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Abstract

A finite family B of balls with respect to an arbitrary norm in Rd (d ≥ 2) is called a non-separable
family if there is no hyperplane disjoint from

⋃
B that strictly separates some elements of B from all the

other elements of B in Rd. In this paper we prove that if B is a non-separable family of balls of radii
r1, r2, . . . , rn (n ≥ 2) with respect to an arbitrary norm in Rd (d ≥ 2), then

⋃
B can be covered by a

ball of radius
∑n

i=1 ri. This was conjectured by Erdős for the Euclidean norm and was proved for that
case by A. W. Goodman and R. E. Goodman [Amer. Math. Monthly 52 (1945), 494-498]. On the other
hand, in the same paper A. W. Goodman and R. E. Goodman conjectured that their theorem extends to
arbitrary non-separable finite families of positive homothetic convex bodies in Rd, d ≥ 2. Besides giving
a counterexample to their conjecture, we prove that conjecture under various additional conditions.

1 Introduction

In this paper we identify a d-dimensional affine space with Rd. By ‖ · ‖ and 〈·, ·〉 we denote the canonical
Euclidean norm and the canonical inner product on Rd. A d-dimensional convex body K is a compact
convex subset of Rd with non-empty interior. Moreover, K is called o-symmetric if K is symmetric about
the origin o in Rd. The Minkowski sum or simply the vector sum of two convex bodies K,K′ ⊂ Rd is defined
by K + K′ = {k + k′ | k ∈ K,k′ ∈ K′}. A homothetic copy of K is a set of the form K′ = x + τK, where
τ is a non-zero real number and x ∈ Rd. If τ > 0, then K′ is said to be a positive homothetic copy of K.
Moreover, let conv(X) stand for the convex hull of X ⊆ Rd.

In 1945 A. W. Goodman and R. E. Goodman ([5]) proved a conjecture of Erdős on non-separable families
of circular disks in R2. In order to state that result we need the following definition.

Definition 1. Let K be a convex body in Rd and let K = {xi + τiK | xi ∈ Rd, τi > 0, i = 1, 2, . . . , n}, where
d ≥ 2 and n ≥ 2. Assume that K is a non-separable family in short, an NS-family, meaning that every
hyperplane intersecting conv (

⋃
K) intersects a member of K in Rd, i.e., there is no hyperplane disjoint from⋃

K that strictly separates some elements of K from all the other elements of K in Rd. Then, let λ(K) > 0

denote the smallest positive value λ such that a translate of λ

(
n∑
i=1

τi

)
K covers

⋃
K.

If F : Rd → Rd is an arbitrary invertible affine map, then it is straightforward to see that F (K) =
{F (xi + τiK) | xi ∈ Rd, τi > 0, i = 1, 2, . . . , n} is an NS-family of convex bodies homothetic to F (K) with
homothety ratios τ1, τ2, . . . , τn such that λ(K) = λ(F (K)). Based on this property we can restate the main
result of [5] as follows.
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Theorem 1 (Goodman-Goodman). If C is an arbitrary NS-family of finitely many homothetic ellipses in
R2, then λ(C) ≤ 1.

For a completely different proof of Theorem 1 we refer the interested reader to Theorem 6.1 and its proof
in [3]. On the other hand, on page 498 of [5] A. W. Goodman and R. E. Goodman put forward the following
conjecture.

Conjecture 1 (Goodman-Goodman(1945)). For every convex body K in Rd and every NS-family K =
{xi + τiK | xi ∈ Rd, τi > 0, i = 1, 2, . . . , n} the inequality λ(K) ≤ 1 holds for all d ≥ 2 and n ≥ 2.

We note that it is straightforward to prove Conjecture 1 for n = card(K) = 2 and d ≥ 2. However,
in what follows we give a counterexample to Conjecture 1 for all card(K) ≥ 3 and d ≥ 2. Furthermore,
we give a sharp upper bound on λ(K) for all NS-families K with card(K) = 3 in R2. Next we show that
λ(K) ≤ d holds for all d ≥ 2. Then generalizing Theorem 1 we prove Conjecture 1 for all centrally symmetric
convex bodies K in Rd, d ≥ 2. Moreover, we prove Conjecture 1 for natural subfamilies of the family of
NS-families namely, for k-impassable families in short, k-IP-families of positive homothetic convex bodies in
Rd whenever 0 ≤ k ≤ d− 2.

