
ar
X

iv
:1

60
3.

01
35

7v
1 

 [
m

at
h.

PR
] 

 4
 M

ar
 2

01
6

INCLUSION-EXCLUSION PRINCIPLES FOR CONVEX HULLS

AND THE EULER RELATION

ZAKHAR KABLUCHKO, GÜNTER LAST, AND DMITRY ZAPOROZHETS

Abstract. Consider n points X1, . . . ,Xn in R
d and denote their convex hull

by Π. We prove a number of inclusion-exclusion identities for the system
of convex hulls ΠI := conv(Xi : i ∈ I), where I ranges over all subsets of
{1, . . . , n}. For instance, denoting by ck(X) the number of k-element subcol-
lections of (X1, . . . ,Xn) whose convex hull contains a point X ∈ R

d, we prove
that

c1(X) − c2(X) + c3(X) − . . .+ (−1)n−1cn(X) = (−1)dimΠ

for all X in the relative interior of Π. This confirms a conjecture of R. Cowan
[Adv. Appl. Probab., 39(3):630–644, 2007] who proved the above formula for
almost all X. We establish similar results for the number of polytopes ΠJ

containing a given polytope ΠI as an r-dimensional face, thus proving another
conjecture of R. Cowan [Discrete Comput. Geom., 43(2):209–220, 2010]. As a
consequence, we derive inclusion-exclusion identities for the intrinsic volumes
and the face numbers of the polytopes ΠI . The main tool in our proofs is

a formula for the alternating sum of the face numbers of a convex polytope
intersected by an affine subspace. This formula generalizes the classical Euler–
Schläfli–Poincaré relation and is of independent interest.

1. Statement of results

1.1. Introduction. Let X1, . . . , Xn be a finite collection1 of points in R
d. Denote

its convex hull by Π:

Π := conv(X1, . . . , Xn) =

{

n
∑

i=1

λiXi : λ1, . . . , λn ≥ 0,

n
∑

i=1

λi = 1

}

.

More generally, for any set I ⊂ {1, . . . , n} we write

ΠI := conv(Xi : i ∈ I)

for the convex hull of the points Xi, i ∈ I. In this paper, we are interested in
various inclusion-exclusion relations satisfied by the system of polytopes ΠI , where
I ranges over all subsets of {1, . . . , n}.

Recall that a polytope is a convex hull of a finite set of points. By definition, it is
convex and compact. The interior of a polytope P is denoted by intP . The relative
interior of a polytope P , denoted by relintP , is the interior of P with respect to its
affine hull. For example, the relative interior of a point is this point itself. For these
and other standard definitions from convex geometry we refer to the monographs
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1Since we do not require the points to be distinct, we use the notions “collection”, “subcollec-

tion”, etc. rather than “set”, “subset”, etc.
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by Schneider [Sch14], Schneider and Weil [SW08], and Grünbaum [Grü03]. We
denote by Fk(P ) the set of k-dimensional (closed) faces of P , and by fk(P ) their
number. Let dimP be the dimension of P and write F•(P ) = ∪dimP

k=0 Fk(P ) for the
set of all faces of P including P itself. Of central importance for the present paper
is the classical Euler–Schläfli–Poincaré relation (see [SW08, page 626] or [Grü03,
page 130]) which states that for every polytope P ,

(1)
∑

F∈F•(P )

(−1)dimF =

dimP
∑

k=0

(−1)kfk(P ) = 1.

1.2. Cowan’s formula. Recall that X1, . . . , Xn is a finite collection of points in
R

d, and additionally let X be any point in R
d. For k = 1, . . . , n denote by ck(X) the

number of k-element subcollections of (X1, . . . , Xn) containing X in their convex
hull:

(2) ck(X) = #{I ⊂ {1, . . . , n} : #I = k,X ∈ ΠI}.

Here, #B is the number of elements in a set B. Cowan [Cow07] proved that

(3)

n
∑

k=1

(−1)k−1ck(X) =

{

(−1)dimΠ, if X ∈ (relintΠ)\E ,

0, if X /∈ relintΠ,

where E is some “exceptional set” of codimension 2. Cowan also conjectured that,
in fact, the first case of the formula holds for all X ∈ relintΠ and proved this for
d = 2. Another proof of Cowan’s formula can be found in the book of Schneider
and Weil [SW08, p. 309–310], but there is again an exceptional set, namely the
union of all (d− 2)-dimensional affine subspaces spanned by X1, . . . , Xn. Our first
result confirms Cowan’s conjecture for all d ∈ N.

Theorem 1.1. For any finite collection of points X1, . . . , Xn in R
d and for all

X ∈ R
d we have

(4)

n
∑

k=1

(−1)k−1ck(X) =

{

(−1)dimΠ, if X ∈ relintΠ,

0, if X /∈ relintΠ.

