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Abstract

Let t1,...,t,, € R? and py,...,p,. € R? and consider the bipartite location recovery prob-
lem: given a subset of pairwise direction observations {(t; — p;)/|lt: — pjll2}i,jemn.xn.], Where
a constant fraction of these observations are arbitrarily corrupted, find {t;};c[,,] and {p;}jen,]
up to a global translation and scale. We study the recently introduced ShapeFit algorithm as a
method for solving this bipartite location recovery problem. In this case, ShapeFit consists of
a simple convex program over d(n; + ns) real variables. We prove that this program recovers
a set of n; + n, i.i.d. Gaussian locations exactly and with high probability if the observations
are given by a bipartite Erdos-Rényi graph, d is large enough, and provided that at most a
constant fraction of observations involving any particular location are adversarially corrupted.
This recovery theorem is based on a set of deterministic conditions that we prove are sufficient
for exact recovery. Finally, we propose a modified pipeline for the Structure for Motion problem,
based on this bipartite location recovery problem.

1 Introduction

Structure from Motion (SfM) is the task of recovering 3d structure from a collection of images taken
from different vantage points [6]. In the SfM problem, camera poses are represented by locations
tgo) € R3,i = 1...ny and rotation matrices R; € SO(3),i = 1...ny, where R; maps coordinates in
the frame of the ith camera to the world frame. For a generic structure point p € R3, there exists
a unique point in each imaging plane given by perspective projection. A pair of image points is
said to correspond when they are both projections of the same point in 3d space. Given enough
point correspondences between a pair of views, epipolar geometry yields the relative rotation and
direction between those views. Pairwise relative camera poses can then be used to estimate the
individual poses (tl(-o), R;),i =1...npup to a Euclidean transformation. Knowledge of camera poses
and point correspondences allows one to estimate 3d structure via triangulation. Finally, the pose
and structure estimates are used as initialization for bundle adjustment, which is the simultaneous
nonlinear refinement of structure and camera poses. In summary, SfM typically consists of four
steps: 1) identify point correspondences; 2) recover camera orientations and locations in global
coordinates; 3) triangulate structure points using estimates of camera pose and correspondences;
and 4) perform bundle adjustment.

A central difficulty of SfM is that point correspondences are prone to errors because they are
found purely by local photometric information, which is subject to projective transformations from
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camera motion, specularities, occlusions, variable lighting conditions, shadows, and repetitive struc-
tures commonly found in manmade scenes. Thus, every step of the above SfM pipeline needs to
tolerate highly corrupted input data. For the correspondence step, techniques such as Random
Sampling Consensus (RANSAC) are used to reduce the number of outliers among candidate cor-
respondences initially obtained by brute-force photometric matching. Unfortunately, even after
applying RANSAC, outliers in point correspondences are generally unavoidable.

Mathematically, once a set of correspondences has been established, the SfM problem can be
formulated as the d = 3 case of the following. Let T© be a collection of n, distinct vectors
tgo), . ,t&f? e R? and let PO be a collection of ng distinct vectors pgo), e ngOS) € RY. Associated
to locations T is a set of orientations R = {Ri}ieln,) € SO(d). The pairs (t(o),Ri) represents

1
poses from which observations of the points pg-o) are collected. Let G(ng,ns, E) be a bipartite
graph on ny + ng vertices, where £ = F, U F},, with Fj, and E,; corresponding to pairwise direction
observations that are respectively ‘corrupted’ and ‘uncorrupted.” That is, for each ij € E, we are
given a vector v;;, where

mi” — )

for ij € Ky, v;j € S for ij € Ep.
IRLEY — p)
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is an arbitrary direction. Consider the task of finding the unknown locations 7@ and structure
points PO, up to a global translation and scale, and the orientations R, up to a global rotation,
without knowledge of the decomposition E = E, LI Ej, nor the nature of the corruptions.