We conclude this section by inviting the interested reader to further investigate the basic problem of
Goodman-Goodman rephrased as follows.

Problem 1. Find supK λ(K) for any given d ≥ 2, where K runs over the NS-families of finitely many
positive homothetic copies of an arbitrary convex body K in Rd. In particular, is there an absolute constant
c > 0 such that supK λ(K) ≤ c holds for all d ≥ 2?

The results of this paper imply that 2
3 + 2

3
√
3

= 1.0515 . . . ≤ supK λ(K) ≤ d for all d ≥ 2.

2 Counterexample to Conjecture 1 for card(K) ≥ 3 in Rd, d ≥ 2

Figure 1: A counterexample in the plane for three triangles

Example 1. Place three regular triangles T = {T1,T2,T3} of unit side lengths into a regular triangle T of
side length 2 + 2√

3
= 3.154700 . . . > 3 such that

• each side of T contains a side of Ti, for i = 1, 2, 3, respectively (cf. Figure 1),

• for i = 1, 2, 3, the vertices of Ti contained in a side of T divide this side into three segments of lengths
2
3 + 1√

3
, 1, and 1

3 + 1√
3

, in counter-clockwise order.
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A simple computation yields that the convex hull of any two of the small triangles touches the third triangle,
and hence, no two of them can be strictly separated from the third one. Thus, λ(T ) = 2

3+ 2
3
√
3

= 1.0515 . . . > 1

and T is a counterexample to Conjecture 1 for n = 3 in R2.

Figure 2: A counterexample in the plane for n triangles

Remark 1. Note that for any value n ≥ 4, placing n− 3 sufficiently small triangles inside T in Example 1
yields a counterexample to Conjecture 1 for n positive homothetic copies of a triangle in R2. Furthermore,
we can extend Example 1 using n− 3 translates of the small triangles of Example 1, as in Figure 2. As the
small triangles have unit side length, the smallest triangle containing them has side length n − 1 + 2√

3
> n

and so, we get another counterexample to Conjecture 1 using n translates of a triangle in R2.

Remark 2. Let d ≥ 2, and let λds denote the supremum of λ(K), where K runs over the NS-families of
finitely many positive homothetic d-simplices in Rd. Then λds is a non-decreasing sequence of d.

Proof. Let K be an NS-family of finitely many (d − 1)-simplices in a hyperplane of Rd. Clearly, we can
extend the elements of K to homothetic d-simplices such that each element is a facet of its extension. Then,
denoting this extended family by K′, we have λ(K) = λ(K′), and K′ is an NS-family.

Figure 3: A counterexample in R3 for three tetrahedra

Figure 3 shows how to extend the configuration in Example 1 to R3, implying that λds ≥ λ2s ≥ 2
3 + 2

3
√
3

=

1.0515 . . . > 1 for all d ≥ 3.

Remark 3. In fact, λds = supK λ(K) for all d ≥ 2, where K runs over the NS-families of finitely many
positive homothetic copies of an arbitrary convex body K in Rd.
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Proof. Clearly, λds ≤ supK λ(K). So, it is sufficient to show that for every convex body K in Rd and every

NS-family K = {xi + τiK | xi ∈ Rd, τi > 0, i = 1, 2, . . . , n} a translate of λds

(
n∑
i=1

τi

)
K covers

⋃
K. Now,

according to Lutwak’s containment theorem ([6]) if K1 and K2 are convex bodies in Rd such that every
circumscribed simplex of K2 has a translate that covers K1, then K2 has a translate that covers K1. (Here a
circumscribed simplex of K2 means a d-simplex of Rd that contains K2 such that each facet of the d-simplex

meets K2.) Thus, if ∆(K) is a circumscribed simplex of K, then λds

(
n∑
i=1

τi

)
∆(K) is a circumscribed simplex

of λds

(
n∑
i=1

τi

)
K and xi + τi∆(K) is a circumscribed simplex of xi + τiK for all i = 1, 2, . . . , n. Furthermore,

