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Abstract

We present extremal constructions connected with the property of simplicial col-
lapsibility.

(1) For each d ≥ 2, there are collapsible (and shellable) simplicial d-complexes with
only one free face. Also, there are non-evasive d-complexes with only two free faces.
(Both results are optimal in all dimensions.)

(2) Optimal discrete Morse vectors need not be unique. We explicitly construct
a contractible, but non-collapsible 3-dimensional simplicial complex with face vector
f = (106, 596, 1064, 573) that admits two distinct optimal discrete Morse vectors,
(1, 1, 1, 0) and (1, 0, 1, 1). Indeed, we show that in every dimension d ≥ 3 there are
contractible, non-collapsible simplicial d-complexes that have (1, 0, . . . , 0, 1, 1, 0) and
(1, 0, . . . , 0, 0, 1, 1) as distinct optimal discrete Morse vectors.

(3) We give a first explicit example of a (non-PL) 5-manifold, with face vector
f = (5013, 72300, 290944, 495912, 383136, 110880), that is collapsible but not homeo-
morphic to a ball.

Furthermore, we discuss possible improvements and drawbacks of random ap-
proaches to collapsibility and discrete Morse theory. We will introduce randomized
versions random-lex-first and random-lex-last of the lex-first and lex-last

discrete Morse strategies of [9], respectively — and we will see that in many instances
the random-lex-last strategy works significantly better than Benedetti–Lutz’s (uni-
form) random strategy. On the theoretical side, we prove that after repeated barycen-
tric subdivisions, the discrete Morse vectors found by randomized algorithms have, on
average, an exponential (in the number of barycentric subdivisions) number of critical
cells asymptotically almost surely.
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1 Introduction

Collapsibility was introduced by Whitehead in 1939 [37], as a “simpler” version of the topological
notion of contractibility. Roughly speaking, collapsible simplicial complexes can be progressively
retracted to a single vertex via some sequence of elementary combinatorial moves. Each of these
moves reduces the size of the complex by deleting exactly two faces. The only requirements are
that these two faces should be of consecutive dimension, and the larger of the two should be the
unique face properly containing the smaller one (which is usually called “free face”).

In dimension one, for example, the free faces of a graph are simply its leaves. Every tree can
be reduced to a point by recursively deleting one leaf; thus all contractible 1-complexes are col-
lapsible. In dimension d ≥ 2, however, some contractible d-complexes have no free faces; therefore,
collapsible d-complexes are a proper subset of the contractible ones. Contractibility is not algorith-
mically decidable in general, cf. [35]. Collapsibility is, though the decision problem is NP-complete
if d ≥ 3 [33]. Relatively fast heuristic approaches with good practical behavior have been described
in [9].

Here we present a few examples of complexes that are extremal with respect to the collapsibility
property. The first one shows that one can find collapsible complexes where the beginning of any
sequence of deletions is forced.

Main Theorem 1 (Theorems 3 and 5). For every d ≥ 2, there are
(i) collapsible (and even shellable) simplicial d-complexes with only 1 free face,
(ii) and non-evasive simplicial d-complexes with only 2 free faces.

Both results are optimal, compare Lemma 4.

Whitehead showed that all collapsible PL triangulations of d-manifolds are homeomorphic to
the d-ball. “PL” stands for piecewise-linear and refers to the technical requirement that the closed
star of every face should be itself piecewise-linearly homeomorphic to a standard ball; every smooth
manifold admits PL triangulations (though in dimension ≥ 5, it also admits non-PL ones). The PL
assumption in Whitehead’s theorem is really necessary: It is a consequence of Ancel–Guilbault’s
work, cf. also [1], that any contractible manifold admits some collapsible triangulation.

A priori, finding an explicit description of a collapsible triangulation of a manifold different
than a ball seems a hard challenge, for three reasons:
(1) the size of (non-PL) triangulations of manifolds with non-trivial topology;
(2) the absence of effective upper bounds on the number of barycentric1 subdivisions needed to

achieve collapsibility;
(3) the algorithmic difficulty of deciding collapsibility.

Rather than bypassing these problems, we used a direct approach, and then relied on luck.
Specifically, first we tried to realize one triangulation of a collapsible manifold different than a
ball using as few simplices as possible. Once our efforts resulted in a triangulation with 1 358 186
faces, we fed it to the heuristic algorithm random-discrete-Morse from [9]. To our surprise, the
algorithm was able to digest this complex and show its collapsibility directly — so that in fact no
further barycentric subdivisions were necessary.

Main Theorem 2 (Theorem 17). There is a simplicial 5-dimensional manifold with face vector
f = (5013, 72300, 290944, 495912, 383136, 110880) that is collapsible but not homeomorphic to the
5-ball.

We then turn to an issue left open in Forman’s discrete Morse theory [19, 20]. In this extension
of Whitehead’s theory, in order to progressively deconstruct a complex to a point, we are allowed
to perform not only deletions of a free face (which leave the homotopy type unchanged), but also

1By a result of Adiprasito–Benedetti [2], if some subdivision of a complex C is collapsible, then also
some iterated barycentric subdivision of C is collapsible.
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deletions of the interior of some top-dimensional simplex (which change the homotopy type in a
very controlled way). The simplices deleted with steps of the second type are called “critical cells”.

Forman’s approach works with complexes of arbitrary topology, but to detect such topology,
one must keep track of the critical cells progressively deleted and of the way they were attached.
A coarse way to do this is to store in a vector the numbers ci of critical i-faces. The resulting vector
c = (c0, . . . , cd) is called a discrete Morse vector of the complex. It depends on the homotopy type
of the complex, and also on the particular sequence of deletions chosen. The discrete Morse vector
does not determine the homotopy type of the complex (basically because it forgets about attaching
maps). However, it yields useful information; for example, it provides upper bounds for the Betti
numbers, or for the rank of the fundamental group.

The “mission” is thus to find sequences of deletions that keep the vector c = (c0, . . . , cd) as small
as possible. An optimal discrete Morse vector is one that minimizes the number |c| = c0 + . . .+ cd
of critical faces. At this point, one issue was left unclear, namely, whether the set of discrete Morse
vectors admits a componentwise minimum, or if instead some complex might have more than one
optimal discrete Morse vector. We answer this dilemma as follows.

Main Theorem 3 (Theorems 7 and 9). For every d ≥ 3 there is a contractible but non-
collapsible d-dimensional simplicial complex that has two distinct optimal discrete Morse vectors
(1, 0, . . . , 0, 1, 1, 0) and (1, 0, . . . , 0, 0, 1, 1) with three critical cells each.

Random models in discrete Morse theory and homology computations

Discrete Morse theory for simplicial (or cubical) complexes is the basis for fast (co-)reduction tech-
niques that are used in modern homology and persistent homology packages such as CHomP [15],
RedHom [14] and Perseus [32]. The main aim in these packages is to first reduce the size of some
given complex before eventually setting up boundary matrices for (expensive) Smith normal form
homology computations.

The problem of finding optimal discrete Morse functions is NP-hard [24, 26]. However, in
practice one can find optimal (or close to optimal) discrete Morse vectors even for huge inputs [9]
— and it is, on the contrary, non-trivial to construct explicit complicated triangulations of small
size of spaces with trivial topology (such as balls or spheres) on which the search for good discrete
Morse vectors produces poor results; see, for example, the constructions in [9, 27, 34].

In an effort to measure how complicated a given triangulation is, a randomized approach to
discrete Morse theory was introduced in [9]. In this approach, a given complex is deconstructed
level-wise, working from the top dimension downwards. The output is a discrete Morse vector
(c0, c1, c2, . . . , cd). The algorithm has two important features:

• A k-face is declared critical only if there are no free (k−1)-faces available, or in other words,
only if we cannot go further with collapsing steps. This tends to keep the number of critical
faces to a minimum, and to speed up the algorithm.

• The decision of which free (k− 1)-face should be collapsed away, or (if none) of which k-face
should be removed as critical, i s performed uniformly at random. Randomness allows for
a fair analysis of the triangulation, and leaves the door open for relaunching the program
multiple times, thus obtaining a whole spectrum of outputs, called experienced discrete Morse
spectrum.

The collection of discrete Morse vectors that could a priori be reached this way is called discrete
Morse spectrum; see Definition 12.

It was observed in [9] that the boundary spheres of many simplicial polytopes, even with a large
number of vertices, have an experienced (i.e., after, say, 10000 runs of the program) discrete Morse
spectrum consisting of the sole discrete Morse vector (1, 0, . . . , 0, 1). In the case of “complicated”
triangulations it even might happen that their barycentric subdivisions become “easier” in the
sense that on average fewer critical cells are picked up in a random search (as we experienced
for the examples trefoil, double trefoil, and triple trefoil in [9]). This, however, is the
exception:

3



Figure 1: The antiprism subdivision of a square.

Main Theorem 4 (Theorem 22). Let K be any simplicial complex of dimension d ≥ 3. Then
the random discrete Morse algorithm, applied to the ℓ-th barycentric subdivision sdℓK, yields an
expected number of Ω(eℓ) critical cells a.a.s.

It is known that simplicial polytopal d-spheres of dimension d ≥ 3 can have a non-trivial
discrete Morse spectrum [8, 9, 16]. Theorem 22 of Section 5 shows that the average discrete
Morse vector for the discrete Morse spectrum of a high barycentric subdivision of any simplicial
d-complex, d ≥ 3, becomes arbitrarily large; in particular, for (polytopal) barycentric subdivisions
of simplicial polytopal spheres.

