s2
are as above. The duality between the octahedron and the cube can again be seen here. The generators
s2s0, s1, and s0 of G({6, 3}4) are obtained from the generators of G({6, 4}3) by interchanging s0 and s2.
The Wythoffians of {6, 3}4 also share many similarities with the Wythoffians of {6, 4}3. As with {6, 4}3,
every vertex which is stabilized by r0 is also stabilized by r2. Thus there is no point which is stabilized by r0
alone, nor is there one which is stabilized by both r0 and r1. Consequently, there is no polyhedron P 2 and
no polyhedron P 12. For pictures of the Wythoffians, see Figure 3.

The first Wythoffian, P 0, is the regular polyhedron {6, 3}4 itself. It shares its edge graph with the cube
and thus has eight vertices and twelve edges. The four faces are the Petrie polygons of the cube which are
regular, skew hexagons. Three faces meet at each vertex, with a vertex symbol (63s) and a regular triangle
as the vertex figure.

The Wythoffian P 1 has the same edge graph as the cuboctahedron. There are four intersecting, regular,

convex hexagons of type F
{0,1}
2 (the equatorial hexagons of the cuboctahedron) and eight regular triangles

of type F
{1,2}
2 . The vertex symbol is (3.6c.3.6c) with a vertex figure of a crossed quadrilateral. This is a

uniform polyhedron with planar faces, in the notation of [11] it is 3

2
3 | 3.

When the initial vertex is stabilized by r2 alone then the resulting polyhedron, P 01, shares its edge graph
with a polyhedron which is isomorphic to the truncated cube. Then there are four skew dodecagons of type

F
{0,1}
2 (truncations of the skew hexagonal faces of {6, 3}4) and eight regular triangles of type F

{1,2}
2 . The

vertex symbol is (3.122s) and the polyhedron has an isosceles triangle as a vertex figure.

The Wythoffian P 02 shares its vertex set with a polyhedron which is isomorphic to a rhombicuboctahe-
dron. The faces are four regular hexagons (convex or skew depending on the exact choice of initial vertex)

of type F
{0,1}
2 , eight regular triangles of type F

{1,2}
2 , and twelve crossed quadrilaterals of type F

{0,2}
2 . The

vertex symbol is (3.4 ⊲⊳.6.4 ⊲⊳) and the vertex figure is a convex trapezoid.

For P 012 the resulting polyhedron shares its vertex set with a polyhedron which is isomorphic to the
truncated cuboctahedron. It has four dodecagons (which may be skew or convex depending on the choice

of initial vertex) of type F
{0,1}
2 (truncated hexagons), eight convex hexagons of type F

{1,2}
2 (truncated

triangles), and twelve crossed quadrilaterals of type F
{0,2}
2 . The vertex figure is a triangle and the vertex

symbol is (4 ⊲⊳.6c.12).

5.2 Planar polyhedra derived from the square tiling

The square tiling of the plane is the (self-dual) regular geometric apeirohedron {4, 4}, with symmetry group
G({4, 4}) = 〈s0, s1, s2〉. The second regular apeirohedron we investigate is its Petrie dual, {∞, 4}4. All initial
vertices for Wythoffians of these two polyhedra are chosen from the fundamental triangle of {4, 4}. Pictures



Wythoffian Skeletal Polyhedra in Ordinary Space, I 17

P 0 P 1 P 01 P 02 P 012

Fig. 3 The Wythoffians derived from {6, 3}4.

of the Wythoffians are in Figures 4 and 5, with base faces indicated in color. The Wythoffians for {4, 4} are
well-known but those for {∞, 4}4 certainly have not received much attention (however, see [29, Sect. 12.3]).

Beginning with the Wythoffians of P = {4, 4} we first note that P 0 is the regular apeirohedron {4, 4}

itself. All faces are convex squares of type F
{0,1}
2 . Four squares meet at each vertex, giving a vertex symbol

(44c) and a convex square vertex figure. By the self-duality of {4, 4} this is also the Wythoffian P 2 (which is
P 0 for the dual of {4, 4}).

In P 1 the apeirohedron has two types of face: convex squares of type F
{0,1}
2 and congruent convex squares

of type F
{1,2}
2 . The vertex figures are convex squares since the vertex symbol is (44c). This is again a regular

apeirohedron, a similar copy of the original square tessellation.

The apeirohedron P 01 has two distinct types of 2-faces. The first type of base face is a convex octagon

of type F
{0,1}
2 (truncated square), and the second type is a convex square of type F

{1,2}
2 . Two octagons

and one square meet at each vertex yielding an isosceles triangle for a vertex figure with vertex symbol
(4c.8

2
c). The initial vertex can be chosen so that the octagons are regular in which case the Wythoffian is a

uniform apeirohedron, the Archimedean tessellation (4.8.8). Again by the self-duality of {4, 4} this is also
the Wythoffian P 1,2 (which is P 0,1 for the dual of {4, 4}).

The apeirohedron P 02 has three different types of 2-faces. The first is a convex square face of type F
{0,1}
2 ,

the second is a convex square of type F
{1,2}
2 , and the final type of face is a convex rectangle of type F

{0,2}
2 .

At each vertex there is a square of the first kind, a rectangle, a square of the second kind, and a rectangle,
giving a vertex symbol (4c.4c.4c.4c). The resulting vertex figure is convex quadrilateral. When the initial
vertex is chosen so that the base edges have the same length, the rectangles are squares and the Wythoffian
is a congruent copy of the original tessellation.