{xi+τi∆(K) | xi ∈ Rd, τi > 0, i = 1, 2, . . . , n} is an NS-family and therefore λds

(
n∑
i=1

τi

)
∆(K) has a translate

that covers
⋃
{xi + τi∆(K) | xi ∈ Rd, τi > 0, i = 1, 2, . . . , n} ⊇

⋃
K, which completes our proof via Lutwak’s

containment theorem.

3 Upper bounding λ(K) for card(K) = 3 in R2

Theorem 2. Let K be a convex body in R2. If F is an NS-family of three positive homothetic copies of K,

with homothety ratios τ1, τ2, τ3, respectively, then there is a translate of
(

2
3 + 2

3
√
3

)( 3∑
i=1

τi

)
K containing F .

Furthermore, the constant 2
3 + 2

3
√
3

= 1.0515 . . . is the smallest real number with this property.

Proof. For simplicity, we set µ = 2
3 + 2

3
√
3
.

First, note that by Example 1, there is a suitable 3-element NS-family F satisfying λ(F) = µ. Thus, we
need only to show that for any 3-element NS-family, we have λ(F) ≤ µ. On the other hand, using Lutwak’s
containment theorem in the same way as in Remark 3 we get that it is sufficient to prove Theorem 2 when
K is a triangle T. Furthermore, as homothety ratios do not change under affine transformations, we may
assume that T is a regular triangle. So, let F = {T1,T2,T3} such that for i = 1, 2, 3, the homothety ratio

of Ti is τi. Let T = µ′(
3∑
i=1

τi)T be the smallest positive homothetic copy of T that contains F . Without

loss of generality, we may assume that µ′ > 1.

Since µ′ > 1, it is easy to see that no two of T1, T2, and T3 intersect. For i = 1, 2, 3, let pi and qi
denote, respectively, the vertices of Ti on bd T, in counter-clockwise order, and let ri denote the vertex of
Ti in the interior of T (cf. Figure 4). Without loss of generality, we may assume that the closed line segment
[p3, r1] intersects T2. Since µ′ > 1, from this it follows that [p1, r2] intersects T3, and that [p2, r3] intersects
T1. Clearly, if each intersection contains more than one point, then, moving the triangles a little apart we
obtain an NS-family of three homothetic copies of T that are contained only in a larger homothetic copy
of T. We show that the same holds if at least one intersection contains more than one point. Assume, for
example, that r3 is contained in the interior of conv(T1∪T2). Then, slightly moving T3 or T1 as well as T2

such that T is fixed, we obtain a configuration where each intersection contains more than one point. Thus,
in the following we assume that each of the triplets {p1, r3, r2}, {p2, r1, r3}, and {p3, r2, r1} are collinear.

For i = 1, 2, 3 let pi and qi divide the corresponding side of T into segments of length xi, ti, and yi, in
counter-clockwise order, and assume that xi + ti + yi = 1. Then the collinearity of the three triplets yields
that t3x2 + x1y3 − x1x2 − y2y3 = t1x3 + x2y1 − x2x3 − y1y3 = t2x1 + x3y2 − x1x3 − y1y2 = 0. Now, for
the nine variables xi, ti, yi, i = 1, 2, 3 we have six conditions, and need to determine the minimum of the
value of f(t1, t2, t3) = t1 + t2 + t3 on the interval (0, 1). Eliminating some of the variables, we may apply
Lagrange’s method with the remaining conditions to obtain the critical points of the expression t1 + t2 + t3.
We carried out this computation with a Maple 18.0 mathematical program, which provided five solutions.
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Figure 4: An illustration for the proof of Theorem 2

(The command list we used can be found in the Appendix of this paper). A more careful analysis showed
that two of the solutions were geometrically invalid (i.e., some of the parameters were outside the permitted
range (0, 1)). A third solution corresponded to the value t1 + t2 + t3 = 1, which yields µ′ = 1. The other two

solutions were the following: xi = 1
4 + 1

4
√
3

and ti = 3−
√
3

4 for i = 1, 2, 3, and xi = 1
4 −

1
4
√
3

and ti = 3+
√
3

4

for i = 1, 2, 3. The values of µ′ = 1
t1+t2+t3

at these points are 2
3 + 2

3
√
3

and 2
3 −

2
3
√
3
, respectively, from which

the assertion readily follows.

