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Abstract

Let t1, . . . , tnl
∈ R

d and p1, . . . , pns
∈ R

d and consider the bipartite location recovery prob-
lem: given a subset of pairwise direction observations {(ti − pj)/‖ti − pj‖2}i,j∈[nℓ]×[ns], where
a constant fraction of these observations are arbitrarily corrupted, find {ti}i∈[nℓ] and {pj}j∈[ns]

up to a global translation and scale. We study the recently introduced ShapeFit algorithm as a
method for solving this bipartite location recovery problem. In this case, ShapeFit consists of
a simple convex program over d(nl + ns) real variables. We prove that this program recovers
a set of nl + ns i.i.d. Gaussian locations exactly and with high probability if the observations
are given by a bipartite Erdős-Rényi graph, d is large enough, and provided that at most a
constant fraction of observations involving any particular location are adversarially corrupted.
This recovery theorem is based on a set of deterministic conditions that we prove are sufficient
for exact recovery. Finally, we propose a modified pipeline for the Structure for Motion problem,
based on this bipartite location recovery problem.

1 Introduction

Structure from Motion (SfM) is the task of recovering 3d structure from a collection of images taken
from different vantage points [6]. In the SfM problem, camera poses are represented by locations

t
(0)
i ∈ R

3, i = 1 . . . nℓ and rotation matrices Ri ∈ SO(3), i = 1 . . . nℓ, where Ri maps coordinates in
the frame of the ith camera to the world frame. For a generic structure point p ∈ R

3, there exists
a unique point in each imaging plane given by perspective projection. A pair of image points is
said to correspond when they are both projections of the same point in 3d space. Given enough
point correspondences between a pair of views, epipolar geometry yields the relative rotation and
direction between those views. Pairwise relative camera poses can then be used to estimate the

individual poses (t
(0)
i , Ri), i = 1 . . . nℓ up to a Euclidean transformation. Knowledge of camera poses

and point correspondences allows one to estimate 3d structure via triangulation. Finally, the pose
and structure estimates are used as initialization for bundle adjustment, which is the simultaneous
nonlinear refinement of structure and camera poses. In summary, SfM typically consists of four
steps: 1) identify point correspondences; 2) recover camera orientations and locations in global
coordinates; 3) triangulate structure points using estimates of camera pose and correspondences;
and 4) perform bundle adjustment.

A central difficulty of SfM is that point correspondences are prone to errors because they are
found purely by local photometric information, which is subject to projective transformations from
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camera motion, specularities, occlusions, variable lighting conditions, shadows, and repetitive struc-
tures commonly found in manmade scenes. Thus, every step of the above SfM pipeline needs to
tolerate highly corrupted input data. For the correspondence step, techniques such as Random
Sampling Consensus (RANSAC) are used to reduce the number of outliers among candidate cor-
respondences initially obtained by brute-force photometric matching. Unfortunately, even after
applying RANSAC, outliers in point correspondences are generally unavoidable.

Mathematically, once a set of correspondences has been established, the SfM problem can be
formulated as the d = 3 case of the following. Let T (0) be a collection of nℓ distinct vectors

t
(0)
1 , . . . , t

(0)
nℓ ∈ R

d, and let P (0) be a collection of ns distinct vectors p
(0)
1 , . . . , p

(0)
ns ∈ R

d. Associated

to locations T (0) is a set of orientations R = {Ri}i∈[nℓ] ∈ SO(d). The pairs (t
(0)
i , Ri) represents

poses from which observations of the points p
(0)
j are collected. Let G(nℓ, ns, E) be a bipartite

graph on nℓ + ns vertices, where E = Eg ⊔Eb, with Eb and Eg corresponding to pairwise direction
observations that are respectively ‘corrupted’ and ‘uncorrupted.’ That is, for each ij ∈ E, we are
given a vector vij , where

vij =
Rt

i(t
(0)
i − p

(0)
j )

‖Rt
i(t

(0)
i − p

(0)
j )‖2

for ij ∈ Eg, vij ∈ S
d−1 for ij ∈ Eb.

An uncorrupted observation vij is exactly the direction of Rt
i(t

(0)
i −p

(0)
j ), and a corrupted observation

is an arbitrary direction. Consider the task of finding the unknown locations T (0) and structure
points P (0), up to a global translation and scale, and the orientations R, up to a global rotation,
without knowledge of the decomposition E = Eg ⊔ Eb, nor the nature of the corruptions.

Estimating camera orientations Ri from from corrupted relative rotations Rt
iRj is a tractable

and relatively well-understood problem. For instance, a method based on Lie group averaging
performs well in practice [3], and a semidefinite program based on lifting and least unsquared
deviations (LUD) has rigorous guarantees of exact recovery from corrupted relative rotations [11].
Once camera orientations are estimated, one can use epipolar geometry to obtain a set of relative
direction estimates of camera locations. These estimates are partially corrupted since they are
computed from the initial point correspondences. Camera locations in a global reference frame can
be estimated using the 1dSfM approach of [12], which screens for outliers based on inconsistencies
in 1d projections; however, this approach is not robust to self-consistent outliers. Alternatively,
locations can be found by recent methods such as LUD [7] or the ShapeFit algorithm [4], which are
both convex programs. It was proven in [4] that ShapeFit recovers locations exactly from partially
corrupted pairwise directions under broad technical assumptions.

Having obtained an estimate of camera orientations and locations, one can recover an estimate
of the 3d structure by triangulation, for instance by minimizing the quadratic reprojection error
or maximizing a likelihood estimate. Bundle adjustment then proceeds by jointly optimizing this
reprojection error or likelihood estimate with respect to camera poses and 3d structure. It is
important to initialize bundle adjustment close to the global minimum, because it is non-convex
and susceptible to getting stuck in local minima.

In this paper, we consider compressing two sub-steps of the pipeline — camera location recovery
and structure recovery by triangulation — into one provably corruption-robust step based on the
ShapeFit algorithm. Namely, once camera rotations are estimated, our approach uses the raw
image coordinates of point correspondences to recover the camera locations and structure points
simultaneously. If a structure point pj is visible to a calibrated camera at location ti, then its
image coordinates under perspective projection provide a vector ṽij that has the same direction as
Rt

i(ti − pj). If the orientation Ri is known and accurate, then the direction of ti− pj is also known.
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Equivalently, if all the orientations Ri are known, we can take each Ri to be the identity without
loss of generality. When a point correspondence is incorrect, the estimated direction of ti − pj can
of course be arbitrarily corrupted. We thus arrive at the following recovery problem.

With T (0) and P (0) defined as above, for each ij ∈ E, we are given a vector vij, where

vij =
t
(0)
i − p

(0)
j

∥

∥t
(0)
i − p

(0)
j

∥

∥

2

for ij ∈ Eg, vij ∈ S
d−1 for ij ∈ Eb. (1)

Thus, an uncorrupted observation vij is exactly the direction of t
(0)
i − p

(0)
j , and a corrupted obser-

vation is an arbitrary direction. The task is to find the unknown locations T (0), P (0) up to global
translation and scale, without knowledge of the decomposition E = Eg ⊔Eb, nor the nature of the
corruptions.

To summarize, we propose the following modified pipeline for Structure from Motion: 1) estab-
lish point correspondences; 2) estimate global orientations of the cameras; 3) estimate the camera
locations and structure points simultaneously; and 4) run bundle adjustment.

We will show that ShapeFit, a tractable convex program, can exactly solve the recovery problem
in Step 3 under broad deterministic assumptions and under a random model. In [4], the present
authors showed that ShapeFit recovers camera locations exactly from corrupted pairwise direction
under suitable assumptions. The result in [4] strongly relies on the existence of triangles in the
graph of observations, whereas in our present setting, the underlying graphs are bipartite and
necessarily do not contain triangles. In this bipartite setting, we will prove a deterministic recovery
result for ShapeFit based on the presence of cycles of length 4. We also show that under a random
Gaussian and Erdos-Renyi model, ShapeFit recovers structure and locations exactly from known
orientations and corrupted correspondences with high probability in the high dimensional case. To
the best of our knowledge, these are the first theoretical results guaranteeing exact location and
structure recovery from corrupted correspondences and known orientations.

1.1 Problem formulation

The location recovery problem is to recover a set of points in R
d from observations of pairwise

directions between those points. Since relative direction observations are invariant under a global

translation and scaling, one can at best hope to recover the locations T (0) = {t(0)1 , . . . , t
(0)
n } and

structure points P (0) = {p(0)1 , . . . , p
(0)
n } up to such a transformation. That is, successful recovery

from {vij}(i,j)∈E is finding two sets of vectors {α(t(0)i + w)}i∈[nℓ], {α(p
(0)
j + w)}j∈[ns] for some w ∈ R

d

and α > 0. We will say that two pairs of sets of vectors (T, P ) and (T (0), P (0)) are equal up to

global translation and scale if there exists a vector w and a scalar α > 0 such that ti = α(t
(0)
i +w)

for all i ∈ [nℓ] and pj = α(p
(0)
j + w) for all j ∈ [ns]. In this case, we will say that (T, P ) and

(T (0), P (0)) have the same ‘shape,’ and we will denote this property as (T, P ) ∼ (T (0), P (0)). The
location recovery problem is then stated as:

Given: G(nℓ, ns, E), {vij}ij∈E satisfying (1)

Find: T = {t1, . . . , tnℓ
} ∈ R

d×nℓ , P = {p1, . . . , pns} ∈ R
d×ns such that (T, P ) ∼ (T (0), P (0))

For this problem to be information theoretically well-posed under arbitrary corruptions, the
maximum number of corrupted observations affecting any particular location ti must be at most
ns
2 . Similarly, the maximum number affecting any particular structure point pj must be at most
nℓ
2 . Otherwise, suppose that for some location t

(0)
i of structure point p

(0)
j , half of its associated
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observations vij are consistent with t
(0)
i , and the other half are corrupted so as to be consistent

with some arbitrary alternative location w. Distinguishing between t
(0)
i and w is then impossible

in general. A similar argument follows for some structure point p
(0)
j . Formally, let degb(ti) be the

degree of location ti in the graph G(nℓ, ns, Eb) and let degb(pj) be the degree of structure point
pj in the graph G(nℓ, ns, Eb). Then, well-posedness under adversarial corruption requires that
maxi∈[nℓ] degb(ti) ≤ γnℓ and maxj∈[ns] degb(vj) ≤ γns, for some γ < 1/2,

Beyond the above necessary degree condition on Eg for well-posedness of recovery, we do not
assume anything about the nature of corruptions. That is, we work with adversarially chosen
corrupted edges Eb and arbitrary corruptions of observations associated to those edges. To solve
the location recovery problem in this challenging setting, we utilize the convex program called
ShapeFit [4]:

min
{ti}i∈[nℓ]

{pj}j∈[ns]

∑

ij∈E
‖Pv⊥ij

(ti − pj)‖2 subject to
∑

ij∈E
〈ti − pj , vij〉 = 1,

nℓ
∑

i=1

ti +

ns
∑

j=1

pj = 0 (2)

where Pv⊥ij
is the projector onto the orthogonal complement of the span of vij .

This convex program is a second order cone problem with d(nℓ + ns) variables and two con-
straints. Hence, the search space has dimension d(nℓ+ns)−2, which is minimal due to the d(nℓ+ns)
degrees of freedom in the locations {ti} and structure points {pj} and the two inherent degeneracies
of translation and scale.

1.2 Main result

In this paper, we consider the model where the nℓ locations and ns structure points are i.i.d.
Gaussian, and where pairwise direction observations are given according to an Erdős-Rényi bipartite
random graph. We show that in a high-dimensional setting, ShapeFit exactly recovers the locations
and structure points with high probability, provided that nℓ and ns are sub-exponential in d, and
provided that at most a fixed fraction of observations are adversarially corrupted.