For P 012, the apeirohedron has two different octagonal faces and a rectangular face. The first type of

convex octagons are of type F
{0,1}
2 (truncated squares), the second type of convex octagons are of type

F
{1,2}
2 (truncated squares), and the convex rectangles are of type F

{0,2}
2 . One octagon of each type and a

rectangle come together at each vertex to make a triangular vertex figure with vertex symbol (4c.8
2
c). When

the initial vertex is chosen to make the base edges have equal length then the faces are regular polygons and
the Wythoffian is again the Archimedean tessellation (4.8.8) with an isosceles triangle as the vertex figure.

The symmetry group of the regular apeirohedron {∞, 4}4 is given by G({∞, 4}4) = 〈r0, r1, r2〉, where
r0 = s0s2, r1 := s1, r2 := s2 and s0, s1, s2 are the generators of G({4, 4}). Since the center of the point
reflection r0 lies on the reflection line of r2, every point held invariant by r0 is also invariant under r2 so
there is no polyhedron P 2 or P 12 in this case. For pictures of the Wythoffians of {∞, 4}4 see Figure 5.

The Wythoffian P 0 is the regular apeirohedron {∞, 4}4 itself. Its 2-faces are apeirogons which appear as
infinite zigzags whose consecutive edges meet at an angle of π

2
. Four apeirogons meet at each vertex, giving

a square vertex figure with vertex symbol (∞4
2).
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Fig. 4 The Wythoffians derived from {4, 4}.

The apeirohedron P 1 only has two types of base faces. They are linear apeirogons of type F
{0,1}
2 and

convex squares of type F
{1,2}
2 . About each vertex there is an apeirogon, a square, an apeirogon, and a square,

with vertex symbol (∞.4c.∞.4c). The apeirogons dissect the plane into squares, exactly half of which are

the square faces of type F
{1,2}
2 . The vertex figure is a crossed quadrilateral. All faces of this Wythoffian are

regular polygons so this shape is a uniform apeirohedron with squares and linear apeirogons as faces.

The apeirohedron P 01 has finite and infinite faces. The apeirogonal faces are of type F
{0,1}
2 , each of which

is a truncated zigzag. The finite faces of this apeirohedron are convex squares of type F
{1,2}
2 . The vertex sym-

bol is (4c.t∞2.t∞2) and the resulting vertex figure is an isoceles triangle (recall that t indicates truncation).
The truncated zigzags are not regular apeirogons so this Wythoffian is not a uniform apeirohedron.

The Wythoffian P 02 is an apeirohedron whose faces are regular zigzags of type F
{0,1}
2 where the angle

between consecutive edges is greater than π
2
, convex squares of type F

{1,2}
2 , and crossed quadrilaterals of

type F
{0,2}
2 . The vertex figure is a convex quadrilateral with vertex symbol (4 ⊲⊳.4c.4.∞2). The crossed

quadrilaterals are not regular so this is not a uniform apeirohedron.

The final Wythoffian is P 012. There are apeirogonal faces of type F
{0,1}
2 which are truncated zigzags.

There are also convex octagonal faces of type F
{1,2}
2 (truncated squares) and crossed quadrilaterals of type

F
{0,2}
2 . There is one apeirogon, one octagon, and one quadrilateral at each vertex yielding a triangular

vertex figure with vertex symbol (4 ⊲⊳.8c.t∞2). The truncated zigzags and crossed quadrilaterals are not
regular polygons so the polyhedron is not uniform.
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Fig. 5 The Wythoffians derived from {∞, 4}4.

5.3 Blended polyhedra derived from the square tiling

Next we investigate the Wythoffians of the regular polyhedra {4, 4}#{ } and {4, 4}#{∞}, the blends of the
square tiling {4, 4} with a line segment { } or linear apeirogon {∞}, respectively, as well as their Petrie
duals {∞, 4}4#{ } and {∞, 4}4#{∞}. Suppose the symmetry groups of {4, 4}, { } and {∞} are given by
G({4, 4}) = 〈s0, s1, s2〉, G({ }) = 〈t0〉 and G({∞}) = 〈t0, t1〉, each with all generators viewed as plane
reflections in E

3. Note that the reflection planes for s0, s1, s2 are perpendicular to the reflection planes for
t0 or t0, t1 (which are parallel to one another), respectively.

In general the projection of the Wythoffians in this section onto the reflection plane of t0 is congruent
to a Wythoffian of {4, 4} or {∞, 4}4. In some instances if the initial vertex is chosen from the boundary of
the fundamental region, the projection of the Wythoffian of the blended polyhedron will no longer appear
as a Wythoffian of {4, 4} or {∞, 4}4. Specifically, the Wythoffians P 01, P 02, and P 012 of {4, 4}#{ } and
{∞, 4}4#{ } will not project onto the reflection plane of t0 as the Wythoffians of {4, 4} and {∞, 4}4, respec-
tively, if the initial vertex lies in the reflection plane of s0. For {4, 4}#{∞} and {∞, 4}4#{∞}, if the initial
vertex lies in the reflection plane of s0 then P 01, P 02, and P 012 will not project onto Wythoffians of {4, 4}
and {∞, 4}4, respectively. Similarly, for these two blends, if the initial vertex lies in the reflection plane of s1
then P 01, P 12, and P 012 will not project onto Wythoffians of {4, 4} and {∞, 4}4, respectively. In all other
cases discussed below the Wythoffians project onto Wythoffians of {4, 4} or {∞, 4}4.