Estimating camera orientations R; from from corrupted relative rotations R!R; is a tractable
and relatively well-understood problem. For instance, a method based on Lie group averaging
performs well in practice [3], and a semidefinite program based on lifting and least unsquared
deviations (LUD) has rigorous guarantees of exact recovery from corrupted relative rotations [11].
Once camera orientations are estimated, one can use epipolar geometry to obtain a set of relative
direction estimates of camera locations. These estimates are partially corrupted since they are
computed from the initial point correspondences. Camera locations in a global reference frame can
be estimated using the 1dSfM approach of [12], which screens for outliers based on inconsistencies
in 1d projections; however, this approach is not robust to self-consistent outliers. Alternatively,
locations can be found by recent methods such as LUD [7] or the ShapeFit algorithm [4], which are
both convex programs. It was proven in [4] that ShapeFit recovers locations exactly from partially
corrupted pairwise directions under broad technical assumptions.

Having obtained an estimate of camera orientations and locations, one can recover an estimate
of the 3d structure by triangulation, for instance by minimizing the quadratic reprojection error
or maximizing a likelihood estimate. Bundle adjustment then proceeds by jointly optimizing this
reprojection error or likelihood estimate with respect to camera poses and 3d structure. It is
important to initialize bundle adjustment close to the global minimum, because it is non-convex
and susceptible to getting stuck in local minima.

In this paper, we consider compressing two sub-steps of the pipeline — camera location recovery
and structure recovery by triangulation — into one provably corruption-robust step based on the
ShapeFit algorithm. Namely, once camera rotations are estimated, our approach uses the raw
image coordinates of point correspondences to recover the camera locations and structure points
simultaneously. If a structure point p; is visible to a calibrated camera at location ¢;, then its
image coordinates under perspective projection provide a vector v;; that has the same direction as
RY(t; — pj). If the orientation R; is known and accurate, then the direction of t; — p; is also known.

An uncorrupted observation v;; is exactly the direction of Rf(tl(-o) —p: "), and a corrupted observation



Equivalently, if all the orientations R; are known, we can take each R; to be the identity without
loss of generality. When a point correspondence is incorrect, the estimated direction of ¢; — p; can
of course be arbitrarily corrupted. We thus arrive at the following recovery problem.

With T and P© defined as above, for each i j € E, we are given a vector v;j, where

NOBINO
vij = o forid € By, vy € S for ij € Ey. (1)
[ pj Hz
Thus, an uncorrupted observation v;; is exactly the direction of tl(-o) — §0)7 and a corrupted obser-

vation is an arbitrary direction. The task is to find the unknown locations 7@, P©) up to global
translation and scale, without knowledge of the decomposition £ = F, LI Ej, nor the nature of the
corruptions.

To summarize, we propose the following modified pipeline for Structure from Motion: 1) estab-
lish point correspondences; 2) estimate global orientations of the cameras; 3) estimate the camera
locations and structure points simultaneously; and 4) run bundle adjustment.

We will show that ShapeFit, a tractable convex program, can exactly solve the recovery problem
in Step 3 under broad deterministic assumptions and under a random model. In [4], the present
authors showed that ShapeFit recovers camera locations exactly from corrupted pairwise direction
under suitable assumptions. The result in [4] strongly relies on the existence of triangles in the
graph of observations, whereas in our present setting, the underlying graphs are bipartite and
necessarily do not contain triangles. In this bipartite setting, we will prove a deterministic recovery
result for ShapeFit based on the presence of cycles of length 4. We also show that under a random
Gaussian and Erdos-Renyi model, ShapeFit recovers structure and locations exactly from known
orientations and corrupted correspondences with high probability in the high dimensional case. To
the best of our knowledge, these are the first theoretical results guaranteeing exact location and
structure recovery from corrupted correspondences and known orientations.