Theorem 1. Let N = max(nℓ, ns), n = min(nℓ, ns). Let G(Vℓ ∪ Vs, E) be drawn from a bipartite-

Erdős-Rényi graph with p > 0. Take t
(0)
1 , . . . t

(0)
nℓ , p

(0)
1 , . . . , p

(0)
ns

∼ N (0, Id×d) to be independent from
each other and G. Then, there exist absolute constants c, c3, C > 0 such that for γ = c3p

4, if

max

(

1

c3p4
, Cd,

2 log(eN)

p
,Ω(c3 log

2 N)

)

≤ n ≤ N ≤ e
1
8
cd

and d = Ω(1), then there exists an event with probability at least 1−O(e−Ω( 1
2
c
−1/2
3 n1/2)+ e−

1
2
cd), on

which the following holds:

For all subgraphs Eb satisfying maxi∈[nℓ] degb(ti) ≤ γns and maxj∈[ns] degb(pj) ≤ γnℓ and all pair-

wise direction corruptions vij ∈ S
d−1 for ij ∈ Eb, the convex program (2) has a unique minimizer

equal to
{

α{t(0)i − ζ}i∈[nℓ], α{p
(0)
i − ζ}j∈[ns]

}

for some positive α and for ζ = 1
nℓ+ns

(

∑

i∈[nℓ]
t
(0)
i +

∑

j∈[ns]
p
(0)
j

)

.

This probabilistic recovery theorem is based on a set of deterministic conditions that we prove
are sufficient to guarantee exact recovery. These conditions are satisfied with high probability in
the model described above. See Section 2.1 for the deterministic conditions.

This recovery theorem is high-dimensional in the sense that the probability estimate and the
exponential upper bound on nℓ + ns are only meaningful for d = Ω(1). Concentration of measure
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in high dimensions and the upper bound on nℓ + ns ensure control over the angles and distances
between random points. As a result, lower dimensional spaces are a more challenging regime for
recovery.

Numerical simulations empirically verify the main message of these recovery theorem: ShapeFit
simultaneously recovers a set of locations and structure points exactly from corrupted direction
observations, provided that up to a constant fraction of the observations at each location and
structure point are corrupted. We present numerical studies in the physically relevant setting of
R
3, with an underlying random Erdős-Rényi bipartite graph of observations. Further numerical

simulations show that recovery is stable to the additional presence of noise on the uncorrupted
measurements. That is, locations and structure points are simultaneously recovered approximately
under such conditions, with a favorable dependence of the estimation error on the measurement
noise.

1.3 Organization of the paper

Section 1.4 presents the notation used throughout the rest of the paper. Section 2 presents the
proof of Theorem 1. Section 3 presents results from numerical simulations.

1.4 Notation

Let [k] = {1, . . . , k}. Let Vℓ = [nℓ] and Vs = [ns]. Let N = max(nℓ, ns) and n = min(nℓ, ns). . Let
ei be the ith standard basis element. For a bipartite graph G(Vℓ ∪ Vs, E), we write an arbitrary
edge as an ordered pair (i, j), where i ∈ Vℓ and j ∈ Vs. Let Knℓ,ns be the complete bipartite graph
on nℓ + ns vertices. A cycle of length 4 will be denoted as C4. Let E(Knℓ,ns) be the set of edges in
Knℓ,ns . Let ‖ · ‖2 be the standard ℓ2 norm on a vector. For any nonzero vector v, let v̂ = v/‖v‖2.
For a subspace W , let PW be the orthogonal projector onto W . For a vector v, let Pv⊥ be the
orthogonal projector onto the orthogonal complement of the span of {v}.

Let T denote the set T = {ti}i∈Vℓ
, for ti ∈ R

d. Let P denote the set P = {pj}j∈Vs , for pj ∈ R
d.

For i ∈ Vℓ, j ∈ Vs, define tij = ti − pj for all i ∈ Vℓ, j ∈ Vs. For i, k ∈ Vℓ, define tik = ti − tk.

For j, l ∈ Vs, define tjℓ = pj − pl. Define ζ̄ = 1
nℓ+ns

(

∑

i∈Vℓ
ti +

∑

j∈Vs
pj

)

. Define t
(0)
ij , T (0), ζ̄(0),

P (0), similarly. We define µ∞ = maxi 6=j ‖t(0)ij ‖2. For a scalar c and a set of vectors X ⊆ R
d, let

cX = {cx : x ∈ X}. For a given G = G(Vℓ ∪ Vs, E) and {vij}ij∈E , where vij ∈ R
d have unit norm,

let R(T, P ) =
∑

ij∈E ‖Pv⊥ij
tij‖2. Let L(T, P ) =

∑

ij∈E〈tij , vij〉. Let ℓij = 〈tij, vij〉, and similarly for

ℓ
(0)
ij . In this notation, ShapeFit is

min
T,P

R(T, P ) subject to L(T, P ) = 1, ζ = 0

For vectors v1, . . . , vk, let S(v1, . . . , vk) = span(v1, . . . , vk) be the vector space spanned by these

vectors. Given tij and t
(0)
ij , define δij , ηij, and sij such that

tij = (1 + δij)t
(0)
ij + ηijsij

where sij is a unit vector orthogonal to t
(0)
ij and ηij = ‖P

t
(0)⊥
ij

tij‖2. Note that ηij ≥ 0.

2 Proofs

We will prove Theorem 1 using the same general strategy as in [4]. Specifically, the proof of Theorem
1 can be separated into two parts: a recovery guarantee under a set of deterministic conditions,
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and a proof that the random model meets these conditions with high probability. These sufficient
deterministic conditions, roughly speaking, are (1) that the graph is connected and the nodes have
tightly controlled degrees; (2) that the camera and structure locations are all distinct; (3) that all
pairwise distances between cameras and locations are within a constant factor of each other; (4)
that any choice of two camera locations and two structure locations live in a three dimensional
affine space; (5) that the camera and structure locations are ‘well-distributed’ in a sense that we
will make precise; and (6) that there are not too many corruptions affecting a single camera location
or structure point. Theorem 2 in Section 2.1 states these deterministic conditions formally.

As in [4], we will prove the deterministic recovery theorem directly, using several geometric
properties concerning how deformations of a set of points induce rotations. Note that an infinitesi-
mal rigid rotation of two points {ti, tj} about their midpoint to {ti + hi, tj + hj} is such that hi−hj
is orthogonal to tij = ti − tj . We will abuse terminology and say that ‖Pt⊥ij

(hi − hj)‖ is a measure

of the rotation in a finite deformation {hi, hj}, and we say that 〈hi − hj , ti − tj〉 is the amount of
stretching in that deformation. Using this terminology, the geometric properties we establish are:

• If a deformation stretches two adjacent sides of a C4 at different rates, then that induces a
rotation in some edge of the C4 (Lemma 2).

• If a deformation rotates one edge shared by many C4s, then it induces a rotation over many
of those C4s, provided the opposite points of those triangles are ‘well-distributed’ (Lemma
3).

• A deformation that rotates bad edges, must also rotate good edges (Lemma 4).

• For any deformation, some fraction of the sum of all rotations must affect the good edges
(Lemma 5).

By using these geometric properties, we show that all nonzero feasible deformations induce a large
amount of total rotation. Since some fraction of the total rotation must be on the good edges, the
objective must increase.

The main technical difference between the present proof and the proof of [4] is that the proof in
[4] relies on the presence of many triangles in the graph of uncorrupted measurements. Because of
the bipartite structure of the present work, there are no triangles in the graph. Hence, the technical
novelty of the present proof is the establishment of the properties above when there are a sufficient
number of C4s in the graph of uncorrupted measurements.

In Section 2.1, we present the deterministic recovery theorem. In Section 2.2, we present and
prove Lemma 2. In Section 2.3, we present and prove Lemmas 3–5. In Section 2.4, we prove the
deterministic recovery theorem. In Section 2.5, we prove that Gaussians satisfy several properties
with high probability. In Section 2.6, we prove that Gaussians satisfy well-distributedness with high
probability. In Section 2.7, we prove that Erdős-Rényi graphs are connected and have controlled
degrees and codegrees with high probability. Finally, in Section 2.8, we prove Theorem 1.

2.1 Deterministic recovery theorem in high dimensions

To state the deterministic recovery theorem, we need two definitions. The first definition captures
the ‘regularity’ of the measurement graph. A random bipartite graph can easily be seen to satisfy
the conditions. Note that the definition does not depend on the vectors locations {ti} and {pj}.

Definition 1. We say that a graph G(Vℓ ∪ Vs, E) is bipartite-p-typical if it satisfies the following
properties:
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1. G is connected,

2. each vertex in Vℓ has degree between 1
2nsp and 2nsp, and

each vertex in Vs has degree between 1
2nℓp and 2nℓp.

3. each pair of vertices in Vℓ has codegree between 1
2nsp

2 and 2nsp
2, where the codegree of j, l ∈

Vℓ = |{i | ij ∈ E(G), il ∈ E(G)}|. Each pair of vertices in Vs has codegree between 1
2nℓp

2 and
2nℓp

2.

The next definition captures how ‘well-distributed’ the location points {ti} and {pj} are in R
d.

Definition 2.

(i) Let S = {(tk, pk)}k=1...m ⊂ R
d × R

d. Let x, y ∈ R
d. We say that S is c-well-distributed with

respect to (x, y) if the following holds for all h ∈ R
d:

∑

(t,p)∈S
‖Pspan{p−x,t−p,y−t}⊥(h)‖2 ≥ c|S| · ‖P(x−y)⊥(h)‖2.

(ii) Let T = {ti}i∈Vℓ
and P = {pj}j∈Vs

. We say that (T, P ) is c-well-distributed along G if for
all i ∈ Vℓ, j ∈ Vs, the set Sij = {(tk, pℓ) : iℓ ∈ E(G), kℓ ∈ E(G), kj ∈ E(G), k 6= i, ℓ 6= j} is
c-well-distributed with respect to (ti, pj).

We now state sufficient deterministic recovery conditions on the graph G, the subgraph Eb

corresponding to corrupted observations, and the locations T (0) and P (0).

Theorem 2. Suppose T (0), P (0), Eb, G satisfy the conditions

1. The underlying graph G is bipartite-p-typical,

2. All vectors in T (0), P (0) and T (0) ∪ P (0) are distinct, respectively.

3. For all i, k ∈ Vℓ and j, ℓ ∈ Vs, we have c0‖t(0)kℓ ‖2 ≤ ‖t(0)ij ‖2,
4. For all i, k ∈ Vℓ, j, ℓ ∈ Vs such that k 6= i, j 6= ℓ, we have

min
(

‖P
span(t

(0)
kj ,t

(0)
iℓ )⊥

t
(0)
ij ‖2, ‖Pspan(t

(0)
kℓ ,t

(0)
iℓ )⊥

t
(0)
ij ‖2

)

/‖t(0)ij ‖2 ≥ β

5. The pair (T (0), P (0)) is c1-well-distributed along G,

6. Each vertex in Vℓ (resp. Vs) has at most εns (resp. εnℓ) incident edges in Eb.

for constants 0 < p, c0, β, c1, ε ≤ 1. If ε ≤ βc0c21p
4

384·204·64 and nℓ, ns > max(64, 8
p2 ), then L(T (0), P (0)) 6= 0

and (T (0), P (0))/L(T (0), P (0)) is the unique optimizer of ShapeFit.

Before we prove the theorem, we establish that L(T (0), P (0)) 6= 0 when ε is small enough. This
property guarantees that some scaling of (T (0), P (0)) is feasible and occurs, roughly speaking, when
|Eb| < |Eg|.