Now, it is natural to ask the following.

Problem 2. Let K be a convex body in R2. If F is an NS-family of k positive homothetic copies of K, with
homothety ratios τ1, τ2, . . . , τk, respectively, and with k ≥ 4 , then prove or disprove that there is a translate

of
(

2
3 + 2

3
√
3

)( k∑
i=1

τi

)
K containing F .

We note that an NS-family of (large number of) convex bodies does not need to have NS-subfamilies as
shown by the following example, which indicates the rather intricate nature of Problem 2.

Figure 5: An illustration for Example 2: removing the dashed circle, the dotted line strictly separates the
remaining circles

Example 2. Let k ≥ 1 and consider a regular (2k + 1)-gon in R2. Place congruent closed circular disks
at the vertices of the polygon as centers, and choose their radius such that they are disjoint, but consecutive
circular disks ‘almost’ touch (cf. Figure 5). Then they form an NS-family of circular disks. On the other
hand, removing an arbitrary subfamily of at most 2k− 1 circular disks, the remaining (at least two) circular
disks can be strictly separated by a line.
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4 Upper bounding λ(K) in Rd, d ≥ 2

Theorem 3. If K = {xi + τiK : xi ∈ Rd, τi > 0, i = 1, 2, . . . , n} is an arbitrary NS-family of positive
homothetic copies of the convex body K in Rd, then

λ(K) ≤ d

holds for all n ≥ 2 and d ≥ 2.

For the proof of Theorem 3 we need the following simple observations. For the first statement recall that,
if u ∈ Sd−1 = {x ∈ Rd | ‖x‖ = 1} and Q is a convex body in Rd, then the width of Q in the direction u is
labelled by widthu(Q) and it is equal to max{〈x,u〉 | x ∈ Q} −min{〈x,u〉 | x ∈ Q}.

Lemma 1. Let K = {xi + τiK : xi ∈ Rd, τi > 0, i = 1, 2, . . . , n} be an arbitrary NS-family of positive
homothetic copies of the convex body K in Rd, d ≥ 2. Then for any u ∈ Sd−1 we have widthu (conv

⋃
K) ≤(

n∑
i=1

τi

)
widthu(K).

Proof. As K is an NS-family therefore the orthogonal projection of conv
⋃
K onto a line L parallel to u is a

line segment of length widthu (conv
⋃
K) which must be covered by the orthogonal projections of the convex

bodies xi+τiK, i = 1, 2, . . . , n onto L having lengths equal to widthu(xi+τiK) = τiwidthu(K), i = 1, 2, . . . , n.
This yields the assertion.

The following statement is well known. For the convenience of the reader we include its simple proof.

Lemma 2. For any convex body Q in Rd, there exist x,y ∈ Rd such that x + 2
d+1Q0 ⊆ Q ⊆ y + 2d

d+1Q0,

where Q0 = 1
2 (Q−Q) is the central symmetrization of Q with respect to the origin o in Ed.

Proof. Without loss of generality, let o be the center of a largest volume simplex inscribed in Q. Then,
clearly, Q ⊆ −dQ. From this it follows that (d + 1)Q ⊆ d(Q −Q) = 2dQ0. Thus, Q ⊆ 2d

d+1Q0. On the

other hand, as −Q ⊆ dQ therefore 2Q0 = Q−Q ⊆ (d+ 1)Q. Hence, 2
d+1Q0 ⊆ Q.