This formula should be compared to the well-known inclusion-exclusion princi-
ples which state that for arbitrary subsets A1, . . . , An of a set Ω,

∑

∅ 6=I⊂{1,...,n}

(−1)#I−1
1∩i∈IAi = 1A1∪...∪An ,(5)

∑

∅ 6=I⊂{1,...,n}

(−1)#I−1
1∪i∈IAi = 1A1∩...∩An ,(6)

where 1B denotes the indicator function of a set B. In terms of indicator functions,
Cowan’s formula can be written as

(7)
∑

∅ 6=I⊂{1,...,n}

(−1)#I−1
1ΠI = (−1)dimΠ

1relintΠ.

This is clearly analogous to (6) if we consider the convex hull as an analogue of the
union, and the interior of the convex hull with a “phase factor” (−1)dimΠ as an
analogue of the intersection. The next theorem states a “dual” Cowan’s formula
which is analogous to (5).
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Theorem 1.2. For any finite collection of points X1, . . . , Xn in R
d we have

(8)
∑

∅ 6=I⊂{1,...,n}

(−1)#I−1(−1)dimΠI
1relintΠI = 1Π.

Given (4), we can obtain (8) by simple algebraic manipulations (Möbius inver-
sion), see Section 3.2. The proof of (4) is non-trivial and will be given in Section 3.1.

1.3. Generalized Euler relation. The left-hand side of (4) looks very much like
the Euler characteristic, but it seems that the original proof of Cowan [Cow07] does
not establish any direct connection between his formula and the theory of additive
functionals. We will follow a different method. Referring to Section 3.1 for more
details, we briefly describe the essence of our approach. Consider a non-degenerate
simplex with n vertices located in some (n− 1)-dimensional linear space H . Define
an affine map A : H → R

d by sending the vertices of the simplex to the points
X1, . . . , Xn. Then, the polytopes ΠI , I ⊂ {1, . . . , n}, are the images of the faces
of the simplex. Passing to the preimages, we can interpret Cowan’s formula as
a statement about the intersections between the affine subspace A−1(X) and the
faces of the simplex.

The following general fact (which may be of independent interest) is the main
ingredient of our proofs. Although it may be known, we were unable to find it in
the literature.

Theorem 1.3. Let T be a polytope in R
m with non-empty interior intT . Let

L ⊂ R
m be an affine subspace of dimension m − d. Denote by ak the number of

k-dimensional faces of T which are intersected by L, where k = 0, . . . ,m. Then,

(9)

m
∑

k=0

(−1)kak =

{

(−1)d, if L ∩ intT 6= ∅,

0, if L ∩ intT = ∅.

In the special case L = R
m we have ak = fk(T ), the number of k-dimensional

faces of T , and the theorem reduces to the classical Euler relation (1).

Example 1.4. Consider a square ABCD and a line L passing through A and the
middle of the side BC. Then, a0 = 1 (vertex A), a1 = 3 (sides AB, AD, BC), and
a2 = 1. We have 1 − 3 + 1 = −1. Let L′ be the line passing through A and B.
Then, a′0 = 2 (vertices A and B), a′1 = 3 (sides AB, AD, BC), and a′3 = 1. We
have 2− 3 + 1 = 0.

If for every face F of the polytope L∩T there is a unique face G of the polytope
T such that G ∩ L = F , and if dimF = dimG − d, then (9) is a consequence
of the Euler–Schläfli–Poincaré relation (1) for the polytope L ∩ T . However, it is
easy to construct examples in which the uniqueness fails (for example, if L is a line
containing some vertex of T , m ≥ 2). Thus, the main problem is how to treat these
“non-general position” cases.

Our proof of Theorem 1.3 (which will be given in Section 2) is based on Groemer’s
extension of the Euler characteristic to the class of ro-polytopes. Our method can
be applied to obtain further results of the same type, for example the following one.
Recall that Fk(P ) is the set of k-dimensional faces of a polytope P .
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Theorem 1.5. Let T1, T2 ⊂ R
m be two polytopes which touch each other, that is

(relintT1) ∩ (relintT2) = ∅ but T1 ∩ T2 6= ∅. Then,

(10)

m
∑

k=0

(−1)k#{F ∈ Fk(T1) : F ∩ T2 6= ∅} = 0.

A somewhat related result is the Euler relation for face-to-face tessellations,
see [SW08, Eq. (14.65)], but it seems that this relation implies neither Theorem 1.3
nor Theorem 1.5.