Lemma 1. If ε < c0p
4 , then L(T (0), P (0)) 6= 0.

Proof. Since vij = t̂
(0)
ij for all ij ∈ Eg, we have

L(T (0), P (0)) =
∑

ij∈E(G)

〈t(0)ij , vij〉 ≥
∑

ij∈Eg

‖t(0)ij ‖2 −
∑

ij∈Eb

‖t(0)ij ‖2.

By Condition 3, c0µ∞|Eg| ≤
∑

ij∈Eg
‖t(0)ij ‖2 and µ∞|Eb| ≥

∑

ij∈Eb
‖t(0)ij ‖2. Thus it suffices to prove

that c0|Eg| > |Eb|. As ε < p
4 , Condition 1 and 6 gives |Eg| ≥ 1

2nℓnsp − εnℓns ≥ 1
4nℓnsp. Since

|Eb| ≤ εnℓns, if ε <
c0p
4 , then we have c0|Eg| > |Eb|.
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2.2 Unbalanced parallel motions induce rotation

The following lemma concerns geometric properties of deformations of a set of points. Specifically
it shows that if four points are deformed in a way that differentially scales the lengths of two edges,
then it necessarily induces a rotation somewhere in a C4 containing those points.

Lemma 2. Let d ≥ 3. Let t1, t2, t3, t4 ∈ R
d be distinct. Let tij = ti − tj and t̂ij =

tij
‖tij‖ . Let

v1, v2, v3, v4 ∈ R
d and α ∈ R. Let {δ̃i(i+1)} be such that 〈vi − vi+1 − αti(i+1), t̂i(i+1)〉 = δ̃i(i+1)‖ti(i+1)‖2

for each i ∈ [4], where index summation is modulo 4.

(i)
∑

i∈[4]
‖Pt⊥

i(i+1)
(vi − vi+1)‖2 ≥

∥

∥

∥
Pspan(t23,t41)⊥t12

∥

∥

∥

2

∣

∣

∣
δ̃12 − δ̃34

∣

∣

∣

(ii)
∑

i∈[4]
‖Pt⊥

i(i+1)
(vi − vi+1)‖2 ≥

∥

∥

∥Pspan(t34,t41)⊥t12

∥

∥

∥

2

∣

∣

∣δ̃12 − δ̃23

∣

∣

∣ .

Proof. The given condition implies Pt⊥
i(i+1)

(vi−vi+1) = vi−vi+1−(α+ δ̃i(i+1))ti(i+1) for each i ∈ [4].

Therefore,

∑

i∈[4]
‖Pt⊥

i(i+1)
(vi − vi+1)‖2 =

∑

i∈[4]

∥

∥

∥vi − vi+1 −
(

α+ δ̃i(i+1)

)

ti(i+1)

∥

∥

∥

2

≥

∥

∥

∥

∥

∥

∥

∑

i∈[4]
vi − vi+1 −

(

α+ δ̃i(i+1)

)

ti(i+1)

∥

∥

∥

∥

∥

∥

2

= ‖δ̃12t12 + δ̃23t23 + δ̃34t34 + δ̃41t41‖2. (3)

(i) Since δ̃34(t12 + t23 + t34 + t41) = 0, the right-hand-side of (3) equals ‖(δ̃12 − δ̃34)t12 + (δ̃23 −
δ̃34)t23 + (δ̃41 − δ̃34)t41‖2. The conclusion follows since

∥

∥

∥(δ̃12 − δ̃34)t12 + (δ̃23 − δ̃34)t23 + (δ̃41 − δ̃34)t41

∥

∥

∥

2
≥ min

s,s′∈R
‖(δ̃12 − δ̃34)t12 − st23 − s′t41‖2

=
∥

∥

∥
Pspan(t23,t41)⊥(δ̃12 − δ̃34)t12

∥

∥

∥

2
.

(ii) Since δ̃23(t12 + t23 + t34 + t41) = 0, the right-hand-side of (3) equals ‖(δ̃12 − δ̃23)t12 + (δ̃34 −
δ̃23)t34 + (δ̃41 − δ̃23)t41‖2. The conclusion follows since

∥

∥

∥
(δ̃12 − δ̃23)t12 + (δ̃34 − δ̃23)t34 + (δ̃41 − δ̃23)t41

∥

∥

∥

2
≥ min

s,s′∈R
‖(δ̃12 − δ̃23)t12 − st34 − s′t41‖2

=
∥

∥

∥Pspan(t34,t41)⊥(δ̃12 − δ̃23)t12

∥

∥

∥

2
.

2.3 C4s inequality and rotation propagation

The following lemma is a generalization of the triangle inequality in a context of the rotational part
of structure deformations.

Lemma 3 (C4s Inequality). Let d ≥ 4; x, y ∈ R
d. Let S = {(t1, p1), · · · , (tk, pk)} ⊂ R

d × R
d. If S

is c-well-distributed with respect to (x, y), then for all vectors hx, hy, ht1 , · · · , htk , hp1 , · · · , hpk ∈ R
d

and sets X ⊆ [k], we have
∑

i∈[k]\X
‖P(x−pi)⊥(hx−hpi)‖2+‖P(pi−ti)⊥(hpi−hti)‖2+‖P(ti−y)⊥(hti−hy)‖2 ≥ (ck−|X|)·‖P(x−y)⊥ (hx−hy)‖2.

8



Proof. For each i ∈ [k], define Wi = span(x− pi, pi − ti, ti − y). Define P as the projection map to
the space of vectors orthogonal to x − y, and define Pi for each i ∈ [k] as the projection map to
W⊥

i . Since (x− pi)
⊥ ⊇ W⊥

i , (pi − ti)
⊥ ⊇ W⊥

i , and (ti − y)⊥ ⊇ W⊥
i , it follows that

∑

i∈[k]\X
‖P(x−pi)⊥(hx − hpi)‖2 + ‖P(pi−ti)⊥(hpi − hti)‖2 + ‖P(ti−y)⊥(hti − hy)‖2

≥
∑

i∈[k]\X
‖Pi(hx − hpi)‖2 + ‖Pi(hpi − hti)‖2 + ‖Pi(hti − hy)‖2 ≥

∑

i∈[k]\X
‖Pi(hx − hy)‖2.

Since {(t1, p1), · · · , (tk, pk)} are well-distributed with respect to (x, y), we have

∑

i∈[k]
‖Pi(hx − hy)‖2 ≥ ck · ‖P (hx − hy)‖2. (4)

Since (x− y)⊥ ⊇ W⊥
i , we have ‖Pi(hx − hy)‖2 ≤ ‖P (hx − hy)‖2 for all i. Hence

∑

i∈[k]\X
‖Pi(hx − hy)‖2 ≥ (ck − |X|) · ‖P (hx − hy)‖2,

proving the lemma.

The proof of Theorem 2 will rely on the following two lemmas, which state that rotational
motions on some parts of the graph bound rotational motions on other parts. The following lemma
relates the rotational motions on bad edges to the rotational motions on good edges. Recall the

notation tij = (1+δij)t
(0)
ij +ηijsij where sij is a unit vector orthogonal to t

(0)
ij and ηij = ‖P

t
(0)⊥
ij

tij‖2.

Lemma 4. Fix T, P . If ε ≤ c1p3

48 and p ≥
√

8
n , then

∑

ij∈Eg
ηij ≥ c1p3

48ε

∑

ij∈Eb
ηij .

Proof. Let i ∈ Vℓ, j ∈ Vs. Note that Condition 1 implies |{(k, ℓ) | k 6= i; ℓ 6= j; iℓ, kℓ, kj ∈ E(G)}| ≥
(12nsp − 1)(12nℓp

2 − 1) ≥ 1
8nℓnsp

3 if p ≥
√

8
n . By Condition 6, the number of pairs (k, ℓ) ∈ Vℓ × Vs

such that at least one of the edges iℓ, kℓ, kj are in Eb can be counted by considering the case when
iℓ ∈ Eb (at most (εns)nℓ pairs), kj ∈ Eb (at most (εnℓ)ns pairs), and kℓ ∈ Eb (at most εnsnℓ pairs).
Hence in total, there are at most 3εnsnℓ such pairs. By Lemma 3, the c1-well-distributedness of

(T (0), P (0)) along G, and the assumption that ε ≤ c1p3

48 , we have

∑

k∈Vℓ,ℓ∈Vs
k 6=i,ℓ 6=j

iℓ,kℓ,kj∈Eg

(ηiℓ + ηkℓ + ηkj) ≥
(

c1 ·
1

8
nℓnsp

3 − 3εnℓns

)

· ηij ≥
c1
16

nℓnsp
3 · ηij.

Therefore, if we sum the inequality above for all bad edges ij ∈ Eb, then

∑

ij∈Eb

∑

k∈Vℓ,ℓ∈Vs
k 6=i,ℓ 6=j

il,kℓ,kj∈Eg

(ηiℓ + ηkℓ + ηkj) ≥
c1
16

nℓnsp
3 ·
∑

ij∈Eb

ηij.

For fixed kℓ ∈ Eg, the left-hand-side may sum ηkℓ as many times as the number of C4s in E(G)
that contain kℓ and exactly one bad edge. This is the same as the number of C4s whose edge
opposite kℓ is bad, plus the number of C4s whose edge adjacent to ℓ is bad, plus the number of
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C4s whose edge adjacent to k is bad. In each case, there are at most εnℓns such C4s. Hence, the
left-hand-side of above is at most

∑

ij∈Eb

∑

k∈Vℓ,ℓ∈Vs
k 6=i,ℓ 6=j

iℓ,kℓ,kj∈Eg

(ηiℓ + ηkℓ + ηkj) ≤ 3εnℓns ·
∑

ij∈Eg

ηij .

Therefore by combining the two inequalities above, we obtain

∑

ij∈Eb

ηij ≤
48ε

c1p3

∑

ij∈Eg

ηij .

The following lemma relates the rotational motions over the good graph Eg to rotational motions
over the complete bipartite graph Knℓ,ns .

Lemma 5. Fix T, P . If ε ≤ c1p3

48 and p ≥
√

8
n , then

∑

ij∈Eg
ηij ≥ c1p

192

∑

ij∈E(Knℓ,ns
) ηij.

Proof. Let i ∈ Vℓ, j ∈ Vs. Note that Condition 1 implies |{(k, ℓ) | k 6= i; ℓ 6= j; iℓ, kℓ, kj ∈ E(G)}| ≥
(12nsp − 1)(12nℓp

2 − 1) ≥ 1
8nℓnsp

3 if p ≥
√

8
n . Similarly as in Lemma 4, Condition 6 implies that

the number of pairs (k, ℓ) ∈ Vℓ×Vs such that at least one of the edges iℓ, kℓ, kj are in Eb is at most
3εnℓns. By Lemma 3, the c1-well-distributedness of (T

(0), P (0)) along G, and the assumption that

ε ≤ c1p3

48 , we have

∑

k∈Vℓ,ℓ∈Vs
k 6=i,ℓ 6=j

iℓ,kℓ,kj∈Eg

(ηiℓ + ηkℓ + ηkj) ≥
(

c1 ·
1

8
nℓnsp

3 − 3εnℓns

)

· ηij ≥
c1
16

nℓnsp
3 · ηij.

Therefore, if we sum the inequality above for all i ∈ Vℓ, j ∈ Vs, or equivalently over all ij ∈
E(Knℓ,ns), then

∑

ij∈E(Knℓ,ns )

∑

k∈Vℓ,ℓ∈Vs
k 6=i,ℓ 6=j

iℓ,kℓ,kj∈Eg

(ηiℓ + ηkℓ + ηkj) ≥
c1
16

nℓnsp
3 ·

∑

ij∈E(Knℓ,ns)

ηij .