Finally, the Appendix is devoted to a comparison of the random-discrete-Morse strategy
introduced in [9] and two new variations of it, the random-lex-first and the random-lex-last

strategies, which are based on the deterministic lex-first and lex-last strategies of [9], respec-
tively. (The lex-last strategy was called “rev lex” in [9]. Here we use lex-last — along with
lex-first — to avoid confusion with (the term) reverse lexicographic ordering, which is differ-
ent.) In the random-lex-first and the random-lex-last strategies, we first randomly relabel
the vertices of some given complex and then perform all choices of free faces and critical faces by
picking at every stage the lexicographically smallest and lexicographically largest faces as in the
deterministic lex-first and lex-last strategies of [9], respectively. The experiments we include
in the Appendix indicate a surprising superior efficiency of random-lex-last.

2 Collapsible complexes with fewest free faces

For the definition of collapsible, nonevasive, and shellable, we refer the reader to [7]. Recall
that for contractible complexes, shellable implies collapsible. A triangulation B of a ball is called
endocollapsible if B minus some facet (or equivalently, minus any facet) collapses onto the boundary
∂B [5]. Any collapsible complex has at least one free face, namely, the one at which the sequence of
elementary collapses starts. It is easy to see that every nonevasive complex always has at least two
free faces (Lemma 4). The aim of this section is to construct collapsible resp. nonevasive complexes
with exactly one resp. exactly two free faces. First we need to explain a geometric construction
that is essentially known.

Definition 1 (Antiprism Subdivision). Let P be an arbitrary polytope. The antiprism subdivision
A(P ) of P is obtained as follows:

• first we place in the interior of P a constricted copy of P ∗, the polar dual of P ;
• then we take the join of each face σ of P with the corresponding face σ∗ of P ∗.

This A(P ) is a polytopal complex, whose facets are in bijection with the proper faces of P plus
the facet P ∗ in the interior; see Figure 1 for the antiprism subdivision of a square. If P is not a
simplex, A(P ) is not a simplicial complex. The next lemma shows how to canonically subdivide
A(P ) to a simplicial complex that is always shellable. A (pure) d-dimensional polytopal complex
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is regular if it can be realized as the lower convex hull of a (d + 1)-dimensional polytope. For the
definition of a pulling triangulation see e. g. [17, Chapter 4.3.2].

Lemma 2. If P is a simplicial polytope, then there is a triangulation of A(P ) that is regular, and
in particular shellable and endocollapsible.

Proof. If P is d-dimensional, we can place A(P ) in a d-dimensional hyperplane of Rd+1 and then
lift P ∗ to a parallel hyperplane. This way, we have realized A(P ) as the lower convex hull of a
(d + 1)-polytope, i.e., A(P ) is regular. Next, we successively triangulate the non-simplicial faces
of A(P ) by picking vertices (one at a time) of P ∗. Let v be such a vertex. We apply a pulling
triangulation on the current subdivision of A(P ) with respect to v. In the resulting subdivision
of A(P ) in R

d+1, v lies in simplicial faces only, and we thus can slightly push v “outside” to
again obtain a regular subdivision of A(P ). We then proceed with further vertices of P ∗ until we
eventually obtain a simplicial and regular subdivision of A(P ).

Finally, every regular triangulation is shellable [12], and every shellable triangulation is endo-
collapsible [5].

With Lemma 2 we are now ready to construct a series of collapsible complexes with one
free face only. The main idea is to start from the cross-polytope, stack all of its facets but
one, triangulate its interior using a regular triangulation of the antiprism subdivision, and finally
perform identifications on the boundary until “only one facet is left” — thus maintaining the
contractibility of the complex, and so the collapsibility.

Theorem 3. For every d ≥ 2 there is a collapsible shellable d-dimensional simplicial complex Σd

with 2d + d+ 1 vertices that has only one free face.

Proof. The proof consists of three parts: (i) we construct a contractible d-dimensional CW complex
Sd with only one free (d − 1)-dimensional cell; (ii) we subdivide Sd appropriately to obtain a
simplicial complex Σd with 2d+ d+1 vertices and only one free face; and (iii) we show via Lemma
2 that Σd is collapsible and even shellable.
(i) Let C∆

d denote the d-dimensional regular cross-polytope centered at the origin. Let us label
the vertices of C∆

d by {1, 2, . . . , d, 1′, 2′, . . . , d′} such that the antipodal map x 7→ −x maps
each vertex i to i′ and i′ to i, respectively. If {n1, . . . , nk, n

′

1, . . . , n
′

d−k} is a boundary facet

of C∆
d different from {1, 2, . . . , d}, we identify it with the facet {1′, 2′, . . . , d′} by mapping

each ni to n′

i. This way, the (d− 1)-dimensional face {1, 2, . . . , d} is the only boundary facet
of C∆

d that is not identified with another boundary facet of C∆
d . We call the resulting cell

complex Sd.
(ii) Let us go back to the cross polytope C∆

d before the identification and subdivide the interior
of C∆

d according to an antiprism triangulation T . Formally, we place a d-dimensional cube
Cd with 2d vertices, labeled by {d + 2, . . . , 2d + d + 1}, in the interior of C∆

d , such that the
cubical (d − 1)-faces of the cube Cd correspond to the vertices of C∆

d . The interior cube is
then triangulated without adding further vertices, as explained in Lemma 2, to achieve a
regular triangulation T of A(C∆

d ).
Next, let us stack all the boundary facets of C∆

d different from {1, 2, . . . , d}. Under the
identification of the (stacked) boundary facets, the boundary of C∆

d gets mapped to the
simplex {1, 2, . . . , d} union a subdivision of it — thus to the boundary of a d-simplex with
an extra vertex d + 1 used for the stacking; see Figure 2 for the complex Σ2 with the free
edge in red and the identified stacked boundary of C∆

2 in blue. Figure 3 displays (a “Schlegel
diagram” of) the identified stacked boundary of C∆

3 , where the back triangle {1, 2, 3} is not
stacked.
We denote the resulting complex under the boundary identifications as explained in item (i)
by Σd. Unlike Sd, this Σd is a simplicial complex. Further, we let T ′ be the simplicial complex
before the boundary identifications, that is, T ′ is obtained from the regular triangulation T

of A(C∆
d ) by stacking its boundary facets (the boundary facets of the outer C∆

d ) different
from {1, 2, . . . , d}.
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Figure 2: The shellable complex Σ2.
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Figure 3: The identified boundary of Σ3.

(iii) We embed the regular triangulation T of A(C∆
d ) in R

d+1 as the lower convex hull of a polytope
P d+1 such that the boundary facets of T all lie in a d-dimensional hyperplane of Rd+1 and
bound C∆

d as the single upper facet of P d+1. We shell the boundary complex of the polytope
P d+1 by using a line shelling that begins with the single upper facet C∆

d and ends with the
facet that contains (the not subdivided copy of) {1, 2, . . . , d} on the lower hull. In the reverse
order, this shelling sequence deletes the boundary facets of P d+1 one by one — and induces
a collapsing sequence for T to its boundary minus {1, 2, . . . , d}.
We can use this (reverse) shelling sequence to also induce a shelling sequence for Σd, where,
before passing to Σd, we modify the sequence for T locally to extend it to its subdivision T ′.
Since T ′ is obtained from T by stacking its boundary facets (except {1, 2, . . . , d}), we merely
have to replace those facets of T in the shelling sequence that contain boundary facets different
from {1, 2, . . . , d} by the d resulting facets under the stackings, respectively. In particular, we
can shell Σd in reverse order till we reach the cone over the subdivided facet {1′, 2′, . . . , d′},
which is shellable.

By construction, the complexes Σd have (d − 1)-dimensional faces that are contained in more
than two facets. In particular, the examples Σd are not manifolds. For a shellable 3-dimensional
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sdΣ2

sdΣ3

Figure 4: The non-evasive complex E3 with two free faces, v ∗ e and v ∗ f .

ball with only one ear see [30]. None of the complexes Σd is non-evasive, as the next lemma shows.

Lemma 4. A non-evasive d-complex, d ≥ 1, has at least two free faces.

Proof. We proceed by induction on the dimension d. For d = 1 the claim is equivalent to the
well-known fact that every tree has at least two leaves. If d ≥ 2, fix a non-evasive d-complex C

and a vertex v of C whose link and deletion are both non-evasive. By induction, the link of v has
two free faces σ and τ , which implies that v ∗ σ and v ∗ τ are two free faces of C.

As a consequence of Theorem 3, we show now that the bound given by Lemma 4 is sharp in
all dimensions:

Theorem 5. For every d ≥ 1, there is a non-evasive d-complex Ed with exactly two free faces,
which share a codimension-one face.

Proof. The claim is obvious for d = 1 (a path has two endpoints) and easy for d = 2 (it suffices
to consider the barycentric subdivision of the shellable 2-complex Σ2 with only one free face). In
higher dimensions, one has to be more careful. We explain how to deal with dimension 3, leaving
it to the reader to extend our construction by induction on the dimension. Let us start with a
non-evasive 2-complex E2 with two adjacent free edges, e and f , say; the barycentric subdivision,
E2 = sdΣ2, of Σ2 yields such an example [36]. The suspension

S = suspE2 = (v ∗ E2) ∪ (w ∗ E2)

is also non-evasive, but it has four free triangles, pairwise adjacent. All we have to do is to “kill
the freeness” of the triangles w ∗ e and w ∗ f . Before proceeding with this, observe that w ∗ e

and w ∗ f together can be thought of as one larger triangle T = w ∗ (e ∪ f) stellarly subdivided
into two. Since any barycentric subdivision can be obtained by a sequence of stellar subdivisions,
there is a way to stellarly subdivide S into a triangulation S′ that restricted to (w ∗ e) ∪ (w ∗ f)
is combinatorially equivalent to the barycentric subdivision of T . Stellar subdivisions maintain
non-evasiveness; so S′ is a non-evasive 3-complex with 2 + 3! free triangles.