Proof of Theorem 3. Let M = conv
⋃
K. By Lemma 1 we get that widthu(M) ≤

(
n∑
i=1

τi

)
widthu(K) holds

for every u ∈ Sd−1. As the central symmetrization does not change the width of a convex body in any

direction therefore M0 ⊆
(

n∑
i=1

τi

)
K0. Finally, by Lemma 2 there exist m,k ∈ Rd such that

M ⊆m +
2d

d+ 1
M0 ⊆m +

2d

d+ 1

(
n∑
i=1

τi

)
K0 ⊆m +

2d

d+ 1

(
n∑
i=1

τi

)(
d+ 1

2
(k + K)

)

=

(
m + d

(
n∑
i=1

τi

)
k

)
+ d

(
n∑
i=1

τi

)
K.

Remark 4. From the above proof of Theorem 3 it follows that if K is an o-symmetric convex body in Rd,
i.e., K = K0, then λ(K) ≤ 2d

d+1 . In the next section, using a completely different approach, we give an
optimal improvement on this inequality.
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5 A proof of Conjecture 1 for centrally symmetric convex bodies
in Rd, d ≥ 2

In this section we extend Theorem 1 to finite dimensional normed spaces by proving Conjecture 1 for all
centrally symmetric convex bodies K in Rd, d ≥ 2.

Theorem 4. For every o-symmetric convex body K0 and every NS-family K = {xi + τiK0 | xi ∈ Rd, τi >
0, i = 1, 2, . . . , n} the inequality λ(K) ≤ 1 holds for all d ≥ 2 and n ≥ 2.

Our proof is a close variant of the proof of Theorem 1 by Goodman-Goodman in [5] and it is based on
the following lemma, which is a strengthened version of Lemma 2 of [5].

Lemma 3. Let F = {[xi − τi, xi + τi] : τi > 0, i = 1, 2, . . . , n} be a family of closed intervals in R such that⋃
F is single closed interval in R. Let x =

∑n
i=1 τixi∑n
i=1 τi

. Then the interval [x−
∑n
i=1 τi, x+

∑n
i=1 τi] covers⋃

F .

Proof. We prove that the left end point of
⋃
F is covered by the interval [x−

∑n
i=1 τi, x+

∑n
i=1 τi]; to prove

that the right end point is covered, we may apply a similar argument.

Without loss of generality, we may assume that the left end point of the interval
⋃n
i=1[xi − τi, xi + τi] is

the origin o, moreover, that the numbering of the intervals [xi − τi, xi + τi], i = 1, 2, . . . , n is in the order in
which the left end points of these intervals occur on R moving from left to right (in increasing order). Based
on this it is clear that

xi ≤ 2τ1 + . . .+ 2τi−1 + τi,

where, for convenience we set τ0 = 0, and therefore

x =

∑n
i=1 xiτi∑n
i=1 τi

≤
∑n
i=1(2τ1 + . . .+ 2τi−1 + τi)τi∑n

i=1 τi
=

(
∑n
i=1 τi)

2∑n
i=1 τi

=

n∑
i=1

τi,

showing that o is indeed covered by the interval [x−
∑n
i=1 τi, x+

∑n
i=1 τi].

Proof of Theorem 4. Let x =
∑n

i=1 τixi∑n
i=1 τi

, and set K′ = x + (
∑n
i=1 τi) K0. We prove that K′ covers

⋃
K.

For any line L through the origin o, let projL : Rd → L denote the orthogonal projection onto L, and let
hK : Sd−1 → R and hK′ : Sd−1 → R denote the support functions of conv (

⋃
K) and K′, respectively. Then

projL (
⋃
K) is a single interval, which, by Lemma 3, is covered by projL (K′). Thus, for any u ∈ Sd−1, we

have that hK(u) ≤ hK′(u), which readily implies that
⋃
K ⊆ K′.

Remark 5. If the positive homothetic convex bodies of K = {xi + τiK0 | xi ∈ Rd, τi > 0, i = 1, 2, . . . , n}
have pairwise disjoint interiors with their centers {xi | i = 1, 2, . . . , n} lying on a line L in Rd such that the
consecutive elements of K along L touch each other, then K is an NS-family with λ(K) = 1.

