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Abstract

Let X and Y be finite simplicial sets (e.g. finite simplicial complexes), both
equipped with a free simplicial action of a finite group G. Assuming that Y is d-
connected and dimX ≤ 2d, for some d ≥ 1, we provide an algorithm that computes
the set of all equivariant homotopy classes of equivariant continuous maps |X| → |Y |;
the existence of such a map can be decided even for dimX ≤ 2d+1. For fixed G and
d, the algorithm runs in polynomial time. This yields the first algorithm for deciding
topological embeddability of a k-dimensional finite simplicial complex into R

n under
the condition k ≤ 2

3n− 1.
More generally, we present an algorithm that, given a lifting-extension problem

satisfying an appropriate stability assumption, computes the set of all homotopy
classes of solutions. This result is new even in the non-equivariant situation.

1. Introduction

Our original goal for this paper was to design an algorithm that decides existence of an
equivariant map between given spaces under a certain “stability” assumption. To explain
our solution however, it is more natural to deal with a more general lifting-extension
problem. At the same time, lifting-extension problems play a fundamental role in algebraic
topology since many problems can be expressed as their instances. We start by explaining
our original problem and its concrete applications and then proceed to the main object of
our study in this paper – the lifting-extension problem.

∗The research of M. Č. was supported by the project CZ.1.07/2.3.00/20.0003 of the Operational Pro-
gramme Education for Competitiveness of the Ministry of Education, Youth and Sports of the Czech
Republic. The research by M. K. was supported by the Center of Excellence – Inst. for Theor. Comput.
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Equivariant maps. Consider the following algorithmic problem: given a finite group G
and two free G-spaces X and Y , decide the existence of an equivariant map f : X → Y .

In the particular case G = Z/2 and Y = Sn−1 equipped with the antipodal Z/2-action,
this problem has various applications in geometry and combinatorics.

Concretely, it is well-known that if a simplicial complex K embeds into R
n then there

exists a Z/2-equivariant map (K ×K) r∆K → Sn−1; the converse holds in the so-called
metastable range dimK ≤ 2

3
n − 1 by [25]. Algorithmic aspects of the problem of embed-

dability of K into R
n were studied in [16] and, with the exception of low dimensions, the

meta-stable range was the only remaining case left open. Theorem 1.4 below shows that,
for fixed n, it is solvable in polynomial time.

Equivariant maps also provide interesting applications of topology to combinatorics.
For example, the celebrated result of Lovász on Kneser’s conjecture states that for a graph
G, the absence of a Z/2-equivariant map B(G)→ Sn−1 imposes a lower bound χ(G) ≥ n+2
on the chromatic number of G, where B(G) is a certain simplicial complex constructed
from G, see [13].

Building on the work of Brown [2], which is not applicable for Y = Sn−1, we investigated
in papers [4, 5] the simpler, non-equivariant situation, where X and Y were topological
spaces and we were interested in [X, Y ], the set of all homotopy classes of continuous maps
X → Y . Employing methods of effective homology developed by Sergeraert et al. (see e.g.
[18]), we showed that for any fixed d ≥ 1, [X, Y ] is polynomial-time computable if Y is
d-connected and dimX ≤ 2d.1 In contrast, [6] shows that the problem of computing [X, Y ]
is #P-hard when the dimension restriction on X is dropped. More strikingly, a related
problem of the existence of a continuous extension of a given map A → Y , defined on a
subspace A of X , is undecidable as soon as dimX ≥ 2d+ 2.

Here we obtain an extension of the above computability result for free G-spaces and
equivariant maps. The input G-spaces X and Y can be given as finite simplicial sets
(generalizations of finite simplicial complexes, see [9]), and the free action of G is assumed
simplicial. The simplicial sets and the G-actions on them are described by a finite table.

Theorem 1.1. Let G be a finite group. There is an algorithm that, given finite simplicial
sets X and Y with free simplicial actions of G, such that Y is d-connected, d ≥ 1, and
dimX ≤ 2d+ 1, decides the existence of a continuous equivariant map X → Y .

If such a map exists and dimX ≤ 2d, then the set [X, Y ] of all equivariant homotopy
classes of equivariant continuous maps can be equipped with the structure of a finitely
generated abelian group, and the algorithm outputs the isomorphism type of this group.

For fixed G and d, this algorithm runs in polynomial time.

The isomorphism type is output as an abstract abelian group given by a (finite) number
of generators and relations. Furthermore, there is an algorithm that, given an equivariant
simplicial map ℓ : X → Y , computes the element of this group that ℓ represents. In the

1An extension of [4] to the case of a simply connected Y whose non-stable homotopy groups, i.e. the
groups πn(Y ) for n > 2d, are finite (e.g. an odd-dimnsional sphere) that works for X of arbitrary dimension
can be found in [24].
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opposite direction, although every homotopy class can be represented by a simplicial map
X ′ → Y for some subdivision X ′ of X , we do not know of effective means of producing
such representatives.2

As a consequence, we also have an algorithm that, given two equivariant simplicial
maps X → Y , tests whether they are equivariantly homotopic under the above dimension
restrictions onX . Building on the methods of the present paper, [11] removes the dimension
restriction for the latter question: it provides a homotopy-testing algorithm assuming only
that Y is simply connected.

A work in progress has a goal to extend the results of the present paper to non-free
G-actions; for this extension, it seems necessary to work with diagrams of fixed points of
various subgroups H ≤ G and maps between them, while free actions allow to work with
a single space (namely, the fixed points of the trivial subgroup).

Lifting-extension problem. We obtain Theorem 1.1 by an inductive approach that
works more generally and more naturally in the setting of the (equivariant) lifting-extension
problem, summarized in the following diagram:

A
f

//
��

ι

��

Y

ψ
����

X g
//

ℓ

::✉
✉

✉
✉

✉
B

(1.2)

The input objects for this problem are the solid part of the diagram and we require that:

• A, X , Y , B are free G-spaces;
• f : A→ Y and g : X → B are equivariant maps;
• ι : A // // X is an equivariant cofibration (simplicially: an inclusion);
• ψ : Y // // B is an equivariant fibration (simplicially: a Kan fibration, see [14]); and
• the square commutes (i.e. gι = ψf).

The lifting-extension problem asks whether there exists a diagonal in the square, i.e.
an equivariant map ℓ : X → Y , marked by the dashed arrow, that makes both triangles
commute. We call such an ℓ a solution of the lifting-extension problem (1.2).

Moreover, if such an ℓ exists, we would like to compute the set [X, Y ]AB of all solutions
up to equivariant fibrewise homotopy relative to A.3 More concretely, in the cases covered
by our algorithmic results, we will be able to equip [X, Y ]AB with a structure of an abelian
group, and the algorithm computes the isomorphism type of this group. To be more precise,
this structure is only canonical up to a choice of zero, with various choices differing by
translations, so that [X, Y ]AB really has an “affine” nature (in very much the same way as

2It is possible, for a given homotopy class z ∈ [X,Y ], to go through all subdivisions X ′ and all possible
simplicial maps X ′ → Y and test if they represent z. However, such a procedure does not seem to be very
effective.

3A homotopy h : [0, 1]×X → Y is fibrewise if ψ(h(t, x)) = g(x) for all t ∈ [0, 1] and x ∈ X . It is relative
to A if, for a ∈ A, h(t, a) is independent of t, i.e. h(t, a) = f(a) for all t ∈ [0, 1] and a ∈ A.
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an affine space is naturally a vector space up to a choice of its origin). For an abstract
point of view, see [23].

Generalized lifting-extension problem. Spaces appearing in a fibration ψ : Y // // B
must typically be represented by infinite simplicial sets4, and their representation as in-
puts to an algorithm can be problematic. For this reason, we will consider a generalized
lifting-extension problem, where, compared to the above, ψ : Y → B can be an arbitrary
equivariant map, not necessarily a fibration.

In this case, it makes no sense from the homotopy point of view to define a solution as a
map X → Y making both triangles commutative. A homotopically correct definition of a
solution is as a pair (ℓ, h), where ℓ : X → Y is a map for which the upper triangle commutes
strictly and the lower one commutes up to the specified homotopy h : [0, 1] × X → B
relative to A. We will not pursue this approach any further (in particular, we will not
define the right notion of homotopy of such pairs) and choose an equivalent, technically
less demanding alternative, which consists in replacing the map ψ by a homotopy equivalent
fibration.

To this end, we factor ψ : Y → B as a weak homotopy equivalence j : Y
∼
−→ Y ′ followed

by a fibration ψ′ : Y ′ // // B (in the simplicial setup, see Lemma 7.2). We define a solution
of the considered generalized lifting-extension problem to be a solution ℓ′ : X → Y ′ of the
lifting-extension problem

A
f

//
��

ι

��

Y
j

// Y ′

ψ′

����

X g
//

ℓ′
77♥♥♥♥♥♥♥♥
B

If ψ was a fibration to begin with, we naturally take Y = Y ′ and j = id, and then the
two notions of a solution coincide. With some abuse of notation, we write [X, Y ]AB for the
set [X, Y ′]AB of all homotopy classes of solutions of the above lifting-extension problem.
Clearly, for every diagonal ℓ : X → Y (i.e. a map ℓ satisfying f = ℓι and g = ψℓ), the
composition ℓ′ = jℓ is a solution and, in this way, ℓ represents a homotopy class in [X, Y ]AB.
On the other hand, not every homotopy class is represented by a diagonal ℓ : X → Y .

We remark that Y ′ is used merely as a theoretical tool – for actual computations, we use
a different approximation of Y , namely a suitable finite stage of a Moore–Postnikov tower
for ψ : Y → B; see Section 4. Moreover, Y ′ is not determined uniquely, and thus neither
are the solutions of the generalized lifting-extension problem. However, rather standard
considerations show that the existence of a solution and the isomorphism type of [X, Y ′]AB
as an abelian group are independent of the choice of Y ′.

Examples of lifting-extension problems. In order to understand the meaning of the
(generalized) lifting-extension problem, it is instructive to consider some special cases.

4If ψ is a Kan fibration between finite simply connected simplicial sets then its fibre is a finite Kan
complex and it is easy to see that it then must be discrete. Consequently, ψ is a covering map between
simply connected spaces and thus an isomorphism.
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(i) (Classification of extensions.) First, consider G = {e} trivial (thus, the equivariance
conditions are vacuous) and B a point (which makes the lower triangle in the lifting-
extension problem superfluous). Then we have an extension problem, asking for the
existence of a map ℓ : X → Y extending a given f : A → Y . We recall that this
problem is undecidable when dimX is not bounded, according to [6]. Moreover,
[X, Y ]A is the set of appropriate homotopy classes of such extensions.5

(ii) (Equivariant maps.) Consider G finite, A = ∅, and B = EG, a contractible free G-
space (it is unique up to equivariant homotopy equivalence). For every free G-space
Z, there is an equivariant map cZ : Z → EG, unique up to equivariant homotopy.
If we set g = cX and ψ = cY in the generalized lifting-extension problem, it can be
proved that [X, Y ]∅EG is in a bijective correspondence with equivariant maps X → Y
up to equivariant homotopy. This is how we obtain Theorem 1.1.6

(iii) (Extending sections in a vector bundle.) Let G = {e}, and let ψ : Y → B be the
inclusion BSO(n − k) → BSO(n), where BSO(n) is the classifying space of the
special orthogonal group SO(n). Then the commutative square in the generalized
lifting-extension problem is essentially an oriented vector bundle of dimension n
over X together with k linearly independent vector fields over A. The existence of
a solution is then equivalent to the existence of linearly independent continuations
of these vector fields to the whole of X . We remark that, in order to apply our
theorem to this situation, a finite simplicial model of the classifying space BSO(n)
would have to be constructed. As far as we know, this has not been carried out yet.

We briefly remark that for non-oriented bundles, it is possible to pass to certain
two-fold “orientation” coverings and reduce the problem to one for oriented bundles
but with a further Z/2-equivariance constraint.

Main theorem. Now we are ready to state the main result of this paper.

Theorem 1.3. Let G be a finite group and let an instance of the generalized lifting-
extension problem be input as follows: A, X, Y , B are finite simplicial sets with free
simplicial actions of G, A is an equivariant simplicial subset of X, and f , g, ψ are equiv-
ariant simplicial maps. Furthermore, both B and Y are assumed to be simply connected,
and the homotopy fibre7 of ψ : Y → B is assumed to be d-connected for some d ≥ 1.

5 The problem of computing homotopy classes of solutions (under our usual condition on the dimension
of X) was considered in [5], but with a different equivalence relation on the set of all extensions: [5]
dealt with the (slightly unnatural) coarse classification, where two extensions ℓ0 and ℓ1 are considered
equivalent if they are homotopic as maps X → Y , whereas here we deal with the fine classification, where
the equivalence of ℓ0 and ℓ1 means that they are homotopic relative to A.

6Note that we cannot simply take B to be a point in the lifting-extension problem with a nontrivial G,
since there is no free action of G on a point. Actually, EG serves as an equivariant analogue of a point
among free G-spaces.

7The homotopy fibre of ψ is the fibre of ψ′, where ψ is factored through Y ′ as above. It is unique up
to homotopy equivalence, and so the connectivity is well defined.
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There is an algorithm that, for dimX ≤ 2d + 1, decides the existence of a solution.
Moreover, if dimX ≤ 2d and a solution exists, then the set [X, Y ]AB can be equipped with
the structure of an abelian group, and the algorithm computes its isomorphism type. The
running time of this algorithm is polynomial when G and d are fixed.

As in Theorem 1.1, the isomorphism type means an abstract abelian group (given by
generators and relations) isomorphic to [X, Y ]AB. Given an arbitrary diagonal ℓ : X → Y
in the considered square, one can compute the element of this group that ℓ represents.

Constructing the abelian group structure on [X, Y ]AB will be one of our main objectives.
In the case of all continuous maps X → Y up to homotopy, with no equivariance condition
imposed, as in [4], the abelian group structure on [X, Y ] is canonical. In contrast, in the
setting of the lifting-extension problem, the structure is canonical only up to a choice of a
zero element.

This non-canonicality of zero is one of the phenomena making the equivariant problem
(and the lifting-extension problem) substantially different from the non-equivariant case
treated in [4]. We will have to deal with the choice of zero, and working with “zero sections”
in the considered fibrations.

Embeddability and equivariant maps. Theorem 1.1 has the following consequence for
embeddability of simplicial complexes:

Theorem 1.4. Let n be a fixed integer. There is an algorithm that, given a finite simplicial
complex K of dimension k ≤ 2

3
n− 1, decides the existence of an embedding of K into R

n

in polynomial time.

The algorithmic problem of testing embeddability of a given k-dimensional simplicial
complex into R

n, which is a natural generalization of graph planarity, was studied in [16].
Theorem 1.4 clarifies the decidability of this problem for k ≤ 2

3
n − 1; this is the so-called

metastable range of dimensions, which was left open in [16]. Briefly, in the metastable
range, the classical theorem of Weber (see [25]) asserts that embeddability is equivalent to
the existence of a Z/2-equivariant map (K×K)r∆K → Sn−1 whose domain is equivariantly
homotopy equivalent to a finite simplicial complex8 with a free simplicial action of Z/2.
Thus, Theorem 1.4 follows immediately from Theorem 1.1; we refer to [16] for details.

We also remark that the algorithm of Theorem 1.4 does not produce an actual map
(K × K) r ∆K → Sn−1 and, thus, we do not know of an effective way of producing an
actual embedding (in addition, we have not analyzed Weber’s proof sufficiently well to be
able to tell whether it produces an embedding from an equivariant map).

Outline of the proof. In the rest of this section, we sketch the main ideas and tools
needed for the algorithm of Theorem 1.3. Even though the computation is very similar in

8The complex is (the canonical triangulation of) the union of all products σ × τ of disjoint simplices
σ, τ ∈ K, σ ∩ τ = ∅.
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its nature to that of [4], there are several new ingredients which we had to develop in order
to make the computation possible. We describe these briefly after the outline of the proof.

Our first tool is a Moore–Postnikov tower Pn for ψ : Y → B within the framework
of (equivariant) effective algebraic topology (essentially, this means that all objects are
representable in a computer); it is enough to construct the number of stages equal to the
dimension ofX . It can be shown that [X, Y ]AB

∼= [X,Pn]
A
B for n ≥ dimX and so it suffices to

compute inductively [X,Pn]
A
B from [X,Pn−1]

A
B for n ≤ dimX . This is the kind of problems

considered in obstruction theory. Namely, there is a natural map [X,Pn]
A
B → [X,Pn−1]

A
B

and it is possible to describe all preimages of any given homotopy class [ℓ] ∈ [X,Pn−1]
A
B

using, in addition, an inductive computation of [∆1 ×X,Pn−1]
(∂∆1×X)∪(∆1×A)
B . In general

however, [X,Pn−1]
A
B is infinite and it is thus impossible to compute [X,Pn]

A
B as a union of

preimages of all possible homotopy classes [ℓ] (on the other hand, if these sets are finite,
the above description does provide an algorithm, probably not very efficient, see [2, 24]).