For fixed kℓ ∈ Eg, the left-hand-side may sum ηkℓ as many times as the number of paths of
length 3 in G that contain kℓ. Each path of length 3 can be thought of as an edge originating from
Vℓ, an edge in the middle, and an edge terminating in Vs. The total number of paths of length 3
in G containing kℓ equals the number which have kℓ as the middle edge, plus the number with kℓ
as the edge originating from Vℓ, plus the number with kℓ as the edge terminating in Vs. In each of
these cases, Condition 1 ensures that there are at most 4p2nℓns such paths of length 3. Hence, the
term ηkℓ appears at most 12p2nℓns times. Hence, the left-hand-side of above is at most

∑

ij∈E(Knℓ,ns )

∑

k∈Vℓ,ℓ∈Vs
k 6=i,ℓ 6=j

iℓ,kℓ,kj∈Eg

(ηiℓ + ηkℓ + ηkj) ≤ 12p2nℓns ·
∑

ij∈Eg

ηij .

Therefore by combining the two inequalities above, we obtain

∑

ij∈E(Knℓ,ns )

ηij ≤
12 · 16
c1p

∑

ij∈Eg

ηij.
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2.4 Proof of Theorem 2

We now prove the deterministic recovery theorem.

Proof of Theorem 2. By Lemma 1 and the fact that Conditions 1–6 are invariant under global trans-
lation and nonzero scaling, we can take ζ̄(0) = 0 and L(T (0), P (0)) = 1 without loss of generality.

The variable µ∞ = maxi 6=j ‖t(0)ij ‖2 is to be understood accordingly.

We will directly prove that R(T, P ) > R(T (0), P (0)) for all (T, P ) 6= (T (0), P (0)) such that
L(T, P ) = 1 and t̄ + p̄ = 0. Consider an arbitrary feasible T, P and recall the notation tij =

(1 + δij)t
(0)
ij + ηijsij where sij is a unit vector orthogonal to t

(0)
ij and ηij = ‖P

t
(0)⊥
ij

tij‖2. Since

vij = t̂
(0)
ij holds for all ij ∈ Eg, a useful lower bound for the objective R(T, P ) is given by

R(T, P ) =
∑

ij∈E(G)

‖Pv⊥ij
tij‖2 =

∑

ij∈Eg

ηij +
∑

ij∈Eb

‖Pv⊥ij
tij‖2

≥
∑

ij∈Eg

ηij +
∑

ij∈Eb

(

‖Pv⊥ij
t
(0)
ij ‖2 − |δij |‖t(0)ij ‖2 − ηij

)

≥ R(T (0), P (0)) +
∑

ij∈Eg

ηij −
∑

ij∈Eb

(|δij |‖t(0)ij ‖2 + ηij). (5)

Suppose that
∑

ij∈Eb
|δij |‖t(0)ij ‖2 <

∑

ij∈Eb
ηij . Since Lemma 4 for ε ≤ c1p3

96 implies
∑

ij∈Eb
ηij ≤

1
2

∑

ij∈Eg
ηij , by (5), we have

R(T, P ) ≥ R(T (0), P (0)) +
∑

ij∈Eg

ηij −
∑

ij∈Eb

(|δij |‖t(0)ij ‖2 + ηij)

> R(T (0), P (0)) +
∑

ij∈Eg

ηij −
∑

ij∈Eb

2ηij ≥ R(T (0), P (0)).

Hence we may assume
∑

ij∈Eb

|δij |‖t(0)ij ‖2 ≥
∑

ij∈Eb

ηij. (6)

In the case |Eb| 6= 0, define δ = 1
|Eb|

∑

ij∈Eb
|δij | as the average ‘relative parallel motion’ on the

bad edges. For a pair of vertex-disjoint edges ij, kℓ ∈ E(Knℓ,ns), define η(ij, kℓ) = ηij+ηkj+ηkℓ+ηiℓ,

Case 0. |Eb| = 0 or δ̄ = 0.

Note that δ̄ = 0 implies δij = 0 for all ij ∈ Eb, which by (6) implies ηij = 0 for all ij ∈ Eb.
Therefore by (5), we have

R(T, P ) ≥ R(T (0), P (0)) +
∑

ij∈Eg

ηij .

If
∑

ij∈Eg
ηij > 0, then we have R(T, P ) > R(T (0), P (0)). Thus we may assume that ηij = 0 for all

ij ∈ Eg. In this case, we will show that T = T (0) and P = P (0).

By Lemma 5, if ε ≤ c1p3

48 , then ηij = 0 for all ij ∈ E(G) implies that ηij = 0 for all ij ∈ E(Knℓ,ns).

For ij ∈ Eb, since δij = ηij = 0, it follows that ℓij = ℓ
(0)
ij . Since δij‖t(0)ij ‖2 = ℓij − ℓ

(0)
ij for ij ∈ Eg,

we have

0 =
∑

ij∈E(G)

(ℓij − ℓ
(0)
ij ) =

∑

ij∈Eb

(ℓij − ℓ
(0)
ij ) +

∑

ij∈Eg

(ℓij − ℓ
(0)
ij ) =

∑

ij∈Eg

(ℓij − ℓ
(0)
ij ) =

∑

ij∈Eg

δij‖t(0)ij ‖2,

11



where the first equality is because L(T, P ) = L(T (0), P (0)) = 1. By Condition 2, ‖t(0)ij ‖2 6= 0 for
all i 6= j. Therefore, if δij 6= 0 for some ij ∈ Eg, then there exists ab, cd ∈ Eg such that δab > 0
and δcd < 0. If ab and cd are vertex-disjoint, Lemma 2 and Conditions 2 and 4 force η(ab, cd) > 0,
which contradicts the fact that ηij = 0 for all ij ∈ E(Knℓ,ns). If ab and cd are not vertex-disjoint,
then, let abc′d′ be an arbitrary C4 containing ab and cd. Then Lemma 2 implies the same result as
above. Therefore δij = 0 for all ij ∈ Eg, and hence δij = 0 for all ij ∈ E(G).

Define ti = t
(0)
i + hi for each i ∈ Vℓ. Define pj = p

(0)
j + hj for j ∈ Vs. Because ηij = δij = 0 for

all ij ∈ E(G), we have hi = hj for all ij ∈ E(G). Since G is connected by Condition 1, this implies
hi = hj for all i ∈ Vℓ, j ∈ Vs. Then by the constraint

∑

i∈Vℓ
ti +

∑

j∈Vs
pj = 0, we get hi = 0 for all

i ∈ Vℓ and hj = 0 for all j ∈ Vs. Therefore T = T (0) and P = P (0).

Case 1. |Eb| 6= 0 and δ̄ 6= 0 and
∑

ij∈Eg
|δij | < 1

8δ|Eg|.

Define Lb = {ij ∈ Eb : |δij | ≥ 1
2δ}. Note that

∑

ij∈Eb\Lb
|δij | < 1

2δ|Eb| and therefore

∑

ij∈Lb

|δij | =
∑

ij∈Eb

|δij | −
∑

ij∈Eb\Lb

|δij | >
∑

ij∈Eb

|δij | −
1

2
δ|Eb| =

1

2
δ|Eb|. (7)

Define Fg = {ij ∈ Eg : |δij | < 1
4δ}. Then by the condition of Case 1,

1

8
δ|Eg| >

∑

ij∈Eg

|δij | ≥
∑

ij∈Eg\Fg

|δij | ≥
1

4
δ|Eg \ Fg|,

and therefore |Eg \ Fg| < 1
2 |Eg|, or equivalently, |Fg| > 1

2 |Eg|.
For each ij ∈ Lb, define Fg(i, j) = {kℓ ∈ Fg | k 6= i, ℓ 6= j}. Note that by Condition 1,

|Fg(i, j)| > 1
2 |Eg| − 2p(nℓ + ns). For any kℓ ∈ Fg(i, j), since |δij | ≥ 1

2δ and |δkℓ| < 1
4δ, we have

|δij − δkℓ| ≥ 1
2 |δij |. Thus Lemma 2 and Conditions 3 and 4 give η(ij, kℓ) ≥ β|δij − δkℓ| · ‖t(0)ij ‖2 ≥

β · 1
2 |δij | · ‖t

(0)
ij ‖2 ≥ βc0µ∞

2 |δij |. Therefore by Condition 1,

∑

ij∈Eb

∑

kℓ∈Eg

k 6=i,l 6=j

η(ij, kℓ) ≥
∑

ij∈Lb

∑

kℓ∈Fg(i,j)

βc0µ∞
2

|δij | =
∑

ij∈Lb

|Fg(i, j)| ·
βc0µ∞

2
|δij |

>
∑

ij∈Lb

βc0µ∞
2

(1

2
|Eg| − 2p(nℓ + ns)

)

|δij |

Note that if ε < 1
4p, then |Eg| ≥ nℓnsp

2 − |Eb| ≥ nℓnsp
4 . Further note that nℓ, ns > 64 implies that

2p(nℓ + ns) <
1
16nℓnsp. Hence by (7),

∑

ij∈Eb

∑

kℓ∈Eg

k 6=i,ℓ 6=j

η(ij, kℓ) ≥ βc0µ∞
32

nℓns ·
∑

ij∈Lb

|δij| ≥
βc0µ∞
32

nℓns ·
1

2
δ|Eb|.

For each ij ∈ E(Knℓ,ns), we would like to count how many times each ηij appear on the left hand
side. If ij ∈ Eb, then there are at most nℓns C4s containing ij; hence ηij may appear at most 4nℓns

times. If ij /∈ Eb, then ηij appears when there is a C4 containing ij and some bad edge. If the bad
edge is incident to ij, then there are at most 2εnℓns such C4s, and if the bad edge is not incident to
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ij, then there are at most |Eb| ≤ εnℓns such C4s. Thus ηij may appear at most 4 ·3εnℓns = 12εnℓns

times. Therefore
∑

ij∈Eb

∑

kℓ∈Eg

η(ij, kℓ) ≤
∑

ij∈Eb

4nℓns · ηij +
∑

ij∈E(Knℓ,ns )

12εnℓns · ηij .

By Lemma 4, if ε < c1p3

48 , we have

∑

ij∈Eb

∑

kℓ∈Eg

η(ij, kℓ) ≤ 48 · 4ε
c1p3

nℓns

∑

ij∈Eg

ηij +
∑

ij∈E(Knℓ,ns )

12εnℓns · ηij ≤
204ε

c1p3
nℓns

∑

ij∈E(Knℓ,ns )

ηij.

Hence
204ε

c1p3
nℓns

∑

ij∈E(Knℓ,ns)

ηij ≥
βc0µ∞
64

nℓns · δ|Eb|.

If ε <
βc0c21p

4

384·204·64 , then by Condition 3, δ̄ 6= 0, and |Eb| 6= 0, the above implies

∑

ij∈E(Knℓ,ns )

ηij ≥
βc0c1p

3

204 · 64εµ∞ · δ|Eb|

>
384

c1p
µ∞ · δ|Eb| ≥

384

c1p

∑

ij∈Eb

|δij |‖t(0)ij ‖2.

Lemma 5 implies
∑

ij∈Eg

ηij ≥
c1p

192

∑

ij∈E(Knℓ,ns )

ηij > 2
∑

ij∈Eb

|δij |‖t(0)ij ‖2.

Therefore by (6),we have
∑

ij∈Eg
ηij >

∑

ij∈Eb
(|δij |‖t(0)ij ‖2 + ηij) if ε ≤ min{ c1p3

48 , p4 ,
βc0c21p

4

384·204·64} and

p ≥
√

8
n . By (5), this shows R(T, P ) > R(T (0), P (0)). This condition on ε is satisfied under the

assumption ε ≤ βc0c21p
4

384·204·64 .