6 A proof of Conjecture 1 for k-impassable families in Rd whenever
0 ≤ k ≤ d− 2

In this section we prove Conjecture 1 for the following natural subfamilies of the family of NS-families,
which following G. Fejes Tóth and W. Kuperberg [4] we call k-impassable families in short, k-IP-families of
(positive homothetic) convex bodies in Rd, where 0 ≤ k ≤ d− 2.
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Definition 2. Let K = {xi + τiK : xi ∈ Rd, τi > 0, i = 1, 2, . . . , n} be a family of positive homothetic copies
of the convex body K in Rd and let 0 ≤ k ≤ d− 1. We say that K is a k-impassable arrangement, in short,
a k-IP-family if every k-dimensional affine subspace of Rd intersecting conv (

⋃
K) intersects an element of

K. Let λk(K) > 0 denote the smallest positive value λ such that some translate of λ

(
n∑
i=1

τi

)
K covers

⋃
K,

where K is k-IP-family. A (d−1)-IP-family is simply called an NS-family and in that case λd−1(K) = λ(K).

In order to state our theorem on k-IP-families of (positive homothetic) convex bodies in Rd we need the
following definitions and statement from Section 3.2 of [7].

Definition 3. Let K′1 and K′2 be convex bodies in Rd, d ≥ 2. We say that K′2 is a summand of K′1 if there
exists a convex body K′ in Rd such that K′2 + K′ = K′1.

Definition 4. Let K′1 and K′2 be convex bodies in Rd, d ≥ 2. We say that K′2 slides freely inside K′1 if to
each boundary point x of K′1 there exists a translation vector y ∈ Rd such that x ∈ y + K′2 ⊆ K′1.

Lemma 4. Let K′1 and K′2 be convex bodies in Rd, d ≥ 2. Then K′2 is a summand of K′1 if and only if K′2
slides freely inside K′1.

We prove Conjecture 1 for k-IP-families of (positive homothetic) convex bodies in Rd for all 0 ≤ k ≤ d−2
in the following strong sense.

Theorem 5. Let K be a d-dimensional convex body and K = {Ki = xi+τiK : xi ∈ Rd, τi > 0, i = 1, 2, . . . , n}
be a k-IP family of positive homothetic copies of K in Rd, where 0 ≤ k ≤ d− 2. Then conv

⋃
K slides freely

in (
∑n
i=1 τi) K (i.e., conv

⋃
K is a summand of (

∑n
i=1 τi) K) and therefore λk(K) ≤ 1.

Proof. Set K = (
∑n
i=1 τi) K. First we prove the assertion for d = 2. Then k = 0 and thus,

⋃
K is convex.

Assume that K is a polygon. Then any side of
⋃
K has the same external normal vector as some side

S of K. Furthermore, the length of this side is at most (
∑n
i=1 τi) |S|, where |S| denotes the length of S.

Hence, we may apply a theorem of Alexandrov [1], that states that under this condition there is a translate
of
⋃
K contained in K. In addition, as is remarked in [2], a translation that translates a side of

⋃
K into the

corresponding side of K translates also
⋃
K into K. This yields that

⋃
K slides freely in K, or, in particular,

that λ0(K) ≤ 1.

Now we consider a general plane convex body K. First, we show that for any i 6= j, the intersection
(Ki ∩Kj) ∩ (bd

⋃
K) consists of at most two segments. Indeed, let x be a point of Ki ∩Kj in bd

⋃
K, and

let Lx be a supporting line of
⋃
K at x. If Ki and Kj are translates, then the vector translating Ki into Kj

is parallel to Lx, and, clearly, in this case every other point of Ki ∩Kj and bd
⋃
K is contained in either

Lx, or the supporting line of
⋃
K parallel to Lx. If Ki and Kj are homothetic copies, then the center of the

homothety transforming Ki into Kj lies on Lx. Thus, the claim follows from the fact that there is no point
of R2 lying on three distinct supporting lines of

⋃
K.