1.4. Inclusion-exclusion principles for intrinsic volumes. It is possible to
generalize Cowan’s formula to the setting when we count convex hulls intersecting
certain affine subspace F ⊂ R

d rather than convex hulls containing a given point
X . Let X1, . . . , Xn be a finite collection of points in R

d. It will be convenient
to assume that the convex hull Π of these points has full dimension d. This is
not a restriction of generality because otherwise we could replace R

d by the affine
hull of X1, . . . , Xn. Given an affine subspace F ⊂ R

d and k = 1, . . . , n, denote by
ck(F ) the number of k-element subcollections of (X1, . . . , Xn) whose convex hull
intersects F , that is

ck(F ) = #{I ⊂ {1, . . . , n} : #I = k, F ∩ΠI 6= ∅}.

Theorem 1.6. Under the above assumptions,

(11)

n
∑

k=1

(−1)k−1ck(F ) =

{

(−1)d−dimF , if F ∩ intΠ 6= ∅,

0, if F ∩ intΠ = ∅.

The above result reduces to Cowan’s formula if F is a point. In terms of indicator
variables, Theorem 1.6 can be written as follows:

(12)
∑

∅ 6=I⊂{1,...,n}

(−1)#I−1
1{F∩ΠI 6=∅} = (−1)d−dimF

1{F∩intΠ 6=∅}.

The set of all r-dimensional affine subspaces of R
d is denoted by AffGr(d, r)

and called the affine Grassmannian. It is known that AffGr(d, r) carries a measure
µr (defined up to a multiplicative constant) invariant with respect to the natu-
ral action of the isometry group of R

d; see [SW08, Chapter 5.1]. The intrinsic
volumes V0(K), . . . , Vd(K) of a compact convex set K ⊂ R

d satisfy the Crofton
formula [SW08, Theorem 5.1.1]

(13) Vr(K) =
Γ
(

d−r+1
2

)

Γ
(

r+1
2

)

Γ
(

1
2

)

Γ
(

d+1
2

)

∫

AffGr(d,d−r)

1{F∩K 6=∅}µd−r(dF ), r = 0, . . . , d,

where we used the same normalization for µr as in [SW08, Chapter 5.1]. Inte-
grating (12) over AffGr(d, d− r) with respect to µd−r(dF ), we obtain an inclusion-
exclusion principle for intrinsic volumes which generalizes the result of Cowan [Cow07]
who considered the case r = d.

Theorem 1.7. For any finite collection X1, . . . , Xn of points in R
d with dimΠ = d

and for every r = 0, . . . , d, we have

(14)
∑

∅ 6=I⊂{1,...,n}

(−1)#I−1Vr(ΠI) = (−1)rVr(Π).

Remark 1.8. Using the local Crofton formula [SW08, Theorem 5.3.3] one can prove
a similar identity for the curvature measures of the ΠI ’s.
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As in the work of Cowan [Cow07], it is possible to obtain probabilistic corollaries
of the above deterministic results. Let X1, . . . , Xn be random vectors with values
in R

d. We call (X1, . . . , Xn) an exchangeable tuple if for every permutation σ of
{1, . . . , n}, the distributional equality

(15) (X1, . . . , Xn)
d
= (Xσ(1), . . . , Xσ(n))

holds. For example, this condition is satisfied if X1, . . . , Xn are independent identi-
cally distributed random vectors; see [Cow07] for more examples. Given any subset
I ⊂ {1, . . . , n} with #I = k write

vr(k) := EVr(ΠI) = EVr(conv(X1, . . . , Xk)),

where we stress that by exchangeability, there is no dependence on the choice of I.

Theorem 1.9. Let (X1, . . . , Xn) be an exchangeable tuple of random vectors in R
d

such that dimΠ = d a.s. Let r ∈ {0, . . . , d} and assume that EVr(Π) < ∞. Then,
n
∑

k=1

(−1)k−1

(

n

k

)

vr(k) = (−1)rvr(n).

Remark 1.10. Condition EVr(Π) < ∞ holds provided that E|X1|
r < ∞. This

follows from the fact that Π is contained in the ball of radius |X1| + . . . + |Xn|
centred at the origin together with the monotonicity (see (13)) and the homogeneity
of the intrinsic volumes.

Proof of Theorem 1.9. By the monotonicity of the intrinsic volumes, our assump-
tion EVr(Π) < ∞ implies that vr(k) < ∞ for all k ∈ {1, . . . , n}. Taking the
expectation in (14) and noting that there are

(

n
k

)

subsets I with k elements, we
obtain the result. �

In the case r = d, Theorem 1.9 reduces to the well-known identity of Buchta [Buc90];
see also [SW08, Theorem 8.2.6] and [Aff88a, Aff88b, Bad89, Cow07, BR15, Buc86].

1.5. Inclusion-exclusion principles for faces. Next we are going to state inclusion-
exclusion principles for the faces of the polytopes ΠI , I ⊂ {1, . . . , n}. These de-
terministic formulas will be used to prove probabilistic identities (conjectured by
Cowan in [Cow10]) on the expected face numbers of random convex hulls.