For this reason, we use in the paper to a great advantage our second tool, an abelian
group structure on the set [X,Pn]

A
B of homotopy classes of diagonals, which only exists on a

stable part n ≤ 2d and, of course, only if this set is non-empty. The group structure comes
from an “up to homotopy” abelian group structure on Pn (or, in fact, a certain pullback of
Pn) which we construct algorithmically – this is the heart of the present paper. We remark
that the abelian group structure on [X,Pn]

A
B was already observed in [15]; however, this

paper did not deal with algorithmic aspects.
In the stable part of the Moore–Postnikov tower, the natural map [X,Pn]

A
B → [X,Pn−1]

A
B

is a group homomorphism and the above mentioned computation of preimages of a given
homotopy class [ℓ] may be reduced to a finite set of generators of the image; the compu-
tation is conveniently summarized in a long exact sequence (4.17). This finishes the rough
description of our inductive computation.

New tools. In the process of building the Moore–Postnikov tower, and also later, it is
important to work with infinite simplicial sets, such as the Moore–Postnikov stages Pn, in
an algorithmic way. This is handled by the so-called equivariant effective algebraic topology
and effective homological algebra. The relevant non-equivariant results are described in
[18, 5]. In many cases, only minor and/or straightforward modifications are needed. One
exception is the equivariant effective homology of Moore–Postnikov stages, for which we
rely on a separate paper [22].

Compared to our previous work [4], the main new ingredient is the weakening of the H-
space structure that exists on Moore–Postnikov stages. This is needed in order to carry out
the whole computation algorithmically. Accordingly, the construction of this structure is
much more abstract. In [4], we had B = ∗ and Postnikov stages carried a unique basepoint.
In the case of nontrivial B, the basepoints are replaced by sections and Moore–Postnikov
stages may not admit a section at all – this is related to the possibility of [X, Y ]AB being
empty. It might also happen that we choose a section of Pn−1 which does not lift to Pn.
In that case, we need to change the section of Pn−1 and compute [X,Pn−1]

A
B again from

scratch.
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Plan of the paper. In the second section, we give an overview of equivariant effective
homological algebra that we use in the rest of the paper. The third section is devoted
to the algorithmic construction of an equivariant Moore–Postnikov tower. The proofs of
Theorems 1.1 and 1.3, without their polynomial time claims, are given in the following
section, although proofs of its two important ingredients are postponed to Sections 5 and
6. In the fifth section, we construct a certain weakening of an (equivariant and fibrewise)
H-space structure on pointed stable stages of Moore–Postnikov towers. In the sixth section,
we show how this structure enables one to endow the sets of homotopy classes with addition
in an algorithmic way. Finally, we derive an exact sequence relating [X,Pn]

A
B to [X,Pn−1]

A
B

and [∆1 × X,Pn−1]
(∂∆1×X)∪(∆1×A)
B and thus enabling an inductive computation. In the

seventh section, we provide proofs that we feel would not fit in the previous sections. In
the last section, we prove polynomial bounds for the running time of our algorithms.

2. Equivariant effective homological algebra

2.1. Basic setup. For a simplicial set, the face operators are denoted by di, and the
degeneracy operators by si. The standard m-simplex ∆m is a simplicial set with a unique
non-generate m-simplex and no relations among its faces. The simplicial subset generated
by the i-th face of ∆m will be denoted by di∆

m. The boundary ∂∆m is the union of all
these faces and the i-th horn ✑✑ ✲

✲✲✲✲✲ m
i is generated by all faces dj∆

m, j 6= i. Finally, we denote
the vertices of ∆m by 0, . . . , m.

Sergeraert et al. (see [18]) have developed an “effective version” of homological algebra,
in which a central notion is an object (simplicial set or chain complex) with effective
homology. Here we will discuss analogous notions in the equivariant setting, as well as
some other extensions. For a key result, we rely on a separate paper [22] which shows,
roughly speaking, that if the considered action is free, equivariant effective homology can
be obtained from non-equivariant one.

We begin with a description of the basic computational objects, sometimes called locally
effective objects. The underlying idea is that in every definition one replaces sets by
computable sets and mappings by computable mappings. For us, a computable set will be
a set whose elements have a finite encoding by bit strings, so that they can be represented
in a computer. On the other hand, it may happen that no “global” information about the
set is available; e.g. it is algorithmically undecidable in general whether a given computable
set is nonempty. A computable subset of a computable set T is a subset S ⊆ T equipped
with an algorithm that decides, for a given element of T , whether it belongs to S. A
mapping between computable sets is computable if there is an algorithm computing its
values.

We will need two particular cases of this principle – simplicial sets and chain complexes.

2.2. Simplicial sets. A locally effective simplicial set is a simplicial set X whose simplices
have a specified finite encoding and whose face and degeneracy operators are specified by

8



algorithms. Our simplicial sets will be equipped with a simplicial action of a finite group
G that is also computed by an algorithm (whose input is an element of G and a simplex of
X). We will assume that this action is free and that a distinguished set of representatives
of orbits is specified – such X will be called G-cellular. In the locally effective context,
we require that there is an algorithm that expresses each simplex x ∈ X (necessarily in a
unique way) as x = ay where a ∈ G and y ∈ X is a distinguished simplex.

Remark. We will not put any further restrictions on the representation of simplicial sets in
a computer – the above algorithms will be sufficient. On the other hand, it is important
that such representations exist. We will describe one possibility for finite simplicial sets
and complexes.

Let X be a finite simplicial set with a free action of G. Let us choose arbitrarily one
simplex from each orbit of the non-degenerate simplices; these simplices together with
all of their degeneracies are the distinguished ones. Then every simplex x ∈ X can be
represented uniquely as x = asIy, where a ∈ G, sI is an iterated degeneracy operator
(i.e. a composition sim · · · si1 with i1 < · · · < im), and y is a non-degenerate distinguished
simplex. With this representation, it is possible to compute the action of G and the
degeneracy operators easily, while face operators are computed using the relations among
the face and degeneracy operators and a table of faces of non-degenerate distinguished
simplices. This table is finite and it can be provided on the input.

A special case is that of a finite simplicial complex. Here, one can prescribe a simplex
(degenerate or not) uniquely by a finite sequence of its vertices.

2.3. Chain complexes. For our computations, we will work with nonnegatively graded
chain complexes C∗ of abelian groups on which G acts by chain maps; denoting by ZG
the integral group ring of G, one might equivalently say that C∗ is a chain complex of
ZG-modules. We will adopt this terminology from now on. We will also assume that
these chain complexes are ZG-cellular, i.e. equipped with a distinguished ZG-basis; this
means that for each n ≥ 0 there is a collection of distinguished elements of Cn such that
the elements of the form ay, with a ∈ G and y distinguished, are all distinct and form a
Z-basis of Cn.

In the locally effective version, we assume that the elements of the chain complex have
a finite encoding, and there is an algorithm expressing arbitrary elements as (unique)
ZG-linear combinations of the elements of the distinguished bases. We require that the
operations of zero, addition, inverse, multiplication by elements of ZG, and differentials
are computable.9

A basic example, on which these assumptions are modelled, is that of the normalized
chain complex C∗X of a simplicial set X (the quotient of the usual chain complex by the
subcomplex spanned by degenerate simplices): for each n ≥ 0, a Z-basis of CnX is given
by the set of nondegenerate n-dimensional simplices of X . If X is equipped with a free

9These requirements (with the exception of the differentials) are automatically satisfied when the ele-
ments of the chain complex are represented directly as ZG-linear combinations of the distinguished bases.
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simplicial action of G, then this induces an action of G on C∗X by chain maps, and a ZG-
basis for each CnX is given by a collection of nondegenerate distinguished n-dimensional
simplices of X , one from each G-orbit.

If X is locally effective as defined above, then so is C∗X (for evaluating the differential,
we observe that a simplex x is degenerate if and only if x = sidix for some i, and this can
be checked algorithmically).

Convention 2.4. We fix a finite group G. All simplicial sets are locally effective, equipped
with a free action of G and G-cellular in the locally effective sense. All chain complexes
are non-negatively graded locally effective chain complexes of free ZG-modules that are
moreover ZG-cellular in the locally effective sense.

All simplicial maps, chain maps, chain homotopies, etc. are equivariant and computable.

Later, Convention 5.1 will introduce additional standing assumptions.

Definition 2.5. An effective chain complex is a (locally effective) chain complex equipped
with an algorithm that generates a list of elements of the distinguished basis in any given
dimension (in particular, the distinguished bases are finite in each dimension).

For example, if a simplicial set X admits an algorithm generating a (finite) list of
its non-degenerate distinguished simplices in any given dimension (we call it effective in
Section 8), then its normalized chain complex C∗X is effective.

2.6. Reductions, strong equivalences. We recall that a reduction (also called contrac-
tion or strong deformation retraction) C∗ =⇒ C ′

∗ between two chain complexes is a triple
(α, β, η) such that α : C∗ → C ′

∗ and β : C ′
∗ → C∗ are equivariant chain maps such that

αβ = id (i.e. β is an inclusion with retraction α) and η is an equivariant chain homotopy
on C∗ with ∂η+ η∂ = id−βα (i.e. η is a deformation of C∗ onto C

′
∗); moreover, we require

that ηβ = 0, αη = 0 and ηη = 0. The following diagram illustrates this definition:

(α, β, η) : C∗ =⇒ C ′
∗ ≡ C∗

η
55

α
**
C ′

∗
β

jj

Reductions are used to solve homological problems in C∗ by translating them to C ′
∗ and

vice versa, see [18]; a particular example is seen at the end of the proof of Lemma 2.17.
While, for this principle to work, chain homotopy equivalences would be enough, they are
not sufficient for the so-called perturbation lemmas (we will introduce them later), where
the real strength of reductions lies.

For the following definition, we consider pairs (C∗, D∗), where C∗ is a chain complex
and D∗ is a subcomplex of C∗. Such pairs are always understood in the ZG-cellular sense;
i.e. the distinguished basis of each Dn is a subset of the distinguished basis of Cn.

Definition 2.7. A reduction (C∗, D∗) =⇒ (C ′
∗, D

′
∗) of (ZG-cellular) pairs is a reduction

C∗ =⇒ C ′
∗ that restricts to a reduction D∗ =⇒ D′

∗, i.e. such that α(D∗) ⊆ D′
∗, β(D

′
∗) ⊆ D∗,

and η(D∗) ⊆ D∗.

10



From this reduction, we get an induced reduction C∗/D∗ =⇒ C ′
∗/D

′
∗ of the quotients.

We will need to work with a notion more general than reductions, namely strong equiv-
alences. A strong equivalence C∗ ⇐⇒ C ′

∗ is a pair of reductions C∗ ⇐= Ĉ∗ =⇒ C ′
∗, where

Ĉ∗ is some chain complex. Similarly, a strong equivalence (C∗, D∗) ⇐⇒ (C ′
∗, D

′
∗) is a pair

of reductions (C∗, D∗) ⇐= (Ĉ∗, D̂∗) =⇒ (C ′
∗, D

′
∗). Strong equivalences can be (algorithmi-

cally) composed: if C∗ ⇐⇒ C ′
∗ and C ′

∗ ⇐⇒ C ′′
∗ , then one obtains C∗ ⇐⇒ C ′′

∗ (see e.g. [5,
Lemma 2.7]).

Definition 2.8. Let C∗ be a chain complex. We say that C∗ is equipped with effective
homology if there is specified a strong equivalence C∗ ⇐⇒ Cef

∗ of C∗ with some effective
chain complex Cef

∗ . Effective homology for pairs (C∗, D∗) of chain complexes is introduced
similarly using strong equivalences of pairs. A simplicial set X is equipped with effective
homology if C∗X is. Finally, a pair (X,A) of simplicial sets is equipped with effective
homology if (C∗X,C∗A) is.

Remark. In what follows, we will only assume (X,A), Y , B to be equipped with effective
homology. Consequently, it can be seen that Theorems 1.1 and 1.3 also hold under these
weaker assumptions. The dimension restriction on X can be weakened to: the equivariant
cohomology groups of (X,A), defined in Section 2.15, vanish above dimension 2d.

By passing to the mapping cylinder X ′ = (∆1×A)∪X , we may even relax the condition
on the pair (X,A) to each of A, X being equipped with effective homology separately
since then the pair (X ′, A) has effective homology (this is very similar to but easier than
Proposition 5.11) and the resulting generalized lifting-extension problem is equivalent to
the original one.

The following theorem shows that, in order to equip a chain complex with effective
homology, it suffices to have it equipped with effective homology in the non-equivariant
sense.

Theorem 2.9 ([22]). Let C∗ be a chain complex (of free ZG-modules). Suppose that,
as a chain complex of abelian groups, C∗ can be equipped with effective homology (i.e. in
the non-equivariant sense). Then it is possible to equip C∗ with effective homology in the
equivariant sense. This procedure is algorithmic.

The original strong equivalence C∗ ⇐⇒ Cef
∗ gets replaced by an equivariant one C∗ ⇐⇒

BCef
∗ , where BC

ef
∗ is a bar construction of some sort; see [22] for details.

Thus, although non-equivariant effective homology is not the same as equivariant ef-
fective homology, it is possible to construct one from the other. In this paper, effective
homology will be understood in the equivariant sense, unless stated otherwise.

We recall that the Eilenberg–Zilber reduction is a particular reduction C∗(X × Y ) =⇒
C∗X ⊗ C∗Y ; see e.g. [8, 5, 18]. It is known to be functorial (see e.g. [8, Theorem 2.1a]),
and hence it is equivariant. We extend it to pairs.

Proposition 2.10 (Product of pairs). If pairs (X,A) and (Y,B) of simplicial sets are
equipped with effective homology, then it is also possible to equip the pair

(X,A)× (Y,B)
def
=

(
X × Y, (A× Y ) ∪ (X × B)

)

11



with effective homology.

Proof. The Eilenberg–Zilber reduction C∗(X × Y ) =⇒ C∗X ⊗ C∗Y is functorial, which
implies that it restricts to a reduction

C∗

(
(A× Y ) ∪ (X × B)

)
=⇒ (C∗A⊗ C∗Y ) + (C∗X ⊗ C∗B)

def
= D∗.

The strong equivalences C∗X ⇐⇒ Cef
∗ X and C∗Y ⇐⇒ Cef

∗ Y induce a strong equivalence
(by [18, Proposition 61], whose construction is functorial, and hence applicable to the
equivariant setting)

C∗X ⊗ C∗Y ⇐⇒ Cef
∗ X ⊗ C

ef
∗ Y

that, again, restricts to a strong equivalence of the subcomplex D∗ above with its obvious
effective version Def

∗ . The composition of these two strong equivalences finally yields a
strong equivalence C∗((X,A)× (Y,B))⇐⇒ (Cef

∗ X ⊗ C
ef
∗ Y,D

ef
∗ ).

Important tools, allowing us to work efficiently with reductions, are two perturbation
lemmas. Given a reduction C∗ =⇒ C ′

∗, they provide a way of obtaining a new reduction,
in which the differentials of the complexes C∗, C

′
∗ are “perturbed”. Again, we will need

versions for pairs.

Definition 2.11. Let C∗ be a chain complex with a differential ∂. A collection of mor-
phisms δ : Cn → Cn−1 is called a perturbation of the differential ∂ if the sum ∂ + δ is also
a differential.

Since there will be many differentials around, we will emphasize them in the notation.

Proposition 2.12 (Easy perturbation lemma). Let (α, β, η) : (C∗, D∗, ∂) =⇒ (C ′
∗, D

′
∗, ∂

′) be
a reduction and let δ′ be a perturbation of the differential ∂′ on C ′

∗ satisfying δ′(D′
∗) ⊆ D′

∗.
Then (α, β, η) also constitutes a reduction (C∗, D∗, ∂ + βδ′α) =⇒ (C ′

∗, D
′
∗, ∂

′ + δ′).

Proposition 2.13 (Basic perturbation lemma). Let (α, β, η) : (C∗, D∗, ∂) =⇒ (C ′
∗, D

′
∗, ∂

′)
be a reduction and let δ be a perturbation of the differential ∂ on C∗ satisfying δ(D∗) ⊆
D∗. Assume that for every c ∈ C∗ there is a ν ∈ N such that (ηδ)ν(c) = 0. Then
it is possible to compute a perturbation δ′ of the differential ∂′ on C ′

∗ and a reduction
(α′, β ′, η′) : (C∗, D∗, ∂ + δ) =⇒ (C ′

∗, D
′
∗, ∂

′ + δ′).

The absolute versions (i.e. versions where all considered subcomplexes are zero) of the
perturbation lemmas are due to [19]. There are explicit formulas provided there for δ′

etc. (see also [18]), which show that the resulting reductions are equivariant (since all the
involved maps are equivariant). Similarly, these formulas show that in the presence of
subcomplexes D∗ and D

′
∗, these are preserved by all the maps in the new reductions (since

all the involved maps preserve them).
The following proposition is used for the construction of the Moore–Postnikov tower in

Section 3. Here Zn+1(C∗) denotes the group of all cycles in Cn+1.
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Proposition 2.14. Let C∗ be an effective chain complex such that Hi(C∗) = 0 for i ≤ n.
Then there is a (computable) retraction Cn+1 → Zn+1(C∗), i.e. a homomorphism that
restricts to the identity on Zn+1(C∗).

Proof. We construct a contraction10 σ of C∗ by induction on the dimension, and use it for
splitting Zn+1(C∗) off Cn+1. It suffices to define σ on the distinguished bases. Since every
basis element x ∈ C0 is a cycle, it must be a boundary. We compute some y ∈ C1 for which
x = ∂y, and we set σ(x) = y; since G is finite, we may treat ∂ : C1 → C0 as a Z-linear map
between finitely generated free Z-modules and solve for y using Smith normal form.