Case 2. |Eb| 6= 0 and δ̄ 6= 0 and
∑

ij∈Eg
|δij | ≥ 1

8δ|Eg|.

Define E+ = {ij ∈ Eg : δij ≥ 0} and E− = {ij ∈ Eg : δij < 0}. Since ℓij − ℓ
(0)
ij = δij‖t(0)ij ‖2 for

ij ∈ Eg, we have

0 =
∑

ij∈E(G)

(ℓij − ℓ
(0)
ij ) =

∑

ij∈Eb

(ℓij − ℓ
(0)
ij ) +

∑

ij∈Eg

δij‖t(0)ij ‖2.

where the first equality follows from L(T, P ) = L(T (0), P (0)). Therefore,
∣

∣

∣

∣

∣

∣

∑

ij∈Eg

δij‖t(0)ij ‖2

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∑

ij∈Eb

(ℓij − ℓ
(0)
ij )

∣

∣

∣

∣

∣

∣

≤
∑

ij∈Eb

(|δij |‖t(0)ij ‖2 + ηij) ≤ 2µ∞δ|Eb|,

where the last inequality follows from (6), Condition 3, and the definition of δ. On the other hand,

the condition of Case 2 and Condition 3 implies
∑

ij∈Eg
|δij |‖t(0)ij ‖2 ≥ 1

8c0µ∞δ|Eg|. Therefore

∑

ij∈E−

(−δij)‖t(0)ij ‖2 =
1

2



−
∑

ij∈Eg

δij‖t(0)ij ‖2 +
∑

ij∈Eg

|δij |‖t(0)ij ‖2



 ≥ 1

2

(

1

8
c0µ∞δ|Eg| − 2µ∞δ|Eb|

)

.
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If ε ≤ 1
128c0p, then since |Eb| ≤ εnℓns and |Eg| ≥ nℓnsp

2 − |Eb| ≥ nℓnsp
4 , we see that 1

8c0µ∞δ|Eg| −
2µ∞δ|Eb| ≥ 1

16c0µ∞δ̄|Eg|. Therefore
∑

ij∈E−
(−δij)‖t(0)ij ‖2 ≥ 1

32c0µ∞δ|Eg|. Similarly,
∑

ij∈E+
δij‖t(0)ij ‖2 ≥

1
32c0µ∞δ|Eg|.

If |E+| ≥ 1
2 |Eg|, then by Lemma 2 and Conditions 3 and 4, we have

∑

ij∈E−

∑

kℓ∈E+
k 6=i,ℓ 6=j

η(ij, kℓ) ≥
∑

ij∈E−

∑

kℓ∈E+
k 6=i,ℓ 6=j

β(−δij)‖t(0)ij ‖2

≥
∑

ij∈E−

(−δij)‖t(0)ij ‖2 · β(|E+| − 2p(nℓ + ns))

≥ 1

32
c0µ∞δ|Eg| · β(|E+| − 2p(nℓ + ns))

≥ β

32
c0µ∞δ|Eg|

(1

2
|Eg| − 2p(nℓ + ns)

)

.

Note that if ε < 1
4p, then |Eg| ≥ nℓnsp

2 − |Eb| ≥ nℓnsp
4 . Further note that nℓ, ns > 64 implies that

2p(nℓ + ns) <
1
16nℓnsp. Hence,

∑

ij∈E−

∑

kℓ∈E+
k 6=i,l 6=j

η(ij, kℓ) ≥ 1

32
βc0µ∞δ · nℓnsp

4
· nℓnsp

16
≥ βc0µ∞δn2

ℓn
2
sp

2

32 · 64 .

Similarly, if |E−| ≥ 1
2 |Eg|, then we can switch the order of summation and consider

∑

ij∈E+

∑

kℓ∈E−
η(ij, kℓ)

to obtain the same conclusion.
Since each edge is contained in at most nℓns copies of C4 and there are 4 edges in a C4, we have

∑

ij∈E−

∑

kℓ∈E+
k 6=i,ℓ 6=j

η(ij, kℓ) ≤ 4nℓns

∑

ij∈E(Knℓ,ns )

ηij .

If ε < βc0c1p3

384·4·32·64 , then since δ̄ 6= 0 and |Eb| ≤ εnℓns, we have

∑

ij∈E(Knℓ,ns )

ηij ≥
1

4nℓns
· βc0µ∞δ

32 · 64 n2
ℓn

2
sp

2 ≥ βc0p
2

4 · 32 · 64µ∞δnℓns >
384

c1p
µ∞δ|Eb|.

By Lemma 5, if ε < c1p3

48 , then this implies

∑

ij∈Eg

ηij ≥
c1p

192

∑

ij∈E(Knℓ,ns )

ηij > 2µ∞δ|Eb|.

Therefore from (5), (6), and Condition 3, if ε ≤ min{ c0p
128 ,

c1p3

96 , p4 ,
βc0c1p3

384·4·32·64} and p ≥
√

8
n , then

R(T, P ) ≥ R(T (0), P (0)) +
∑

ij∈Eg

ηij −
∑

ij∈Eb

(|δij |‖t(0)ij ‖2 + ηij)

> R(T (0), P (0)) + 2µ∞δ|Eb| −
∑

ij∈Eb

2|δij |‖t(0)ij ‖2 ≥ R(T (0), P (0)).

This condition on ε is satisfied under the assumption ε ≤ βc0c21p
4

384·204·64 .
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2.5 Properties of Gaussians

In this section, we prove that i.i.d. Gaussians satisfy properties needed to establish Conditions
3–5 in Theorem 2. We begin by recording some useful facts regarding concentration of random
Gaussian vectors:

Lemma 6. Let x, y be i.i.d. N (0, Id×d), and ǫ ≤ 1, then

P
(

d(1− ǫ) ≤ ‖x‖22 ≤ d(1 + ǫ)
)

≥ 1− e−cǫ2d

and
P (|〈x, y〉| ≥ dǫ) ≤ e−cǫ2d

where c > 0 is an absolute constant.

Proof. Both statements follow from Corollary 5.17 in [10], concerning concentration of sub-exponential
random variables.

Lemma 7. Corollary 5.35 in [10]. Let A be an n × d matrix with iid N (0, 1) entries. Then for
any t ≥ 0,

P

(

σmax(A) ≥
√
n+

√
d+ t

)

≤ 2e−
t2

2

where σmax(A) is the largest singular value of A.

Lemma 8. Let ti, tj , tk, tℓ ∼ N (0, Id×d) be independent. There is a universal constant c such that
with probability at least 1− 15e−cd,

‖Pspan(tk−tj ,ti−tℓ)⊥
(ti − tj)‖

‖ti − tj‖
≥ 1

4
.

Proof. Let c be the constant from Lemma 6. Let x = ti − tℓ, y = tk − tj, z = ti − tj . Observe

Pspan(x,y)⊥ ẑ = ẑ − 〈ẑ, x̂〉x̂− 〈ẑ, ŷx⊥〉ŷx⊥ = ẑ − 〈ẑ, x̂〉x̂− 〈ẑ, ŷ〉ŷ + (〈ẑ, ŷ〉ŷ − 〈ẑ, ŷx⊥〉ŷx⊥)

= ẑ − 〈ẑ, x̂〉x̂− 〈ẑ, ŷ〉ŷ + (ŷŷt − ŷx⊥ ŷtx⊥)ẑ,

where ŷx⊥ = y−〈y,x̂〉x̂
‖y−〈y,x̂〉x̂‖ , which is well defined with probability 1. By the triangle inequality,

‖Pspan(x,y)⊥ ẑ‖ ≥
√

1− |〈ẑ, x̂〉|2 − |〈ẑ, ŷ〉| − ‖ŷŷt − ŷx⊥ ŷtx⊥‖op

For arbitrary unit vectors â, b̂ ∈ R
d, ‖âât − b̂b̂t‖op = | sin θ|, where θ is the angle between â and

b̂. This fact can be verified by direct computation after taking â = e1 and b̂ = cos θ e1 + sin θ e2
without loss of generality. Hence, ‖ŷŷt− ŷx⊥ŷtx⊥‖op = | sin θ| = | cosα|, where θ is the angle between
ŷ and ŷx⊥, and α is the angle between ŷ and x̂. Thus ‖ŷŷt − ŷx⊥ ŷtx⊥‖op = |〈ŷ, x̂〉|. So,

‖Pspan(x,y)⊥ ẑ‖ ≥
√

1− |〈ẑ, x̂〉|2 − |〈ẑ, ŷ〉| − |〈ŷ, x̂〉|

Now, note that

|〈ẑ, x̂〉|2 = 〈ti − tj, ti − tℓ〉2
‖ti − tj‖2‖ti − tℓ‖2

=
(‖ti‖2 − 〈ti, tℓ〉 − 〈tj , ti〉+ 〈tj , tℓ〉)2

‖ti − tj‖2‖ti − tℓ‖2

15



By Lemma 6 with ε = 0.01,

|〈ẑ, x̂〉|2 ≤ (d(1 + ε) + 3dε)2

4d2(1− ε)2
≤ 0.3

with probability at least 1− 6e−cd for some universal constant c. Similarly, |〈ẑ, ŷ〉|2 ≤ 0.3 with the
same probability. Since ŷ and x̂ are independent, by Lemma 6 with ε = 0.01, |〈ŷ, x̂〉| ≤ εd

d(1−ε) ≤ 2ε

with probability at least 1− 3e−cd. Thus, we observe

‖Pspan(x,y)⊥ ẑ‖ ≥
√
1− 0.3−

√
0.3− 0.02 ≥ 1

4

with probability at least 1− 15e−cd.

Lemma 9. Let ti, tj , tk, tℓ ∼ N (0, Id×d) be independent for d ≥ 3. There is a universal constant c
such that with probability at least 1− 7e−cd,

‖Pspan(ti−tℓ,tk−tℓ)⊥(ti − tj)‖
‖ti − tj‖2

≥ 1

4
.

Proof. Let c be the constant from Lemma 6. Let u = ti−tℓ√
2
, v = tℓ+ti√

2
, w = tj, x = tk. Each of these

variables are i.i.d. N (0, 1). Note that

Pspan(ti−tℓ,tk−tℓ)⊥(ti − tj) = −Pspan(u,x− v√
2
)⊥

(

w − v√
2

)

.

Without loss of generality, rotate coordinates so that u is in the direction of e1. Thus, it suffices to
bound

∥

∥P(x̃− ṽ√
2
)⊥(w̃ − ṽ√

2
)
∥

∥

2
where ṽ, w̃, x̃ ∼ N (0, Id−1×d−1). Note that x̃− ṽ√

2
and w̃ − ṽ√

2
both

follow the distribution N (0, 32Id−1×d−1). Note that

∥

∥

∥P(x̃− ṽ√
2
)⊥

(

w̃ − ṽ√
2

)∥

∥

∥

2
=
∥

∥

∥w̃ − ṽ√
2

∥

∥

∥

2
−

〈w̃ − ṽ√
2
, x̃− ṽ√

2
〉2

‖x̃− ṽ√
2
‖2

=
∥

∥

∥
w̃ − ṽ√

2

∥

∥

∥

2
−
(

〈w̃, x̃〉 − 1√
2
〈w̃, ṽ〉 − 1√

2
〈ṽ, x̃〉+ ‖ṽ‖2

2

)2

‖x̃− ṽ√
2
‖2

.