Fix some finite collection of points X1, . . . , Xn in R
d. For a set I ⊂ {1, . . . , n}

denote by bj(I) the number of j-element sets J ⊃ I such that ΠI is a face of ΠJ ,
that is

bj(I) = #{J ⊂ {1, . . . , n} : J ⊃ I,#J = j,ΠI is a face of ΠJ}.

Theorem 1.11. Consider a non-empty subset I ⊂ {1, . . . , n} such that2 ΠI ∩
(Xk : k /∈ I) = ∅. Then,

(16)

n
∑

j=#I

(−1)j−1bj(I) =

{

(−1)dimΠ+#I−1−dimΠI , if ΠI is not a face of Π,

0, if ΠI is a face of Π.

The above assumption on I is always satisfied if #I = 1 (that is, if ΠI is a
single point) and the points X1, . . . , Xn are distinct. The following example shows
that (16) may fail in general.

2We write (Xk : k /∈ I) rather than {Xk : k /∈ I} because the points need not be distinct.
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Example 1.12. Consider the points Xi = i, i = 1, . . . , 5, on the real line and
take I = {2, 4}. Clearly, ΠI = [2, 4] is a face of ΠJ if and only if J = {2, 4}
or J = {2, 3, 4}. Thus, b1(I) = b4(I) = b5(I) = 0 and b2(I) = b3(I) = 1. The
alternating sum in (16) equals 0, so that (16) fails.

In order to state a version of Theorem 1.11 not requiring additional assumptions
on I, we have to introduce the following modified version of bj(I):

b∗j (I) = #{J ⊂ {1, . . . , n} : J ⊃ I,#J = j,ΠI is a clean face of ΠJ},

where the word “clean” means that ΠI ∩ (Xk : k ∈ J\I) = ∅.

Theorem 1.13. For every non-empty subset I ⊂ {1, . . . , n} we have

(17)

n
∑

j=#I

(−1)j−1b∗j(I) =

{

(−1)dimΠ+#I−1−dimΠI , if ΠI is not a face of Π,

0, if ΠI is a face of Π.

Under the assumption ΠI ∩ (Xk : k /∈ I) = ∅ the conditions “ΠI is a face of ΠJ”
and “ΠI is a clean face of ΠJ” become equivalent which means that Theorem 1.13
contains Theorem 1.11 as a special case.

Example 1.14. Continuing Example 1.12, we see that ΠI is a clean face of ΠJ

if and only if J = I = {2, 4}. Hence, all b∗j (I) equal zero except for b∗2(I) = 1,
and (17) holds.

We say that a finite collection X1, . . . , Xn of points in R
d is in r-general position

for some r ∈ {1, . . . , d} if every r-dimensional affine subspace contains at most
r + 1 points from this set. Recall that fr(P ) = #Fr(P ) denotes the number of
r-dimensional faces of a polytope P . The next result is a deterministic counterpart
of a probabilistic formula conjectured by Cowan [Cow10]. We obtain it by summing
up (16) over all subsets I with #I = r + 1; see Section 3.5 for details.

Theorem 1.15. Fix some d ∈ N and r ∈ {1, . . . , d}. Let X1, . . . , Xn be a finite
collection of points in r-general position in R

d and suppose that dimΠ = d. Then,

(18)
∑

∅ 6=J⊂{1,...,n}

(−1)#J−1fr(ΠJ ) = (−1)d
((

n

r + 1

)

− fr(Π)

)

.

In particular, if n − d is odd, then the term fr(Π) appears on both sides with
different signs, and we obtain the relation

2fr(Π) =

(

n

r + 1

)

+ (−1)n
∑

∅ 6=J({1,...,n}

(−1)#J−1fr(ΠJ ),

where we stress that the term with J = {1, . . . , n} is excluded from the summation.
If n− d is even, then the term fr(Π) cancels and we obtain

∑

∅ 6=J({1,...,n}

(−1)#J−1fr(ΠJ ) = (−1)d
(

n

r + 1

)

.

Passing to the random setting, we prove a formula which was conjectured by
Cowan [Cow10] and proved by him in some special cases using the Dehn–Sommerville
relations. Let (X1, . . . , Xn) be an exchangeable tuple of random vectors in R

d;
see (15). For an arbitrary subset I ⊂ {1, . . . , n} with #I = k we write

Fr(k) := Efr(ΠI) = Efr(conv(X1, . . . , Xk))
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for the expected number of r-dimensional faces of ΠI .

Theorem 1.16. Fix some d ∈ N and r ∈ {1, . . . , d}. Let (X1, . . . , Xn) be an
exchangeable tuple of random vectors in R

d such that with probability one, dimΠ =
d and the points X1, . . . , Xn are in r-general position. Then,

n
∑

k=1

(−1)k−1

(

n

k

)

Fr(k) = (−1)d
((

n

r + 1

)

− Fr(n)

)

.