Let x be an arbitrary boundary point of K. We show that there is vector y ∈ R2 such that x ∈
y +

⋃
K ⊆ K. Without loss of generality, we may assume that x is the origin of R2, implying, in particular,

that x ∈ bd K.

Let Lt, t = 1, 2, . . . ,m be supporting lines of
⋃
K, in counterclockwise order in bd

⋃
K that contain the

points of bd
⋃
K belonging to more than one member of K. Let Γt denote the arc of bd

⋃
K between Lt and

Lt+1 for every value of t. Since every member of K intersects bd
⋃
K in a closed set, there is a value it of i

such that Γt belongs to Kit .

For any positive integer s, let Qs be a convex polygon obtained as the intersection of some (closed)
supporting halfplanes of

⋃
K, including those bounded by the Lt’s. Similarly, let Ps be the convex polygon,

circumscribed about K, bounded by those translates of the supporting halfplanes defining Qs that support
K. Since we can choose arbitrarily many supporting halfplanes of

⋃
K, we may assume that Ps ⊆ (1+1/s)K

and that a sideline L of Ps contains x. Note that then L is a supporting line of K as well. Finally, we set

8



Ps
i = xi + τiP

s. Then Qs =
⋃n
i=1 Ps

i . Indeed, any point of Qs \
⋃
K is contained in a region bounded by

two sidelines of Qs and an arc Γt for some value of t, which is covered by Ps
it

. Thus, we may apply our
result for polygons, which yields that any translation transferring the side of Qs associated to L into the side
of (
∑n
i=1 τi) Ps contained in L, transfers also Qs into (

∑n
i=1 τi) Ps ⊆ (1 + 1/s)K. Let ys be an associated

translation vector such that x ∈ ys +
⋃
K ⊆ ys + Qs. Choosing the limit y of a convergent subsequence of

these vectors we have that x ∈ y +
⋃
K ⊆ K, implying that

⋃
K slides freely in K and therefore λ0(K) ≤ 1.

Now we prove Theorem 5 for d > 2. For any 2-dimensional linear subspaceH of Rd let projH : Rd → H de-
note the orthogonal projection onto H. As projH(conv

⋃
K) = conv(

⋃n
i=1 projH(Ki)) therefore {projH Ki :

i = 1, 2, . . . , n} is a 0-IP family in H. Thus, the above proof of Theorem 5 for d = 2 and Lemma 4 im-
ply that

⋃n
i=1 projH(Ki) = conv(

⋃n
i=1 projH(Ki)) = projH(conv

⋃
K) is a summand of projH K. Now we

apply Lemma 3.2.6 from [7], which states that if K′1 and K′2 are two convex bodies in Rd, and projH K′1
is a summand of projH K′2 for all 2-dimensional linear subspaces H in Rd, then K′1 is a summand of K′2.
Hence, conv

⋃
K is a summand of K and therefore Lemma 4 implies that conv

⋃
K slides freely in K, or in

particular, that λk(K) ≤ 1.

Remark 6. We note that for 0-impassable families, Theorem 5 can be proved in a simple way. Consider
two intersecting homothetic copies K1 = x1 + τ1K and K2 = x2 + τ2K of K. Let K′ be the smallest positive
homothetic copy of K that covers K1 ∪K2.Then there is a pair of parallel supporting hyperplanes H1 and
H2 of K′ such that for i = 1, 2, Hi ∩ Ki 6= ∅. Let u ∈ Sd−1 be a normal vector of H1 and H2. Since
widthu(K′) ≤ widthu(K1) + widthu(K2), it follows that the homothety ratio of K′ is at most τ1 + τ2. Thus,
if K = {Ki = xi + τiK : xi ∈ R2, τi > 0, i = 1, 2, . . . , n} is 0-impassable, applying this observation yields
the assertion. In particular, this proves Theorem 5 for d = 2. On the other hand, to be able to apply the
argument in the last paragraph of the proof of Theorem 5, we need to prove more for d = 2, namely that

⋃
K

is a summand of (
∑n
i=1 τi) K.