The first apeirohedron we examine is {4, 4}#{ }, which is isomorphic to {4, 4} and combinatorially self-
dual. Its symmetry group is G({4, 4}#{ }) = 〈r0, r1, r2〉 with r0 := s0t0, r1 := s1 and r2 := s2. Here, the
generator r0 is a half-turn and the generators r1 and r2 are plane reflections. Note that a generic apeirohedron
{4, 4}#{ } is not geometrically self-dual; in fact, reversing the order of the generators of the group and running
Wythoff’s construction does not generally produce an apeirohedron similar to the original one.
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Some care will have to be taken in our choice of initial vertex to ensure an interesting Wythoffian. If
a point, v, is invariant under t0 then the Wythoffian of {4, 4}#{ } with initial vertex v is the same as the
(planar) Wythoffian of {4, 4} with initial vertex v. For the following Wythoffians assume that none of the
initial vertex choices are invariant under t0, and consequently we will not look at any initial vertices which
are invariant under r0. This excludes P 1, P 2, and P 12 as geometric Wythoffians. (Note, however, that by
the combinatorial self-duality of {4, 4}#{ } there are abstract Wythoffians of these types isomorphic to P 1,
P 0, and P 01, respectively.) All initial vertices are chosen from the fundamental region corresponding to
{4, 4}#{ } which is a one-sided infinite cylinder over a triangle formed as the union of a pair of 0-adjacent
triangles in the barycentric subdivision of {4, 4}. For pictures of the Wythoffians, see Figure 6.

The first Wythoffian, P 0, is {4, 4}#{ } itself. Its 2-faces are all skew squares, {4}#{ }, of type F
{0,1}
2 .

Four faces meet at each vertex, yielding a vertex symbol (44s) and a convex square as the vertex figure. The
projection of this Wythoffian, that is, of {4, 4}#{ }, onto the reflection plane of t0 appears as {4, 4}.

In the next apeirohedron, P 01, the faces of type F
{0,1}
2 are skew octagons (truncated skew squares) and

the faces of type F
{1,2}
2 are convex squares. Two octagons and one convex square meet at each vertex giving

an isosceles triangle as a vertex figure with vertex symbol (4.82s). The truncated skew squares are not regular
so this is not a uniform apeirohedron. The projection of this Wythoffian onto the reflection plane of t0
appears as the Wythoffian P 01 of {4, 4}.

In the apeirohedron P 02, the faces of type F
{0,1}
2 are skew squares, the faces of type F

{1,2}
2 are convex

squares, and the faces of type F
{0,2}
2 are convex rectangles. Cyclically, about each vertex, there is a skew

square, a rectangle, a square, and a rectangle, giving the vertex symbol (4s.4c.4c.4c). The resulting vertex

figure is a convex quadrilateral. For a specifically chosen initial vertex the faces of type F
{0,2}
2 are squares

and the Wythoffian is a uniform apeirohedron with one kind of planar square and one kind of non-planar
square. The projection of this Wythoffian onto the reflection plane of t0 appears as the Wythoffian P 02 of
{4, 4}.

For the Wythoffian P 012 the faces of type F
{0,1}
2 are skew octagons (truncated skew squares), the faces of

type F
{1,2}
2 are convex octagons (truncated squares), and the faces of type F

{0,2}
2 are convex rectangles. At

each vertex there is one face of each type, yielding a vertex symbol (4c.8s.8c) and a triangular vertex figure.
The truncated squares are not regular so the Wythoffian is not a uniform apeirohedron. The projection of
this Wythoffian onto the reflection plane of t0 appears as the Wythoffian P 012 of {4, 4}.

P 0 P 01 P 02 P 012

Fig. 6 The Wythoffians derived from {4, 4}#{ }.

The next regular apeirohedron we examine is {∞, 4}4#{ }, the Petrie-dual of {4, 4}#{ }, which is iso-
morphic to {∞, 4}4. The symmetry group is G({∞, 4}4#{ }) = 〈r0, r1, r2〉 with r0 := s0t0s2, r1 := s1,
r2 := s2, and s0, s1, s2, t0 as above. Here r0 is a point reflection (through the midpoint of the base edge of
the underlying plane tessellation {4, 4}) and r1 and r2 are plane reflections. Individually s0, s1, s2, and t0
are plane reflections in E

3.
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The initial vertices we use come from the same fundamental region as for {4, 4}#{ }. As with {4, 4}#{ },
any initial vertex left invariant by t0 will result in the Wythoffian being the same as the corresponding
Wythoffian derived from the planar {∞, 4}4. Assume all choices of initial vertex are transient under t0, and
consequently we will not look at any initial vertices which are invariant under r0. This excludes P

1, P 2, and
P 12. For pictures of the Wythoffians, see Figure 7.

The first Wythoffian, P 0, is the regular apeirohedron {∞, 4}4#{ } itself whose faces are regular zigzag
apeirogons, {∞}#{ }, such that each edge is bisected by the reflection plane of t0. Four of these apeirogons
meet at each vertex resulting in a convex, square vertex figure with vertex symbol (∞4

2). The projection of
this Wythoffian onto the reflection plane of t0 appears as {∞, 4}4.