Proof. Take the expectation in (18) and note that there are
(

n
k

)

subsets J with k
elements. �

1.6. A proof of Buchta’s identity. Several remarkable identities for random
convex hulls were discovered by Buchta in [Buc05]. One of these identities has a
form very similar to the inclusion-exclusion principles studied in the present paper.
Given that Theorems 1.9 and 1.16 have deterministic counterparts, it is natural to
ask whether something similar is true for Buchta’s identity.

To state Buchta’s identity, let X1, . . . , Xn be independent identically distributed
random vectors in R

d. The probability distribution of Xi is denoted by µ and
assumed to be non-atomic (which implies that X1, . . . , Xn are distinct a.s.). Denote
by Nn = f0(Π) the number of vertices of Π and write

Mj := µ(conv(X1, . . . , Xj))

for the so-called probability content of conv(X1, . . . , Xj). Buchta’s identity [Buc05]
(see also [SW08, Theorem 8.2.5]) states that for every l = 1, . . . , n,

(19) P[Nn = l] = (−1)l
(

n

l

) l
∑

j=1

(−1)j
(

l

j

)

EMn−j
j .

If µ is the uniform distribution on some convex body K ⊂ R
d, then Mj is just

the volume of conv(X1, . . . , Xj) divided by the volume of K. Below we provide a
“pointwise” version of (19) which turns out to be a very simple inclusion-exclusion
formula. Our proof is different from the original proof of Buchta [Buc90] (see
also [SW08, Theorem 8.2.5]).

Proof of (19). Denote the probability space on which X1, . . . , Xn are defined by
(Ω,F,P). Let A1, . . . , An ∈ F be random events to be specified later and denote by
Ac

i = Ω\Ai the complement of Ai. Start with the inclusion-exclusion principle

(20) 1A1∩...∩Al∩Ac
l+1

∩...∩Ac
n
=

l
∏

i=1

(1−1Ac
i
)

n
∏

k=l+1

1Ac
k
=

∑

J⊂{1,...,l}

(−1)l−#J
1∩i/∈JA

c
i
,

where J = ∅ is allowed in the summation and the intersection over an empty index
set is Ω. Let now Ai be the random event {Xi is a vertex of Π}, for i = 1, . . . , n.
Recall that F0(Π) denotes the set of vertices of Π. Then, (20) becomes what can
be considered as a pointwise version of Buchta’s identity

(21) 1{F0(Π)={X1,...,Xl}} =
∑

J⊂{1,...,l}

(−1)l−#J
1{Xi,i/∈J, are not vertices of Π}.

Taking the expectation on both sides of (21) yields (19) because by exchangeability,

P[Nn = l] =

(

n

l

)

E1{F0(Π)={X1,...,Xl}}
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and for every J ⊂ {1, . . . , l} with #J = j,

P[Xi, i /∈ J, are not vertices of Π] = P[{Xi : i /∈ J} ⊂ conv(Xk : k ∈ J)]

= E[Mn−j
j ].

To prove the latter identity note that the conditional probability that {Xi : i /∈

J} ⊂ conv(Xk : k ∈ J) given {Xk : k ∈ J} equals Mn−j
j . Unlike most proofs of

the present paper, the above argument is almost purely combinatorial and does not
rely on topological notions like the Euler characteristic.

2. Proof of the generalized Euler relation

In this section we prove Theorems 1.3 and 1.5. First we need to recall some facts
about the extension of the Euler characteristic to the class of ro-polyhedra which
is due to Groemer [Gro72]; see also [SW08, Chapter 14.4].

2.1. Euler characteristic for ro-polyhedra. A ro-polytope is defined as a rela-
tive interior of some polytope. Finite unions of ro-polytopes are called ro-polyhedra.
It is known (see [Gro72] or [SW08], page 625, Theorem 14.4.5) that there is a unique
function χ (the Euler characteristic) defined on the family of ro-polyhedra in R

m

and having the following properties:

(a) χ(∅) = 0.
(b) χ is additive, that is χ(M ∪ N) = χ(M) + χ(N) − χ(M ∩ N) for all ro-

polyhedra M and N .
(c) For a non-empty polytope P we have χ(P ) = 1 and χ(relintP ) = (−1)dimP .

For the proof of the following lemma we refer to Theorem 14.4.1 in [SW08].

Lemma 2.1. If A1, . . . , As ⊂ R
m are ro-polyhedra such that

∑s
i=1 ai1Ai = 0 for

some a1, . . . , as ∈ Z, then
s

∑

i=1

aiχ(Ai) = 0.

2.2. Proof of Theorem 1.3. Recall that Fk(T ) denotes the set of k-dimensional
faces of the polytope T and F•(T ) = ∪m

k=0Fk(T ) is the set of all faces of T . Note
that Fm(T ) has exactly one element, namely T itself.