Now assume that σ has been constructed up to dimension i − 1 in such a way that
∂σ + σ∂ = id, and we want to define σ(x) for a basis element x ∈ Ci. Since x− σ(∂x) is a
cycle, we can compute some y with x− σ(∂x) = ∂y, and set σ(x) = y.

This finishes the inductive construction of σ. The desired retraction Cn+1 → Zn+1(C∗)
is given by id−σ∂.

2.15. Eilenberg–MacLane spaces and fibrations. For an abelian group π, there is a
simplicial abelian group K(π, n+1), whose m-simplices are the normalized (n+1)-cocycles
on ∆m, i.e. K(π, n+1)m = Zn+1(∆m, π). It is a standard model for the Eilenberg–MacLane
space. We will also need a standard model for its path space, which is the simplicial
abelian group E(π, n)m = Cn(∆m, π) of normalized cochains. The coboundary operator
δ : E(π, n)→ K(π, n+ 1) is a fibration with fibre K(π, n).

The Eilenberg–MacLane spaces are useful for their relation to cohomology. Here we only
summarize the relevant results, details may be found in [14, Section 24] or [5, Section 3.7]
(both in the non-equivariant setup though).

When π is a ZG-module, there is an induced action of G on both K(π, n) and E(π, n).
We note that, in contrast to our general assumption, this action is not free and conse-
quently, these spaces may not possess effective homology. This will not matter since they
will not enter our constructions on their own but as certain principal twisted cartesian
products, see [14] for the definition. Firstly, K(π, n) possesses non-equivariant effective
homology by [5, Theorem 3.16]. The principal twisted cartesian product P = Q×τK(π, n)
has a free G-action whenever Q does and [10, Corollary 12] constructs the non-equivariant
effective homology of P from that of Q and K(π, n). Theorem 2.9 then provides (equiv-
ariant) effective homology for P .

It is easy to see that the addition in the simplicial abelian groups K(π, n), E(π, n) and
the homomorphism δ between them are equivariant. Moreover, for every simplicial set X ,
there is a natural isomorphism

map(X,E(π, n)) ∼= Cn(X ; π)G

between equivariant simplicial maps and equivariant cochains, that sends f : X → E(π, n)
to f ∗(ev), where ev ∈ Cn(E(π, n); π)G is the canonical cochain that assigns to each n-
simplex of E(π, n)n, i.e. an n-cochain on ∆n, its value on the unique non-degenerate n-
simplex of ∆n.

10We recall that a contraction is a map σ of degree 1 satisfying ∂σ + σ∂ = id.
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The set map(X,E(π, n)) is naturally an abelian group, with addition inhereted from
that on E(π, n), and the above isomorphism is and isomorphism of groups.

When X is finite, this isomorphism is computable (objects on both sides are given
by a finite amount of data). When X is merely locally effective, then an algorithm that
computes a simplicial map X → E(π, n) can be converted into an algorithm that evaluates
the corresponding cochain in Cn(X ; π)G, and vice versa.

The above isomorphism restricts to an isomorphism

map(X,K(π, n)) ∼= Zn(X ; π)G.

We will denote the cohomology groups of C∗(X ; π)G by H∗
G(X ; π).11 We have an induced

isomorphism
[X,K(π, n)] ∼= Hn

G(X ; π)

between homotopy classes of equivariant maps and these cohomology groups. By the
naturality of these isomorphisms, the maps which are zero on A correspond precisely to
relative cocycles and consequently

[(X,A), (K(π, n), 0)] ∼= Hn
G(X,A; π).

2.16. Constructing diagonals for Eilenberg–MacLane fibrations. When solving
the generalized lifting-extension problem, we will replace ψ : Y → B by a fibration built
inductively from Eilenberg–MacLane fibrations δ : E(π, n) → K(π, n + 1). The following
lemma will serve as an inductive step in the computation of [X, Y ]AB. It also demonstrates
how effective homology of pairs enters the game.

Lemma 2.17. There is an algorithm that, given a commutative square

A c //

��

��

E(π, n)

δ
����

X z
//

88r
r

r
r

r
r

K(π, n + 1)

where the pair (X,A) is equipped with effective homology, decides whether a diagonal exists.
If it does, it computes one.

If Hn+1
G (X,A; π) = 0, then a diagonal exists for every c and z.

Let us remark that although our main result, Theorem 1.3, assumes X finite, we will
need to use the lemma for infinite simplicial sets X , and then the effective homology
assumption for (X,A) is important.

11Our groups H∗

G
(X ;π) are the equivariant cohomology groups of X with coefficients in a certain system

associated with π (see the remark in [1, Section I.9]) or, alternatively, they are the cohomology groups of
X/G with local coefficients specified by π.
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Proof. Thinking of c as a cochain in Cn(A; π)G, we extend it to a cochain on X by mapping
all n-simplices not in A to zero. This prescribes a map c̃ : X → E(π, n) that is a solution
of the lifting-extension problem from the statement for z replaced by δc̃. Since the lifting-
extension problems and their solutions are additive, one may subtract this solution from
the previous problem and obtain an equivalent lifting-extension problem

A
0 //

��

��

E(π, n)

δ
����

X
z−δc̃

//

c0

88r
r

r
r

r
r

K(π, n + 1)

A solution of this problem is an (equivariant) relative cochain c0 whose coboundary is
z0 = z − δc̃ (this c0 yields a solution c̃ + c0 of the original problem). If C∗(X,A) is
effective, then such a c0 is computable whenever it exists (and it always exists in the case
Hn+1
G (X,A; π) = 0).
However, C∗(X,A) itself is not effective in general, it is only strongly equivalent to an

effective complex. Thus, we need to check that the computability of a preimage under δ
is preserved under reductions in both directions. Let (α, β, η) : C∗ =⇒ C ′

∗ be a reduction.
First, let us suppose that z′0 : C

′
∗ → π is a cocycle with z′0α = δc0. Then

z′0 = z′0αβ = (δc0)β = δ(c0β),

and we may set c′0 = c0β. Next, suppose that z0 : C∗ → π is a cocycle with z0β = δc′0.
Then

z0 = z0(∂η + η∂ + βα) = z0η∂ + δc′0α = δ(z0η + c′0α),

and we may set c0 = z0η + c′0α.

3. Moore–Postnikov tower

We recall that we defined Y ′ by factoring ψ as a composition Y //∼ // Y ′ ψ′

// // B of a weak
homotopy equivalence followed by a fibration; such a factorization exists by Lemma 7.2.
Using this approximation, [X, Y ]AB was defined as the set of homotopy classes [X, Y ′]AB. In
order to compute this set, we approximate Y ′ by the Moore–Postnikov tower of Y over B.
Then the computation will proceed by induction over the stages of this tower, as will be
explained in Section 4. For now, we give a definition of an equivariant Moore–Postnikov
tower of a simplicial map ψ : Y → B and review some of the statements of the last section
in the context of this tower. The actual construction of the tower, when both simplicial
sets Y and B are equipped with effective homology, will be carried out later in Section 7.

Definition 3.1. Let ψ : Y → B be a map. A (simplicial) extended Moore–Postnikov tower
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for ψ is a commutative diagram

Pn

pn

��

ψn

��

Pn−1

Y

ϕn

@@✁✁✁✁✁✁✁✁✁✁✁✁✁✁✁✁✁✁ ϕn−1

77♣♣♣♣♣♣♣♣♣♣♣♣♣
ϕ1

//

ψ=ϕ0
''◆◆

◆◆◆
◆◆◆

◆◆◆
◆◆◆

P1

p1

��

P0 = B

satisfying the following conditions:

1. The induced map ϕn∗ : πi(Y ) → πi(Pn) is an isomorphism for i ≤ n and an epimor-
phism for i = n+ 1.

2. The induced map ψn∗ : πi(Pn)→ πi(B) is an isomorphism for i ≥ n+2 and a monomor-
phism for i = n+ 1.

3. The map pn : Pn → Pn−1 is a Kan fibration induced by a map

k′n : Pn−1 → K(πn, n+ 1)

for some ZG-module πn, i.e. there exists a pullback square

Pn
q′n //

pn

��

E(πn, n)

δ
��

Pn−1
k′n

// K(πn, n+ 1)

identifying Pn with the pullback Pn−1 ×K(πn,n+1) E(πn, n). Alternatively, one may
identify Pn as the principal twisted cartesian product Pn ×τ K(πn, n) – this will be
used to equip Pn with effective homology.

A Moore–Postnikov tower for ψ is then obtained from the extended Moore–Postnikov
tower by removing the space Y and the maps ϕn.

Both variants admit n0-truncated versions comprised only of stages Pn with n ≤ n0.

We remark that the axioms imply πn ∼= πnF , where F is the homotopy fibre of Y → B,
i.e. the fibre of Y ′ → B.
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Definition 3.2. We say that an extended Moore–Postnikov tower has effective homology
if Y and all the stages Pn have effective homology and all the maps ϕn, pn, q

′
n, k

′
n are

computable. There are similar notions for a Moore–Postnikov tower and for n0-truncated
versions of both variants.

We remark that it is also possible to compute the homotopy groups πn from the effective
homology of a Moore–Postnikov tower as homology groups Hn+1(cone pn∗) of the mapping
cone of pn∗ : C∗(Pn)→ C∗(Pn−1), see the proof of Theorem 3.3.

The reason to have various versions of Moore–Postnikov towers is to specify the objects
that we construct, equip with effective homology etc. Concretely, a Moore–Postnikov tower
for ψ : Y → B is also a Moore–Postnikov tower for the replacement ψ′ : Y ′ → B. They are
different as extended Moore–Postnikov towers and, in fact, we will be able to equip the
former with effective homology, while we do not know of a way of doing the same for the
latter (because of the space Y ′). Another example is Addendum 3.4.

Theorem 3.3. There is an algorithm that, given a map ψ : Y → B between simply con-
nected simplicial sets with effective homology and an integer n0, constructs an n0-truncated
extended Moore–Postnikov tower for ψ and equips it with effective homology.

The proof of the theorem, as well as its addendum below, is postponed to Section 7.

Addendum 3.4. There is an algorithm that, given the data of the theorem and a com-
putable map β : B̃ → B whose domain B̃ has effective homology, constructs an n0-truncated
Moore–Postnikov tower with stages P̃n = B̃ ×B Pn and equips it with effective homology.

We remark that the P̃n form a Moore–Postnikov tower for the natural map Ỹ = B̃ ×B
Y ′ → B̃ from the homotopy pullback Ỹ of Y along β, but we do not know of a way of
dealing effectively with Ỹ . This is the reason why we are not able to equip the extended
Moore–Postnikov tower for Ỹ → B̃ with effective homology.

We obtain a new lifting-extension problem from the Moore–Postnikov tower for ψ

A
fn

//

��

��

Pn

ψn
����

X g
//

::✉
✉

✉
✉

✉
B

where fn = ϕnf . The following theorem explains the role of the Moore–Postnikov tower
in our algorithm.

Theorem 3.5. There exists a map ϕ′
n : Y

′ → Pn inducing a bijection ϕ′
n∗ : [X, Y

′]AB →
[X,Pn]

A
B for every n-dimensional simplicial set X with a free action of G.

The theorem should be known but we could not find an equivariant fibrewise version
anywhere. For this reason, we include a proof in Section 7.

From the point of view of Theorem 1.3, we have reduced the computation of [X, Y ]AB =
[X, Y ′]AB to that of [X,Pn]

A
B, where n = dimX . Before going into details of this computa-

tion, we present a couple of results that are directly related to the Moore–Postnikov tower.
They will be essential tools in the proof of Theorem 1.3.
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3.6. Inductive construction of diagonals. We slightly reformulate Lemma 2.17 in
terms of the Moore–Postnikov tower in the following proposition, which works for stages
of a Moore–Postnikov tower.

Proposition 3.7. There is an algorithm that, given a diagram

A
f

//

��

��

Pn

pn
����

X g
//

99s
s

s
s

s
s

Pn−1

where the pair (X,A) is equipped with effective homology, decides whether a diagonal exists.
If it does, it computes one.

When Hn+1
G (X,A; πn) = 0, a diagonal exists for every f and g.

Proof. We will use property (3) of Moore–Postnikov towers, which expresses pn as a pull-
back:

A
f

//

��

��

Pn //

pn

��

E(πn, n)

δ
����

X g
//

ℓ

<<①
①

①
①

①
Pn−1

k′n

// K(πn, n+ 1)

Thus, diagonals ℓ are exactly of the form (g, c) : X → Pn−1 ×K(πn,n+1) E(πn, n), where
c : X → E(πn, n) is an arbitrary diagonal in the composite square and thus computable by
Lemma 2.17.

We obtain two important consequences as special cases. The first one is an algorithmic
version of lifting homotopies across Pn // // Pm.

Proposition 3.8 (homotopy lifting/extension). Given a diagram

(i×X) ∪ (∆1 ×A) //

��

∼

��

Pn

����

∆1 ×X //

77♥♥♥♥♥♥♥

Pm

where i ∈ {0, 1} and (X,A) is equipped with effective homology, it is possible to compute a
diagonal. In other words, one may lift and extend homotopies in Moore–Postnikov towers
algorithmically.

Proof. It is possible to equip (∆1 × X, (i × X) ∪ (∆1 × A)) with effective homology by
Proposition 2.10. Moreover, this pair has zero cohomology since there exists a (continuous)
equivariant deformation of ∆1 ×X onto the considered subspace. Thus a diagonal can be
constructed by a successive use of Proposition 3.7.
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The second result concerns algorithmic concatenation of homotopies. Let ✑✑ ✲
✲✲✲✲✲ 2
1 denote the

first horn in the standard 2-simplex ∆2, i.e. the simplicial subset of the standard simplex
∆2 spanned by the faces d2∆

2 and d0∆
2. Given two homotopies h2, h0 : ∆

1×X → Y that
are compatible, in the sense that h2 is a homotopy from ℓ0 to ℓ1 and h0 is a homotopy from
ℓ1 to ℓ2, one may prescribe a map ✑✑ ✲

✲✲✲✲✲ 2
1×X → Y as h2 on d2∆

2×X and as h0 on d0∆
2×X .

This map has an extension H : ∆2 ×X → Y and the restriction of H to d1∆
2 ×X gives a

homotopy from ℓ0 to ℓ2, which can be thought of as a concatenation of h2 and h0. We will
need the following effective, relative and fibrewise version; the proof is entirely analogous
to that of the previous proposition and we omit it.

Proposition 3.9 (homotopy concatenation). Given a diagram

( ✑✑ ✲
✲✲✲✲✲ 2
1 ×X) ∪ (∆2 × A) //

��

∼

��

Pn

����

∆2 ×X //

66♥♥♥♥♥♥♥

Pm

where (X,A) is equuipped with effective homology, it is possible to compute a diagonal. In
other words, one may concatenate homotopies in Moore–Postnikov towers algorithmically.

4. Computing homotopy classes of maps

In this section, we prove Theorems 1.1 and 1.3. First, we explain our computational model
for abelian groups, since these are one of our main computational objects and also form
the output of our algorithms.

There are two levels of these computational models: semi-effective and fully effective
abelian groups. They are roughly analogous to locally effective chain complexes and ef-
fective ones. There is, however, one significant difference: while an element of a chain
complex is assumed to have a unique computer representation, a single element of a semi-
effective abelian group may have many different representatives. We can perform the group
operations in terms of the representatives but, in general, we cannot decide whether two
representatives represent the same group element. This setting is natural when working
with elements of [X,Pn]

A
B, i.e. homotopy classes of diagonals. The representatives are sim-

plicial maps X → Pn, and at first, we will not be able to decide whether two given such
maps are homotopic.

Given a semi-effective abelian group, it is not possible to compute its isomorphism type
(even when it is finitely generated); for this we need additional information, summarized
in the notion of a fully effective abelian group. A semi-effective abelian group can be made
fully effective provided that it is a part of a suitable exact sequence, additionally provided
with set-theoretic sections; this is described in Lemma 4.5.

This suggests a computation of [X,Pn]
A
B in two steps. First, in Theorem 4.13, we endow

it with a structure of a semi-effective abelian group (whose addition comes from the weak
H-space structure on Pn constructed later in Section 5.14). Next, we promote it to a
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fully effective abelian group by relating it to [X,Pn−1]
A
B and [∆1 ×X,Pn−1]

(∂∆1×X)∪(∆1×A)
B

through a long exact sequence of Theorem 4.16 and using induction.
We note that the long proofs of Theorems 4.13 and 4.16 are postponed to later sections.

This enables us to complete the proof of the main Theorem 1.3 in the present section.

4.1. Operations with abelian groups. This subsection is a short summary of a detailed
discussion found in [4]; results not included there are proved.

In our setting, an abelian group A is represented by a set A, whose elements are called
representatives ; we also assume that the representatives have a finite encoding by bit
strings. For α ∈ A, let [α] denote the element of A represented by α. The representation
is generally non-unique; we may have [α] = [β] for α 6= β.

We call A represented in this way semi-effective, if algorithms for the following three
tasks are available: provide an element o ∈ A with [o] = 0 (the neutral element); given
α, β ∈ A, compute γ ∈ A with [γ] = [α] + [β]; given α ∈ A, compute β ∈ A with
[β] = −[α].