In the apeirohedron P 01, the faces of type F
{0,1}
2 are apeirogons which appear as truncations of the faces

of {∞, 4}4#{ }, while the faces of type F
{1,2}
2 are convex squares which lie parallel to the reflection plane of

t0. Two apeirogons and one square meet at each vertex, yielding the vertex symbol (4.t∞2.t∞2). The vertex
figure is an isosceles triangle. The truncated zigzags are not regular so this Wythoffian is not a uniform
apeirohedron. The projection of this Wythoffian onto the reflection plane of t0 appears as the Wythoffian
P 01 of {∞, 4}4.

With the apeirohedron P 02 the faces of type F
{0,1}
2 are regular zigzag apeirogons which are bisected by

the reflection plane of t0, the faces of type F
{1,2}
2 are convex squares parallel to the reflection plane of t0, and

the faces of type F
{0,2}
2 are planar crossed quadrilaterals which intersect the reflection plane of t0. Cyclically

at each vertex there is an apeirogon, a crossed quadrilateral, a square, and a crossed quadrilateral, resulting
in the vertex-symbol (4 ⊲⊳.4c.4 ⊲⊳.∞2). The vertex figure is a convex quadrilateral. The crossed quadrilaterals
are not regular so this apeirohedron is not uniform. The projection of this Wythoffian onto the reflection
plane of t0 appears as the Wythoffian P 02 of {∞, 4}4.

For the final apeirohedron, P 012, the faces of type F
{0,1}
2 are truncated zigzag apeirogons. The faces of

type F
{1,2}
2 are convex octagons (truncated squares) which lie parallel to the reflection plane of t0, and the

faces of type F
{0,2}
2 are crossed quadrilaterals which intersect the reflection plane of t0 at their centers. There

is one face of each type at each vertex, so that the vertex symbol is (4 ⊲⊳.8c.t∞2) and the vertex figure is a
triangle. The truncated zigzags and crossed quadrilaterals are not regular so this Wythoffian is not a uniform
apeirohedron. The projection of this Wythoffian onto the reflection plane of t0 appears as the Wythoffian
P 012 of {∞, 4}4.

P 0 P 01 P 02 P 012

Fig. 7 The Wythoffians derived from {∞, 4}4#{ }.

Now we consider the blended regular apeirohedron {4, 4}#{∞} with symmetry group G({4, 4}#{∞}) =
〈r0, r1, r2〉, where r0 := s0t0, r1 := s1t1, r2 := s2, and s0, s1, s2, t0, t1 are as above. Here r0 and r1 are
half-turns and r2 is a plane reflection.

In E
3 the reflection planes corresponding to s0, s1, and s2 are orthogonal to the reflection planes corre-

sponding to t0 and t1 which are parallel to one another. There is no point which is invariant under t0 and
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t1 so this will limit the choice of initial vertex and consequently we will not look at P 2. In all cases, any

edge of type F
{2}
1 lies parallel to the reflection planes of t0 and t1. All initial vertices are chosen from the

fundamental region of {4, 4}#{∞}. This fundamental region is a right prism over the fundamental triangle
of {4, 4}. For pictures of the Wythoffians see Figure 8.

The first Wythoffian, P 0, is the regular apeirohedron {4, 4}#{∞} itself. Its faces are helical apeirogons
spiraling around a cylinder with a square base. Each edge is incident to two helices which spiral upward
in opposite orientations. Four helices meet at each vertex resulting in an antiprismatic square vertex figure
with vertex symbol (∞4

4). The projection of this Wythoffian onto the reflection plane of t0 appears as {4, 4}.

In the apeirohedron P 1 the faces of type F
{0,1}
2 are regular helices over square bases while the faces of

type F
{1,2}
2 are antiprismatic squares. At each vertex, in alternating order, there are two helices and two

antiprismatic squares, yielding a convex rectangle as a vertex figure with a vertex symbol (4s.∞4.4s.∞4). The
faces are all regular polygons so the Wythoffian is a uniform apeirohedron. The projection of this Wythoffian
onto the reflection plane of t0 appears as the Wythoffian P 1 of {4, 4}.

For P 01 the faces of type F
{0,1}
2 are helices over an octagon (for initial vertices which lie on a base edge

of {4, 4}#{∞} these helices are truncations of the helical faces of {4, 4}#{∞}). The faces of type F
{1,2}
2 are

regular squares, for some initial vertices they are skew and for some initial vertices they are convex. There
are two helices and one quadrilateral at each vertex resulting in an isosceles triangle vertex figure with vertex
symbol (4.∞2

8). For a carefully chosen initial vertex the helices are regular helices about octagonal bases and
the Wythoffian is uniform. The projection of this Wythoffian onto the reflection plane of t0 appears as the
Wythoffian P 01 of {4, 4}.

In the apeirohedron P 02 the faces of type F
{0,1}
2 are regular helices over squares, the faces of type

F
{1,2}
2 are convex squares lying parallel to the plane of t0, and the faces of type F

{0,2}
2 are convex rectangles

which are not parallel to this plane. Cyclically, about each vertex there is a square, a rectangle, a helix, and a
rectangle, with vertex symbol (4c.4c.∞4.4c). The resulting vertex figure is a skew quadrilateral. For a carefully

chosen initial vertex the faces of type F
{0,2}
2 are regular and the Wythoffian is a uniform apeirohedron. The

projection of this Wythoffian onto the reflection plane of t0 appears as the Wythoffian P 02 of {4, 4}.