Now, let Σ3 be the collapsible 3-complex with only one free face σ constructed in Theorem 3.
Let sdΣ3 be its barycentric subdivision. Let us glue sdΣ3 to S′ by identifying the subdivision of
(w ∗ e) ∪ (w ∗ f) with sdσ. Let E3 be the resulting complex; see Figure 4. E3 has now only two
free faces, v ∗ e and v ∗ f .
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To show that E3 is non-evasive, we have to give an order of the vertices of E3 such that
in every step the link and the deletion of the current vertex are non-evasive. Now, barycentric
subdivisions of collapsible complexes and cones are non-evasive [36]. We start by deleting v. The
link of v is E2 = sdΣ2 and therefore non-evasive. For our deletion sequence we proceed with the
interior vertices of E2 (in any order) to collapse the subdivision of w ∗E2 towards the subdivision
of (w ∗ e) ∪ (w ∗ f). This leaves us with sdΣ3, which is non-evasive.

Remark 6. A direct construction, though with more vertices, of non-evasive d-complexes Ed that
have exactly two free faces is given by

Ed = sd(w ∗ Σd−1) ∪ (v ∗ sdΣd−1) ∪ sdΣd.

Here, the boundary of sd(w∗Σd−1) is ∂(sd(w∗Σd−1)) = sdΣd−1∪sdT , to which we glue v∗sdΣd−1

(from “below” in Figure 4) and sdΣd (from “the right” in Figure 4).

3 Complexes with two different optimal Morse vectors

Here, we address the question of whether a simplicial complex must have a unique optimal discrete
Morse vector. The answer is negative in general, as we shall now see. We construct an explicit
3-dimensional simplicial complex two optima with 106 vertices, which has two distinct optimal
discrete Morse vectors (1, 1, 1, 0) and (1, 0, 1, 1). The construction of two optima can be generalized
to every dimension d ≥ 3 to yield (up to suitable subdivisions) d-dimensional complexes with
exactly two optimal discrete Morse vectors (1, 0, . . . , 0, 1, 1, 0) and (1, 0, . . . , 0, 0, 1, 1). We also
obtain that not all optimal discrete Morse vectors need to be contained in the discrete Morse
spectrum of a complex.

The starting points for the construction of two optima are the following observations:

(i) for all discrete Morse vectors of a given simplicial complex C, the alternating sum
∑d

i=0(−1)ici
is always constant, and equal to the Euler characteristic of C;

(ii) if (c0, c1, . . . , cd) is a discrete Morse vector for C, and c0 is larger than the number of connected
components of C, then (c0 − 1, c1 − 1, . . . , cd) is also a discrete Morse vector for C. (In
particular, if we look for optimal discrete Morse vectors of a connected complex, we can
always assume c0 = 1.)

It follows that if we aim at producing a simplicial complex that has distinct optimal discrete Morse
vectors, then (1, 1, 1, 0) and (1, 0, 1, 1) would be the smallest such vectors with respect to dimension
and the total number of critical cells. By the discrete Morse inequalities and the fact that any
complex with discrete Morse vector (1, c1, c2, c3) is homotopy equivalent to a complex with the
respective number of cells in each dimension, any complex that admits both vectors (1, 1, 1, 0) and
(1, 0, 1, 1) has to be contractible.

In the following, we indeed will construct such a complex two optima that is contractible
and has (1, 1, 1, 0) and (1, 0, 1, 1) as optimal discrete Morse vectors, where the main work in the
construction will be to block the trivial vector (1, 0, 0, 0) to occur as discrete Morse vector of the
complex.

Preliminary Example. From the previous section we know that there is a 3-complex Σ3

that has only one free triangle t. Also, there is a 2-complex Σ2 with only one free edge e, which
belongs to a triangle t′, say. Let C be the (non-pure) 3-complex obtained by gluing together a
copy of Σ2 and a copy of Σ3, via the identification t ≡ t′ (in some order of the vertices). Let us
look for small discrete Morse vectors for C.

• The vector (1, 0, 1, 1) can be achieved. In fact, since Σ3 is endocollapsible, after removing a
tetrahedron from C we can collapse away all the tetrahedra of C; what we are left with is Σ2

plus an additional 2-dimensional membrane, which, as the identified boundary of Σ3, is the
stellar subdivision of a triangle. Once we remove a critical triangle from this membrane, the
resulting 2-complex collapses to Σ2, which is collapsible. Note that in this sequence, e and t′

8
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Figure 5: The collapsible complex Σ2 with new vertex labels.

are removed together, in an elementary collapse. (Alternatively, we could have removed t′ as
a critical triangle to obtain Σ2 with the triangle t′ stellarly subdivided, which is collapsible
again, also with the then free edge e paired up.)

• Instead of removing a critical tetrahedron from C as a first step, we could have started with
an elementary collapse that uses the unique free triangle t′, and then empty out Σ3 so that
we obtain Σ2 with the triangle t′ subdivided, which is collapsible by starting with the free
edge e. Thus, (1, 0, 0, 0) is achievable as a discrete Morse vector (and obviously smallest
possible). Our aim will be to block the edge e from being free and thus ruling out (1, 0, 0, 0)
as possible discrete Morse vector — with the hope that both of the vectors (1, 1, 1, 0) and
(1, 0, 1, 1) will become the new optima.

Theorem 7. There is a contractible, but non-collapsible 3-dimensional simplicial complex
two optima with face vector f = (106, 596, 1064, 573) that has two distinct optimal discrete Morse
vectors, (1, 1, 1, 0) and (1, 0, 1, 1).

Proof. The construction of two optima involves a copy of Σ2 (with relabeled vertices), a modified
copy Σ′

3 of Σ3 and nine further copies of Σ3. The proof outline is as follows:
– In Part I we introduce the complex Σ2 ∪ Σ′

3. The transition from Σ3 to Σ′

3 consists in a
subdivision followed by an identification of the edge e with a segment of the identified boundary
of Σ3. As a result, Σ2 ∪Σ′

3 is still contractible.
– In Part II we study the small discrete Morse vectors of Σ2 ∪Σ′

3. It turns out that the complex
admits (1, 0, 1, 1), (1, 1, 1, 0), but still (1, 0, 0, 0). However, the sequences of collapses yielding
the third vector are now “rare”, and all of a specific type.

– In Part III we show how attaching nine further copies of Σ3 to Σ2 ∪Σ′

3 excludes collapsibility
and yields the desired complex.

Part I. Let us start with a notational issue: We shall relabel the vertices of Σ2 of Figure 2 such
that the unique free edge 1 2 is contained in the triangle 1 2 3; see Figure 5. To the complex Σ2∪Σ′

3

we are going to construct, (the relabeled copy of) Σ2 will thus contribute the 12 triangles

1 3 23, 1 22 23, 1 22 24, 1 22 25, 1 24 25, 2 3 25,
2 22 23, 2 22 24, 2 22 25, 2 23 24, 3 23 25, 23 24 25

as facets. On top of the 13th triangle 1 2 3 (in grey) we glue the modified copy Σ′

3 of Σ3.
In order to obtain Σ′

3 from Σ3, we again start as in Figure 3 with the boundary of the octahe-
dron (the 3-dimensional crosspolytope), but this time with a finer subdivision and an additional
identification on the (identified) boundary. Figure 6 displays this extra identification, where we
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Figure 6: The modified identified boundary of Σ′

3.
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Figure 7: The subdivision of the triangle 1 3 4 within the triangle 1 2 3.

glue the edge 1 2 to a segment 1 2 (in red) within (each of the seven duplicates of) the triangle
1 3 4 (on the identified boundary of Σ3 of Figure 3). Since the edge 1 2 and its image intersect
in the single vertex 1, Σ′

3 (after triangulating its 3-dimensional “interior”) and Σ3 are homotopy
equivalent. To realize Σ′

3 as an explicit 3-dimensional simplicial complex, we first subdivide the
triangle 1 3 4 inside the stacked triangle 1 2 3 to host the segment 1 2 as a proper edge; see Figure 7.

We then glue the complex Σ′

3 on top of Σ2 along the back-side triangle 1 2 3 of Σ′

3. We call
1 2 3 the bottom triangle of Σ′

3, whereas on the top side of Σ′

3 we see Figure 6, with each triangle
1 3 4 subdivided as shown in Figure 7. The 3-dimensional solid body between the top side and the
back triangle can be thought of as a 3-dimensional ball with identifications on the boundary. For
triangulating this body, we first shield off the extra seven copies of the vertex 2 inside (the seven
copies of) the triangle 1 3 4 by taking seven cones

1 2 5 x, 1 2 6 x, 1 3 5 x, 1 4 6 x, 2 5 6 x, 3 4 6 x, 3 5 6 x,

with respect to the apices x = 1, . . . , 7. Below these seven cones, we place a next layer of cones

1 3 x y, 1 4 x y, 3 4 x y, 1 2 4 x, 2 3 4 y,

with apices y = x + 7 (so that the vertices x = 1, . . . , 7 are shielded from other copies of the
vertex 2).
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Figure 8: Projection of the lower hull of the seven two-fold cones over the identified and subdivided
boundary of the octahedron (left) and one layer further below (right).