Hence Lemma 6 with ε = 0.01 shows that with probability at least 1 − 6e−cd, the above is at
least

3

2
(d− 1)(1− ε)−

(

1
2 (d− 1)(1 + ε)− 3ε(d − 1)

)2

3
2(d− 1)(1 − ε)

≥ (d− 1) ≥ 2

3
d,

Thus, we have that

‖Pspan(tj−tℓ,tk−tℓ)⊥
(ti − tj)‖2 ≥ 2

3
d

with probability at least 1−6e−cd. To conclude the proof, note that Lemma 6 with ε = 0.01 implies
that ‖ti − tj‖2 ≥ 2d(1 + ε) with probability at least 1− e−cd.

We can now establish Conditions 3–4 of Theorem 2 with high probability.
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Lemma 10. Let ti, pj ∼ N (0, Id×d) for i ∈ Vℓ, j ∈ Vs be independent. Condition 3 of Theorem 2
holds with c0 = 9

10 with probability at least 1 − 2nℓnse
−cd for a universal constant c. Condition 4

of Theorem 2 holds with β = 1
4 with probability at least 1− 22n2

ℓn
2
s
e−cd.

Proof. Condition 3 follows from applying Lemma 6 with ε = 0.01 and a union bound to ‖ti − pj‖2
for all nℓns pairs (i, j) ∈ Vℓ × Vs. Condition 4 follows from applying Lemmas 8 and 9 and a union
bound over the at most n2

ℓn
2
s choices of i, k ∈ Vℓ and j, ℓ ∈ Vs.

2.6 Gaussians are well-distributed

In this section we prove that Condition 5 of Theorem 2 holds with high probability.

Lemma 11. There exist constants d0 and K0 such that the following holds. Let G = (Vℓ ∪ Vs, E)
be a bipartite-p-typical graph. Let ti, pj ∼ N (0, Id×d) for i ∈ Vℓ, j ∈ Vs be independent from G and
each other. Let T = {ti}i∈Vℓ

and P = {pj}j∈Vs
. If d ≥ d0 and nℓ, ns ≥ max(K0, 160d), then (T, P )

is 1
20-well-distributed along G with probability at least 1−O(n2

ℓn
2
s
e−cd) for universal constants c,K0.

We start by proving an intermediate lemma asserting the well-distributedness of pairs of random
Gaussian vectors {(ti, pi)}i∈[k] with respect to a fixed pair of random Gaussian vectors (x, y).

Lemma 12. There exist positive constants d0, K̃0 such that the following holds. Let x, y, ti, pi ∼
N (0, Id×d) be independent, where i ∈ [k]. Then the set {(ti, pi)}i∈[k] is 1

10-well-distributed with

respect to (x, y) with probability 1− 6ke−cd if k ≥ max(K̃0, 10d) and d ≥ d0.

The proof of this lemma appears at the end of this section. We will deduce Lemma 11 from
Lemma 12 by partitioning the edge set of G into sets of vertex-disjoint edges. A matching is a set
of vertex-disjoint edges. A perfect matching of a graph is a matching that intersects all vertices.
The following is a well-known lemma in Graph theory.

Lemma 13. Let G = (V,E) be a bipartite graph with vertex partition V = V1 ∪ V2, and let ∆ be
the maximum degree of G. There exists an edge-partition E = E1 ∪ · · · ∪E∆ such that Ea forms a
matching for each a ∈ [∆].

Proof. By adding vertices and edges to G if necessary, we can obtain a ∆-regular bipartite multi-
graph G′. By Hall’s theorem, every non-empty regular multi-graph contains a perfect matching
(see [2, Corollary 2.1.3]). Let F1 be an arbitrary perfect matching of G′. Remove F1 from the edge
set of G′, and note that the remaining graph is still regular. Thus we can repeat the process to
obtain a partition E(G′) = F1 ∪ · · · ∪ F∆ of the edge set of G′ into perfect matchings. The sets
Ea = Fa ∩ E(G) for a ∈ [∆] satisfy the claimed condition.

The proof of Lemma 11 follows from the two lemmas above.

Proof of Lemma 11. Recall the notation that N = max{|Vℓ|, |Vs|} and n = min{|Vℓ|, |Vs|}. Since G
is a bipartite-p-typical graph, the maximum degree ∆ of G is at most 2Np. By Lemma 13, there
exists an edge-partition E = E1 ∪ · · · ∪E∆ such that each Ea for a = 1, 2, . . . ,∆ forms a matching.

Fix a pair of indices (i0, j0) for i0 ∈ Vℓ and j0 ∈ Vs. Let E
′ ⊆ E be the subset of edges that do

not intersect i0 or j0, and for each a ∈ [∆], let E′
a ⊆ Ea be the subset of edges that do not intersect

i0 or j0. Let A ⊆ [∆] be the set of indices a for which |E′
a| ≥ max(K̃0, 10d). For each a ∈ A, by

Lemma 12, we see that with probability at least 1−O(|E′
a|e−cd),

∑

ij∈E′
a

‖Pspan{pj0−ti,ti−pj ,pj−ti0}⊥(h)‖2 ≥ 1

10
|E′

a|‖h‖2
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holds for all h ∈ R
d. Therefore by the union bound, with probability at least 1−O(

∑

a∈A |E′
a|e−cd) ≥

1−O(|E′|e−cd) ≥ 1−O(nNe−cd), the above holds simultaneously for all a ∈ [∆]. Conditioned on
this event, for all h ∈ R

d,

∑

ij∈E′

‖Pspan{pj0−ti,ti−pj ,pj−ti0}⊥(h)‖2

≥
∑

a∈A

∑

ij∈E′
a

‖Pspan{pj0−ti,ti−pj ,pj−ti0}⊥(h)‖2 ≥
∑

a∈A

1

10
|E′

a|‖h‖2.

Since |E′| =∑∆
a=1 |E′

a|, we see that

∑

ij∈E′

‖Pspan{pj0−ti,ti−pj ,pj−ti0}⊥(h)‖2 ≥ 1

10

(

|E′| −
∑

a/∈A
|E′

a|
)

‖h‖2. (8)

Since G is bipartite-p-typical, we have |E′| ≥ 1
2nNp − 2(N + n)p ≥ 1

4nNp if n > 16, and by the

definition of A, we have
∑

a/∈A |E′
a| ≤ max(K̃0, 10d) ·∆ ≤ 1

8nNp if n ≥ 16 ·max(K̃0, 10d). Hence the
right-hand-side of (8) is at least 1

20 |E′|‖h‖2 for all h ∈ R
d. This shows that the set {(ti, pj)}i 6=i0,j 6=j0

is 1
20 -well-distributed with respect to (ti0 , pj0) with probability at least 1−O(nNe−cd). By taking

the union bound over all choices of pairs (i0, j0) ∈ Vℓ × Vs, we can conclude that (T, P ) is 1
20 -well-

distributed along G with probability at least 1−O(n2N2e−cd).

We now prove Lemma 12.

Proof of Lemma 12. Throughout the proof, the positive constant c may change from line to line,
but is always bounded below by the positive constant of the lemma statement.

For each i, let Wi = span(ti − y, pi − x, ti − pi) = span(x − y, pi + ti − (x + y), ti − pi). Thus
PW⊥

i
◦P(x−y)⊥ = PW⊥

i
. Therefore, it is enough to show that for all h ⊥ x− y, with high probability

n
∑

i=1

‖PW⊥
i
(h)‖2 ≥ 1

10
n‖h‖2.

Letting Vi = span(x− y, pi + ti − x− y), we have

Wi = span(x− y, pi + ti − x− y, ti − pi) = span
(

x− y, pi + ti − x− y, PV ⊥
i
(ti − pi)

)

.

Now, for any h ⊥ (x− y),

n
∑

i=1

‖PW⊥
i
(h)‖2 ≥

∥

∥

∥

∥

∥

n
∑

i=1

PW⊥
i
(h)

∥

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∥

n
∑

i=1

(

PV ⊥
i
(h)− PP

V ⊥
i

(ti−pi)(h)

)

∥

∥

∥

∥

∥

2

≥
∥

∥

∥

∥

∥

n
∑

i=1

PV ⊥
i
(h)

∥

∥

∥

∥

∥

2

−
∥

∥

∥

∥

∥

n
∑

i=1

PP
V ⊥
i

(ti−pi)(h)

∥

∥

∥

∥

∥

2

≥
∥

∥

∥

∥

∥

n
∑

i=1

PV ⊥
i
(h)

∥

∥

∥

∥

∥

2

−
n
∑

i=1

∥

∥

∥

∥

PP
V ⊥
i

(ti−pi)(h) − P(ti−pi)(h)

∥

∥

∥

∥

2

−
∥

∥

∥

∥

∥

n
∑

i=1

P(ti−pi)(h)

∥

∥

∥

∥

∥

2

.
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Since ‖Pv(h)−Pw(h)‖2 ≤ ‖v̂v̂t− ŵŵt‖op‖h‖2 ≤ ‖v̂− ŵ‖2‖h‖2 holds for all vectors v,w, h ∈ R
d,

the above is at least
∥

∥

∥

∥

∥

n
∑

i=1

PV ⊥
i
(h)

∥

∥

∥

∥

∥

2

− ‖h‖2
n
∑

i=1

∥

∥

∥

∥

∥

PV ⊥
i
(ti − pi)

‖PV ⊥
i
(ti − pi)‖2

− (ti − pi)

‖ti − pi‖2

∥

∥

∥

∥

∥

2

−
∥

∥

∥

∥

∥

n
∑

i=1

P(ti−pi)(h)

∥

∥

∥

∥

∥

2

. (9)

Note that when v = P (w) for some orthogonal projection operator P , we have

‖v̂ − ŵ‖22 = 2 (1− 〈v̂, ŵ〉) = 2

(

1− 〈P (w), w〉
‖P (w)‖2‖w‖2

)

= 2

(

1− ‖P (w)‖2
‖w‖2

)

.

Thus,
∥

∥

∥

∥

∥

PV ⊥
i
(ti − pi)

‖PV ⊥
i
(ti − pi)‖2

− (ti − pi)

‖ti − pi‖2

∥

∥

∥

∥

∥

2

=
√
2

√

1−
‖PV ⊥

i
(ti − pi)‖2

‖ti − pi‖2
.

Hence (9) is at least

∥

∥

∥

∥

∥

n
∑

i=1

PV ⊥
i
(h)

∥

∥

∥

∥

∥

2

− ‖h‖2
n
∑

i=1

∥

∥

∥

∥

∥

PV ⊥
i
(ti − pi)

‖PV ⊥
i
(ti − pi)‖2

− (ti − pi)

‖ti − pi‖2

∥

∥

∥

∥

∥

2

− 1

mini(‖ti − pi‖22)

∥

∥

∥

∥

∥

n
∑

i=1

(ti − pi)(ti − pi)
∗
∥

∥

∥

∥

∥

op

‖h‖2

=

∥

∥

∥

∥

∥

n
∑

i=1

PV ⊥
i
(h)

∥

∥

∥

∥

∥

2

− ‖h‖2
n
∑

i=1

√
2

√

1−
‖PV ⊥

i
(ti − pi)‖2

‖ti − pi‖2
− 1

mini(‖ti − pi‖22)

∥

∥

∥

∥

∥

n
∑

i=1

(ti − pi)(ti − pi)
∗
∥

∥

∥

∥

∥

op

‖h‖2.