For the Wythoffian P 12 the faces of the apeirohedron of type F
{0,1}
2 are regular helices over squares and

the faces of type F
{1,2}
2 are skew octagons (truncated antiprismatic squares). There are two octagons and

one helix meeting at each vertex, yielding (82s.∞4) as the vertex symbol and an isosceles triangle as the
vertex figure. The truncated antiprismatic squares are not regular so P 12 is not a uniform apeirohedron. The
projection of this Wythoffian onto the reflection plane of t0 appears as the Wythoffian P 12 of {4, 4}.

In the apeirohedron P 012 the faces of type F
{0,1}
2 are apeirogons and appear as helices over octagons

(truncated helices over squares). The finite faces are skew octagons of type F
{1,2}
2 (truncated antiprismatic

squares) and convex rectangles of type F
{0,2}
2 . One face of each type meets at each vertex yielding a triangular

vertex figure with vertex symbol (4c.8s.∞8). The truncated antiprismatic squares are not regular so this
Wythoffian is not a uniform apeirohedron. The projection of this Wythoffian onto the reflection plane of t0
appears as the Wythoffian P 012 of {4, 4}.

The last geometrically regular blended apeirohedron based on the square tessellation of the plane is
{∞, 4}4#{∞}. Letting s0, s1, s2 and t0, t1 be as above, the symmetry group is given by G({∞, 4}4#{∞}) =
〈r0, r1, r2〉 with r0 := s0s2t0, r1 := s1t1 and r2 := s2. Here r0 is a point reflection, r1 is a half-turn, and r2
is a plane reflection. Again there is no point which is invariant under t0 and t1 so this will limit the choice
of initial vertex and prevent there being a P 2. Additionally, any point which is invariant under r0 is also
invariant under r2, so this excludes P 2 and P 12. The initial vertices all come from the fundamental region
of {4, 4}#{∞}. We further restrict the choice of initial vertex to lie in a base face of {∞, 4}4#{∞} when
applicable (P 01 and P 012). This will ensure that the faces of the Wythoffians will have similar planarity to
the faces of {∞, 4}4#{∞}. For pictures of the Wythoffians see Figure 9.
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P 0 P 1 P 01

P 02 P 12 P 012

Fig. 8 The Wythoffians derived from {4, 4}#{∞}.

The first Wythoffian, P 0, is the regular apeirohedron {∞, 4}4#{∞} itself. The faces of type F
{0,1}
2 are

regular zigzag apeirogons. Each apeirogon lies in a plane which crosses through both the reflection planes
of t0 and t1. When projected onto the plane of t0 they appear as planar zigzags. Four zigzags meet at each
vertex, yielding the vertex symbol (∞4

2) and making the vertex figure an antiprismatic square. The projection
of this Wythoffian onto the reflection plane of t0 appears as {∞, 4}4.

In the apeirohedron P 1, the faces of type F
{0,1}
2 are linear apeirogons. Each apeirogon corresponds to

a zigzag of {∞, 4}4#{∞} and tessellates the line connecting the midpoints of the edges of the zigzag. The

faces of type F
{1,2}
2 are antiprismatic squares. There are two squares and two lines alternating about each

vertex, giving the vertex symbol (4s.∞.4s.∞). The vertex figure is a crossed quadrilateral. This is a uniform
apeirohedron. The projection of this Wythoffian onto the reflection plane of t0 appears as the Wythoffian
P 1 of {∞, 4}4.

For the apeirohedron P 01 the faces of type F
{0,1}
2 are apeirogons. Each one corresponds to a face of P 0

such that the orthogonal projection of F
{0,1}
2 onto the plane of the base face of {∞, 4}4#{∞} appears as a

truncated zigzag. When the initial vertex lies in the base face of {∞, 4}4#{∞}, the faces of type F
{0,1}
2 is

a truncation of that base face. The faces of type F
{1,2}
2 are antiprismatic squares. There are two apeirogons

and one square at each vertex, with vertex symbol (4s.t∞2.t∞2) (where here we use t∞2 to indicate the
apeirogon’s relationship with truncated zigzags). The resulting vertex figure is an isosceles triangle. The
truncated zigzags are not regular polygons so this Wythoffian is not a uniform apeirohedron. The projection
of this Wythoffian onto the reflection plane of t0 appears as the Wythoffian P 01 of {∞, 4}4.
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In the apeirohedron P 02 the faces of type F
{0,1}
2 are regular zigzags, the faces of type F

{1,2}
2 are convex

squares lying parallel to the plane of t0, and the faces of type F
{0,2}
2 are crossed quadrilaterals. At each

vertex, in cyclic order, there is a crossed quadrilateral, a square, a crossed quadrilateral, and an apeirogon,
giving (4 ⊲⊳.4c.4 ⊲⊳.∞2) as vertex symbol. The resulting vertex figure is a skew quadrilateral. The crossed
quadrilateral faces are not regular so this is not a uniform apeirohedron. The projection of this Wythoffian
onto the reflection plane of t0 appears as the Wythoffian P 02 of {∞, 4}4.