We can represent the polytope T as a disjoint union of its relatively open faces:

(22) T = ∪G∈F•(T ) relintG.

It was observed by Nef [Nef81] that together with the properties of χ this immedi-
ately implies the Euler relation:

1 = χ(T ) =
∑

G∈F•(T )

χ(relintG) =
∑

G∈F•(T )

(−1)dimG.

The proof of Theorem 1.3 is more involved. A well-known corollary of the Euler
relation, see [SW08, p. 627, Eq. (14.64)] or [Grü03, page 137], states that for every
face G ∈ F•(T ) other than T itself,

(23)
∑

F∈F•(T ) : F⊃relintG

(−1)dimF =
∑

F∈F•(T ) : F⊃G

(−1)dimF = 0.



INCLUSION-EXCLUSION PRINCIPLES 9

From (22) and (23) we easily obtain an inclusion-exclusion relation for the indicator
function of the interior of T

1intT =

m
∑

k=0

∑

F∈Fm−k(T )

(−1)k1F

which holds pointwise. Multiplying both sides by 1L and replacing k by m− k we
obtain

1L∩intT =

m
∑

k=0

∑

F∈Fk(T )

(−1)m−k
1F∩L.

By Lemma 2.1, this implies that

(24) χ(L ∩ intT ) =
m
∑

k=0

∑

F∈Fk(T )

(−1)m−kχ(F ∩ L).

The left-hand side of (24) equals

χ(L ∩ intT ) =

{

(−1)m−d, if L ∩ intT 6= ∅,

0, if L ∩ intT = ∅

because L∩intT is either an (m−d)-dimensional ro-polytope (in which case its Euler
characteristic equals (−1)m−d) or empty (in which case the Euler characteristic
vanishes). As for the right-hand side of (24), any term χ(F ∩ L) is either zero (if
F ∩ L = ∅) or 1 (if F ∩ L is a non-empty polytope), hence

m
∑

k=0

∑

F∈Fk(T )

(−1)m−kχ(F ∩ L) =
m
∑

k=0

(−1)m−kak.

Taking everything together, we obtain the required relation.

2.3. Proof of Theorem 1.5. As in the previous proof, start with the relation

1relintT1
=

m
∑

k=0

∑

F∈Fm−k(T1)

(−1)k1F .

Multiplying both sides by 1T2
, using (relintT1) ∩ T2 = ∅, and substituting m− k

for k, we infer

0 =

m
∑

k=0

∑

F∈Fk(T1)

(−1)k1F∩T2
.

By Lemma 2.1 this implies
m
∑

k=0

∑

F∈Fk(T1)

(−1)kχ(F ∩ T2) = 0.

Now observe that F ∩ T2 is a polytope which may be empty or not, hence

χ(F ∩ T2) =

{

1, if F ∩ T2 6= ∅,

0, if F ∩ T2 = ∅.

It follows that
m
∑

k=0

(−1)k#{F ∈ Fk(T1) : F ∩ T2 6= ∅} = 0,

which completes the proof.
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3. Proofs of the inclusion-exclusion formulas

3.1. Proof of Theorem 1.1. Without loss of generality we assume that dimΠ =
d, otherwise we could replace R

d by the affine hull of X1, . . . , Xn. Define a linear
operator A : Rn → R

d by

Ae1 = X1, . . . , Aen = Xn,

where e1, . . . , en is the standard basis of R
n. Consider the standard (n − 1)-

dimensional simplex

S := {(α1, . . . , αn) ∈ [0,∞)n : α1 + . . .+ αn = 1} ⊂ R
n.

The (k − 1)-dimensional faces of S have the form

Si1,...,ik = {(α1, . . . , αn) ∈ S : αi = 0 for all i /∈ {i1, . . . , ik}},

where 1 ≤ i1 < . . . < ik ≤ n and k ∈ {1, . . . , n}. The next lemma provides an
interpretation of Cowan’s formula as a statement about the number of faces of the
simplex S intersected by the affine subspace A−1(X). A somewhat related idea was
used in [KVZ15].

Lemma 3.1. For a point X ∈ R
d and any 1 ≤ i1 < . . . < ik ≤ n the following

statements are equivalent:

(i) X ∈ conv(Xi1 , . . . , Xik)
(ii) A−1(X) ∩ Si1,...,ik 6= ∅.

Proof. The set A−1(X)∩Si1,...,ik is non-empty if and only if there exist (α1, . . . , αn) ∈
S such that αi = 0 for all i /∈ {i1, . . . , ik} and

A(α1e1 + . . .+ αnen) = X.