For semi-effective abelian groups A, B, with sets A, B of representatives, respectively,
we call a mapping f : A→ B computable if there is a computable mapping ϕ : A → B such
that f([α]) = [ϕ(α)] for all α ∈ A.

We call a semi-effective abelian group A fully effective if there is given an isomorphism
A ∼= Z/q1 ⊕ · · · ⊕ Z/qr, computable together with its inverse. In detail, this consists of

• a finite list of generators a1, . . . , ar of A (given by representatives) and their orders
q1, . . . , qr ∈ {2, 3, . . .} ∪ {0} (where qi = 0 gives Z/qi = Z),

• an algorithm that, given α ∈ A, computes integers z1, . . . , zr so that [α] =
∑r

i=1 ziai;
each coefficient zi is unique within Z/qi.

The proofs of the following lemmas are not difficult. The first is [4, Lemma 3.2 and 3.3].

Lemma 4.2 (kernel and cokernel). Let f : A→ B be a computable homomorphism of fully
effective abelian groups. Then both ker(f) and coker(f) can be represented as fully effective
abelian groups.

This implies formally that the same holds for im(f), since it equals the kernel of the
projection B → coker(f).

Example 4.3. Clearly, every chain group Cn in an effective chain complex C∗ is fully
effective. Thus, so are the subgroups of cocyles Zn(C∗) and boundaries Bn(C∗) and, con-
sequently, also the homology groups Hn(C∗) = Zn(C∗)/Bn(C∗). The same applies to
cohomology groups of effective cochain complexes.

Definition 4.4. A semi-effective exact sequence (of abelian groups) is an exact sequence

· · · −→ An+1
dn+1

−−−−→ An
dn−−→ An−1

dn−1

−−−−→ An−2 −→ · · ·
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of semi-effective abelian groups and computable homomorphisms such that the induced
maps

dn : coker dn+1 → ker dn−1

have computable inverses, called sections. If the sequence is bounded from either side, we
require sections only for inner differentials.

Since An/ ker dn is represented by An and im dn by a subset of An−1, this amounts
to computable partial mappings ρn−1 : An−1

//❴❴❴ An, defined on representatives of im dn,
such that dn[ρn−1(γ)] = [γ]. In general, it may happen that [γ] = [γ′], while [ρn−1(γ)] 6=
[ρn−1(γ

′)].

Lemma 4.5 (5-lemma). There is an algorithm that, given a semi-effective exact sequence

A2
d2−−→ A1

d1−−→ A0
d0−−→ A−1

d−1

−−−→ A−2,

with all A−2, A−1, A1 and A2 fully effective, makes also A0 fully effective.

Proof. Consider the induced short exact sequence

0 −→ coker d2
d1−−→ A0

d0−−→ ker d−1 −→ 0.

Viewing sections as maps from the kernel to the cokernel, it is still a semi-effective exact
sequence. Now apply [4, Lemma 3.5].

Definition 4.6. We say that a mapping f : A→ B between groups is an affine homomor-
phism if its translate f 0 : A→ B, given by f 0(a) = f(a)−f(0), is a group homomorphism.
This is equivalent to

f(a+ b) = f(a) + f(b)− f(0) (4.7)

Clearly, for semi-effective A and B, an affine homomorphism f is computable iff f 0 and
the constant f(0) are computable. We will also need the following simple lemma.

Lemma 4.8 (preimage). Let f : A → B be a computable affine homomorphism of fully
effective abelian groups. Then there is an algorithm that, given b ∈ B, decides whether it
lies in im f . If it does, it computes a preimage a ∈ f−1(b).

Proof. Equivalently, we ask for f 0(a) = b − f(0). Compute the images f 0(a1), . . . , f
0(ar)

of the generators of A. Next, decide if the equation

x1f
0(a1) + · · ·+ xrf

0(ar) = b− f(0)

has a solution (this is done by translating to the direct sum of cyclic groups and solving
there using standard methods). If a solution exists, output a = x1a1 + · · ·+ xrar.
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4.9. Making Eilenberg–MacLane spaces fibrewise. The description of Pn in the
definition of a Moore–Postnikov tower as a pullback is both classical and useful for the
actual construction of the tower. For the upcoming computations, it has a major dis-
advantage though – the spaces appearing in the pullback square are not spaces over
B. This is easily corrected by replacing the Eilenberg–MacLane space by the product
Kn+1 = B × K(πn, n + 1) and the “path space” by En = B × E(πn, n). Denoting by
kn the fibrewise Postnikov invariant, i.e. the map whose first component is the projec-
tion ψn−1 : Pn−1 → B and the second component is the original (non-fibrewise) Postnikov
invariant k′n, we obtain another pullback square

Pn
qn

//

pn

��

En

δ

��

Pn−1
kn

// Kn+1

We will need that Ln = B × K(πn, n) is a fibrewise abelian group: for two elements

z = (b, z′) and w = (b, w′) of Ln lying over the same b ∈ B, we define z +w
def
= (b, z′ +w′).

The same applies to En and Kn+1.
Since we know that homotopy classes of maps into Eilenberg–MacLane spaces corre-

spond to cohomology groups and these are easy to compute, the following result should
not be surprising; in its statement, the fixed map A→ Ln is the only fibrewise map (over
B) with values on the zero section, i.e. (gι, 0) : A→ B ×K(πn, n); we call it the zero map
and denote it 0.

Lemma 4.10. Let (X,A) be equipped with effective homology. Then it is possible to equip
[X,Ln]

A
B with a structure of a fully effective abelian group; the elements are represented by

algorithms that compute (equivariant) fibrewise simplicial maps X → Ln that take A to the
zero section.

Proof. We start with isomorphisms

[X,Ln]
A
B
∼= [(X,A), (K(π, n), 0)] ∼= Hn

G(X,A; π)
∼= Hn

G(X,A; π)
ef

where the group on the right is the cohomology group of the “effective” cochain com-
plex C∗

ef(X,A; π)
G = HomZG(C

ef
∗ (X,A), π) of equivariant cochains on the effective chain

complex of (X,A); the last isomorphism comes from effective homology of (X,A).
Elements of these groups are represented by algorithms that compute the respective

(equivariant) simplicial maps or equivariant cocycles and it is possible to transform one
such representing algorithm into another, so that the isomorphisms are computable in both
directions. The last group is fully effective by Example 4.3.

It will also be useful to generalize the above lemma to the case of maps whose restriction
to A is fixed to a non-zero map. For practical reasons, we will formulate this for [X,Kn+1]

A
B

and will assume that the fixed restriction is of the form δc for some fibrewise map c : A→
En.
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Lemma 4.11. Let (X,A) be equipped with effective homology. Then it is possible to equip
[X,Kn+1]

A
B with a structure of a fully effective abelian group; the elements are represented

by algorithms that compute (equivariant) fibrewise simplicial maps X → Kn+1 whose re-
striction to A equals δc.

Proof. We denote the group from the statement [X,Kn+1]
A,c
B and start with the computa-

tion of its zero. Namely, it is possible to compute an extension c̃ : X → En as in the proof
of Lemma 2.17. The zero is then represented by δc̃. There is an isomorphism

[X,Kn+1]
A,0
B

∼=
−−→ [X,Kn+1]

A,c
B , [ℓ] 7→ [ℓ+ δc̃],

computable in both directions. The group on the left has been endowed with a fully
effective abelian group structure in Lemma 4.10.

We remark that the homotopy class of the zero is independent of the choice of c̃: it is
the only homotopy class in the image of δ∗ : [X,En]

A
B → [X,Kn+1]

A
B – the domain has a

single element since En is (fibrewise) contractible. We denote this homotopy class 0 = [δc̃].

Semi-effectiveness of [X,Pn]
A

B
for stable stages Pn.

Definition 4.12. We call a Moore–Postnikov stage Pn stable if n ≤ 2d, where d is the
connectivity of the homotopy fibre of ψ : Y → B (as in the introduction).

We remark that d is also the connectivity of the homotopy fibre of ψn : Pn → B and,
thus, stability may be defined without any reference to Y .

The significance of the stability condition lies in the existence of an abelian group
structure on [X,Pn]

A
B. The construction of this structure is (together with the construction

of the Moore–Postnikov tower) technically the most demanding part of the paper and we
postpone it to later sections. For its existence, we will have to assume that [X,Pn]

A
B is

non-empty; in fact, the structure depends on the choice of a zero of this group, i.e. an
element [on] ∈ [X,Pn]

A
B.

Theorem 4.13. Suppose that Pn is a stable stage of a Moore–Postnikov tower with effective
homology and that (X,A) is equipped with effective homology. Then, for any given solution
on : X → Pn, the set [X,Pn]

A
B admits a structure of a semi-effective abelian group with zero

[on], whose elements are represented by algorithms that compute diagonals X → Pn.

The proof of the theorem occupies a significant part of the paper. First, we construct
a “weak H-space structure” on Pn (or, in fact, a pullback of it) in Section 5 and then show
how this structure gives rise to addition on the homotopy classes of diagonals in Section 6.

4.14. Exact sequence relating consecutive stable stages. To promote the semi-
effective group structure on [X,Pn]

A
B to a fully effective one, we will apply Lemma 4.5

to a certain exact sequence relating two consecutive stable stages of the Moore–Postnikov
tower. The sequence involves the groups [X,Ln]

A
B and [X,Kn+1]

A
B, where the fixed restric-

tions are the zero map A→ Ln and the composite δqnfn : A→ Kn+1.
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Theorem 4.15. Suppose that n ≤ 2d and that (X,A) is equipped with effective homology.
For any given zero [on−1] ∈ [X,Pn−1]

A
B, the computable map kn∗ in

[X,Pn]
A
B

pn∗

−−−→ [X,Pn−1]
A
B

kn∗−−−→ [X,Kn+1]
A
B

is an affine homomorphism and im pn∗ = k−1
n∗ (0).

In the next theorem, a given zero [on] ∈ [X,Pn]
A
B induces naturally, for all i ≤ n, zeros

[oi] ∈ [X,Pi]
A
B and Theorem 4.13 then provides [X,Pi]

A
B with a group structure. Further,

the group [∆1 × X,Pi]
(∂∆1×X)∪(∆1×A)
B consists of homotopy classes of homotopies oi ∼ oi

relative to A (this prescribes the fixed restriction to the subspace (∂∆1 ×X)∪ (∆1 ×A)),
whose zero is the homotopy class of the constant homotopy at oi.

Theorem 4.16. Suppose that n ≤ 2d, that (X,A) is equipped with effective homology and

that a zero [on] ∈ [X,Pn]
A
B is given in such a way that [∆1 ×X,Pi]

(∂∆1×X)∪(∆1×A)
B is fully

effective for all i < n− 1. Then there is a semi-effective exact sequence

[∆1 ×X,Pn−1]
(∂∆1×X)∪(∆1×A)
B

∂n−−→ [X,Ln]
A
B

jn∗

−−−→
jn∗

−−−→ [X,Pn]
A
B

pn∗

−−−→ [X,Pn−1]
A
B

kn∗−−−→ [X,Kn+1]
A
B (4.17)

of abelian groups.

The exactness itself ought to be well known and is nearly [3, Proposition II.2.7]. The
proofs are postponed to Section 6.8.

4.18. Proof of Theorem 1.3. Let us review the reductions made so far. By Theorem 3.5,
it is enough to compute [X,Pn]

A
B for n = dimX ≤ 2d. The rest of the proof does not depend

on the dimension of X . Concretely, we prove the following two claims for all pairs (X,A)
with effective homology by induction with respect to n ≤ 2d:

1. given a zero [on] ∈ [X,Pn]
A
B, make [X,Pn]

A
B into a fully effective abelian group;

2. decide if [X,Pn]
A
B is non-empty and, if this is the case, compute an element [on].

Since P0 = B, we have [X,P0]
A
B = ∗ and both claims are trivial in this case.

By Theorem 4.13, [X,Pn]
A
B is a semi-effective abelian group. According to Theo-

rem 4.16, this group fits into an exact sequence with all remaining terms fully effective
either by Lemma 4.10, Lemma 4.11 or by induction, since they concern diagonals into Pn−1

(the domain ∆1 ×X of the leftmost term admits effective homology by Proposition 2.10).
Lemma 4.5 makes [X,Pn]

A
B fully effective.

If [X,Pn−1]
A
B is empty, so is [X,Pn]

A
B. Otherwise, compute a zero of [X,Pn−1]

A
B and

make it into a fully effective abelian group structure. Next, use Lemma 4.8 to decide if
0 lies in the image of the affine homomorphism kn∗ and, if this is the case, compute a
preimage [on−1] (generally different from the chosen zero of [X,Pn−1]

A
B). Finally, lift on−1

to on : X → Pn using Proposition 3.7 – a lift exists by Theorem 4.15.

24



Deciding existence for n = dimX = 2d+1. Since Lemma 2.17 guarantees the existence
of a diagonal X → Pn as a lift of any partial diagonal X → Pn−1, it is enough to decide
whether the stable [X,Pn−1]

A
B is non-empty.

4.19. Proof of Theorem 1.1. We describe how the set of equivariant homotopy classes of
maps [X, Y ] between two G-simplicial sets can be computed as a particular stable instance
of the lifting-extension problem, namely [X, Y ]∅EG, so that Theorem 1.3 applies.

This instance is obtained by setting B = EG, where EG (known as the Rips complex)
is a non-commutative version of E(π, 0). It has as n-simplices sequences (a0, . . . , an) of
elements ai ∈ G, and its face and degeneracy operators are the maps

di(a0, . . . , an) = (a0, . . . , ai−1, ai+1, . . . , an)

si(a0, . . . , an) = (a0, . . . , ai−1, ai, ai, ai+1, . . . , an).

There is an obvious diagonal action of G which is clearly free.
As every k-simplex of EG is uniquely determined by its (ordered) collection of vertices,

it is clear that a simplicial map g : X → EG is uniquely determined by the mapping
g0 : X0 → G of vertices and g is equivariant if and only if g0 is. A particular choice of a
map X → EG is thus uniquely specified by sending the distinguished vertices of X to (e);
it is clearly computable. Moreover, any two equivariant maps X → EG are (uniquely)
equivariantly homotopic (vertices of ∆1 ×X are those of 0×X and 1×X).

Factoring Y → EG as Y //∼ // Y ′ // // EG using Lemma 7.2, the geometric realization of
Y ′ equivariantly deforms onto that of Y . This shows that the first map in

[X, Y ]
∼=
−→ [X, Y ′]← [X, Y ′]∅EG

is a bijection and it remains to study the second map. As observed above, for every
simplicial map X → Y ′, the lower triangle in

∅ //

��

Y ′

����

X //

ℓ

99t
t

t
t

t
t

EG

commutes up to homotopy. Since Y ′ // //EG is a fibration, one may replace ℓ by a homotopic
map for which it commutes strictly, showing surjectivity of [X, Y ′]∅EG → [X, Y ′]. The
injectivity is implied by uniqueness of homotopies – every homotopy of maps X → Y ′ that
are diagonals is automatically vertical.

It remains to show how to identify a given equivariant map ℓ : X → Y as an element of
the computed group [X,Pn]

∅
EG. By its fully effective abelian group structure, it is enough

to find the corresponding diagonal X → Pn. As above, compute a homotopy h from ψℓ to
g : X → EG; then, using Proposition 3.8, compute a lift of h that fits into

0×X ℓ //

��

��

Y
ϕn

// Pn

����

∆1 ×X
h

//

h̃

66❧❧❧❧❧❧❧❧

EG
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The restriction of h̃ to 1×X is the required diagonal X → Pn.

We remark that it is also possible to compute [X, Y ] as [X,X × Y ]∅X .

5. Weak H-spaces

Our goal for the following two sections is to equip [X,Pn]
A
B with a semi-effective abelian

group structure. We will do this indirectly – we replace Pn, a space over B, by a certain
pullback P̃n, a space over B̃. Proposition 6.7 will then give an isomorphism [X,Pn]

A
B
∼=

[X, P̃n]
A

B̃
, computable in both directions, and will thus reduce our task to a similar one for

P̃n. The main advantage of P̃n over Pn is that the projection ψ̃n : P̃n → B̃ admits a section
õn : B̃ → P̃n that we may think of as a choice of a point in each fibre of ψ̃n (made in a

“continuous” way) – we say that P̃n is pointed.

This is the first step to introducing a fibrewise H-space structure on P̃n; again, one
could think of this structure as a choice of an H-space structure on each fibre that is made
in a “continuous” way. The fibrewise H-space structure on P̃n induces an abelian group
structure on the set of fibrewise homotopy classes of maps to P̃n as usual; this is described
in Section 6.

To simplify the notation, i.e. in order to deal with Pn rather than P̃n, we will assume
in this section that Pn itself is pointed (and stable) and equip it with a fibrewise H-space
structure and treat the general case only in the next section.

First, we explain a simple approach to constructing a strict fibrewise H-space structure,
which we were not able to make algorithmic, but which introduces ideas employed in the
actual proof of Theorem 4.13, and it also shows why a weakening of the H-space structure
is needed.

We start with additional running assumptions.

Convention 5.1. In addition to Convention 2.4, all simplicial sets are equipped with a
map to B and all maps, homotopies, etc. are fibrewise, i.e. they commute with the specified
maps to B. In the case of homotopies, this means that they remain in one fibre the whole
time or, in other words, that they are vertical.