Lastly, we will look at the apeirohedron P 012. Similar to P 01 the face F
{0,1}
2 is an apeirogon which

orthogonally projects as a truncated zigzag onto the plane of the base face of {∞, 4}4#{∞}. For some initial

vertices this apeirogon is planar and for other choices it is not. The faces of type F
{1,2}
2 are skew octagons

(truncated antiprismatic squares) and the faces of type F
{0,2}
2 are planar crossed quadrilaterals. There is one

face of each type meeting at each vertex yielding a triangular vertex figure with vertex symbol (4 ⊲⊳.8s.t∞2).
None of the faces are regular so P 012 is not a uniform apeirohedron. The projection of this Wythoffian onto
the reflection plane of t0 appears as the Wythoffian P 012 of {∞, 4}4.

P 0 P 1 P 01 P 02 P 012

Fig. 9 The Wythoffians derived from {∞, 4}4#{∞}.

5.4 Petrie-Coxeter polyhedra

In this final section we examine the Wythoffians of the Petrie-Coxeter polyhedra, the three most prominent
examples of pure regular apeirohedra. These have convex faces and skew vertex figures. The symmetry group
of each of them can be derived from the symmetry group of the cubical honeycomb, {4, 3, 4}. We take this
symmetry group in the form G({4, 3, 4}) = 〈t0, t1, t2, t3〉, where t0, t1, t2, t3 are the distinguished generators
(as in [41, p. 231]). The fundamental region of G({4, 3, 4}) in E

3 is a simplex with vertices at the centers of
the faces in a flag of {4, 3, 4}, and each generator tj is the reflection in the plane bounding the simplex and
opposite to the vertex corresponding to the j-face in the flag.

We begin with the Petrie-Coxeter polyhedron {4, 6|4}. From [41, p. 231] we know that G({4, 6|4}) =
〈r0, r1, r2〉, where r0 := t0, r1 := t1t3 and r2 := t2. Note that r0 and r2 are plane reflections, and that r1
is a halfturn. For the Wythoffians the initial vertices have all been chosen so that they are points of the
fundamental region within the convex hull of the base face of {4, 6|4}. This choice leads to the resulting
figures being more geometrically similar to {4, 6|4}. Other points in the fundamental region which belong
to the same Wythoffian class generate combinatorially isomorphic figures, but previously planar faces may
become skew, or vice versa. For instance, in the cases where the initial vertex is transient under r1, choosing
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a point outside of the convex hull of a face of {4, 6|4} destroys the planarity of the faces of type F
{0,1}
2 but

does preserve the isomorphism type of the apeirohedron. For pictures of the Wythoffians see Figure 10.

The first apeirohedron, P 0, is {4, 6|4} itself. It has convex square faces, six of which meet at each vertex,
and so the vertex symbol is (46). The vertex figure is a regular, antiprismatic hexagon.

For P 1, the apeirohedral Wythoffian has convex square faces of type F
{0,1}
2 while the faces of type F

{1,2}
2

are regular, antiprismatic hexagons. Cyclically, at each vertex, there is a hexagon, a square, a hexagon, and
a square. Thus the vertex symbol is (4c.6s.4c.6s) and the vertex figure is a rectangle. The faces are all regular
polygons so this is a uniform apeirohedron.

The Wythoffian P 2 is the dual of {4, 6|4}, the regular apeirohedron {6, 4|4}. Each face is a regular, convex

hexagon of type F
{1,2}
2 . Four come together at each vertex yielding skew quadrilateral as the vertex figure

with a vertex symbol (64c).

For the next apeirohedral Wythoffian, P 01, the faces of type F
{0,1}
2 are convex octagons and the faces of

type F
{1,2}
2 are regular, antiprismatic hexagons. The vertex symbol is (6s.8

2
c) and an isosceles triangle is the

vertex figure. For a specific choice of initial vertex the octagons are regular and the Wythoffian is uniform.
Note that for an initial vertex chosen outside of the convex hull of the base face of {4, 6|4}, the octagon
would become a truncated antiprismatic quadrilateral which can not be made regular and so in this case the
Wythoffian is not uniform.

In the apeirohedral Wythoffian P 02 the faces of type F
{0,1}
2 are convex squares; the faces of type F

{1,2}
2

are regular, convex hexagons; and the faces of type F
{0,2}
2 are convex rectangles. Cyclically, at each vertex,

there is a square, a rectangle, a hexagon, and a second rectangle, giving a vertex symbol (4c.4c.6c.4c). The
vertex figure is a skew quadrilateral. For certain initial vertex choices the rectangles can be made into squares
making the Wythoffian uniform.

In the apeirohedron P 12 the faces of type F
{0,1}
2 are convex squares and the faces of type F

{1,2}
2 are

skew dodecagons (truncated antiprismatic hexagons). The vertex symbol is (4.122s) which corresponds to an
isosceles triangle as the vertex figure. The skew dodecagons cannot be made regular by any vertex choice
and thus this Wythoffian is not a uniform apeirohedron for any initial vertex choice.

Finally, consider P 012. In this apeirohedron, the faces of type F
{0,1}
2 are convex octagons, the faces of

type F
{1,2}
2 are skew dodecagons (truncated antiprismatic hexagons), and the faces of type F

{0,2}
2 are convex

rectangles. As with P 12 the skew dodecagons are never regular so the apeirohedron is not uniform. There is
one face of each type at each vertex, yielding (4c.8c.12s) as a vertex symbol and a triangular vertex figure.