The seven two-fold cones can be assigned freely to the seven copies of the subdivided triangle
1 2 3; our assignment is displayed in Figure 8 (left). We connect the cones (and, en passant, shield
off the multiple copies of the edges 1 2, 1 3 and 1 4 via the tetrahedra

2 3 14 15, 1 2 15 16, 1 3 16 17, 2 3 17 18, 1 2 18 19, 1 3 14 19,

and
1 3 15 20, 1 2 17 20, 2 3 19 20.

Next, we shield off the central copies of the vertices 1, 2 and 3 by gluing in the tetrahedra

1 15 16 17, 1 15 17 20, 2 17 18 19, 2 17 19 20, 3 14 15 19, 3 15 19 20, 15 17 19 20,

and obtain as a lower envelope (i.e., boundary) of the above tetrahedra 13 triangles, which, together
with the back triangle 1 2 3, give a triangulated 2-sphere; see Figure 8 (right). We close this void
by taking the cone over these 13 + 1 triangles with respect to the additional vertex 21:

1 2 14 21, 1 3 18 21, 1 14 19 21, 1 18 19 21, 2 3 16 21, 2 14 15 21, 2 15 16 21,
3 16 17 21, 3 17 18 21, 14 15 19 21, 15 16 17 21, 15 17 19 21, 17 18 19 21,

1 2 3 21.

The resulting complex Σ2 ∪ Σ′

3 has face vector f = (25, 128, 218, 114).

Part II. We now describe the small discrete Morse vectors that can be obtained for the complex
Σ2 ∪ Σ′

3.
• The vector (1, 1, 1, 0) is achievable. In fact, we can start with collapsing away all tetrahedra,

where the only way to begin with is via the unique free triangle 1 2 3. Once we enter into
the solid 3-dimensional body of Σ′

3 we layer-wise collapse away the “interior”, so that we are
left with the identified (upper) boundary of Σ′

3. Under the identifications, the seven copies
of the subdivided triangle 1 2 3 fold up to just one copy, as displayed in Figure 7, which,
in turn, replaces the triangle 1 2 3 in Figure 5. However, the once free edge 1 2 then is still
glued to an interior edge and thus is not free. As a consequence, a triangle, say, 1 2 4 has to
be marked as critical before we can continue with collapses. But then we are also forced to
pick up a critical edge, yielding (1, 1, 1, 0) as discrete Morse vector.
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• The vector (1, 0, 1, 1) can also be achieved. Let us initially remove a tetrahedron, say, 1 2 3 21
as critical and then empty out the interior of the solid 3-dimensional body. We then are
left with Σ2 of Figure 5 union the “upper” triangles of Figure 7, which together is a space
homotopy equivalent to the 2-sphere. If we remove one of the triangles of Figure 7 as critical,
we can collapse down to Σ2, which is collapsible, thus resulting in (1, 0, 1, 1) as a discrete
Morse vector.

• The vectors (1, 1, 1, 0) and (1, 0, 1, 1) are not optimal for Σ2 ∪ Σ′

3 — in fact, Σ2 ∪ Σ′

3 is
collapsible with optimal discrete Morse vector (1, 0, 0, 0). A respective collapsing is not
obvious (we found some with the computer). It has to start via the unique free triangle
1 2 3. Instead of emptying out the whole interior of the solid body and not touching its
identified boundary, we have to drill tunnels so that one of the nine triangles of Figure 7
becomes free. Then we can perforate the membrane of triangles of Figure 7 and, eventually,
free the edge 1 2.

Part III. In this part, we further modify Σ2 ∪ Σ′

3 to obtain a contractible space that is not
collapsible, but still admits the vectors (1, 1, 1, 0) and (1, 0, 1, 1). To this end, we glue on top of
each of the triangles

t1 t2 t3 ∈ {1 2 5, 1 2 6, 1 2 4, 1 3 5, 1 4 6, 2 3 4, 2 5 6, 3 4 6, 3 5 6}

a copy of Σ3 along its free face, thus contributing 12− 3 = 9 additional vertices for each copy. The
encoding of the copies of Σ3 is as follows. For a = 26+ 9j, j = 0, . . . , 8, and b = a+ k, k = 1 . . . 7,
we add the tetrahedra

t1 t2 a b, t1 t3 a b, t2 t3 a b

to shield off the nine stacking vertices a = 26 + 9k, j = 0, . . . , 8. We then glue in the tetrahedra

t2 t3 a+ 1 a+ 2, t1 t2 a+ 2 a+ 3,
t1 t3 a+ 3 a+ 4, t2 t3 a+ 4 a+ 5,
t1 t2 a+ 5 a+ 6, t1 t3 a+ 6 a+ 1

as well as
t1 t3 a+ 2 a+ 7, t1 t2 a+ 4 a+ 7, t2 t3 a+ 6 a+ 7

to join the cones over the stacked triangles and then the tetrahedra

t1 a+ 2 a+ 3 a+ 4, t1 a+ 2 a+ 4 a+ 7,
t2 a+ 4 a+ 5 a+ 6, t2 a+ 4 a+ 6 a+ 7,
t3 a+ 1 a+ 2 a+ 6, t3 a+ 2 a+ 6 a+ 7

over the “boundary” edges, with

a+ 2 a+ 4 a+ 6 a+ 7

as a final shielding piece. In a last step, we glue in the cone with respect to the vertex a+8 to fill
in the central void:

t1 t2 t3 a+ 8,
t1 t2 a+ 1 a+ 8, t1 t3 a+ 5 a+ 8, t2 t3 a+ 3 a+ 8,
t1 a+ 1 a+ 6 a+ 8, t1 a+ 5 a+ 6 a+ 8,
t2 a+ 1 a+ 2 a+ 8, t2 a+ 2 a+ 3 a+ 8,
t3 a+ 3 a+ 4 a+ 8, t3 a+ 4 a+ 5 a+ 8,
a+ 1 a+ 2 a+ 6 a+ 8, a+ 2 a+ 3 a+ 4 a+ 8, a+ 4 a+ 5 a+ 6 a+ 8,
a+ 2 a+ 4 a+ 6 a+ 8.

For simplicity, the resulting complex Σ2 ∪Σ′

3 ∪i=1,...,9 Σ3 will be called two optima; a list of facets
of the complex is available online at [10].

To see that the complex two optima admits the discrete Morse vectors (1, 1, 1, 0) and (1, 0, 1, 1)
we can proceed as above:
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• For (1, 1, 1, 0), we enter via the unique free triangle 1 2 3, empty out the interior of Σ′

3. At
this point, we can enter the nine copies of Σ3 via the freed triangles 1 2 5, 1 2 6, 1 2 4, 1 3 5,
1 4 6, 2 3 4, 2 5 6, 3 4 6, 3 5 6 and empty out the interiors of the copies. By construction, the
edge 1 2 then is blocked, but can be freed once we declare one of the boundary triangles of
∪i=1,...,9Σ3 to be critical.

• For the vector (1, 0, 1, 1) we can proceed similarly, once we have marked as critical and
removed one of the interior tetrahedra of Σ′

3.
Finally, we need to see that two optima is not collapsible. Since each copy of Σ3 can only be

entered via one free triangle (say, a b c) that is glued on top of Σ′

3, we need to first empty out all
tetrahedra of Σ′

3 that touch the triangle a b c before we can enter the respective copy of Σ3. At that
point, the copy of Σ3 is glued to the remainder via the three boundary edges a b, a c and b c of the
triangle a b c. These three edges stay fixed, in particular, cannot be free. Once we have collapsed
the copy of Σ3, we obtain a membrane, which is (homotopy equivalent to) a 2-dimensional disc
glued in along the boundary of the triangle a b c. It follows that none of the edges a b, a c and b c as
well as none of the boundary edges of the other copies Σ3 can become free, before we mark some
triangle as critical and perforate the collection of 2-dimensional membranes this way.

Our construction can be generalized to dimensions d > 3.

Lemma 8. Let D be a d-disk, and let γ be any (d−2)-loop in ∂D. Let D′ ⊂ D be any CW complex
such that D deformation retracts to D′ which contains γ. Then there is a (d − 1)-disk d′ →֒ D′

with ∂d′ →֒ γ.

Proof. Choose a disk d ∈ ∂D with ∂d = γ. Then the deformation retract ft : D −→ D′ deforms d
to d′.

Theorem 9. For every d ≥ 3 there is a contractible, but non-collapsible simplicial d-complex that
has two distinct optimal discrete Morse vectors (1, 0, . . . , 0, 1, 1, 0) and (1, 0, . . . , 0, 0, 1, 1).

Proof. As before in the 3-dimensional case, for d ≥ 4, we start with a copy of Σd−1 for which its
free face is labeled 1 2 . . . d − 1 and is contained in the (d − 1)-simplex 1 2 . . . d − 1 d. On top of
the (d− 1)-simplex 1 2 . . . d− 1 d of Σd−1 we glue a modified copy Σ′

d of Σd along the unique free
face 1 2 . . . d − 1 d of Σ′

d. Here, the modified version Σ′

d is obtained from Σd be identifying the
face 1 2 . . . d − 1 with a (d − 2)-dimensional disk on the identified boundary of Σd such that the
face 1 2 . . . d − 1 and its image intersect in the vertex 1. On top of the (d − 1)-dimensional faces
of the identified boundary of Σ′

d (up to a suitable subdivision), we glue copies of Σd to avoid (by
Lemma 8) perforation.