Definition 5.2. We say that a space P over B, with projection ψ : P // // B, is pointed
if there is provided a section o : B → P , i.e. a map such that ψo = id. We will call this
distinguished section o the zero section.

5.3. Fibrewise H-spaces. Let P be a pointed space over B with projection ψ : P // // B
and zero section o : B → P . We recall that the pullback P ×B P consists of pairs (x, y)
with ψ(x) = ψ(y). Associating to (x, y) this common value makes P ×B P into a space
over B. We recall that a (fibrewise) H-space structure on P is a (fibrewise) map

add: P ×B P → P,
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where we write add(x, y) = x + y, that satisfies a single condition – the zero section
o should act as a zero for this addition, i.e. for x ∈ P lying over b = ψ(x) we have
o(b) + x = x = x + o(b). In the proceeding, we will abuse the notation slightly and write
o for any value of o, so that we rewrite the zero axiom as o + x = x = x + o. After all,
there is a single value of o for which this makes sense. It will be convenient to organize
this structure into a commutative diagram

P ∨B P

∇

&&▼
▼▼▼

▼▼▼
▼▼▼

▼▼

ϑ
��

P ×B P add
// P

with P ∨B P the fibrewise wedge sum, P ∨B P = (B ×B P ) ∪ (P ×B B) (where B ⊆ P is
the image of the zero section o), and with ∇ denoting the fold map given by (o, x) 7→ x
and (x, o) 7→ x. As explained, all maps are fibrewise over B. Under this agreement, the
above diagram is a definition of a (fibrewise) H-space structure.

We say that the H-space structure is homotopy associative if there exists a homotopy
(x + y) + z ∼ x + (y + z) (i.e. formally a homotopy of maps P ×B P ×B P → P ) that is
constant when restricted to x = y = z = o. Homotopy commutativity is defined similarly.
Finally, it has a right homotopy inverse if there exists a map inv : P → P , denoted x 7→ −x,
such that −o = o and such that there exists a homotopy x + (−x) ∼ o, constant when
restricted to x = o.

We have already met an example of an H-space, namely Ln = B×K(πn, n). We recall
that Pn is a stable stage if n ≤ 2d, where d is the connectivity of the homotopy fibre of ψ.
In general, we have the following theorem, whose proof can be found in Section 7.

Theorem 5.4. Every pointed stable Moore–Postnikov stage Pn admits a fibrewise H-space
structure. Any such structure is homotopy associative, homotopy commutative and has a
right homotopy inverse. It is unique up to homotopy relative to Pn ∨B Pn.

The importance of this result does not lie in the existence of an H-space structure itself
but in its uniqueness and its properties. After all, we will need to construct this structure
and, in this respect, the above existential result is not sufficient.

5.5. H-space structures on pullbacks. We describe a general method for introducing
H-space structures on pullbacks since Pn is defined in this way. Let us start with a general
description of our situation. We are given a pullback square

P //

��

R

ψ
����

Q χ
// S

with ψ a fibration. We assume that all of Q, R and S are H-spaces over B, and that R
and S are strictly associative, commutative and with a strict inverse. If both ψ and χ
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preserved the addition strictly we could define addition on P ⊆ Q×R componentwise. In
our situation, though, χ preserves the addition only up to homotopy and, accordingly, the
addition on P will have to be perturbed to

(x, y) + (x′, y′) = (x+ x′, y + y′ +M(x, x′)). (5.6)

There are two conditions that need to be satisfied in order for this formula to be correct:
ψM(x, x′) = χ(x + x′) − (χ(x) + χ(x′)) (so that the right-hand side of (5.6) lies in the
pullback) and M(x, o) = o = M(o, x) (to get an H-space). Both are summed up in the
following lifting-extension problem

P ∨B P
o //

ϑ
��

R

ψ
����

P ×B P m
//

M

::t
t

t
t

t
S

with m(x, x′) = χ(x + x′) − (χ(x) + χ(x′)). In our situation, ψ is δ : En → Kn+1. Thus,
Lemma 2.17 would give us a solution if the pair (P ×B P, P ∨B P ) had effective homology.

However, we have not been able to prove this and, consequently, we cannot construct
the addition on the pullback. In the computational world, we are thus forced to replace this
pair by a certain homotopy version (P ×̂B P, P ∨̂B P ) of it that admits effective homology.
This transition corresponds, as will be explained later, to a passage from H-spaces to
a weakened notion, where the zero section serves as a zero for the addition only up to
homotopy.

After this rather lengthy introduction, the plan for the rest of the section is to introduce
weak H-spaces and then to describe an inductive construction of weak H-space structure
on pointed stable stages of Moore–Postnikov towers. We believe that to understand the
weak version, it helps significantly to keep in mind the above formula for addition on P .
For the same reason, we give a formula for a right inverse in P , assuming that it exists in
Q (and in R and S, as required earlier):

− (x, y) = (−x,−y −M(x,−x)). (5.7)

5.8. Weak H-spaces. We will need a weak version of an H-space. Roughly speaking this
is defined to be a fibrewise addition x+y together with left zero and right zero homotopies
λ : y ∼ o + y and ρ : x ∼ x + o that become homotopic as homotopies o ∼ o + o. In
simplicial sets, a homotopy between homotopies can be defined in various ways. Here we
will interpret it as a map η : ∆2 × B → P that is a constant homotopy on d2∆

2 × B and
restricts to the two unit homotopies on d1∆

2 × B and d0∆
2 × B, respectively:

o+ o

//η//
o s0o

//

λ(o)
<<②②②②②②②②②

o

ρ(o)
bb❊❊❊❊❊❊❊❊❊
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We will organize this data into a map add: P ×̂B P → P with similar properties to
the strict H-space structure. The space P ×̂B P will be a special case of the following
construction which works for any commutative square (of spaces over B)

S =

Z
u0 //

u1

��

Z0

v0

��

Z1 v1
// Z2

that we denote for simplicity by S. We define |S| and its subspace d2|S| as particular small
models of the homotopy colimit of the square S and of the homotopy pushout of Z0 and
Z1 along Z; namely,

|S| =
(
∆2 × Z

)
∪
(
d1∆

2 × Z0

)
∪
(
d0∆

2 × Z1

)
∪
(
2× Z2

)
,

d2|S| =
(
d2∆

2 × Z
)
∪
(
0× Z0

)
∪
(
1× Z1

)
,

where we assume for simplicity that all maps in S are inclusions; otherwise, the union has
to be replaced by a certain (obvious) colimit. In the case of inclusions, |S| is naturally a
subspace of ∆2 ×Z2 and as such admits an obvious map to ∆2×B whose fibres are equal
to those of Z, Z0, Z1 or Z2 (over B), depending on the point of ∆2. In the picture below,
B = {∗} and |S| is thus depicted as a space over ∆2; here, Z2 is a 3-simplex, Z0 and Z1

its edges and Z their common vertex.

∆2 ×B

d1∆
2 × Z0

2× Z2

∆2 × Z

d0∆
2 × Z1

The construction |S| possesses the following universal property: to give a map f : |S| →
Y is the same as to give maps fi : Zi → Y (for i = 0, 1, 2), homotopies hi : fi ∼ f2vi (for
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i = 0, 1) and a “second order homotopy” H : ∆2 × Z → Y whose restriction to di∆
2 × Z

equals hiui (for i = 0, 1). Similarly, a map d2|S| → Y is specified by f0 : Z0 → Y and
f1 : Z1 → Y as above and a homotopy f0u0 ∼ f1u1.

In order to apply this definition to weak H-spaces, we consider the square

SP =

B ×B B // // B ×B P
def
= Pright

��

��

Pleft
def
= P ×B B // //

��

��

P ×B P

(the subspaces consist of pairs where one of the two components, or both, lie on the zero
section). We will denote B×BB for simplicity by B, to which it is canonically isomorphic.

Definition 5.9. Let P → B be a Kan fibration. We define simplicial sets

P ∨̂B P
def
= d2|SP |, P ×̂B P

def
= |SP |.

We denote the inclusion by ϑ : P ∨̂B P → P ×̂B P .
Furthermore, we define a “fold map” ∇̂ : P ∨̂B P → P , prescribed as the identity map

on 0× Pright and 1× Pleft and as the constant homotopy at o on d2∆
2 ×B.

We remark that P ∨̂B P and P ×̂B P are weakly homotopy equivalent to P ∨B P and
P ×B P , respectively; this is proved in Lemma 7.4. Now, we are ready to define weak
H-spaces.

Definition 5.10. A weak H-space structure on P is a (fibrewise) map add: P ×̂B P → P
that fits into a commutative diagram

P ∨̂B P

∇̂

%%▲
▲▲

▲▲
▲▲

▲▲
▲▲

▲

ϑ
��

P ×̂B P add
// P

We denote the part of add corresponding to 2× (P ×B P ) by x+ y = add(2, x, y), the part
corresponding to d1∆

2×Pright, i.e. the left zero homotopy, by λ, and the part corresponding
to d0∆

2 × Pleft, i.e. the right zero homotopy, by ρ.
Finally, we define a “diagonal” ∆̂ : P → P ×̂B P by x 7→ (2, x, x).

All these associations are natural, making P ∨̂B P , P ×̂B P into functors and ∇̂, ϑ, ∆̂
into natural transformations.

Proposition 5.11. Assume that all the spaces in the square S have effective homology.
Then so does the pair (|S|, d2|S|).

The proof is given in Section 7. The following special case will be crucial in constructing
a weak H-space structure on pointed stable stages of Moore–Postnikov towers.
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Corollary 5.12. Let Pn be a pointed stage of a Moore–Postnikov tower with effective
homology. Then it is possible to equip the pair (Pn×̂BPn, Pn ∨̂BPn) with effective homology.

Proof. According to Addendum 3.4, it is possible to equip Pn×BPn with effective homology.
Thus, the result follows from the previous proposition.

Remark. Alternatively, we may construct effective homology of Pn×B Pn at the same time
as we build the tower for Y → B but, compared to Pn, with all Eilenberg–MacLane spaces
and all Postnikov classes “squared”.

The following proposition will be used in Section 5.14 as a certificate for the existence
of a weak H-space structure on Pn; namely, it will guarantee that all relevant obstructions
vanish.

Proposition 5.13. For any Moore–Postnikov stage Pn, the pair (Pn ×̂B Pn, Pn ∨̂B Pn) is
(2d + 1)-connected, where d is the connectivity of the homotopy fibre of ψ : Y → B (or
equivalently of ψn : Pn → B).

In particular, the cohomology groups H∗
G(Pn×̂BPn, Pn∨̂BPn; π) of this pair with arbitrary

coefficients π vanish up to dimension 2d+ 1.

The proof can be found in Section 7.

5.14. Constructing weak H-spaces. Prime examples of weak H-spaces are the strict
ones and, in particular, every fibrewise simplicial group is a weak H-space. In the proceed-
ing, we will make use of the trivial bundles Kn+1 = B×K(πn, n+1) and En = B×E(πn, n).
Since Kn+1 is a fibrewise simplicial group, we have a whole family of weak H-space struc-
tures on Kn+1, one for each choice of a zero section o : B → Kn+1; namely, we define
addition z+o w = z+w− o (the inverse then becomes −oz = −z +2o). A similar formula
defines an H-space structure on En for every choice of its zero section. We denote the usual
zero section by 0.

We are now ready to prove the following crucial proposition.

Proposition 5.15. If Pn is a pointed stable stage of a Moore–Postnikov tower with effective
homology, with a zero section on, it is possible to construct a structure of a weak H-space
on Pn with a strict right inverse.

Proof. The proof is by induction and the base case is trivial since P0 = B. Let Pn−1

be a Moore–Postnikov stage and kn : Pn−1 → Kn+1 the respective (fibrewise) Postnikov
invariant. There is a pullback square

Pn
qn

//

pn

��

En

δ
��

Pn−1
kn // Kn+1

(5.16)

of spaces over B. We denote the images of the zero section on : B → Pn by on−1 = pnon
in Pn−1, by qnon in En and by knon−1 in Kn+1. In this way Kn+1 is equipped with two
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sections, the zero section 0 and the composition knon−1. We will see that the fact that
these do not coincide in general causes some technical problems.

Assume inductively that there is given a structure of a weak H-space on Pn−1.

Pn−1 ∨̂B Pn−1

∇̂

((PP
PPP

PPP
PPP

PPP

ϑ
��

Pn−1 ×̂B Pn−1 add
// Pn−1

In analogy with Section 5.5, we form the “non-additivity” map m : Pn−1 ×̂B Pn−1 → Kn+1

as the difference of the following two compositions

Pn−1 ×̂B Pn−1
add

ww♦♦♦
♦♦♦

♦♦♦ kn×̂kn

''❖❖
❖❖❖

❖❖❖

Pn−1

kn ''PP
PPP

PPP
P − Kn+1 ×̂B Kn+1

addknon−1
ww♥♥♥

♥♥♥
♥♥♥

Kn+1

where addknon−1
is the H-space structure on Kn+1 whose zero section is knon−1. We recall

that it is given by z +knon−1
w = z + w − knon−1.

We now construct a weak H-space structure on Pn = Pn−1×Kn+1
En under our stability

assumption n ≤ 2d. The zero of this structure will be on. We compute a diagonal in

Pn−1 ∨̂B Pn−1
0 //

ϑ
��

En

δ

��

Pn−1 ×̂B Pn−1 m
//

M

77♦
♦

♦
♦

♦
♦

Kn+1

(5.17)

by Lemma 2.17, whose hypotheses are satisfied according to Corollary 5.12 and Propo-
sition 5.13. The existence of M says roughly that kn is additive up to homotopy. We
define

add: Pn ×̂B Pn −→ Pn = Pn−1 ×Kn+1
En

by its two components pn add and qn add. The first component pn add is uniquely specified
by the requirement that pn : Pn → Pn−1 is a homomorphism, i.e. by the commutativity of
the square

Pn ×̂B Pn
add //

pn×̂pn
��

Pn

pn

��

Pn−1 ×̂B Pn−1 add
// Pn−1
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The second component qn add is given as a sum

Pn ×̂B Pn
qn×̂qn

yyttt
tt
ttt pn×̂pn

&&▲
▲▲

▲▲
▲▲

En ×̂B En

addqnon %%❑
❑❑

❑❑
❑❑

❑ + Pn−1 ×̂B Pn−1

Mxxqqq
qqq

qq

En

The last two diagrams are a “weak” version of the formula (5.6). A simple diagram chase
shows that the two components are compatible and satisfy the condition of a weak H-space;
details can be found in Lemma 7.6.

Assuming that inv is constructed on Pn−1 in such a way that x + (−x) = on−1, we
define a right inverse on Pn by the formula

−(x, c) = (−x,−c + 2qnon −M(2, x,−x)).

Again, inv is well defined and is a right inverse for add; details can be found in Lemma 7.6.

6. Structures induced by weak H-spaces

In this section, we prove Theorems 4.13, 4.15 and 4.16. We start by general considerations.

Definition 6.1. We say that a lifting-extension problem

A
f

//
��

ι

��

P

ψ
����

X g
//

>>⑥
⑥

⑥
⑥

B

o

]]

☛

✤
✸

is pointed if P is pointed in such a way that f = ogι.

This condition is equivalent to og being a solution; thus, [X,P ]AB in naturally pointed
by the homotopy class [og]. Until further notice, we consider a pointed lefting-extension
problem.

In the case of a strict H-space P over B, it is easy to define addition on [X,P ]AB: simply
put [ℓ0] + [ℓ1] = [ℓ0 + ℓ1]. In particular, this defines addition on [X,Ln]

A
B which, under the

identification of [X,Ln]
A
B with Hn

G(X,A; πn), corresponds to the addition in the cohomology
group.

It is technically much harder to equip [X,P ]AB with addition when the H-space structure
on P is weak. In this case, the restriction of ℓ0 + ℓ1 to A equals f + f 6= f (note that the
values of f lie on the zero section and o + o 6= o) and thus does not represent an element
of [X,P ]AB. This problem is solved in Section 6.2 using a strictification of weak H-space
structures, which serves as a compact definition of addition in [X,P ]AB and is also a useful
tool in proofs that deal with the addition in [X,P ]AB on a global level, e.g. in deriving the
exact sequence of Theorem 4.16.
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6.2. Strictification and addition of homotopy classes. The point of this subsection
is to describe a perturbation of a weak H-space structure to one for which the zero is strict.
We will then apply this to the construction of addition on [X,Pn]

A
B. Assume thus that we

have a weak H-space structure

P ∨̂B P

ϑ
��

∇̂

%%▲
▲▲

▲▲
▲▲

▲▲
▲▲

▲

P ×̂B P add
// P

Form the following lifting-extension problem where the top map is add on P ×̂B P and
∇ pr2 on d2∆

2× (P ∨B P ). Lemma 7.4 shows that the map on the left is a weak homotopy
equivalence and thus a diagonal exists (but in general not as a computable map).

(P ×̂B P ) ∪
(
d2∆

2 × (P ∨B P )
)

��

∼

��

[add,∇pr2] // P

ψ

����

∆2 × (P ×B P ) //

44✐✐✐✐✐✐✐✐✐✐✐

B

The restriction of the diagonal to 0× (P ×B P ) is then a (strict!) H-space structure which
we denote add′ with the corresponding addition +′. The restriction to d1∆

2× (P ×B P ) is
a homotopy +′ ∼ +.