We will now expand the first term, ‖∑n
i=1 PV ⊥

i
(h)‖2. Let u = x− y and zi = x+ y− (pi + ti). We

have

PV ⊥
i
(h) = PS(u,zi)⊥(h)

= PS(u,P
u⊥(zi))⊥(h)

= h− Pu(h)− PP
u⊥ (zi)(h)

= h− PP
u⊥(zi)(h) + Pzi(h)− Pzi(h)

= Pz⊥i
(h)− PP

u⊥(zi)(h) + Pzi(h),

where we used h ⊥ u in the fourth inequality. Thus,

‖
n
∑

i=1

PV ⊥
i
(h)‖2 = ‖

n
∑

i=1

(

Pz⊥i
(h) − PP

u⊥ (zi)(h) + Pzi(h)
)

‖2

≥ ‖
n
∑

i=1

Pz⊥i
(h)‖2 −

n
∑

i=1

‖PP
u⊥(zi)(h) − Pzi(h)‖2

≥ ‖
n
∑

i=1

Pz⊥i
(h)‖2 − ‖h‖2

n
∑

i=1

∥

∥

∥

∥

Pu⊥(zi)

‖Pu⊥(zi)‖2
− zi

‖zi‖2

∥

∥

∥

∥

2

= ‖
n
∑

i=1

Pz⊥i
(h)‖2 − ‖h‖2

n
∑

i=1

√
2

√

1− ‖Pu⊥(zi)‖2
‖zi‖2
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Letting Xi =
‖P

V ⊥
i

(ti−pi)‖2
‖ti−pi‖2 , Yi =

‖P
(x−y)⊥(x+y−ti−pi)‖2

‖x+y−ti−pi‖2 , and Zi = ‖∑n
i=1(ti − pi)(ti − pi)

∗‖op, we
have shown that for any h ⊥ x− y,

n
∑

i=1

‖PW⊥
i
(h)‖2 ≥

n
∑

i=1

∥

∥

∥
P(x+y−ti−pi)⊥(h)

∥

∥

∥

2

− ‖h‖2
n
∑

i=1

√
2
[

√

1−Xi +
√

1− Yi

]

− 1

mini(‖ti − pi‖22)
Zi‖h‖2 (10)

We will separately bound the first term and last two terms with high probability.
We now show that the first term of (10) is bounded below by 0.3n‖h‖2 with high probability.
Because ti + pi =

d
√
2ti, it suffices to show that with high probability

∥

∥

∥

∥

∥

n
∑

i=1

P(x+y−
√
2ti)⊥

(h)

∥

∥

∥

∥

∥

2

≥ 0.3n‖h‖2.

Let v = x+ y and wi = −
√
2ti. Note that

∥

∥

∥

∥

∥

n
∑

i=1

P(v+wi)⊥(h)

∥

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∥

n
∑

i=1

(

h− 1

‖v + wi‖22
〈h, v + wi〉(v + wi)

)

∥

∥

∥

∥

∥

2

≥ n‖h‖2 −
∥

∥

∥

∥

∥

n
∑

i=1

1

‖v + wi‖22
(v +wi)(v + wi)

∗h

∥

∥

∥

∥

∥

2

≥ n‖h‖2 −
∥

∥

∥

∥

∥

n
∑

i=1

1

‖v + wi‖22
(v +wi)(v + wi)

∗
∥

∥

∥

∥

∥

op

‖h‖2

≥ ‖h‖2



n− 1

mini ‖v + wi‖22

∥

∥

∥

∥

∥

n
∑

i=1

(v + wi)(v +wi)
∗
∥

∥

∥

∥

∥

op



 ,

where in the last inequality we used

n
∑

i=1

1

‖v + wi‖22
(v + wi)(v + wi)

∗ � 1

mini ‖v + wi‖22

n
∑

i=1

(v +wi)(v + wi)
∗.

Now, let A =
∑n

i=1 eiw
∗
i ∈ R

n×d. We have

∥

∥

∥

∥

∥

n
∑

i=1

(v + wi)(v + wi)
∗
∥

∥

∥

∥

∥

op

=

∥

∥

∥

∥

∥

n
∑

i=1

(vv∗ + vw∗
i +wiv

∗ + wiw
∗
i )

∥

∥

∥

∥

∥

op

≤ n‖vv∗‖op +
∥

∥

∥

∥

∥

v

(

n
∑

i=1

wi

)∗

+

(

n
∑

i=1

wi

)

v∗
∥

∥

∥

∥

∥

op

+

∥

∥

∥

∥

∥

n
∑

i=1

wiw
∗
i

∥

∥

∥

∥

∥

op

≤ n‖v‖22 + 2‖v‖2
∥

∥

∥

∥

∥

n
∑

i=1

wi

∥

∥

∥

∥

∥

2

+

∥

∥

∥

∥

∥

n
∑

i=1

wiw
∗
i

∥

∥

∥

∥

∥

op

= n‖v‖22 + 2‖v‖2
∥

∥

∥

∥

∥

n
∑

i=1

wi

∥

∥

∥

∥

∥

2

+ σmax(A)
2.
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Thus,
n
∑

i=1

∥

∥

∥P(v+wi)⊥(h)
∥

∥

∥

2
≥ ‖h‖2

[

n− n‖v‖22 + 2‖v‖2 ‖
∑n

i=1 wi‖2 + σmax(A)
2

mini ‖v + wi‖22

]

.

Now, consider the event

E1 =







min
i

‖v + wi‖22 ≥ 4dβ1, ‖v‖22 ≤ 2dβ2,

∥

∥

∥

∥

∥

n
∑

i=1

wi

∥

∥

∥

∥

∥

2

2

≤ 2ndβ3, σmax(A)
2 ≤ 2nβ4







On E1 we have,

n
∑

i=1

∥

∥

∥
P(v+wi)⊥(h)

∥

∥

∥

2
≥ ‖h‖2

[

n− 1

4dβ1

(

2ndβ2 + 2
√

2dβ2
√
2
√
nd
√

β3 + 2nβ4

)

]

= ‖h‖2
[

n− 1

2
n
β2
β1

− 4d
√
n
√
β2β3

4dβ1
− β4

2dβ1
n

]

= ‖h‖2
[

n

(

1− 1

2

β2
β1

− β4
2dβ1

− 1√
n

√
β2β3
β1

)]

Now, let β1 = 1− 1
100 , β2 = β3 = 1 + 1

100 , β4 =
1
5dβ1. This gives

1

2

β2
β1

= 1/2 + 1/99,
β4

2dβ1
= 1/10,

1√
n

√
β2β3
β1

<
2√
n
.

Assuming n ≥ 550, we see that on E1,

n
∑

i=1

∥

∥

∥
P(x+y−ti−pi)⊥(h)

∥

∥

∥

2
≥ 0.3n‖h‖2.

Now, we bound P(E1). Note that 1
4‖v+wi‖22 =d 1

2‖v‖22 =d 1
2n ‖∑n

i=1wi‖22 =d χ2(d) and 1√
2
A is

a random n× d matrix with i.i.d. N (0, 1) entries. Thus, by applying Lemma 6, we have

P

(

4d(1 − ǫ) ≤ ‖v + wi‖22 ≤ 4d(1 + ǫ)
)

≥ 1− e−cǫ2d

P
(

2d(1− ǫ) ≤ ‖v‖22 ≤ 2d(1 + ǫ)
)

≥ 1− e−cǫ2d

P



2nd(1 − ǫ) ≤
∥

∥

∥

∥

∥

n
∑

i=1

wi

∥

∥

∥

∥

∥

2

2

≤ 2nd(1 + ǫ)



 ≥ 1− e−cǫ2d,

where c > 0 is a universal constant. Also by taking t = 2
√
d in Lemma 7 we get

P

(

σmax

( 1√
2
A
)

≥ √
n+ 3

√
d

)

≤ 2e−2d

We have

P

(

σmax(
1√
2
A) ≥

√

nβ4

)

≤ P

(

σmax(
1√
2
A) ≥ √

n+ 3
√
d

)

≤ 2e−2d
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whenever
√
n+ 3

√
d ≤ √

nβ4, or equivalently (
√

β1

5

√
d− 1)

√
n ≥ 3

√
d, which holds when n ≥ 550

and d ≥ 10. Thus for n ≥ 550, we have

P(E1) ≥ 1− 2ne−cd.

We now show that the second term of (10) is bounded above by 0.2n‖h‖2 with high probability.
Define the event

E2 =

{

Xi ≥ 1− 1

800
, Yi ≥ 1− 1

800
,

1

mini(‖ti − pi‖22)
Zi ≤ 0.1n, i = 1, 2 . . . n

}

On E2, we have

‖h‖2
n
∑

i=1

√
2
[

√

1−Xi +
√

1− Yi

]

+
1

mini(‖ti − pi‖22)
Zi‖h‖2 ≤ 0.2n‖h‖2.

We now estimate P(E2). For Xi, since (ti − pi) is independent from (x − y, pi + ti − x − y), we
can view the latter as fixed. That is, by conditioning on Vi, and applying a rotation R such that
R(Vi) = span(e1, e2), we have

‖PV ⊥
i
(ti − pi)‖2

‖ti − pi‖2
=d

√

√

√

√

∑d−2
j=1 ti(j)

2

∑d
j=1 ti(j)

2

where ti(j) is the jth entry of ti. As
∑d−2

j=1 ti(j)
2 ∼ χ2

d−2 and
∑d

j=1 ti(j)
2 ∼ χ2

d, Lemma 6 can

be repeatedly applied to give P(Xi ≥ 1 − 1
800 for all i) ≥ 1 − 2ne−cd. A similar argument gives

P(Yi ≥ 1− 1
800 for all i) ≥ 1− 2ne−cd because x− y and x+ y − (ti + pi) are independent.

We now bound the probability of the third condition in the definition of E2. Note that

1

mini(‖ti − pi‖22)

∥

∥

∥

∥

∥

n
∑

i=1

(ti − pi)(ti − pi)
∗
∥

∥

∥

∥

∥

op

=d 1

mini(‖ti‖22)

∥

∥

∥

∥

∥

n
∑

i=1

tit
∗
i

∥

∥

∥

∥

∥

op

Let B =
∑n

i=1 eit
∗
i . By Lemma 7, ‖∑n

i=1 tit
∗
i ‖op = σmax(B)2 ≥ n

(

1 + 3
√

d
n

)2
with probability at

least 1 − 2e−2d. By Lemma 6, ‖ti‖22 ≥ d(1 − ε) for all i with probability at least 1 − ne−cε2d. We
conclude

1

mini(‖ti‖22)

∥

∥

∥

∥

∥

n
∑

i=1

tit
∗
i

∥

∥

∥

∥

∥

op

≤
n
(

1 + 3
√

d
n

)2

d(1− ε)

with probability at least 1− 2ne−cε2d. If ε = 0.01, d ≥ 40, n ≥ 10d, we have

P

( 1

mini(‖ti − pi‖22)
Zi ≤ 0.1n

)

≥ 1− 2ne−cd

Hence, if d ≥ 40, n ≥ 10d,
P(E2) ≥ 1− 6ne−cd.

In conclusion, there exist positive integers d0 and n0 such that for all d ≥ d0, n ≥ n0, n ≥ 10d,
and all h ⊥ x− y,

P

(∥

∥

∥

∥

∥

n
∑

i=1

PWi
⊥(h)

∥

∥

∥

∥

∥

2

≥ 1

10
‖h‖2

)

≥ 1− P [(E1 ∩ E2)
c] ≥ 1− 6ne−cd

for some c > 0, which implies the statement of the lemma.

22



2.7 Random graphs are p-typical with high probability

We prove that Condition 1 of Theorem 2 holds with high probability.

Lemma 14. There exists an absolute constant c > 0 such that for all positive real numbers p ≤ 1
satisfying n2p ≥ 2 log(en1) and n1p ≥ 2 log(en2), G(n1, n2; p) is p-typical with probability at least
1− n1n22

n1+n2e−pn1n2/4 − n2
1n2e

−Ω(n2p2) − n1n
2
2e

−Ω(n1p2).