Remark 10. Each of the discrete Morse algorithms random, random-lex-first, random-lex-last
does not remove any d-face as critical as long as nontrivial collapses of d-faces are possible. There-
fore, when applied to two-optima, none of the proposed algorithms can see a discrete Morse
function with a critical 3-cell — and indeed, we only found (1, 1, 1, 0) in our computations and
never picked up extra cells in the lower dimensions 0, 1, and 2.

In [9], the discrete Morse spectrum of a simplicial complex was defined as the set of all possible
outcomes of the random discrete Morse algorithm along with the respective probabilities for the
individual vectors. We next give an alternative definition in terms of monotone discrete Morse
functions.

Definition 11 (Monotone discrete Morse function). A monotone discrete Morse function on a
simplicial complex C is a map f : C → Z satisfying the following six axioms:
(i) if σ ⊆ τ , then f(σ) ≤ f(τ);
(ii) the cardinality of f−1(q) is at most 2 for each q ∈ Z ;
(iii) if f(σ) = f(τ), then either σ ⊆ τ or τ ⊆ σ;
(iv) for any σ ⊆ τ and σ′ ⊆ τ ′, if f(σ) = f(τ) ≤ f(σ′) = f(τ ′) then dim τ ≤ dim τ ′;
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(v) f(C) = [0,M ], for some M ∈ N;
(vi) for any critical face ∆ (that is, a face such that f(σ) 6= f(∆) for each face σ 6= ∆), the

complex {σ ∈ C s.t. f(σ) ≤ f(∆)} has no free (dim∆− 1)-dimensional face.

Definition 12 (Discrete Morse spectrum). Let C be any simplicial complex. The discrete Morse
spectrum of C is the set of all discrete Morse vectors of all monotone discrete Morse functions
on C.

Remark 13. Given an arbitrary discrete Morse function f in the sense of Forman, it is easy to
produce a function g that induces the same Morse matching of f and in addition satisfies (i), (ii),
(iii), (iv) and (v). In fact, as explained by Forman [20], the function f induces a step-by-step
deconstruction of the complex: in the i-th step we either delete a critical face ∆i, or we delete a
pair of faces (σi,Σi), with σi free. In the first case, let us set g̃(∆i) = −i; in the second case, we set
g̃(σi) = g̃(Σi) = −i. We leave it to the reader to verify that the resulting map g̃ satisfies axioms
(i) to (iv). If M = min{g̃(σ) : σ ∈ C}, the function g we seek is then defined by g(σ) = g̃(σ) −M

for each σ.

Remark 14. The sixth axiom of Definition 11 is instead “really restrictive”. If C is any complex
of dimension ≥ 1, the f -vector of C is not in the discrete Morse spectrum, though it is obtainable
by some discrete Morse function in the sense of Forman (corresponding to the “empty matching”,
which leaves all faces critical). The sixth axiom in fact forbids us to declare a k-face critical if
there are still free (k − 1)-faces available.

Any vector output from any of the discrete Morse strategies random, random-lex-first,

random-lex-last, is by construction the discrete Morse vector of a monotone discrete Morse
function. Therefore, none of them will ever output a vector corresponding to the empty matching.
However, this is not at all a drawback: As we said, the essence of Forman’s theory is to come
up with discrete Morse vectors that are as small as possible. So it is actually time-saving if some
very non-optimal matchings (like the empty one, which is the worst possible) are systematically
neglected by the algorithm we are using.

We observed experimentally that these algorithms often find optimal matchings. This naturally
triggers the question if the discrete Morse spectrum always contains an optimal vector. (If this is the
case, then it might actually be more efficient, for all sorts of discrete-Morse-theoretic computations,
to switch to the “monotone discrete Morse function” setup.)

What we can derive from Theorem 9 is that not all optimal discrete Morse vectors belong to
the spectrum:

Corollary 15. On the complex two optima of Theorem 9, no monotone discrete Morse function
reaches the optimal Morse vector (1, 0, 1, 1).

However, the vector (1, 1, 1, 0) is reached (in 10000 out of 10000 runs each) by all three strategies
random, random-lex-first, and random-lex-last.

Problem 16. Is at least one of the optimal discrete Morse vectors of a given simplicial complex
reachable via a monotone discrete Morse function? If so, does the lexicographically-largest among
the optimal discrete Morse vectors always belong to the spectrum?

4 A collapsible 5-manifold different from the 5-ball

According to Whitehead [37], every collapsible combinatorial d-manifold is a combinatorial d-ball.
On the other hand, every contractible d-manifold, if d 6= 4, admits a collapsible triangulation [1];
and in each dimension d ≥ 5, there exist non-PL triangulations of contractible d-manifolds different
from d-balls.
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In this section, our aim is to construct a first explicit “small” example of a collapsible non-PL
triangulation of a contractible 5-manifold different from the 5-ball. Our construction is in seven
steps and is based on ideas from [1]. In every step of the construction, we try to save on the size
of the intermediate complexes.

1. Start with a (small) triangulation of a non-trivial homology 3-sphere. The smallest known
triangulation of a non-trivial homology 3-sphere is the 16-vertex triangulation poincare [11] of
the Poincaré homology 3-sphere Σ3. In fact, the triangulation poincare with f = (16, 106, 180, 90)
is conjectured to be the smallest triangulation of Σ3 and to be the unique triangulation of Σ3 with
this f -vector [11, Conj. 6]. Triangulations of other non-trivial homology 3-spheres are believed to
require more vertices and faces than poincare; cf. [31].

2. Remove a (large) triangulated ball. The triangulation poincare has vertex-valence-vector
val = (14, 14, 11, 14, 14, 11, 14, 12, 13, 15, 15, 14, 15, 15, 15, 6). In particular, there are five vertices
of valence 15 whose vertex-stars have 26 tetrahedra each. We remove the star of vertex 15 from
poincare and relabel vertex 16 to 15. The resulting 15-vertex triangulation poincare minus ball

has 64 tetrahedra.

3. Take the cross product with an interval. The cross product of poincare minus ball with an
interval I is a prodsimplicial complex with 2 · 15 = 30 vertices. Any prodsimplicial complex can
be triangulated without adding new vertices; for product triangulations see [28] and references
therein. This way, we obtain a 4-dimensional simplicial complex poincare minus ball x I, which
is a 30-vertex triangulation of a 4-manifold K4 that has the connected sum Σ3#Σ3 as its boundary.

4. Add cone over boundary. If we add to K4 the cone over its boundary with respect to a new ver-
tex 31, then the resulting 4-dimensional simplicial complex L4 is a combinatorial 4-pseudomanifold,
i.e., all of its vertex-links are combinatorial 3-manifolds. In fact, the links of the vertices 1, . . . , 30
in L4 are triangulated 3-spheres, whereas the link of vertex 31 in L4 is a triangulation of the
homology 3-sphere Σ3#Σ3.

5. Perform a one-point suspension. By the double suspension theorem of Edwards [18] and Can-
non [13], the double suspension susp(susp(Hd)) of any homology d-sphere Hd is homeomorphic to
the standard sphere Sd+2. In our case, L4 is homeomorphic to the single suspension susp(Σ3#Σ3)
and therefore

susp(L4) ∼= susp(susp(Σ3#Σ3)) ∼= S5.

The triangulation susp(L4) of S5 with 31+2 vertices is non-PL, since Σ3#Σ3 occurs as the link
of the edge 31–33 (and of the edge 31–32) in susp(L4). Instead of taking the standard suspension
susp(L4) with respect to two new vertices 32 and 33, the one-point suspension uses one vertex less
[11] — for this, we simply contract the edge 31–33 in susp(L4). The resulting complex Σ5

32 then
has face-vector f(Σ5

32) = (32, 349, 1352, 2471, 2154, 718).

6. Subdivide barycentrically. Let sd(Σ5
32) be the barycentric subdivision of Σ5

32 with

f(sd(Σ5
32)) = (7076, 152540, 807888, 1696344, 1550880, 516960).

This step is expensive, but paves the way for the final part of our construction.

7. Collar the PL singular set in sd(Σ5
32). In the barycentric subdivision sd(Σ5

32), there are precisely
three vertices, v 31, v 31–32 and v 32, that do not have combinatorial 4-spheres as their vertex-links
— these three vertices are connected by the edges e 31,31–32 and e 31–32,32 for which their links are
triangulations of Σ3#Σ3. The (contractible!) subcomplex of sd(Σ5

32) formed by these two edges
is the PL singular set of sd(Σ5

32). Let the collar of the contractible PL singular set in sd(Σ5
32) be

the simplicial complex contractible non 5 ball; see [10] for lists of facets of the complex and of
its boundary contractible non 5 ball boundary. Then contractible non 5 ball is a non-PL
triangulation of a contractible 5-manifold different from the 5-ball B5 with f -vector

f(contractible non 5 ball) = (5013, 72300, 290944, 495912, 383136, 110880).
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Theorem 17. There is a collapsible 5-manifold contractible non 5 ball different from the 5-
ball with f = (5013, 72300, 290944, 495912, 383136, 110880).