Next we investigate the Wythoffians of the Petrie-Coxeter polyhedron {6, 4|4}, the dual of {4, 6|4}. As
such, its symmetry group is G({6, 4|4}) = 〈r0, r1, r2〉, where r0 := t2, r1 := t1t3 and r2 := t0; these are
generators of G({4, 6|4}) in reverse order. Note that the duality of {6, 4|4} and {4, 6|4} is geometric: we can
produce one polyhedron from the other by reversing the order of the generators of its symmetry group and
then applying Wythoff’s construction with the new generators. As with {4, 6|4} we will only consider initial
vertices which are contained within the convex hull of the base face and the fundamental region of {6, 4|4}.
As before, choosing the vertices in this way makes the faces of the Wythoffians more geometrically similar
to the faces of {6, 4|4}. Choosing an initial vertex within the base face versus an initial vertex from outside
of the base face (but still within the fundamental region) will only affect the planarity of the faces but not
the combinatorial properties. For pictures of the Wythoffians see Figure 11.

Due to the geometric duality between {6, 4|4} and {4, 6|4} we can interchange 0 and 2 in the superscripts
of the Wythoffians of {6, 4|4} and get the Wythoffians of {4, 6|4}, and vice versa. Note, however, that an initial
vertex chosen in the base face of one of {6, 4|4} or {4, 6|4} will generally not also lie in the base face of the
other. This explains why some of the Wythoffians in Figures 10 and 11 that correspond to each other under
the interchange of the subscripts 0 and 2 look quite different (although they are isomorphic). For example,
P 01 of Figure 10 has convex octagons and skew hexagons as faces, while the corresponding polyhedron P 12
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P 0 P 1 P 2 P 01

P 02 P 12 P 012

Fig. 10 The Wythoffians derived from {4, 6|4}.

of Figure 11 has skew octagons and convex hexagons as faces. The geometry of the Wythoffians of {6, 4|4}
with initial vertices in the base face of {6, 4|4} is as follows.

The initial Wythoffian, P 0, is the regular apeirohedron {6, 4|4} itself whose faces are convex, regular
hexagons. Four such hexagons meet at each vertex yielding a regular, skew quadrilateral as the vertex figure
with vertex symbol (64c).

In the apeirohedron P 1 the faces of type F
{0,1}
2 are convex hexagons and the faces of type F

{1,2}
2 are

regular, skew quadrilaterals. The vertex symbol is (4s.6c.4s.6c) so the vertex figure is a rectangle. This is a
uniform apeirohedron.

The Wythoffian P 2 is {4, 6|4}, the dual of {6, 4|4}. The faces are convex squares of type F
{1,2}
2 and there

are six circling each vertex with vertex symbol (46c). The vertex figure is a regular, antiprismatic hexagon.

In the apeirohedronP 01 the faces of type F
{0,1}
2 are convex dodecagons (truncated hexagons) and the faces

of type F
{1,2}
2 are regular, skew quadrilaterals. The vertex symbol is (4s.12

2
c) yielding an isosceles triangle

as a vertex figure. For a carefully chosen initial vertex the dodecagons are regular and this Wythoffian is
uniform.

For the apeirohedron P 02, we get a figure which is congruent to P 02 of {4, 6|4}. The faces of type F
{0,1}
2

are convex, regular hexagons; the faces of type F
{1,2}
2 are convex squares; and the faces of type F

{0,2}
2 are

convex rectangles. At each vertex there is a rectangle, a square, a rectangle, and a hexagon, in cyclic order,
yielding a vertex symbol of (4c.4c.6c.4c). The vertex figure is then a convex quadrilateral. For certain choices
of initial vertex the faces are all regular and the apeirohedron is uniform.

In the apeirohedron P 12 the faces of type F
{0,1}
2 are convex, regular hexagons and the faces of type F

{1,2}
2

are skew octagons (truncated skew quadrilaterals). The vertex symbol is (6c.8
2
s) resulting in an isosceles

triangle as a vertex figure. For an initial vertex choice outside the convex hull of the base face of {6, 4|4}
the skew octagons will sometimes become convex octagons (possibly regular) and the convex hexagons will
sometimes become antiprismatic, regular hexagons. In this case the Wythoffian would be uniform.

Finally, examine P 012. In this apeirohedron the faces of type F
{0,1}
2 are convex dodecagons (truncated

hexagons), the faces of type F
{1,2}
2 are skew octagons (truncated skew quadrilaterals), and the faces of type

F
{0,2}
2 are convex rectangles. The vertex symbol is (4c.8s.12c) corresponding to a triangular vertex figure.
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P 0 P 1 P 2 P 01

P 02 P 12 P 012

Fig. 11 The Wythoffians derived from {6, 4|4}.

The final Petrie-Coxeter polyhedron is {6, 6|3} with symmetry group G({6, 6|3}) = 〈r0, r1, r2〉, where
r0 := (t0t1)

2t2(t0t1)
2, r1 := t1t3, and r2 := t2, and t0, . . . , t3 are as before (see [41, p. 224]). In particular,

r0 and r2 are plane reflections and r1 is a half-turn. Again the initial vertices are points of the base face of
{6, 6|3} that lie in the fundamental region. As before we place this restriction on the initial vertex choices to
make the geometry of the Wythoffian similar to the geometry of {6, 6|3}. Note that {6, 6|3} is geometrically
self-dual, and so the collections of Wythoffians P 2 and P 12 are just the same as those of P 0 and P 01,
respectively. For pictures of the Wythoffians see Figure 12.