Definition 6.3. Let P be a weak H-space with addition add. Let add′ be its perturbation
to a strict H-space structure as above. We define the addition in [X,P ]AB by [ℓ0] + [ℓ1] =
[ℓ0 +

′ ℓ1]. Below, we prove that it is independent of the choice of a perturbation.

Composing the above homotopy +′ ∼ + with a pair of solutions (ℓ0, ℓ1), we obtain
ℓ0 +

′ ℓ1 ∼ ℓ0 + ℓ1 whose restriction to A is the left zero homotopy λf : f = f +′ f ∼ f + f .
We will use this observation as a basis for the computation of the homotopy class of ℓ0+

′ ℓ1,
since we do not see a way of computing add′ directly – it seems to require certain pairs to
have effective homology and we think that this might not be the case in general.

Restricting to the case P = Pn of Moore–Postnikov stages, the addition in [X,Pn]
A
B

is computed in the following algorithmic way. Let ℓ0, ℓ1 : X → Pn be two solutions and
consider ℓ0 + ℓ1 whose restriction to A equals f + f . Extend the left zero homotopy
λf : f ∼ f + f on A to a homotopy σ : ℓ ∼ ℓ0 + ℓ1 on X . It is quite easy to see that the
resulting map ℓ is unique up to homotopy relative to A.12 Since ℓ0+

′ ℓ1 is also obtained in
this way, this procedure gives correctly [ℓ] = [ℓ0] + [ℓ1] ∈ [X,Pn]

A
B. From the algorithmic

point of view, this is well behaved – if (X,A) is equipped with effective homology, we
may extend homotopies by Proposition 3.8. This proves the first half of the following
proposition.

12Given two such homotopies, one may form out of them a map ( ✑✑ ✲
✲✲✲✲✲ 2
2
× X) ∪ (∆2 × A) → Pn, whose

extension to ∆2 ×X , fibrewise over B, gives on d2∆
2 ×X the required homotopy.
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Proposition 6.4. If (X,A) is equipped with effective homology and Pn is given a weak
H-space structure, then there exists an algorithm that computes, for any two solutions
ℓ0, ℓ1 : X → Pn of a pointed lifting-extension problem, a representative of [ℓ0] + [ℓ1]. If
the weak H-space structure has a strict right inverse, then the computable ong + (−ℓ) is a
representative of −[ℓ].

Proof. The formula ℓ 7→ ong + (−ℓ) prescribes a mapping [X,Pn]
A
B → [X,Pn]

A
B since its

restriction to A equals f + (−f) = f . It is slightly more complicated to show that it is
an inverse for our perturbed version of the addition. To this end, we have to exhibit a
homotopy

ong ∼ ℓ+ (ong + (−ℓ))

that agrees on A with the left zero homotopy λf . We start with the left zero homotopy
λ(−ℓ) : −ℓ ∼ ong+(−ℓ) and add ℓ to it on the left to obtain ℓ+λ(−ℓ) : ong ∼ ℓ+(ong+(−ℓ)).
By Lemma 6.5, its restriction to A, i.e. f + λ(−f), is homotopic to the left zero homotopy
λ(f + (−f)) = λf . By extending this second order homotopy from A to X , we obtain a
new homotopy ong ∼ ℓ + (ong + (−ℓ)) that agrees with the left zero homotopy on A, as
desired.

To make the statement of the following lemma understandable, we use on to denote the
appropriate value of on, i.e. they are abbreviations for onψn(x). Applying to x = −f as in
the previous proof, this equals onψn(−f) = f .

Lemma 6.5. The homotopies λ(on + x), on + λ(x) : on + x ∼ on + (on + x) are homotopic
relative to ∂∆1 × Pn.

Proof. We concatenate the two homotopies from the statement with the left zero homotopy
λ(x) : x ∼ on+x and it is then enough to show that the two concatenations are homotopic.
The homotopy between them is ∆1 ×∆1 × Pn → Pn, (s, t, x) 7→ λ(s, λ(t, x)).

6.6. Solution of pullback problems. So far, we have discussed only pointed Moore–
Postnikov stages and pointed lifting-extension problems. We will now describe, in a general
stable situation of Theorem 4.13, a way of passing from a solution on : X → Pn to a pointed
Postnikov stage and a pointed lifting-extension problem.

First we describe a general procedure for replacing, via pullbacks, lifting-extension
problems by equivalent ones. Suppose that we have a diagram

A //

��

��

P̃n //

����

Pn

����

X // B̃ // B

in which the right square is a pullback square. Then diagonals in the left square are in
bijection with diagonals in the composite square and the same applies to homotopies. Thus,

[X, P̃n]
A

B̃

∼=
−−→ [X,Pn]

A
B.
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We will now apply this to a special factorization of g : X → B with the first map the
identity, so that B̃ = X , and the induced pullback square:

A
f̃n

//

fn

((

��

ι

��

P̃n //

ψ̃n
����

Pn

ψn

����

X
id //

g

66X // B

Viewing P̃n = X ×B Pn as a subspace of X ×Pn, the map ψ̃n becomes the projection onto
the left factor and f̃n = (ι, fn). A diagonal on : X → Pn in the composite square then

induces a diagonal õn = (id, on) : X → P̃n in the left square and this is simply a section of

ψ̃n. In addition, it is easy to verify that f̃n = õnι, i.e. f̃n takes values on this section.

Proposition 6.7. There is a bijection [X,Pn]
A
B
∼= [X, P̃n]

A

B̃
, computable in both directions,

with the latter lifting-extension problem pointed.

Remark. There is a different factorization g : X
on−→ Pn

ψn
−→ B and the induced pullback

Pn×B Pn → Pn also admits a section by the diagonal map. The advantage of this pullback
is that it depends only on ψ : Y → B and not on A, X , f or g. On the other hand, it
seems bigger than the pullback P̃n proposed above. An H-space structure on Pn×B Pn can
be interpreted directly as a structure on Pn, given by a ternary operation and related to
heaps; this approach has been developed in [21].

Theorem 4.13 (restatement). Suppose that Pn is a stable stage of a Moore–Postnikov
tower with effective homology and that (X,A) is equipped with effective homology. Then,
for any given solution on : X → Pn, the set [X,Pn]

A
B admits a structure of a semi-effective

abelian group with zero [on], whose elements are represented by algorithms that compute
diagonals X → Pn.

Proof. This is a corollary of a collection of results obtained so far. By Proposition 6.7, we
may replace the Moore–Postnikov tower and the given lifting-extension problem by their
pointed versions. By Proposition 5.15, it is possible to construct on P̃n the structure of a
weak H-space. By results of this subsection, it is possible to strictify this structure, making
P̃n into an H-space. According to Theorem 5.4, it is homotopy associative, homotopy
commutative and with a right homotopy inverse; consequently, [X,Pn]

A
B
∼= [X, P̃n]

A

B̃
is an

abelian group. By Proposition 6.4, it is possible to compute the addition and the inverse in
the latter group on the level of representatives, making it into a semi-effective abelian group.
Since the isomorphism is computable in both directions by Proposition 5.15, [X,Pn]

A
B also

becomes a semi-effective abelian group.

6.8. Proof of Theorems 4.15 and 4.16. We will need the fact that pn : Pn → Pn−1 is
a principal fibration with fibrewise action of Ln = B × K(πn, n) (in fibrewise world, an
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action is a map Pn ×B Ln → Pn). Thinking of Pn as a subset of Pn−1 × En, an element

z ∈ Ln acts on (x, c) ∈ Pn by (x, c) + z
def
= (x, c + z) where the sum c + z is taken within

the fibrewise simplicial group En.

Theorem 4.15 (restatement). Suppose that n ≤ 2d and that (X,A) is equipped with
effective homology. For any given zero [on−1] ∈ [X,Pn−1]

A
B, the computable map kn∗ in

[X,Pn]
A
B

pn∗

−−−→ [X,Pn−1]
A
B

kn∗−−−→ [X,Kn+1]
A
B

is an affine homomorphism and im pn∗ = k−1
n∗ (0).

Proof. Both claims will be proved as a part of the proof of the following theorem.

Theorem 4.16 (restatement). Suppose that n ≤ 2d, that (X,A) is equipped with ef-
fective homology and that a zero [on] ∈ [X,Pn]

A
B is given in such a way that [∆1 ×

X,Pi]
(∂∆1×X)∪(∆1×A)
B is fully effective for all i < n − 1. Then there is a semi-effective

exact sequence

[∆1 ×X,Pn−1]
(∂∆1×X)∪(∆1×A)
B

∂n−−→ [X,Ln]
A
B

jn∗

−−−→
jn∗

−−−→ [X,Pn]
A
B

pn∗

−−−→ [X,Pn−1]
A
B

kn∗−−−→ [X,Kn+1]
A
B

of abelian groups.

Proof. We start by defining the map jn∗: on the level of maps, jn∗(ζ) = on + ζ (the action
of Ln on Pn) and it passes to homotopy classes. We then obtain a sequence

[X,Ln]
A
B

jn∗

−−−→ [X,Pn]
A
B

pn∗

−−−→ [X,Pn−1]
A
B

kn∗−−−→ [X,Kn+1]
A
B,

whose exactness at the second term is simple. To prove exactness at the third term,
we recall that 0 ∈ [X,Kn+1]

A
B is the only element in the image of δ∗, as remarked after

Lemma 4.11. Thus, [ℓn−1] ∈ im pn∗ iff ℓn−1 lifts to Pn iff knℓn−1 lifts to En iff [knℓn−1] ∈ im δ∗
iff kn∗[ℓn−1] = 0.

It is possible to extend the sequence to the left by [∆1 × X,P ]
(∂∆1×X)∪(∆1×A)
B , the set

of homotopy classes of fibrewise homotopies ∆1 ×X → Pn−1 from on−1 to on−1 relative to
A; its base point is the constant homotopy at on−1. First, we describe

∂n : [∆
1 ×X,Pn−1]

(∂∆1×X)∪(∆1×A)
B → [X,Ln]

A
B.

Let h : ∆1 × X → Pn−1 be a homotopy as prescribed above. Choose a lift h̃ of h along
pn : Pn → Pn−1 that starts at on and is relative to A (this can be carried out in an
algorithmic way by Proposition 3.8). Restricting to the end of the homotopy prescribes a

map h̃end : X → Pn that lies over on−1 and is thus of the form h̃end = on + ζ for a unique
map ζ : X → Ln. We set ∂n[h] = [ζ ]; this is well defined by Lemma 6.9.

37



By definition, jn∗∂n[h] = [h̃end] and the homotopy h̃ shows this equal to [on]. The

exactness is also easy – a homotopy h̃ : on ∼ on + ζ in Pn projects down to Pn−1 to a
homotopy ∆1 × X → Pn−1 representing a preimage of [ζ ] (since its lift is h̃ with the
appropriate end on + ζ). To summarize, we have an exact sequence of pointed sets

[∆1 ×X,Pn−1]
(∂∆1×X)∪(∆1×A)
B → [X,Ln]

A
B → [X,Pn]

A
B → [X,Pn−1]

A
B → [X,Kn+1]

A
B.

Our next aim is to show that the maps in this sequence are homomorphisms of groups.
By replacing the stages Pn−1, Pn by their pullbacks P̃n−1, P̃n if necessary, we may assume
that these stages are pointed and that so is the lifting-extension problem in question.
Therefore, the addition on homotopy classes is defined through strict H-space structures
(namely, strictifications of weak H-space structures), as described in Section 6.2. According
to the uniqueness part of Theorem 5.4, we may assume that the strict H-space structure
is constructed as in Section 5.5. The corresponding non-additivity map m′ and its lift M ′

are as in the following diagram

Pn−1 ∨B Pn−1
0 //

ϑ
��

En

δ

��

Pn−1 ×B Pn−1
m′

//

M ′

77♣
♣

♣
♣

♣
♣

Kn+1

and the addition is defined on Pn inductively using

(x, y) +′ (x′, y′) = (x+′ x′, y +qnon y
′ +M ′(x, x′)).

An important property is that this makes jn into a homomorphism (since M ′ vanishes
when one of the arguments lies on the zero section on−1). Therefore, already on the level
of representatives, pn∗ and jn∗ are homomorphisms.

Since kn∗ preserves zeros, it is enough to show that kn∗ is an affine homomorphism.
Applying (4.7) to kn∗, we need a homotopy

knx+knon−1
kny ∼ kn(x+

′ y)

relative to Pn−1∨B Pn−1 or, in other words, a relative homotopy 0 ∼ m′. Such a homotopy
is obtained as an image under δ of a relative homotopy 0 ∼ M ′, which exists since En is
(fibrewise) contractible.

It remains to treat the connecting homomorphism ∂n. If h0, h1 : ∆
1 × X → Pn−1

represent two elements of the domain, then the lift of h0 +
′ h1 may be chosen to be the

sum h̃0 +
′ h̃1 of the two lifts. Thus, (h̃0 +

′ h̃1)end = (h̃0)end +
′ (h̃1)end and this corresponds

to the sum of the ∂n-images.

Computability of sections. A section of pn∗ is defined by mapping a partial diagonal
ℓ : X → Pn−1 to an arbitrary lift ℓ̃ : X → Pn of ℓ, with a prescribed restriction to A. The
computation of ℓ̃ is taken care of by Proposition 3.7; a lift exists because ker kn∗ = im pn∗.
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For the construction of a section σ of jn∗, let ℓ : X → Pn be a diagonal such that
pnℓ is homotopic to on−1. Proposition 6.10 computes a homotopy on−1 ∼ pnℓ. Using
Proposition 3.8, we lift it along pn to a homotopy ℓ′ ∼ ℓ, relative to A, for some ℓ′. Since
pnℓ

′ = on−1 = pnon, we have ℓ′ = on + ζ for a unique ζ : X → Ln and we set σ(ℓ) = ζ .

Lemma 6.9. Continuing the notation from the proof of Theorem 4.16, the homotopy class
[ζ ] does not depend on the choices made; thus, ∂n is a well defined map. In addition, if ζ ′

is any other representative of this homotopy class, i.e. ∂n[h] = [ζ ′], there exists a lift h̃′ of
h that is a homotopy between on and on + ζ ′ relative to A.

Proof. If h is homotopic to h′, by a homotopy relative to (∂∆1 × X) ∪ (∆1 × A), and h̃′

is any lift of h′, then we may lift the homotopy h ∼ h′ to a homotopy h̃ ∼ h̃′ relative to
(0 × X) ∪ (∆1 × A),13 that restricts to 1 × X to a fibrewise homotopy on + ζ ∼ on + ζ ′,
relative to A, implying ζ ∼ ζ ′; thus, ∂n is well defined.

For the second part, concatenating the homotopy h̃ : on ∼ on + ζ , with the homotopy
on + ζ ∼ on + ζ ′ induced from the given ζ ∼ ζ ′, we obtain h̃′ : on ∼ on + ζ ′. If the
concatenation of homotopies is computed, as in Proposition 3.9, using the lift in

( ✑✑ ✲
✲✲✲✲✲ 2
1 ×X) ∪ (∆2 × A) //

��

��

Pn

pn
����

∆2 ×X
s1×id

//

33❣❣❣❣❣❣❣❣❣❣❣❣❣❣
∆1 ×X

h
// Pn−1

then this concatenation will also be a lift of h, since the restriction of h(s1×id) to d1∆
2×X

equals h; here s1 : ∆2 → ∆1 is the map sending the non-degenerate 2-simplex of ∆2 to the
s1-degeneracy of the non-degenerate 1-simplex of ∆1.

Proposition 6.10. Suppose that (X,A) is equipped with effective homology and that [∆1×

X,Pi]
(∂∆1×X)∪(∆1×A)
B is a fully effective abelian group for all i < n − 1. Then there is an

algorithm that decides whether given [on−1], [ℓn−1] ∈ [X,Pn−1]
A
B are equal. If this is the

case, the algorithm computes a homotopy on−1 ∼ ℓn−1.

We remark that the above homotopy decision algorithm admits a generalization to
non-stable stages and, thus, provides homotopy testing for maps to an arbitrary simply
connected space, see [11].

Proof. We compute the homotopy hn−1 by induction on the height i of the Moore–Postnikov
stage Pi. Let oi and ℓi denote the projections of on−1 and ℓn−1 onto the i-th stage Pi. Sup-
pose that we have computed a homotopy hi−1 : oi−1 ∼ ℓi−1 and lift it by Proposition 3.8 to
a homotopy h̃i−1 : ℓ

′
i ∼ ℓi from some map ℓ′i, necessarily of the form ℓ′i = oi + ζ ′i.

13This is a solution of a lifting extension problem whose left part is an inclusion in the pair (∆1, ∂∆1)×
(∆1, 0) × (X,A) with the middle term ∞-connected, thus also the whole product, and the inclusion is a
weak homotopy equivalence.
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Since Proposition 3.9 provides algorithmic means for concatenating homotopies, it re-
mains to construct a homotopy h′i : oi ∼ ℓ′i. Consider the connecting homomorphism in
(4.17) for stages Pi−1 and Pi, i.e.

∂i : [∆
1 ×X,Pi−1]

(∂∆1×X)∪(∆1×A)
B −→ [X,Li]

A
B.

From the already proved exactness of (4.17) and from ℓ′i ∼ ℓi, it follows that [ζ
′
i] lies in the

image of ∂i if and only if oi ∼ ℓi. If this is the case, we obtain a representative h′i−1 of a
preimage by Lemma 4.8. Thus, ∂i[h

′
i−1] = [ζ ′i].