Proof. By construction, the simplicial complex contractible non 5 ball triangulates a con-
tractible 5-manifold different from the 5-ball. The boundary of the resulting 5-manifold is PL
homeomorphic to the double over the homology ball Σ3 \∆× I, where Σ3 is the starting Poincaré
homology sphere and ∆ is any facet. In particular, the boundary of contractible non 5 ball is
a combinatorial 4-manifold contractible non 5 ball boundary with trivial homology, but is not
simply connected — it has the binary icosahedral group as its fundamental group, in contrast to the
boundary of the 5-ball. Moreover, as a regular neighborhood of a tree, it is immediate that the com-
plex is PL collapsible, i.e., some suitable subdivision of it is collapsible. Here, we used the prototype
implementation DiscreteMorse [29] in GAP [22] of the random-discrete-Morse approach of [9] to
directly find an explicit collapsing sequence. It took 60:17:33 h:min:sec to build the Hasse diagram
of the example containing 2 ·72300+3 ·290944+4 ·495912+5 ·383136+6 ·110880 = 5582040 edges.
In a single random run of the program in 21:41:31 h:min:sec, a discrete Morse vector (1, 0, 0, 0, 0, 0)
was achieved. This proves the collapsibility of the example. (Using a reimplementation by Mimi
Tsuruga of the DiscreteMorse program as a client (to appear) in the (next release of the) polymake
system [21], the same result can be achieved in about 9 seconds with the random-lex-first and
random-lex-last strategies and in about 10 minutes with the uniform random strategy, where
the random-lex-first and random-lex-last strategies found the optimal discrete Morse vector
(1, 0, 0, 0, 0, 0) in 967 and in 1000 out of 1000 random runs, respectively [23].)

Corollary 18. The boundary of contractible non 5 ball is a combinatorial 4-dimensional ho-
mology sphere contractible non 5 ball boundary with f = (5010, 65520, 212000, 252480, 100992)
that has the binary icosahedral group as its fundamental group.

(Recently, a first concrete example of a collapsible non-PL triangulation of the 5-ball for which
its boundary is a combinatorial 4-sphere was constructed in [4]; see also [6] for an outline of the
construction. This example is based on a triangulation of Mazur’s contractible 4-manifold.)

5 Asymptotic complicatedness of barycentric subdivisions

Mesh refinements are often used in discrete geometry to force nice combinatorial properties, while
at the same time maintaining the existing ones. The price to pay is of course an increase (linear,
polynomial, or even exponential) in the computation.

A particularly effective refinement, from this point of view, is the “barycentric subdivision”,
as the following results suggest:
(1) given an arbitrary PL ball, some iterated barycentric subdivision of it is collapsible [1];
(2) for every PL sphere, some iterated barycentric subdivision of it is polytopal [3];
(3) for every PL triangulation of any smooth manifold that has a handle decomposition of ci

i-handles, some iterated barycentric subdivision of it admits (c0, . . . , cd) as optimal discrete
Morse vector [6].
In this section we focus on the average discrete Morse vector, rather than on the smallest one.

In [9, p. 13] it was observed experimentally that the (observed) average number of critical cells in the
random computation of discrete Morse vectors can decrease for “complicated” triangulations (which
we experienced for the examples trefoil bsd, double trefoil bsd, and triple trefoil bsd)
after performing a single barycentric subdivision. Here we show that this experiment is misleading,
in the sense that the observed average should rapidly increase after a finite number ℓ of barycentric
subdivisions.2

2Of course, observing this phenomenon experimentally may be difficult, due to (1) computational
expense of treating barycentric subdivisions after the first or second iteration, (2) the possibility that the
probabilities p1, p2, and p3 determined by Lemma 19 below are so small that one needs an extremely large
ℓ to appreciate the effect.
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Figure 9: The dunce hat D sitting inside the 3-ball E, “shielded” by ∂E × [0, 1] in the 3-ball C
(left); a collapsing sequence that first empties out the collar E × [0, 1] and then collapses E to D,
leaving a bridge K (right).

We show that after a constant number, say α, of barycentric subdivisions (a number larger
than 1, but universally bounded, i.e., independent of the 3-complex chosen) every 3-complex C

will contain a 2-dimensional copy of the dunce hat D as a subcomplex in any of its subdivided
tetrahedra. As a consequence, we will see in Theorem 22 that the expected number of critical cells
in a discrete Morse vector for the (ℓ+α)-th barycentric subdivision of any 3-dimensional simplicial
complex grows exponentially in ℓ.

Lemma 19. There are universal constants α ∈ N and p1, p2, p3 ∈ (0, 1] such that
(i) the α-th iterated barycentric subdivision sdα T of the tetrahedron T contains a (subdivided)

dunce hat as a subcomplex;
(ii) and if Σ ∈ sdα T is any facet intersecting ∂ sdα T in dimension 2, then with probability

p1 > 0, the discrete Morse algorithm random collapses sdα T − Σ to a 2-complex containing
the subdivided dunce hat and ∂ sdα T ;

(iii) the strategies random-lex-first and random-lex-last similarly collapse sdα T −Σ to a 2-
complex containing the dunce and hat and ∂ sdα T with positive probabilities p2 and p3 (under
the same restrictions, respectively).

Proof. A well known result in PL topology (cf. [38]) is that any regular neighborhood of the dunce
hat in R

3 is a (PL) 3-ball; moreover, any regular neighborhood contains the original complex in
its interior, and collapses in the PL category onto the original complex. In other words, there is a
simplicial 3-ball E that collapses onto (a subdivision of) the dunce hat D.

Let us “collar” E, that is, let us consider the 3-ball

C = E ∪ ( ∂E × [0, 1] ) .

The ball C is not simplicial anymore, but consists of the tetrahedra of E along with triangular
prisms t× [0, 1] for each of the triangles t of ∂E. We triangulate the prisms, e.g., by first subdividing
the three square faces of each prism into four triangles each (we cone over the boundary 4-gons)
and then inserting a central vertex into each prism and cone over its triangulated boundary. We
call the resulting triangulated 3-ball C′; it contains in its interior the (triangulated ball E that
contains the) copy of the dunce hat D, “shielded” by the collar ∂E × [0, 1], where ∂C′ = ∂C; see
also Figure 9.

Because ∂E is two-dimensional, it is endo-collapsible. This implies that for any facet Σ of C′

not in E (in particular, for a facet Σ intersecting ∂C′ in a boundary triangle), the complex C′ −Σ
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collapses onto

F = ∂C′ ∪K ∪ E,

where K is some complex of dimension at most two (that can be thought of as a bridge between
the outer boundary ∂C′ of the whole ball C′ and the interior ball E; see Figure 9); and this F

collapses in turn to

G = ∂C′ ∪K ∪D.

In other words, we first empty out the collar ∂E × [0, 1] and then collapse E to D, leaving over
only the 2-complex K ∪D (and the outside boundary ∂C′). This way, we ensure that there are no
further collapses that could collapse away D.

Let T be a tetrahedron. Since C′ is a PL ball, by simplicial approximation (cf. [38]) it follows
that there is some iterated barycentric subdivision sdα T of T that also subdivides C′, i.e. there is a
facewise linear homeomorphism ϕ : C′ 7→ sdα T . With [1, Thm. 3.5.4], it follows that ϕ(C′) = sdα T

collapses to ϕ(G) ⊂ sdα T .
Furthermore, for α large enough, there is a labeling of the vertices of sd(sdα−1 T ) such that

it collapses to a triangulation of the dunce hat with the lex-first and lex-last orders. (As above,
there is no loss in assuming that in the collapsing sequence some subdivision of F appears as an
intermediate step.)

In particular, the probability that any of the algorithms above collapses sdα T to the dunce
hat is strictly positive.

Remark 20. Since according to the proof of Lemma 19 we can choose the starting facet Σ to
intersect ∂ sdα T in any boundary triangle τ , we could, instead of Σ, initially use τ (as a free face)
for an elementary collapse (τ,Σ) to enter sdα T as indicated in Figure 9 to collapse sdα T to a
2-complex containing the subdivided dunce hat and ∂ sdα T − τ.

Thus, if we have a 3-complex K with N facets, by subdividing K barycentrically α times, we
obtain a 3-complex that contains in its 2-skeleton N disjoint copies of the dunce hat (one per each
tetrahedron of K). To study how discrete Morse theory behaves on such a complex, we start with
a simple lemma. In the following, let |β(K)| denote the sum of the (unreduced) Betti numbers of
a complex K.

Lemma 21. Let K be a 2-dimensional simplicial complex that contains r disjoint copies of the
dunce hat. Then K does not admit a discrete Morse function with less than 2r + |β(K)| critical
cells.

Proof. We prove the claim by double induction, on r and on the number of faces (“size”) of K.
The case r = 0 is a straightforward consequence of the Morse inequalities. Thus, let r ≥ 1 and let
us assume the claim is proven for all 2-complexes K ′ with at most r disjoint embeddings of the
dunce hat and less faces than K. Let f be any optimal discrete Morse function, and let σ be the
facet at which f attains its maximum. There are three cases to consider:

• σ is not critical. In this case there is a free face ρ of σ such that f(ρ) = f(σ). Note that the
face ρ cannot belong to a copy of the dunce hat, because in the dunce hat every edge belongs
to two or three triangles. The simultaneous removal of both ρ and σ is then an elementary
collapse; let K ′ be the complex obtained. K ′ has the same homology of K, and it still has r
copies of the dunce hat embedded. The claim follows by applying the inductive assumption
to K ′.