The first Wythoffian, P 0, is the regular apeirohedron {6, 6|3} itself. It has regular, convex hexagons for
faces. Six such hexagons meet at each vertex yielding a regular, antiprismatic hexagon for the vertex figure.

In P 1 the faces of type F
{0,1}
2 are regular, convex hexagons while the faces of type F

{1,2}
2 are regular,

antiprismatic hexagons. Alternating about each vertex are two skew hexagons and two convex hexagons so
the vertex symbol is (6c.6s.6c.6s). The vertex figure is then a convex rectangle. All faces are regular so this
Wythoffian is uniform.

In P 2 the resulting figure is again the regular apeirohedron {6, 6|3}, thanks to the self-duality of {6, 6|3}.

In the apeirohedron P 01 the faces of type F
{0,1}
2 are convex dodecagons (truncated hexagons) and the faces

of type F
{1,2}
2 are regular, antiprismatic hexagons. There are two dodecagons and one hexagon meeting at

each vertex, yielding a vertex symbol (6s.12
2
c) and an isosceles triangle as the vertex figure. For a specific

choice of initial vertex the dodecagons are regular and the Wythoffian is uniform.

In the apeirohedron P 02 the faces of type F
{0,1}
2 are regular, convex hexagons; the faces of type F

{1,2}
2

are regular convex hexagons; and the faces of type F
{0,2}
2 are convex rectangles. At each vertex there is a

hexagon of the first type, a rectangle, a hexagon of the second type, and another rectangle, giving a vertex
symbol of (6c.4c.6c.4c). The resulting vertex figure is a skew quadrilateral. If a certain initial vertex is chosen

the faces of type F
{0,2}
2 are squares and the Wythoffian is uniform.

In the apeirohedron P 12 the faces of type F
{0,1}
2 are regular, convex hexagons. The faces of type F

{1,2}
2

are skew dodecagons which appear as the truncations of regular, antiprismatic hexagons. There are two
dodecagons and one hexagon at each vertex yielding an isosceles triangle as the vertex figure corresponding
to the vertex symbol (6c.12

2
s). The dodecagons are not regular so the Wythoffian is not uniform.
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Finally consider P 012. In this apeirohedron the faces of type F
{0,1}
2 are convex dodecagons (truncated

hexagons), the faces of type F
{1,2}
2 are skew dodecagons (truncated, anstiprismatic hexagons), and the faces

of type F
{0,2}
2 are convex rectangles. The vertex symbol is (4c.12c.12s) yielding a triangular vertex figure.

As before, the skew dodecagons are not regular so the Wythoffian is not uniform.

P 0 P 1 P 2 P 01

P 02 P 12 P 012

Fig. 12 The Wythoffians derived from {6, 6|3}.
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29. B. Grünbaum and G.C. Shephard. Tilings and Patterns. WH Freeman and Company, 1987.
30. Z. Har’El. Uniform solution for uniform polyhedra. Geometriae Dedicata, 47:57–110, 1993.
31. Wolfram Reseach Inc. Mathematica 10.0. Wolfram Reseach, Inc., 2014.
32. N.W. Johnson. Uniform Polytopes. In preparation.
33. N.W. Johnson. Convex solids with regular faces. Canadian Journal of Mathematics, 18:69–200, 1966.
34. H. Martini. Hierarchical classification of euclidean polytopes with symmetry properties. Polytopes: Abstract, Convex and

Computational, pages 71–96, 1994.
35. P. McMullen. Geometric Regular Polytopes. In preparation.
36. P. McMullen. Realizations of regular polytopes. Aequationes Mathematicae, 37:38–56, 1989.
37. P. McMullen. Regular polytopes of full rank. Discrete & Computational Geometry, 32:1–35, 2004.
38. P. McMullen. Four-dimensional regular polyhedra. Discrete & Computational Geometry, 38:355–387, 2007.
39. P. McMullen and B. Monson. Realizations of regular polytopes, II. Aequationes Mathematicae, 65(1):102–112, 2003.
40. P. McMullen and E. Schulte. Regular polytopes in ordinary space. Discrete and Computational Geometry, 17:449–478,

1997.
41. P. McMullen and E. Schulte. Abstract Regular Polytopes. Cambridge University Press, 2002.
42. Pellicer D. Monson, B. and G. Williams. Mixing and monodromy of abstract polytopes. Transactions AMS, 366, 2014.
43. M. O’Keeffe. Three-periodic nets and tilings: regular and related infinite polyhedra. Acta Crystallographica A, 64:425–429,

2008.
44. M. O’Keeffe and B.G. Hyde. Crystal Structures, No. 1: Patterns and Symmetry. Mineralogical Society of America, 1996.
45. D. Pellicer and E. Schulte. Regular polygonal complexes in space, I. Transactions of the American Mathematical Society,

362:6679–6714, 2010.
46. D. Pellicer and E. Schulte. Regular polygonal complexes in space, II. Transactions of the American Mathematical Society,

365:2031–2061, 2013.
47. D. Pellicer and A.I. Weiss. Combinatorial structure of Schulte’s chiral polyhedra. Discrete and Comuptational Geometry,

44:167–194, 2010.
48. T. Pisanski and M. Randic. Bridges between geometry and graph theory. Geometry at Work, MAA Notes, 53:174–194,

2000.
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