According to Lemma 6.9, there exists a lift of h′i−1 that is a homotopy h′i : oi ∼ oi + ζ ′i
relative to A. This specifies the top map in the following lifting-extension problem

(∂∆1 ×X) ∪ (∆1 ×A) //

��

Pi

��

∆1 ×X
h′i−1

//

h′i

66♠♠♠♠♠♠♠♠

Pi−1

and h′i can thus be computed using Proposition 3.7.

7. Leftover proofs

The purpose of this section is to prove statements that were used in the main part but
whose proofs would disturb the flow of the paper.

Theorem 3.3 (restatement). There is an algorithm that, given a map ψ : Y → B be-
tween simply connected simplicial sets with effective homology and an integer n0, constructs
an n0-truncated extended Moore–Postnikov tower for ψ and equips it with effective homol-
ogy.

The proof will be presented in two parts. First, we describe the construction of the
objects and then we prove that they really constitute an extended Moore–Postnikov tower.

The construction itself follows ideas by E. H. Brown for non-equivariant simplicial sets
in [2] and by C. A. Robinson for topological spaces with free actions of a group in [17].

We described the construction in the non-equivariant non-fibrewise case G = 1 and
B = ∗ in detail in [5]. Here, we give a brief overview with the emphasis on the necessary
changes for G and B non-trivial.

Construction. The first step of the construction is easy. Put P0 = B and ϕ0 = ψ. To
proceed by induction, suppose that we have constructed Pn−1 and a map ϕn−1 : Y → Pn−1

with properties 1 and 2 from the definition of the Moore–Postnikov tower. Moreover,
assume that Pn−1 is equipped with effective homology.
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Viewing coneϕ(n−1)∗ as a perturbation of C∗Pn−1⊕C∗Y , we obtain from strong equiv-
alences C∗Pn−1 ⇐⇒ Cef

∗ Pn−1 and C∗Y ⇐⇒ Cef
∗ Y a strong equivalence coneϕ(n−1)∗ ⇐⇒ Cef

∗

with Cef
∗ effective (for details, see [5, Proposition 3.8]). Let us consider the composition

Cef
n+1 → Zn+1(C

ef
∗ )→ Hn+1(C

ef
∗ )

def
= πn,

where the first map is an (equivariant) retraction of Zn+1(C
ef
∗ ) ⊆ Cef

n+1, computed by the
algorithm of Proposition 2.14; the second map is simply the projection onto the homology
group. The homology group itself is computed from Cef

∗ – by forgetting the action of G, it
is a chain complex of finitely generated abelian groups and Smith normal form is available.
The G-action on πn is easily computed from the G-action on Cef

∗ . Composing with the
chain map coneϕ(n−1)∗ → Cef

∗ coming from the strong equivalence, we obtain

κ+ λ : Cn+1Pn−1 ⊕ CnY =
(
coneϕ(n−1)∗

)
n+1
→ Cef

n+1 → πn

whose components are denoted κ and λ. They correspond, respectively, to maps

k′n : Pn−1 → K(πn, n+ 1), l′n : Y → E(πn, n)

that fit into a square

Y
l′n //

ϕn−1

��

E(πn, n)

δ
��

Pn−1
k′n

// K(πn, n+ 1)

(7.1)

which commutes by the argument of [5, Section 4.3].
Now we can take Pn = Pn−1 ×K(πn,n+1) E(πn, n) to be the pullback as in part 3 of

the definition of the tower. By the commutativity of the square (7.1), we obtain a map
ϕn = (ϕn−1, l

′
n) : Y → Pn as in

Y l′n

''

ϕn−1

��

ϕn

""❋
❋

Pn //

pn

��

E(πn, n)

δ

��

Pn−1
k′n

// K(πn, n+ 1)

which we will prove to satisfiy the remaining conditions for the n-th stage of a Moore–
Postnikov tower.

First, however, we equip Pn with effective homology. To this end, observe that Pn is
isomorphic to the twisted cartesian product Pn−1 ×τ K(πn, n), see [14, Proposition 18.7].
Since Pn−1 is equipped with effective homology by induction, and K(πn, n) admits effective
homology non-equivariantly by [5, Theorem 3.16], it follows from [10, Corollary 12] (or [5,
Proposition 3.10]) that Pn can also be equipped with effective homology non-equivariantly.
Since the G-action on Pn is clearly free (any fixed point would get mapped by ψn to a fixed
point in B), Theorem 2.9 provides (equivariant) effective homology for Pn (distinguished
simplices of Pn are pairs with the component in Pn−1 distinguished).
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Correctness. From the exact sequence of homotopy groups associated with the fibration
sequence

Pn → Pn−1 → K(πn, n+ 1)

and the properties 1 and 2 for Pn−1, we easily get that Pn satisfies the condition 2 and that
ϕn∗ : πi(Y )→ πi(Pn) is an isomorphism for 0 ≤ i ≤ n− 1.

The rest of the proof is derived, as in [5, Section 4.3], from the morphism of long exact
sequences of homotopy groups

πn+1(Y ) //

ϕn∗

��

πn+1(cylϕn−1) //

∼=
��

πn+1(cylϕn−1, Y )
∼=
��

// πn(Y )
ϕn∗

��

// πn(cylϕn−1)
∼=
��

// 0

0 // πn+1(Pn) // πn+1(cyl pn) // πn+1(cyl pn, Pn) // πn(Pn) // πn(cyl pn)

associated with pairs (cylϕn−1, Y ) and (cyl pn, Pn). The arrow in the middle is an isomor-
phism by [5, Lemma 4.5], while the remaining two isomorphisms are consequences of the
fact that both cylinders deform onto the same base Pn−1. The zero on the left follows
from the fact that the fibre of pn is K(πn, n) and the zero on the right comes from the
condition 1 for Pn−1. By the five lemma, ϕn∗ is an isomorphism on πn and an epimorphism
on πn+1 which completes the proof of condition 1.

Addendum. For a given computable β : B̃ → B, the pullbacks P̃n = B̃ ×B Pn may be
identified with twisted cartesian products P̃n−1 ×τ K(πn, n) and as such admit effective

homology by induction, starting from the assumed effective homology of P̃0 = B̃.

For the next proof, we will use the following observation.

Lemma 7.2. Every map ψ : P → Q can be factored as ψ : P //
j
// P ′ ψ′

// // Q, where j is a
weak homotopy equivalence and ψ′ is a Kan fibration.

By a weak homotopy equivalence, we will understand a map whose geometric realization
is a G-homotopy equivalence.

Proof. This is the small object argument (see e.g. [12, Section 10.5] or [7, Section 7.12])
applied to the collection J of “G-free horn inclusions” G× ✑✑ ✲

✲✲✲✲✲ n
i → G×∆n, n ≥ 1, 0 ≤ i ≤ n.

Using the terminology of [12], the J -injectives are exactly those maps that have non-
equivariantly the right lifting property with respect to ✑✑ ✲

✲✲✲✲✲ n
i → ∆n (this follows from the

equivalence (7.3) from the next proof), i.e. Kan fibrations. The geometric realization of
every relative J -cell complex is a G-homotopy equivalence since the geometric realization
of G×∆n clearly deforms onto that of G× ✑✑ ✲

✲✲✲✲✲ n
i .

Theorem 3.5 (restatement). There exists a map ϕ′
n : Y

′ → Pn inducing a bijection
ϕ′
n∗ : [X, Y

′]AB → [X,Pn]
A
B for every n-dimensional simplicial set X with a free action of G.
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Proof. By construction, ϕn : Y → Pn is an (n+1)-equivalence. By the proof of Lemma 7.2,
we may assume Y → Y ′ to be a relative J -cell complex. We show that ϕn factors through
Y ′. Given that this is true for Pn−1, we form the square

Y
ϕn

//
��

∼

��

Pn

pn
����

Y ′

ϕ′

n−1

//

ϕ′

n

99s
s

s
s

s
s

Pn−1

in which a diagonal exists by the fact that Y → Y ′ is a relative J -cell complex and such
maps have the left lifting property with respect to Kan fibrations.

The map ϕ′
n is also an (n + 1)-equivalence. We will prove more generally that

ψ∗ : [X,P ]
A
B → [X,Q]AB

is an isomorphism for any (n+ 1)-equivalence ψ : P → Q.
The basic idea is that X is built from A by consecutively attaching “cells with a free

action of G”, namely X = ∪Xi and in each step Xi = Xi−1∪G×∂∆miG×∆mi with mi ≤ n.14

First, we prove that ψ∗ is surjective under the assumption that ψ is an n-equivalence.
For convenience, we replace ψ by a G-homotopy equivalent Kan fibration using Lemma 7.2.
Suppose that the above map ψ∗, but with X replaced by Xi−1, is surjective and we prove
the same for Xi. This is clearly implied by the solvability of the following lifting-extension
problem

Xi−1
//

��

��

P

ψ
����

Xi
ℓ

//

99t
t

t
t

t
t

Q

(to find a preimage of [ℓ] at the bottom, we find the top map by the inductive hypothesis;
if the lift exists, it gives a preimage of [ℓ] as required). As Xi is obtained from Xi−1 by
attaching a single cell, the problem is equivalent to

G× ∂∆mi //

��

��

P

ψ
����

that is further
equivalent to

∂∆mi //

��

��

P

ψ
����

G×∆mi //

99r
r

r
r

r
r

Q ∆mi //

;;✈
✈

✈
✈

✈
Q

(7.3)

where the problem on the right is obtained from the left by restricting to e ×∆mi and is
non-equivariant. Its solution is guaranteed by ψ being an mi-equivalence.

To prove the injectivity of ψ∗, we put back the assumption of ψ being an (n + 1)-
equivalence. We study the preimages of [ℓ] ∈ [X,Q]AB under ψ∗; these clearly form [X,P ]AQ.

14Thus, the action needs only be free away from A and the same generalization applies to the dimension.
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By the surjectivity part, this set is non-empty. By pulling back P along ℓ, we thus obtain
a fibration ℓ∗P → X with a section X → ℓ∗P which is an n-equivalence.15 Thus,

[X,P ]AQ
∼= [X, ℓ∗P ]AX

∼=
←−− [X,X ]AX = ∗

by the surjectivity part (any surjection from a one-element set is a bijection).

Next, we need the following lemma.

Lemma 7.4. The natural maps P ∨̂B P → P ∨B P and P ×̂B P → P ×B P are weak
homotopy equivalences.

The inclusion (P ×̂B P ) ∪
(
d2∆

2 × (P ∨B P )
)

// // ∆2 × (P ×B P ) is a weak homotopy
equivalence.

Proof. The space P ∨̂B P is naturally a subspace of d2∆
2 × (P ∨B P ) and it is enough to

show that it is in fact a deformation retract. A continuous deformation is obtained from a
deformation of d2∆

2 × Pright onto (0 × Pright) ∪ (d2∆
2 × B) and a symmetric deformation

of d2∆
2 × Pleft onto (1× Pleft) ∪ (d2∆

2 ×B).
To prove the remaining claims, consider the deformation of ∆2 × (P ×B P ) onto 2 ×

(P ×B P ), given by deforming ∆2 linearly onto 2 and by a constant homotopy at identity
on the second component P ×B P . By an easy inspection, it restricts to a deformation of
P ×̂B P onto 2× (P ×B P ), giving the second claim.

Since both ∆2 × (P ×B P ), P ×̂B P deform onto the same 2× (P ×B P ), it is enough
for the last claim to find a deformation of

(P ×̂B P ) ∪
(
d2∆

2 × (P ∨B P )
)

onto P ×̂B P . This is provided by the deformation of d2∆
2 × (P ∨B P ) onto P ∨̂B P (the

intersection of the two spaces in the union above) from the first paragraph.

Now we are ready to prove the following proposition.

Proposition 5.13 (restatement). For any Moore–Postnikov stage Pn, the pair (Pn ×̂B
Pn, Pn ∨̂B Pn) is (2d + 1)-connected, where d is the connectivity of the homotopy fibre of
ψ : Y → B (or equivalently of ψn : Pn → B).

In particular, the cohomology groups H∗
G(Pn×̂BPn, Pn∨̂BPn; π) of this pair with arbitrary

coefficients π vanish up to dimension 2d+ 1.

Proof. By the first part of the previous lemma, we may replace the pair in the statement
by (Pn ×B Pn, Pn ∨B Pn).

First, we recall that Pn → B is a minimal fibration (each δ : E(πi, i)→ K(πi, i+1) is one
and the class of minimal fibrations is closed under pullbacks and compositions, see [14]).

15The fibres of ψ are n-connected and isomorphic to those of ℓ∗P → X . From the long exact sequence
of homotopy groups of this fibration, it follows that ℓ∗P → X is also an (n+1)-equivalence and its section
then must be an n-equivalence.
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It is well known that over each simplex σ : ∆i → B any minimal fibration is trivial and it
is easy to modify this to an isomorphism σ∗Pn ∼= ∆i×F of fibrations with sections, where
F denotes the fibre of Pn → B and is d-connected by the assumptions.16. Consequently,
Pn ∨B Pn is a fibre bundle with fibre F ∨ F . Thus, we have a map of fibre sequences

F ∨ F //

��

Pn ∨B Pn //

��

B

F × F // Pn ×B Pn // B

The left map is (2d+1)-connected. By the five lemma applied to the long exact sequences
of homotopy groups, the middle map Pn ∨B Pn → Pn ×B Pn is also (2d+ 1)-connected.

To show that the equivariant cohomology groups vanish, we make use of a contraction of
C∗(Pn ×̂BPn) onto C∗(Pn ∨̂BPn) in dimensions ≤ 2d+1; its existence follows from the proof
of Proposition 2.14. By the additivity of HomZG(−, π), there is an induced contraction of
C∗
G(Pn ×̂BPn; π) onto C

∗
G(Pn ∨̂BPn; π) and thus the relative cochain complex is acyclic.

Theorem 5.4 (restatement). Every pointed stable Moore–Postnikov stage Pn admits a
fibrewise H-space structure. Any such structure is homotopy associative, homotopy commu-
tative and has a right homotopy inverse. It is unique up to homotopy relative to Pn ∨B Pn.

Proof. By the previous proposition, the left vertical map in

Pn ∨B Pn
∇ //

��

ϑ
��

Pn

ψn
����

Pn ×B Pn //

add

77♣
♣

♣
♣

♣
♣

B

is (2d + 1)-connected. Since the homotopy groups of the fibre of ψn are concentrated in
dimensions d ≤ i ≤ n, the relevant obstructions (they can be extracted from the proof of
Proposition 3.7) for the existence of the diagonal lie in

H i+1
G (Pn ×B Pn, Pn ∨B Pn) = 0

(since i+ 1 ≤ n + 1 ≤ 2d+ 1). The diagonal is unique up to homotopy by the very same
computation. Thus, in particular, replacing add by the opposite addition addop : (x, y) 7→
y + x yields a homotopic map, proving homotopy commutativity. Similarly, homotopy
associativity follows from the uniqueness of a diagonal in

(B ×B Pn ×B Pn) ∪ (Pn ×B Pn ×B B) //

��

��

Pn

ψn

����

Pn ×B Pn ×B Pn //

33❤❤❤❤❤❤❤❤❤❤❤❤
B

16Start with an inclusion (∆i × ∗) ∪ (0 × F ) → σ∗Pn given by the zero section on the first summand
and by the inclusion on the second. Extend this to a fibrewise map ∆i × F → σ∗Pn which is a fibrewise
homotopy equivalence, hence an isomorphism, by the minimality of Pn → B.
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(the pair on the left is again (2d+ 1)-connected) with two diagonals specified by mapping
(x, y, z) to (x+ y) + z and x+ (y + z).

The existence of a homotopy inverse is a fibrewise and equivariant version of [20, The-
orem 3.4]; the proof applies without any complications when the action of G is free. We
will not provide more details since we construct the inverse directly in Section 5.14.

For the next proof, we will use a general lemma about filtered chain complexes. Let C∗

be a chain complex equipped with a filtration

0 = F−1C∗ ⊆ F0C∗ ⊆ F1C∗ ⊆ · · ·

such that C∗ =
⋃
i FiC∗. As usual, we assume that each FiC∗ is a ZG-cellular subcomplex,

i.e. generated by a subset of the given basis of C∗. We assume that this filtration is locally
finite, i.e. for each n, we have Cn = FiCn for some i ≥ 0. For the relative version, let D∗

be a (ZG-cellular) subcomplex of C∗ and define FiD∗ = D∗ ∩ FiC∗.

Lemma 7.5. Under the above assumptions, if each filtration quotient GiC∗ = FiC∗/Fi−1C∗

has effective homology then so does C∗. More generally, if each (GiC∗, GiD∗) has effective
homology then so does (C∗, D∗).

Proof. We define G∗ =
⊕

i≥0GiC∗, the associated graded chain complex. Then C∗ is
obtained from G∗ via a perturbation that decreases the filtration degree i. Taking a
direct sum of the given strong equivalences GiC∗ ⇐= ĜiC∗ =⇒ Gef

i C∗, we obtain a strong

equivalence G∗ ⇐= Ĝ∗ =⇒ Gef
∗ with all the involved chain complexes equipped with a

“filtration” degree. Since the perturbation on G∗ decreases this degree, while the homotopy
operator preserves it, we may apply the perturbation lemmas, Propositions 2.12 and 2.13,
to obtain a strong equivalence C∗ ⇐= Ĉ∗ =⇒ Cef

∗ .