• σ is a critical face and belongs to an embedding D of the dunce hat. In this case, we delete σ.
By a simple cellular homology argument, one can show that β1(D − σ) = β1(D) + 1 (and
βi(D − σ) = βi(D) otherwise). Therefore, we obtain that β1(K − σ) = β1(K) + 1 (and
βi(K − σ) = βi(K) otherwise). Hence |β(K − σ)| = β(K)|+ 1, and (K − σ) is a 2-complex
containing at least r−1 copies of the dunce hat. The claim follows by applying the inductive
assumption to K ′ = K − σ.
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• σ is a critical face ofK not intersecting any copy of the dunce hat. We split this case into two
subcases. Either the critical cell we are going to remove is contained in a homology 2-cycle
or not. In the first case, β(K − σ) = (β0(K), β1(K), β2(K)− 1), whereas in the second case,
β(K − σ) = (β0(K), β1(K) + 1, β2(K)). Together, we have |β(K − σ)| ≥ |β(K)| − 1. Again,
by applying the inductive assumption to K ′ = K − σ, the restriction of f to K − σ has no
less than 2r+ |β(K)|− 1 critical cells. The claim follows because f has one more critical cell
on K than the restriction of f on K − σ.

For the next result, we need to fix some notation first. Given a simplicial complex K, we
use fi(K) to denote the number of i-dimensional faces of K. We denote by X1(K), X2(K) resp.
X3(K) the random variables for the number of critical faces of the discrete Morse strategies random,
random-lex-first and random-lex-last on K, respectively, and let E1(K), E2(K) resp. E3(K)
denote the associated expected values. We write X∗(K) resp. E∗(K) when a statement applies to
all three strategies.

Recall that we write f = Ω(g) resp. f = O(g) for real valued functions f : N → R and
g : N → R if there is a c > 0 such that for all x ∈ R large enough, f(x) ≥ cg(x) resp. f(x) ≤ cg(x).
We write f = Θ(g) if f = Ω(g) and f = O(g).

Theorem 22. Let K be a simplicial 3-complex and let p̃i, i ∈ {1, 2, 3}, be the probability (see
below), that guarantees to “find” the dunce hat D in the α-th barycentric subdivision sdα T of any
of the tetrahedra T of K. Then, for all ℓ ≥ 0 and any m ≥ 0,

P[Xi(sd
ℓ+αK) ≤ m] ≤ (1− pi)

24ℓf3(K)−m, for i ∈ {1, 2, 3}.

Furthermore,
logE∗(sd

ℓK) = Ω(ℓ).

Proof. Let K be a 3-dimensional simplicial complex K with face vector f = (f0, f1, f2, f3) and k

be a nonnegative integer, then f3(sd
kK) = 24kf3(K).

If we let, for large enough α, the algorithm random (or the algorithms random-lex-first and
random-lex-last after a suitable relabeling of the vertices) run on sdαK, then eventually we enter
into every subdivided tetrahedron sdα T of any of the initial tetrahedra T of K, either via a free
boundary triangle τ of ∂ sdα T or by removing a tetrahedron Σ (only if no free faces are available)
from sdα T . As argued above in the proof of Lemma 19 and in Remark 20, for any choice of a
first τ there is a sequence of collapses that empties out sdα T , but leaves (a subdivision of) the
dunce hat D. If the starting facet Σ is picked (randomly) from (the subdivision of the image of)
C′ \ E we can also empty out sdα T and leave D.

However, the run of the algorithm random need not target the subdivided tetrahedra one after
each other, but will jump within sdαK. Yet, within each sdα T we still do have positive conditional
probabilities to get stuck with D, depending on how many triangles of ∂ sdα T become free faces
at different stages of our run. There are only finitely many boundary triangles of ∂ sdα T , and
thus there are only finitely many situations to consider for possible collapsing sequences on sdα T .
It is important to point out though that whatever goes on beyond the boundary ∂ sdα T during a
run, this only affects the (conditional) probability of finding a dunce hat D inside sdα T , but does
not block the option to actually find a dunce hat, i.e., a run is not independent on the individual
sdα T , but independent enough to guarantee our result. For simplicity, we therefore let p̃i > 0,
i ∈ {1, 2, 3} be respective (lower bounds on the conditional) probabilities to find a dunce hat.

Let K have an optimal discrete Morse function with c critical cells, then for any ℓ ≥ 1 also
sdℓK has an optimal discrete Morse function with at most c critical cells, and

P[Xi(sd
ℓ+αK) ≤ m] ≤ P[Xi(sd

ℓ+αK) ≤ c+m] ≤ p̃m
i · (1− p̃i)

24ℓf3(K)−m ≤ (1− p̃i)
24ℓf3(K)−m,

for i ∈ {1, 2, 3}, where m dunce hats are picked up (by Lemma 21) in the f3(sd
ℓK) = 24ℓf3(K)

tetrahedra of sdℓK (which is refined further to sdℓ+αK to host the dunce hats by Lemma 19),
while the other 24ℓf3(K)−m dunce hats are not picked up.
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For the expected number of critical cells we then have

Ei(sd
ℓ+αK) ≥ c+ p̃i · f3(sd

ℓK) = c+ p̃i · 24
ℓf3(K),

and thus logE∗(sd
ℓK) = Ω(ℓ).

The bound provided by Theorem 22 is asymptotically tight:

Corollary 23. Let K be any simplicial complex of dimension d ≥ 3. Then

logE∗(sd
ℓK) = Θ(ℓ).

Proof. First, we have to justify that we can consider any dimension d ≥ 3. For this, we start
out with the 3-dimensional ball E of Lemma 19 that contains the dunce hat D, we take the cross
product Ed = E × Id−3 to obtain a d-ball that we again shield via

Cd = Ed ∪
(

∂Ed × [0, 1]
)

and then place Cd in the interior of a d-simplex σd. Again, there is a universal constant αd for
each dimension d such that sdαdσd contains a triangulated copy of Cd, where Cd collapses onto D

(with any of the three strategies) with a positive probability p.
By Theorem 22, we have logE∗(sd

ℓK) = Ω(ℓ). Furthermore, it is clear that logE∗(sd
ℓK) is

bounded above by log f(sdℓK) ≤ log(2d((d + 1)!)ℓfd(K)) = C log ℓ, where f(·) denotes the total
number of faces of a simplicial complex and C is a constant.

A similar behavior for the randomized algorithms with respect to simplicial polytopes can be
observed when we increase the dimension of the polytopes concerned.

Theorem 24. For each simplicial polytope P of dimension d,

E∗(P ) = Ω(d).

Proof. The facets of a simplicial d-polytope P are (d−1)-dimensional simplices that have d vertices
each, and in turn contain any simplicial complex with up to d vertices as a subcomplex. Let T be the
3-dimensional tetrahedron, then the ℓ-th barycentric subdivision sdℓT consists of (4!)ℓ tetrahedra
and has at most 4 · (4!)ℓ vertices. Therefore, if ℓ = ⌊log4!

d
4⌋, then P contains sdℓT . The assertion

now follows from Theorem 22 (using appropiate shielding as in the proof of Corollary 23).

Acknowledgments: We are grateful to the anonymous referees for valuable comments that
greatly helped to improve the presentation of the paper.

Appendix: Random-lex-first and random-lex-last strategies

In [9], the random discrete Morse strategy was used to search for small discrete Morse vectors for
various input. As pointed out in the previous section, this random procedure, and also the random
versions random-lex-first and random-lex-last of the deterministic strategies lex-first and
lex-last of [9], respectively, pick up exponentially many critical cells asymptotically almost surely.
Yet, on rather huge examples the heuristics often still are successful in finding good or even optimal
discrete Morse vectors — with the new random-lex-last strategy working significantly better than
the other implementations; cf. Table 2.

As a (non-trivial) testing ground for discrete Morse (heuristical) algorithms, a library of 45
triangulations was provided in [9]. For 39 out of the 45 examples, optimal discrete Morse vectors
were found in [9] with the discrete Morse strategy random or with the lex-first and lex-last

strategies. For 4 of the 6 open cases,
• hyperbolic dodecahedral space, (1,4,4,1),
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• non PL, (1,0,0,2,2,1),
• S2xpoincare, (1,2,3,3,2,1),
• contractible vertex homogeneous, (1,0,0,4,8,4,0,0,0,0,0,0),

we miss appropriate lower bounds to show optimality of the found discrete Morse vectors. In the
case of the 3-ball triangulation knot, (1,1,1,0) was the best vector obtained in [9], while Lewiner
in [25] claims to have found (1,0,0,0). For the example triple trefoil bsd, (1,1,1,1) was reached
in [9].

Theorem 25. The triangulated 3-sphere example triple trefoil bsd has the perfect discrete
Morse vector (1,0,0,1) in its discrete Morse spectrum.

We found the discrete Morse vector (1,0,0,1) for the example triple trefoil bsd with both
the random-lex-first and the random-lex-last strategy in only 7 and 5 out of 10000 runs,
respectively, which provides us an interesting benchmark example for which the optimal discrete
Morse vector is hard to find; see Table 1.