Proof. Let V1 and V2 be vertex sets of sizes |V1| = n1 and |V2| = n2. Throughout the proof, we
let V1 ∪ V2 be the bipartition of the random graph G(n1, n2; p). The bipartite graph G(n1, n2; p)
is not connected only if there exist partitions V1 = V1,1 ∪ V1,2 and V2 = V2,1 ∪ V2,2 such that
the sets V1,1 ∪ V2,1 and V1,2 ∪ V2,2 are both non-empty and have no edges between them. Let
|V1,1| = k1, |V2,1| = k2, |V1,2| = n1 − k1 and |V2,2| = n2 − k2. For fixed k1, k2, by the union bound,
the probability that there exists a partition as above is at most

(

n1

k1

)(

n2

k2

)

(1− p)k1(n2−k2)+k2(n1−k1). (11)

If k1 ≤ n1
2 and k2 ≤ n2

2 , then by Stirling’s formula, (11) is at most
(

en1

k1

)k1 (en2

k2

)k2

(1− p)(k1n2+k2n1)/2 ≤
(

en1

k1
e−n2p/2

)k1 (en2

k2
e−n1p/2

)k2

.

If k1 >
n1
2 and k2 >

n2
2 , then let ℓ1 = n1 − k1 and ℓ2 = n2 − k2. Then (11) is at most

(

en1

ℓ1

)ℓ1 (en2

ℓ2

)ℓ2

(1− p)(ℓ1n2+ℓ2n1)/2 ≤
(

en1

ℓ1
e−n2p/2

)ℓ1 (en2

ℓ2
e−n1p/2

)ℓ2

.

If (k1 ≤ n1
2 and k2 > n2

2 ) or (k1 > n1
2 and k2 ≤ n2

2 ), then, by
(

n
k

)

≤ 2n for all 0 ≤ k ≤ n, (11) is at
most

2n1+n2(1− p)n1n2/4 ≤ 2n1+n2e−pn1n2/4.

Hence the probability that G(n1, n2; p) is disconnected is at most

⌊n1/2⌋
∑

k1=1

⌊n2/2⌋
∑

k2=0

(

en1

k1
e−n2p/2

)k1 (en2

k2
e−n1p/2

)k2

+

⌊n1/2⌋
∑

k1=0

⌊n2/2⌋
∑

k2=1

(

en1

k1
e−n2p/2

)k1 (en2

k2
e−n1p/2

)k2

+

⌊n1/2⌋
∑

ℓ1=1

⌊n2/2⌋
∑

ℓ2=0

(

en1

ℓ1
e−n2p/2

)ℓ1 (en2

ℓ2
e−n1p/2

)ℓ2

+

⌊n1/2⌋
∑

ℓ1=0

⌊n2/2⌋
∑

ℓ2=1

(

en1

ℓ1
e−n2p/2

)ℓ1 (en2

ℓ2
e−n1p/2

)ℓ2

+ n1n22
n1+n2e−pn1n2/4,

where the indeterminate factors in the sums corresponding to k1 = 0, k2 = 0, ℓ1 = 0, or ℓ2 = 0
are taken to be unity. Since n2p ≥ 2 log(en1) and n1p ≥ 2 log(en2), the four sums above are
maximized at (k1, k2) = (1, 0), (0, 1), (ℓ1, ℓ2) = (1, 0), (0, 1), respectively. Therefore the probability
that G(n1, n2; p) is disconnected is at most

2n1n2 · en1 · e−n2p/2 + 2n1n2 · en2 · e−n1p/2 + n1n22
n1+n2e−pn1n2/4.

For a fixed vertex v ∈ V1, the expected value of deg(v) is n2p, and for a pair of vertices v,w ∈ V1,
the expected value of the codegree of v and w is n2p

2. Therefore by Chernoff’s inequality (see Fact
4 from [1]) and a union bound, the probability that all vertices in V1 have degree between 1

2n2p

and 2n2p, and all pairs of vertices in V1 have codegree between 1
2n2p

2 and 2n2p
2 is 1−n2

1e
−Ω(n2p2).

Similarly, the probability that all vertices in V2 have degree between 1
2n1p and 2n1p, and all pairs

of vertices in V2 have codegree between 1
2n1p

2 and 2n1p
2 is 1−n2

2e
−Ω(n1p2). The conclusion follows

by taking a union bound over all events.
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2.8 Proof of Theorem 1

We can now prove the high dimensional recovery theorem, which we state here again for convenience:

Theorem 1. Let N = max(nℓ, ns), n = min(nℓ, ns). Let G(Vℓ ∪ Vs, E) be drawn from a bipartite-

Erdős-Rényi graph with p > 0. Take t
(0)
1 , . . . t

(0)
nℓ , p

(0)
1 , . . . , p

(0)
ns

∼ N (0, Id×d) to be independent from
each other and G. Then, there exist absolute constants c, c3, C > 0 such that for γ = c3p

4, if

max

(

1

c3p4
, Cd,

2 log(eN)

p
,Ω(c3 log

2 N)

)

≤ n ≤ N ≤ e
1
8
cd

and d = Ω(1), then there exists an event with probability at least 1−O(e−Ω( 1
2
c
−1/2
3 n1/2)+ e−

1
2
cd), on

which the following holds:

For all subgraphs Eb satisfying maxi∈[nℓ] degb(ti) ≤ γns and maxj∈[ns] degb(pj) ≤ γnℓ and all pair-

wise direction corruptions vij ∈ S
d−1 for ij ∈ Eb, the convex program (2) has a unique minimizer

equal to
{

α{t(0)i − ζ}i∈[nℓ], α{p
(0)
i − ζ}j∈[ns]

}

for some positive α and for ζ = 1
nℓ+ns

(

∑

i∈[nℓ]
t
(0)
i +

∑

j∈[ns]
p
(0)
j

)

.

Proof. Let c be minimum of the constants from Lemmas 10 and 11. Let K0 be the constant from
Lemma 11. It is enough to verify that G, T and Eb in the assumption of the present theorem satisfy
the deterministic conditions 1–6 in Theorem 2, with appropriate constants p, β, c0, ǫ, c1, and with
the purported probability. By Lemma 14, Condition 1 holds with probability at least

1− nlns2
nl+nse−pnlns/4 − n2

l nse
−Ω(nsp2) − nln

2
se

−Ω(nlp
2) = 1−O(N3e−Ω(np2))

if np ≥ 2 log(eN). Condition 2 holds with probability 1. By Lemma 10, Condition 3 holds for
c0 =

9
10 with probability at least 1−2nℓnse

−cd, and Condition 4 holds for β = 1
4 with probability at

least 1−22n2
ℓn

2
se

−cd. By Lemma 11, Condition 5 holds for c1 =
1
20 with probability 1−O(n2

ℓn
2
se

−cd)
if n ≥ max(K0, 160d), and d ≥ d0. Thus, Conditions 1–5 hold together with probability at least

1−O(N4e−cd +N3e−Ω(np2)).

Take γ = c3p
4 ≤ p4

1011 . Because γ ≤ βc0c21p
4

384·204·64 , Theorem 2 implies that recovery via ShapeFit
is guaranteed. Note that the conditions maxi∈Vℓ

degb(i) ≤ γns and maxj∈Vs degb(j) ≤ γnℓ are

nontrivial when p ≥ c
−1/4
3 n−1/4. Using this inequality, we have N3e−Ω(np2) ≤ N3e−Ω(c

−1/2
3 n1/2) ≤

e−Ω( 1
2
c
−1/2
3 n1/2) if n = Ω(c3 log

2N) and N4e−cd ≤ e−cd/2 if N ≤ e
1
8
cd. Thus, the probability of exact

recovery via ShapeFit, uniformly in Eb and vij satisfying the assumptions of the theorem, is at
least

1−O(e−Ω( 1
2
c
−1/2
3 n1/2) + e−

1
2
cd).

3 Numerical simulations

In this section, we use numerical simulation to verify that ShapeFit recovers Gaussian camera
locations and Gaussian structure locations in R

3 in the presence of corrupted pairwise direction
measurements. Further, we empirically demonstrate that ShapeFit is robust to noise in the uncor-
rupted measurements.

Let t̃
(0)
i ∈ R

3 be independent N (0, I3×3) random variables for i = 1, . . . , nℓ. Let p̃
(0)
j ∈ R

3 be
independent N (0, I3×3) random variables for j = 1, . . . , ns. Let

t
(0)
i = t̃

(0)
i − 1

nℓ + ns

(

∑

k

t̃
(0)
k +

∑

ℓ

p̃
(0)
ℓ

)

and p
(0)
j = p̃

(0)
j − 1

nℓ + ns

(

∑

k

t̃
(0)
k +

∑

ℓ

p̃
(0)
ℓ

)

.
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Let the graph of observations G be a bipartite Erdős-Rényi graph G(nℓ, ns, p) on nℓ + ns vertices,
for p = 1/2. For ij ∈ E(G), let

ṽij =











zij with probability q,

t
(0)
i −p

(0)
j

‖t(0)i −p
(0)
j ‖2

+ σzij with probability 1− q,

where zij are independent and uniform over S
2. Let vij = ṽij/‖ṽij‖2. That is, each observation is

corrupted with probability q, and each corruption is in a random direction. In the noiseless case,
with σ = 0, each observation is exact with probability 1− q.

We solved ShapeFit using the SDPT3 solver [8, 9] and YALMIP [5]. For output S = (T, P ) =
(

{ti}i∈[nℓ], {pj}j∈[ns]

)

, define its relative error with respect to S(0) = (T (0), P (0)) =
(

{t(0)i }i∈[nℓ], {p
(0)
j }j∈[ns]

)

as
∥

∥

∥

∥

∥

S

‖S‖F
− S(0)

‖S(0)‖F

∥

∥

∥

∥

∥

F

where ‖S‖F is the Frobenius norm of the matrix whose column are given by {ti} and {pj}. This
error metric amounts to an ℓ2 norm after rescaling.

Figure 1 shows the mean relative error of the output of ShapeFit over 10 independent trials for
locations in R

3 generated by p = 1/2, nℓ = ns, σ ∈ [0, 0.05], and a range of values 10 ≤ nℓ+ns ≤ 70
and 0 ≤ q ≤ 0.5. White blocks represent zero average relative error, and black blocks represent
an average relative error of 1 or higher. Average residuals between 0 and 1 are represented by the
appropriate shade of gray. The figure shows that ShapeFit can empirically recover 3d locations
in the presence of a surprisingly large probability of corruption, provided n is big enough. For
example, if n ≥ 50, ShapeFit outputs a structure with small relative error even when around
15% of all measurements are randomly corrupted. Further, successful recovery occurs both in the
noiseless case, and in the noisy case with σ = 0.05.

Figure 2 shows the median residual over 10 independent trials for locations in R
3 generated by

p = 1/2, nℓ = ns = 25, q = 0.1 and a range of values of 10−6 ≤ σ ≤ 100. We see that ShapeFit
is empirically stable to noise, with median residuals that are approximately linear in the noise
parameter σ.
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Figure 1: Mean recovery error of ShapeFit as a function of the number of locations nℓ + ns and
the corruption probability q. The data model has 3d Gaussian locations whose pairwise directions
are observed in accordance with a bipartite Erdős-Rényi graph G(nℓ, ns, 1/2) and are corrupted
with probability q. White blocks represent an average relative error of zero over 10 independently
generated problems. Black blocks represent an average relative error of 100%. The left panel
corresponds to the noiseless case σ = 0, and the right panel corresponds to the noisy case σ = 0.05.
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Figure 2: Median recovery error of ShapeFit versus the noise parameter σ. These simulations are
based on 50 Gaussian locations in R

3 whose pairwise directions are observed in accordance with a
bipartite Erdős-Rényi graph G(25, 25, 1/2) and are corrupted with probability q = 0.1. The median
is based on 10 independently generated problems.
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