But in view of the definition of A this means that

αi1Xi1 + . . .+ αikXik = X,

which is equivalent to X ∈ conv(Xi1 , . . . , Xik). �

We proceed to the proof of Theorem 1.1. Fix some X ∈ R
d. We are going to

apply Theorem 1.3 to the polytope T := S located in the hyperplane H : α1+ . . .+
αn = 1 (which we identify with R

n−1, so that m = n − 1) and the affine subspace
L := A−1(X) ∩H .

We argue that the codimension of L in the hyperplane H equals d. Recall that
we assume that Π = conv(X1, . . . , Xn) has full dimension d. Hence, the vectors
X2 −X1, . . . , Xn −X1 span the whole R

d. This means that for every x ∈ R
d there

is a real solution (v2, . . . , vn) to v2(X2 − X1) + . . . + vn(Xn −X1) = x. Defining
v1 = −(v2 + . . . + vn) and v = (v1, . . . , vn) we obtain a solution v to Av = x in
the hyperplane H0 : v1 + . . . + vn = 0. We have AH0 = R

d, hence AH = R
d and

therefore L = A−1(X) ∩H has codimension d in H .
By Lemma 3.1, ck(X) defined in (2) equals ak−1, the number of (k−1)-dimensional

faces of S which are intersected by L. Hence, by Theorem 1.3 we obtain that

n
∑

k=1

(−1)k−1ck(X) =

n−1
∑

j=0

(−1)jaj =

{

(−1)d, if L ∩ relintS 6= ∅,

0, if L ∩ relintS = ∅.

It remains to prove that L∩relintS 6= ∅ if and only if X ∈ relintΠ. Indeed, X is
in the relative interior of conv(X1, . . . , Xn) if and only if there is a strictly positive
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tuple (α1, . . . , αn) ∈ S such that α1X1 + . . . + αnXn = X ; see [Sch14, Theorem
1.1.14]. But this is equivalent to (α1, . . . , αn) ∈ L ∩ relintS.

3.2. Proof of Theorem 1.2. Applying Theorem 1.1 in its indicator functions
version (7) to every ΠI and interchanging the order of summation, we obtain

∑

∅ 6=I⊂{1,...,n}

(−1)#I−1(−1)dimΠI
1relintΠI =

∑

∅ 6=I⊂{1,...,n}

(−1)#I−1
∑

∅ 6=J⊂I

(−1)#J−1
1ΠJ

=
∑

∅ 6=J⊂{1,...,n}

(−1)#J−1
1ΠJ

∑

I⊃J

(−1)#I−1

= 1Π,

where in the last step we used that

∑

I⊃J

(−1)#I−1 =

{

(−1)n−1, if J = {1, . . . , n},

0, otherwise.

3.3. Proof of Theorem 1.6. We can assume that F is a proper affine subspace
because the case when F is a point was treated in Theorem 1.1, while the case
F = R

n reduces to the identity

n
∑

k=1

(−1)k−1

(

n

k

)

= 1.

Since the problem is invariant under simultaneous translations of X1, . . . , Xn

and F , we can assume that F contains the origin. Denote by S : R
d → F⊥

the projection on F⊥, the orthogonal complement of F . The idea is to apply
Cowan’s formula (4) to the projected points S(X1), . . . , S(Xn). Note that for any
set I ⊂ {1, . . . , n} the convex hull of (Xi : i ∈ I) intersects F if and only if the
convex hull of (S(Xi) : i ∈ I) contains the origin. This is true since convex hulls
are preserved under linear maps. We obtain

n
∑

k=1

(−1)k−1ck(F ) =

n
∑

k=1

(−1)k−1
∑

I⊂{1,...,n}
#I=k

1{F∩ΠI 6=∅}

=
n
∑

k=1

(−1)k−1
∑

I⊂{1,...,n}
#I=k

1{0∈conv(SXi : i∈I)}

=

{

(−1)d−dimF , if 0 ∈ relintS(Π),

0, if 0 /∈ relintS(Π),

where the last step is by Theorem 1.1 applied to the points SX1, . . . , SXn ∈ F⊥.
To complete the proof, note that the origin is in the relative interior of S(Π) =
conv(S(X1), . . . , S(Xn)) if and only if F intersects the interior of Π. This is true
because the projection of the interior of Π is the relative interior of S(Π).

3.4. Proof of Theorem 1.13. The idea is as follows: we will show that, essentially,
ΠI is a face of ΠJ if and only if the affine subspace spanned by ΠI is not intersected
by ΠJ\I . After that, we can apply Theorem 1.6.

Denote by aff B the affine hull of a collection of points B.
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Lemma 3.2. For non-empty sets I ⊂ J ⊂ {1, . . . , n} the following two conditions
are equivalent:

(i) ΠI is a clean face of ΠJ

(ii) aff(Xi : i ∈ I) ∩ conv(Xk : k ∈ J\I) = ∅.