Table 1 displays two further examples, nc sphere and bing, for which the optimal vector
(1, 0, 0, 1) was found way more often with the random-lex-first and the random-lex-last

strategies, compared to random-discrete-Morse. Also, for the examples poincare and non PL

(and for other examples as well) we see a dramatic simplification of the spectrum when using
random-lex-last (and random-lex-first). For the library examples listed in Table 2, we high-
lighted (in bold), which of the three random strategies yields the smallest average of critical cells. In
most cases, the random-lex-last strategy scores best — and even in the case triple trefoil bsd

where it did not, it revealed the optimum. The last column of Table 2 lists the best known the-
oretical lower bound for the number of critical cells in a discrete Morse vector. The number is in
bold if we can prove that it is actually achievable, i.e., there is a discrete Morse function with that
many critical cells.
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Table 1: Distribution of discrete Morse vectors in 10000 rounds.

random random-lex-first random-lex-last

poincare

(1,2,2,1): 9073 (1,2,2,1): 9992 (1,2,2,1): 9999
(1, 3, 3, 1): 864 (1, 3, 3, 1): 8 (1, 3, 3, 1): 1
(1, 4, 4, 1): 45
(2, 4, 3, 1): 7
(2, 3, 2, 1): 6
(1, 5, 5, 1): 5

non PL

(1,0,0,2,2,1): 9383 (1,0,0,2,2,1): 9991 (1,0,0,2,2,1): 10000
(1, 0, 0, 3, 3, 1): 441 (1, 0, 0, 3, 3, 1): 9
(1, 0, 1, 3, 2, 1): 134
(1, 0, 0, 4, 4, 1): 23
(1, 0, 1, 4, 3, 1): 12
(1, 0, 2, 4, 2, 1): 2
(1, 0, 0, 5, 5, 1): 2
(1, 0, 2, 5, 3, 1): 1
(1, 1, 2, 3, 2, 1): 1
(1, 0, 4, 6, 2, 1): 1

nc sphere

(1, 1, 1, 1): 7902 (1, 1, 1, 1): 7550 (1, 1, 1, 1): 8440
(1, 2, 2, 1): 1809 (1, 2, 2, 1): 1660 (1, 2, 2, 1): 1426
(1, 3, 3, 1): 234 (1,0,0,1): 720 (1,0,0,1): 110
(1, 4, 4, 1): 25 (1, 3, 3, 1): 64 (1, 3, 3, 1): 24
(1,0,0,1): 12 (2, 3, 2, 1): 4
(2, 3, 2, 1): 9 (1, 4, 4, 1): 2
(1, 6, 6, 1): 3
(2, 4, 3, 1): 3
(2, 5, 4, 1): 2
(1, 5, 5, 1): 1

bing

(1, 1, 1, 0): 9764 (1, 1, 1, 0): 9484 (1, 1, 1, 0): 9421
(1, 2, 2, 0): 217 (1,0,0,0): 280 (1,0,0,0): 456
(1,0,0,0): 7 (1, 2, 2, 0): 233 (1, 2, 2, 0): 117
(1, 3, 3, 0): 6 (2, 3, 2, 0): 2 (2, 3, 2, 0): 4
(2, 3, 2, 0): 6 (1, 3, 3, 0): 1 (1, 3, 3, 0): 2

triple trefoil bsd

(1, 2, 2, 1): 4793 (1, 2, 2, 1) : 5193 (1, 2, 2, 1) : 4557
(1, 1, 1, 1): 3390 (1, 3, 3, 1): 2531 (1, 1, 1, 1): 3290
(1, 3, 3, 1): 1543 (1, 1, 1, 1): 1966 (1, 3, 3, 1): 1790
(1, 4, 4, 1): 208 (1, 4, 4, 1): 278 (1, 4, 4, 1): 305
(1, 5, 5, 1): 22 (1, 5, 5, 1): 19 (1, 5, 5, 1): 31
(2, 3, 2, 1): 20 (1,0,0,1): 7 (2, 3, 2, 1): 13
(2, 4, 3, 1): 17 (2, 3, 2, 1): 3 (1,0,0,1): 5
(1, 6, 6, 1): 3 (2, 4, 3, 1): 3 (2, 4, 3, 1): 5
(2, 5, 4, 1): 3 (2, 5, 4, 1): 2
(1, 8, 8, 1): 1 (1, 6, 6, 1): 2
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Table 2: Average numbers of critical cells in 10000 runs.

Name of example random r.-lex-first r.-lex-last ≥

d2n12g6 14.0558 14.0000 14.0000 14
regular 2 21 23 1 32.1354 32.0000 32.0000 32
rand2 n25 p0.328 482.9612 476.7076 477.7182 476
trefoil arc 1.0952 1.6246 1.2180 1
trefoil 2.0778 2.2164 2.0330 2
double trefoil arc 3.6298 3.7690 3.2718 3
poincare 6.1978 6.0016 6.0002 6
double trefoil 3.5356 3.7664 3.0778 2
triple trefoil arc 5.9558 5.9376 5.2700 5
triple trefoil 6.0082 5.9408 5.0584 4
hyperbolic dodecahedral space 11.5128 10.1582 10.0906 8
S 3 50 1033 (random) 3.2114 3.2108 2.6104 2
non 4 2 colorable 30.6 25.3232 16.8154 2
Hom C5 K4 (RP3) 4.0508 4.0300 4.0090 4
trefoil bsd 2.0202 2.2388 2.1052 2
knot 3.1228 3.1262 3.1034 1
nc sphere 4.4788 4.2164 4.2728 2
double trefoil bsd 3.3426 3.8968 3.4406 2
bing 3.0468 2.9918 2.9346 1
triple trefoil bsd 5.7432 6.2346 5.8460 2
Hom n9 655 compl K4 ((S2×S1)#13) [100 runs] 28.84 28.46 28.28 28
CP2 3.0012 3.0000 3.0000 3
RP4 5.0492 5.0000 5.0000 5
K3 16 (unknown PL type) 24.8228 24.0000 24.0000 24
K3 17 (standard PL type) 24.8984 24.0004 24.0000 24
RP4 K3 17 28.58 27.0046 27.0018 27
RP4 11S2xS2 28.48 27.0088 27.0024 27
Hom C6 compl K5 small ((S2×S2)#29) 63.94 60.0284 60.0066 60
Hom C6 compl K5 ((S2×S2)#29) [10 runs] 83.2 65.0 61.6 60
SU2 SO3 4.1354 4.0000 4.0000 4
non PL 6.1328 6.0018 6.0000 2
RP5 24 6.1770 6.0004 6.0000 6
S2xpoincare 15.70 12.078 12.028 4
HP2 3.1212 3.0000 3.0000 3
contractible vertex homogeneous [10 runs] 273.6 17.0 17.0 1
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tif́ıcia Universidade Católica do Rio de Janeiro, 2005, 131 pages.
http://zeus.mat.puc-rio.br/tomlew/pdfs/tomlew_phd_puc.pdf.

[26] T. Lewiner, H. Lopes, and G. Tavares. Optimal discrete Morse functions for 2-manifolds.
Comput. Geom. 26, 221–233 (2003).

[27] F. H. Lutz. Small examples of nonconstructible simplicial balls and spheres. SIAM J. Discrete
Math. 18, 103–109 (2004).

24

http://www.eg-models.de/2013.10.001
http://page.math.tu-berlin.de/~lutz/stellar/library_of_triangulations/
http://redhom.ii.uj.edu.pl
http://chomp.rutgers.edu
http://www.math.tu-berlin.de/diskregeom/polymake/doc/
http://www.gap-system.org
arXiv:1405.3848v2
http://zeus.mat.puc-rio.br/tomlew/pdfs/tomlew_phd_puc.pdf


[28] F. H. Lutz. Triangulated Manifolds with Few Vertices: Geometric 3-Manifolds.
arXiv:math.GT/0311116, 2003, 48 pages.

[29] F. H. Lutz. DiscreteMorse, Version May/2015. http://page.math.tu-berlin.de/~lutz/stellar/DiscreteMorse,
2015.

[30] F. H. Lutz. A shellable ball with one ear. In preparation.

[31] F. H. Lutz, T. Sulanke, and E. Swartz. f -vectors of 3-manifolds. Electron. J. Comb. 16, No.
2, Research Paper R13, 33 p. (2009).

[32] Perseus. The persistent homology software. http://www.math.rutgers.edu/~vidit/perseus.html.

[33] M. Tancer. Recognition of collapsible complexes is NP-complete. Discrete Comput. Geom.
55, 21–38 (2016).

[34] M. Tsuruga and F. H. Lutz. Constructing complicated spheres. arXiv:1302.6856, 2013, 4
pages, EuroCG 2013.

[35] I. A. Volodin, V. E. Kuznecov, and A. T. Fomenko. The problem of the algorithmic dis-
crimination of the standard three-dimensional sphere. Uspehi Mat. Nauk 29, 71–168 (1974).
Appendix by S. P. Novikov.

[36] V. Welker. Constructions preserving evasiveness and collapsibility. Discrete Math. 207, 243–
255 (1999).

[37] J. H. C. Whitehead. Simplicial spaces, nuclei and m-groups. Proc. Lond. Math. Soc., II. Ser.
45, 243–327 (1939).

[38] E. C. Zeeman. Seminar on Combinatorial Topology. Institut des Hautes Études Scientifiques,
Paris, 1966.

25

arXiv:math.GT/0311116
http://page.math.tu-berlin.de/~lutz/stellar/DiscreteMorse
http://www.math.rutgers.edu/~vidit/perseus.html
arXiv:1302.6856

	1 Introduction
	2 Collapsible complexes with fewest free faces
	3 Complexes with two different optimal Morse vectors
	4 A collapsible 5-manifold different from the 5-ball
	5 Asymptotic complicatedness of barycentric subdivisions