Proposition 5.11 (restatement). Assume that all the spaces in the square S have ef-
fective homology. Then so does the pair (|S|, d2|S|).

We continue the notation of Section 5.8.

Proof. We apply Lemma 7.5 to the natural filtration FiC∗|S| = C∗ ski |S|, where ski |S|
is the preimage of the i-skeleton ski∆

2 under the natural projection |S| → ∆2. The
Eilenberg–Zilber reduction applies to the quotient

C∗ sk2 |S|/C∗ sk1 |S| ∼= C∗(∆
2 × Z, ∂∆2 × Z) =⇒ C∗(∆

2, ∂∆2)⊗ C∗Z ∼= s2C∗Z

where s denotes the suspension. The effective homology of Z provides a further strong
equivalence with s2Cef

∗ Z. Similarly, C∗ sk1 |S|/C∗ sk0 |S| is isomorphic to

C∗((d2∆
2, ∂d2∆

2)× Z)⊕ C∗((d1∆
2, ∂d1∆

2)× Z0)⊕ C∗((d0∆
2, ∂d0∆

2)× Z1)

and thus strongly equivalent to sCef
∗ Z ⊕ sC

ef
∗ Z0 ⊕ sC

ef
∗ Z1. Finally, C∗ sk0 |S| is strongly

equivalent to Cef
∗ Z0 ⊕ C

ef
∗ Z1 ⊕ C

ef
∗ Z2.

The subcomplexes corresponding to d2|S| are formed by some of the direct summands
above and are thus preserved by all the involved strong equivalences. This finishes the
verification of the assumptions of Lemma 7.5.
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The following lemma was used in the proof of Proposition 5.15.

Lemma 7.6. The two components pn add and qn add defined in the proof of Proposi-
tion 5.15 determine a map add: Pn ×̂B Pn → Pn and this map is a weak H-space structure.

The two components pn inv and qn inv defined in Section 5.14 determine a map inv : Pn →
Pn and this map is a right inverse for add.

Proof. The compatibility for add:

δqn add = δ
(
addqnon(qn ×̂ qn) +M(pn ×̂ pn)

)
= addknon−1

(δ ×̂ δ)(qn ×̂ qn) +m(pn ×̂ pn)

= addknon−1
(kn ×̂ kn)(pn ×̂ pn) +

(
kn add− addknon−1

(kn ×̂ kn)
)
(pn ×̂ pn)

= kn add(pn ×̂ pn) = knpn add

The weak H-space condition addϑ = ∇̂ on Pn verified for its two components:

pn addϑ = add(pn ×̂ pn)ϑ = addϑ(pn ∨̂ pn) = ∇̂(pn ∨̂ pn) = pn ∇̂

qn addϑ =
(
addqnon(qn ×̂ qn) +M(pn ×̂ pn)

)
ϑ = addqnon ϑ(qn ∨̂ qn) + Mϑ︸︷︷︸

0

(pn ∨̂ pn)

= ∇̂(qn ∨̂ qn) = qn ∇̂

The compatibility for inv:

δ(−c + 2qnon −M(2, x,−x)) = −δc+ 2δqnon −m(2, x,−x)

= −knx+ 2knon−1 − (kn(x+ (−x)︸ ︷︷ ︸
on−1

)− knx+ knon−1 − kn(−x)) = kn(−x)

The condition add(id ×̂ inv) ∆̂ = on of being a right inverse:

(x, c) + (−(x, c)) = (x, c) + (−x,−c + 2qnon −M(2, x,−x))

= (x+ (−x), c + (−c+ 2qnon −M(2, x,−x))− qnon +M(2, x,−x))

= (on−1, qnon) = on

8. Polynomiality

Basic notions. The algorithm of Theorem 1.3 was described for a single generalized
lifting-extension problem. To prove that its running time is polynomial, we will have
to deal with the class of all generalized lifting-extension problems and also certain related
classes, e.g. the class of Moore-Postnikov stages of a given height. We will base our analysis
on the notion of a locally polynomial-time simplicial set, described in [5]. Here, we will
call it a polynomial-time family of simplicial sets.

Since we assume d to be fixed and our algorithms only access information up to dimen-
sion 2d+ 2, we make the following standing assumption.
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Convention 8.1. In this section, when speaking about the running time of algorithms, it
is understood that inputs are limited to dimension at most n0 for some fixed n0.

Simplicial sets will be equipped with a choice of encoding of their simplices; thus, from
now on, different choices of encoding of simplices of one simplicial set actually specify
different simplicial sets. The same applies to chain complexes etc.

Usually, a collection (X(p))p∈P of simplicial sets is understood as a mapping p 7→ X(p),
associating to each p ∈ P a simplicial set X(p). For technical reasons, our collections will
also permit multi-valued mappings, i.e. X(p) in general is not a single simplicial set but
any of a number of simplicial sets. In effect, this is given by a relation between simplicial
sets and parameters p ∈ P, namely: Z ∼ p if and only if Z is one of the possible values
X(p).

Definition 8.2. A family of (locally effective) simplicial sets is a collection (X(p))p∈P of
simplicial sets (equipped with choices of encodings of their simplices), as above, such that
the elements of the parameter set P have a representation in a computer and such that
there are provided algorithms, all taking as inputs pairs (p, x) with p ∈ P and x ∈ X(p),
and performing the following tasks:

• compute the i-th face of x,
• compute the i-th degeneracy of x,
• compute the action of a ∈ G on x,
• compute the expression of x as x = ay with a ∈ G and y distinguished.

We say that this family is polynomial-time if all these algorithms have their running time
bounded by g(size(p) + size(x)), where g is some polynomial function and size(p), size(x)
are the encoding sizes of p and x (we recall the assumption dim x ≤ n0).

A family of effective simplicial sets possesses, in addition, an algorithm that, given
p ∈ P, outputs the list of all non-degenerate distinguished simplices of X(p). (For such a
family, the simplicial set X(p) is necessarily unique.)

Now we are able to explain the non-uniqueness of a represented simplicial set X(p) for
a given parameter p ∈ P: namely, for any simplicial subset A ⊆ X(p), we may use the
same parameter p to compute faces etc. in A, which means that A might also be used as
a value X(p) at p.

Example. In Section 2, we described a way of encoding finite simplicial sets by listing
all distinguished non-degenerate simplices and also the relations djx = asIy, for all x
distinguished non-degenerate and all possible j. Such encodings comprise the parameter
set SSet; it then supports an obvious polynomial-time family of effective simplicial sets,
whose simplices are encoded as formal expressions asIy.

The notion of a family can be similarly defined for pairs of (effective) simplicial sets,
(effective) chain complexes, strong equivalences, simplicial sets with effective homology etc.
Each such class C is described by a collection of algorithms that are required to specify its
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object, similar to the list in Definition 8.2. Families of objects of C are then the obvious
parametrized versions of such collections of algorithms; we will denote them C : P ///o/o C.

When constructing new families of objects, it is important that the resulting families are
polynomial-time whenever the old ones are. We will encapsulate this situation in the notion
of a polynomial-time construction. A construction F : C → D is simply a mapping; we use
a different name to emphasize that it operates on the level of objects, i.e. mathematical
structures of some sort, and their encodings (see Convention 8.1). In general, we will not
require F to be single-valued, having in mind an example of associating to an equation its
solution – no solution needs to exist and if it does exist, there might be many choices.

Example. There is an obvious construction

{couples of locally effective simplicial sets} // {locally effective simplicial sets}

(a couple is general; a pair is a couple (X,A) with A ⊆ X). There is also an obvious way
of transforming a couple of locally effective simplicial sets X , Y into a locally effective
simplicial set X × Y , e.g. the i-th face di(x, y) = (dix, diy) may be easily computed with
the help of the corresponding algorithms for X and Y .

We say that the construction F is computable, if there is given a collection of algorithms,
which are allowed to use formal calls to algorithms describing a computable object Z ∈ C
(i.e. a family of objects parametrized by a 1-element P), that describe its image F (Z) for
arbitrary computable Z ∈ C. We have seen an example above for the product construction
– the algorithm for di in X × Y uses calls to algorithms for di in X and Y .

Given a family C : P ///o/o C, we may replace the formal calls by calls to actual algorithms
present in the family C and thus obtain a family P ///o/o D; we denote the resulting family

by F∗C : P
C ///o/o C

F
−→ D. A computable construction is said to be polynomial-time if, in this

way, one obtains a polynomial-time family F∗C for every polynomial-time family C.

Remark. Since, for each class C, the number of the required algorithms is finite, we may
consider the parameter set Alg(C), whose elements are such collections of algorithms (non-
parametrized, i.e. describing a single computable object). Further, we denote by Alg g(C)
the collections of algorithms that run in time bounded by the polynomial g. Then Alg(C)
supports an obvious family Alg(C) ///o/o C that assigns to each collection of algorithms an
object they represent (there may be many) and the parametrized version of each algo-
rithm simply runs the appropriate algorithm contained in the parameter. It restricts to a
polynomial-time family parametrized by Alg g(C).

With this notation, a computable construction F is a family structure on the collection
Alg(C) ///o/o C → D. Moreover, F is polynomial-time if, in addition, this family restricts to
a polynomial-time family Alg g(C) ///o/o D for each polynomial g.

The dual situation is called a reparametrization: when Φ: Q → P is a polynomial-time

mapping and P supports a polynomial-time family C : P ///o/o C then Φ∗C : Q
Φ
−→ P

C ///o/o C is
another polynomial-time family.

The main result of this section is the following.
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Theorem 8.3. For each fixed d ≥ 1, the algorithm of Theorem 1.3 describes a polynomial-
time construction

{
d-stable generalized lifting-extension problems
composed of effective simplicial sets

}
//

{
fully effective
abelian groups

}
∪ {∅},

A //
��

��

Y

��
X // B

✤ // [X, Y ]AB,

where the d-stability of a generalized lifting-extension problem means that dimX ≤ 2d, both
B and Y are simply connected and the homotopy fibre of ψ : Y → B is d-connected.

From the definition, we are required to set up a polynomial-time family indexed by
Alg(C) where C is the class of generalized lifting-extension problems in question. We will
make use of restricted parameter setsMap and Pair that describe ψ and (X,A) respectively.

The whole computation is summarized in the following chains of computable functions
between parameter sets that describe various partial stages of the computation; we will
explain all the involved parameter sets later. The functions

Map = EMPS0
//// EMPSn Map ×SSet MPSn // MPSn,

for n = dimX , describe the computation of the Moore–Postnikov system over B and its
pullback to X ,

Pair ×SSet HMPSn,m−1
// PMPSn,m ∪ {⊥} PMPSn,m // HMPSn,m,

for m ≤ n, describe the computation of the weak H-space structure on the stable part of
the pullback (when it admits a section at all) and

Γn : Pair ×SSet HMPSn,n ///o/o/o {fully effective abelian groups}

describes a polynomial-time family, given by the homotopy classes of sections of the final
n-th stage that are zero on A.

Moore–Postnikov systems. The elements of the parameter set EMPSn encode extended
Moore–Postnikov systems and are composed of the following data

• finite simply connected simplicial sets Y , B;
• finitely generated abelian groups π1, . . . , πn;
• effective Postnikov invariants κef1 , . . . , κ

ef
n (to be explained below);

• a simplicial map ϕn : Y → Pn;

where we set, by induction, P0 = B and Pi = Pi−1 ×K(πi,i+1) E(πi, i), a pullback taken
with respect to the Postnikov invariant k′i : Pi−1 → K(πi, i + 1) that corresponds to the
equivariant cocycle

Ci+1Pi−1
// Cef

i+1Pi−1

κefi // πi
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with the first map the obvious one coming from the effective homology of Pi−1. Thus, κ
ef
i

is required to be an equivariant cocycle as indicated.17

The above simplicial sets provide a number of families

B,P1, . . . , Pn, Y : EMPSn ///o/o/o

{
simplicial sets with
effective homology

}

and also a number of families of simplicial maps pi, k
′
i, ϕi etc. between these. They are

polynomial-time essentially by the results of [5] – there is only one significant difference,
namely the (equivariant) polynomial-time homology of Moore–Postnikov stages. For that
we need the following observation: the functor B of Theorem 2.9 is a polynomial-time
construction defined on

{
strong equivalences C ⇐⇒ Cef with C locally
effective over ZG, Cef effective over Z

}

and taking values in a similar class with everything ZG-linear. Its polynomiality is guar-
anteed by the explicit nature of this functor, see [22].

Polynomiality of functions EMPS i−1 → EMPS i is proved in the same way as in [5] with
the exception of the use of Proposition 2.14 that describes a polynomial-time construction

{
n-connected effective
chain complexes

}
//

{
homomorphisms of effective
abelian groups

}
,

C ✤ // (Cn+1 → Z(Cn+1)).

Parameters for a Moore–Postnikov system are comprised of the same data with the
exception of Y and ϕi; we denote their collection by MPSn. The parameters for the
pullback g∗S of a Moore–Postnikov system S of ψ : Y → B along g : B̃ → B are: the base
is B̃, the homotopy groups remain the same and the Postnikov invariants are pulled back
along B̃×BPi → Pi. Thus, the pullback functionMap×SSet EMPSn → MPSn, (g, S) 7→ g∗S
is polynomial-time (it is defined whenever the target of g agrees with the base of S).

Stable Moore–Postnikov systems. For the subsequent developement, the most impor-
tant ingredient is Lemma 2.17. It is easy to see that it is a polynomial-time construction




(X,A) equipped with effective homology, π fully
effective abelian group, z : X → K(π, n + 1),
c : A→ E(π, n) computable such that δc = z|A





//

{
X → E(π, n)
computable

}
∪ {⊥}.

It will be useful to split this construction into two steps: finding an “effective” cochain
cef0 : Cef

n (X,A) → π and computing from it the solution c̃ + c0. The advantage of this
splitting lies in the possibility of storing the effective cochain as a parameter.

We enhance the parameter set MPSn to PMPSn,m by including the parameter

17When Y is not finite, ϕn has to be replaced by a certain collection of effective cochains on Y ; details
are explained in [5].
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• a simplicial map om : B → Pm;

and to HMPSn,m by including in addition the parameters

• equivariant effective cochains M ef
i : Cef

i (Pi−1 ×̂B Pi−1, Pi−1 ∨̂B Pi−1)→ πi, 1 ≤ i ≤ m;

which give the zero section and the addition in the Moore–Postnikov stages; for the latter,
we use the observation above.

There are polynomial-time functions

PMPSn,m // HMPSn,m

which compute inductively the equivariant cochains Mi, 1 ≤ i ≤ m, using Lemma 2.17.

Computing diagonals. We describe a number of polynomial-time families supported by
HMPS and its relatives. We restrict our attention to the pullback Moore–Postnikov system
S̃ over X whose stages will be denoted P̃n. Proposition 6.4, that uses the polynomial-times
addition in the Moore–Postnikov system and a polynomial-time construction of Proposi-
tion 3.8, gives a polynomial-time family

Γn,m : Pair ×SSet HMPSn,m ///o/o/o {semi-effective abelian groups}

((X,A), S̃) ✤ // [X, P̃m]
A
X

(defined whenever the bigger space X of the pair (X,A) agrees with the base of S̃)
which is then extended to a polynomial-time family of semi-effective exact sequences from
Theorem 4.16. We assume, by induction, that Γn,m−1 has been already promoted to a
polynomial-time family of fully effective abelian groups. The “five lemma” for fully effec-
tive structures, Lemma 4.5, provides a polynomial-time construction

{
semi-effective exact sequences
A → B → C → D → E with
A, B, D, E fully effective

}
// {fully effective abelian groups}

sending each exact sequence to its middle term C. Thus, Γn,m is enhanced to a polynomial-
time family of fully effective abelian groups.

Computing zero sections. It remains to analyze the function

Pair ×SSet HMPSn,m−1
// PMPSn,m ∪ {⊥}.

By Theorem 4.15, we obtain a polynomial-time family of affine homorphisms

km∗ : [X, P̃m−1]
A
X

// Hm+1
G (X,A; πm)

between fully effective abelian groups, parametrized by Pair ×SSet HMPSn,m−1. Since
Lemma 4.8 describes a polynomial-time construction, we obtain a section om−1 that lifts
to P̃m in polynomial time; this lift om is also computed in polynomial time using Proposi-
tion 3.7.
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discussions, comments and suggestions that improved this paper a great deal. Moreover,
this paper could hardly exist without our long-term collaboration, partly summarized in
[4], [5] and [6].

References

[1] G. E. Bredon. Equivariant cohomology theories. Lecture Notes in Mathematics, 34,
Springer-Verlag, Berlin, 1967.

[2] E. H. Brown (jun.). Finite computability of Postnikov complexes. Ann. Math. 65
(1957), 1–20.

[3] M. Crabb, I. James. Fibrewise homotopy theory. Springer Monographs in Mathemat-
ics. Springer-Verlag London Ltd., London, 1998.
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all maps into a sphere. J. ACM, 61 (2014), 17:1–44.
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[21] L. Vokř́ınek. Computing the abelian heap of unpointed stable homotopy classes of maps.
Arch. Math. (Brno), 49 (2013), 359–368.
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