For strictly convex bodies one can do more.

Theorem 6. Let K be strictly convex body in Rd, d ≥ 2 and 0 ≤ k ≤ d − 2. If K = {Ki = xi + τiK : xi ∈
Rd, τi > 0, i = 1, 2, . . . , n} is k-IP-family of positive homothetic copies of K in Rd, then

⋃
K = xi∗ + τi∗K =

Ki∗ for τi∗ = max{τi | i = 1, 2, . . . , n}.

Proof. Let A be an arbitrary k-dimensional linear subspace A of Rd and let A⊥ denote the orthogonal
complement of A in Rd. Moreover, let projA⊥ : Rd → A⊥ denote the orthogonal projection onto A⊥. Note
that for every A, we have conv (

⋃n
i=1 projA⊥(Ki)) =

⋃n
i=1 projA⊥(Ki). Furthermore, if K is strictly convex,

then so is projA⊥(K).

We show that there is an i∗ = i∗(A) such that conv (
⋃n
i=1 projA⊥(Ki)) = projA⊥(Ki∗). Let Kp

i =
projA⊥(Ki), and assume, for contradiction, that bd(

⋃n
i=1K

p
i ) is not covered by any of the (Kp

i )’s. Then
there is a point p ∈ bd(

⋃n
i=1K

p
i ), contained in Kp

i ∩K
p
j for some i 6= j such that Kp

i 6⊆ Kp
j 6⊆ Kp

i . Let h

be the (positive) homothety in A⊥ that transforms Kp
i into Kp

j , and let q = h(p). Then, if H is a closed

supporting halfspace of
⋃n
i=1K

p
i in A⊥, then H and h(H) supports Kp

j at p and at q, respectively. As
H and h(H) have the same outer unit normals, they coincide. Thus, if q 6= p, then the segment [p,q] is
contained in Kp

j , contradicting our assumption that K is strictly convex. Thus, q = p is the center of h,
which implies that Kp

i ⊆ K
p
j , or that Kp

j ⊆ K
p
i , a contradiction.

Hence, there exists an i∗ = i∗(A) such that conv (
⋃n
i=1 projA⊥(Ki)) = projA⊥(Ki∗). We note that

conv
(⋃n

i=1 proj
A
⊥(Ki)

)
contains proj

A
⊥(Ki∗) for all k-dimensional linear subspaces A of Rd, that is, a

translate of λi∗ proj
A
⊥(K), and thus, i∗ is independent of A. This yields that conv

⋃
K = Ki∗ .
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8 Appendix

For the convenience of the reader we include here the Maple code used in the the proof of Theorem 2.

>eq1 := t3*x2-x1*x2+x1*y3-y2*y3; eq2 := t1*x3-x2*x3+x2*y1-y1*y3;

>eq3 := t2*x1-x1*x3+x3*y2-y1*y2;

>Eq1 := simplify(subs(y1 = 1-x1-t1, subs(y2 = 1-x2-t2, subs(y3 = 1-x3-t3, eq1))));

>Eq2 := simplify(subs(y1 = 1-x1-t1, subs(y2 = 1-x2-t2, subs(y3 = 1-x3-t3, eq2))));

>Eq3 := simplify(subs(y1 = 1-x1-t1, subs(y2 = 1-x2-t2, subs(y3 = 1-x3-t3, eq3))));

>T := solve([Eq1, Eq2], [t2, t3], explicit = true);

>F := simplify(t1+subs(T[1][1], t2)+subs(T[1][2], t3)+a*subs(T[1][1], subs(T[1][2], Eq3)));

>F1 := factor(simplify(diff(F, t1))); F2 := factor(simplify(diff(F, x1)));

>F3 := factor(simplify(diff(F, x2))); F4 := factor(simplify(diff(F, x3)));

>F5 := factor(simplify(diff(F, a)));

>sols := solve([F1, F2, F3, F4, F5], [t1, x1, x2, x3, a], explicit = true, allsolutions = true);
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