Proof of (i) ⇒ (ii). Let ΠI be a clean face of ΠJ . By the definition of a face, there
is an affine hyperplaneH separating Rd into two closed half-spacesH+ andH− such
thatH∩ΠJ = ΠI and ΠJ ⊂ H+. Since ΠI is clean, we have ΠI∩(Xk : k ∈ J\I) = ∅

and, consequently, H ∩ (Xk : k ∈ J\I) = ∅. It follows that (Xk : k ∈ J\I) is
contained in the interior of H+. Hence, conv(Xk : k ∈ J\I) does not intersect H .
Since aff(Xi : i ∈ I) is a subset of H , we obtain (ii). �

Proof of (ii) ⇒ (i). We argue by contradiction. First we assume that ΠI is not
a face of ΠJ . Then we can represent some point of ΠI as a non-trivial convex
combination of two points from ΠJ such that at least one of the points is not
contained in ΠI . That is, we have

∑

i∈I

αiXi = λ
∑

k∈J

βkXk + (1− λ)
∑

k∈J

γkXk,

where λ ∈ (0, 1), and (αi)i∈I , (βk)k∈J , (γk)k∈J are collections of non-negative
numbers summing up to 1. Moreover, we can assume that, say,

∑

k∈J βkXk /∈ ΠI .
This implies that for at least one k0 ∈ J\I we have βk0

> 0. Then, we can write

1

C

∑

i∈I

(αi − λβi − (1− λ)γi)Xi =
∑

k∈J\I

λβk + (1 − λ)γk
C

Xk,

where C :=
∑

l∈J\I(λβl + (1 − λ)γl) > λβk0
> 0. The left-hand side belongs

to aff(Xi : i ∈ I), whereas the right-hand side belongs to conv(Xk : k ∈ J\I),
a contradiction. Hence, ΠI is a face of ΠJ . In fact, condition (ii) implies that
ΠI ∩ (Xk : k ∈ J\I) = ∅, hence ΠI is a clean face of ΠJ . �

Proof of Theorem 1.13. Without loss of generality, we assume that the affine hull
of (X1, . . . , Xn) is R

d (equivalently, dimΠ = d). Otherwise, consider this affine hull
instead of Rd. For a non-empty set I ⊂ {1, . . . , n} write

S∗(I) = {J ⊂ {1, . . . , n} : J ⊃ I,ΠI is a clean face of ΠJ}.

Let L = LI be the affine hull of {Xi : i ∈ I}. Consider

N :=
∑

K⊂{1,...,n}

(−1)#K
1{ΠK∩L=∅}

=
∑

K⊂{1,...,n}
K∩I=∅

(−1)#K
1{ΠK∩L=∅}

=
∑

J⊂{1,...,n}
J⊃I

(−1)#J−#I
1{ΠJ\I∩L=∅},
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where in the last equality we denoted by J the disjoint union of I and K. Applying
Lemma 3.2, we obtain

N =
∑

J⊂{1,...,n}
J⊃I

(−1)#I−#J
1{J∈S∗(I)}

= (−1)#I
∑

J∈S∗(I)

(−1)#J

= (−1)#I−1
n
∑

j=#I

(−1)j−1b∗j (I).

On the other hand, by Theorem 1.6,

N =
∑

K⊂{1,...,n}

(−1)#K −
∑

K⊂{1,...,n}

(−1)#K
1{ΠK∩L 6=∅}

=
∑

K⊂{1,...,n}

(−1)#K−1
1{ΠK∩L 6=∅}

=

{

(−1)d−dimΠI , if L ∩ intΠ 6= ∅,

0, if L ∩ intΠ = ∅.

Comparing these two formulas for N , we obtain

n
∑

j=#I

(−1)j−1b∗j (I) =

{

(−1)d+#I−1−dimΠI , if L ∩ intΠ 6= ∅,

0, if L ∩ intΠ = ∅,

which completes the proof because L∩ intΠ = ∅ if and only if ΠI is a face of Π. �

3.5. Proof of Theorem 1.15. For a set I ⊂ {1, . . . , n} write

S(I) = {J ⊂ {1, . . . , n} : J ⊃ I,ΠI is a face of ΠJ}.

The conditions we imposed on X1, . . . , Xn imply that every r-dimensional face of
ΠJ must have a form ΠI for a unique I ⊂ J with #I = r+1. Using Theorem 1.11,
we get

∑

∅ 6=J⊂{1,...,n}

(−1)#J−1fr(ΠJ ) =
∑

I⊂{1,...,n}
#I=r+1

∑

J∈S(I)

(−1)#J−1

= (−1)d
∑

I⊂{1,...,n}
#I=r+1

1{ΠI is a not a face of Π}

= (−1)d
((

n

r + 1

)

− fr(Π)

)

,

where the last step holds because there are
(

n
r+1

)

subsets I with #I = r + 1.
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