1.1  Problem formulation

The location recovery problem is to recover a set of points in R? from observations of pairwise
directions between those points. Since relative direction observations are invariant under a global

translation and scaling, one can at best hope to recover the locations 7O = {tgo), e 7(10)} and
structure points P(©) = {pgo), ... ,pslo)} up to such a transformation. That is, successful recovery

from {vi;}(; j e is finding two sets of vectors {oz(tgo) + W) Ficng {a(pg-o) + w)}ejn,) for some w € RY
and a > 0. We will say that two pairs of sets of vectors (7', P) and (T(O),P(O)) are equal up to
global translation and scale if there exists a vector w and a scalar o > 0 such that ¢; = oz(tgo) + w)

for all ¢ € [ny] and p; = a(p§-0) + w) for all j € [ng]. In this case, we will say that (T, P) and
(T©, PO)) have the same ‘shape,” and we will denote this property as (T, P) ~ (T©), P(0)). The

location recovery problem is then stated as:

Given: G(ng,ns, E), {vijlijer satisfying (1)
Find: T ={t1,...,tn,} € R>™ P ={p ... pp.} € R*™ such that (T,P)~ (T, P©)

For this problem to be information theoretically well-posed under arbitrary corruptions, the
maximum number of corrupted observations affecting any particular location ¢; must be at most

. Similarly, the maximum number affecting any particular structure point p; must be at most

) of structure point pg-o), half of its associated

SN

Otherwise, suppose that for some location tZ(O



EO), and the other half are corrupted so as to be consistent

)

observations v;; are consistent with ¢

with some arbitrary alternative location w. Distinguishing between tz(-o and w is then impossible

in general. A similar argument follows for some structure point p§0). Formally, let degy(t;) be the
degree of location t; in the graph G(ng,ns, Ey) and let degy(p;) be the degree of structure point
p;j in the graph G(ng,ns, Ep). Then, well-posedness under adversarial corruption requires that
max;e(p,] deg,(t;) < yny and maxcp,) deg,(v;) < yns, for some v < 1/2,

Beyond the above necessary degree condition on E, for well-posedness of recovery, we do not
assume anything about the nature of corruptions. That is, we work with adversarially chosen
corrupted edges Ej and arbitrary corruptions of observations associated to those edges. To solve
the location recovery problem in this challenging setting, we utilize the convex program called
ShapeFit [4]:

T N
min Z ||PUZ_JE (ti —pj)ll2 subject to Z (ti — pj,vij) =1, Zti + ij =0 (2)
{ti}ie[ne] ijEE ijeEE i=1 j=1

{pitielns

where P, . is the projector onto the orthogonal complement of the span of v;;.
ij

This convex program is a second order cone problem with d(n, 4+ ns) variables and two con-
straints. Hence, the search space has dimension d(ny+ns)—2, which is minimal due to the d(ny+ns)
degrees of freedom in the locations {¢;} and structure points {p;} and the two inherent degeneracies
of translation and scale.

1.2 Main result

In this paper, we consider the model where the n, locations and ng structure points are i.i.d.
Gaussian, and where pairwise direction observations are given according to an Erd6s-Rényi bipartite
random graph. We show that in a high-dimensional setting, ShapeFit ezactly recovers the locations
and structure points with high probability, provided that n, and ng are sub-exponential in d, and
provided that at most a fixed fraction of observations are adversarially corrupted.

Theorem 1. Let N = max(ng,ng),n = min(ng,ng). Let G(V, U Vi, E) be drawn from a bipartite-
Erdés-Rényi graph with p > 0. Take tgo), . t%og),pgo), . 7p1(103) ~ N(0,1;%x4) to be independent from
each other and G. Then, there exist absolute constants c,cs,C > 0 such that for v = csp?, if

1 21 N
max ( 4,Od7 Og(e ),Q(Cg 10g2 N)> <n< N < e%cd
c3p p
-1/
and d = Q(1), then there exists an event with probability at least 1 — O(E_Q(%C?’ Venlr2) _%Cd)

which the following holds:

+e , ON

For all subgraphs Ey satisfying max;cp,,) degy(t;) < yns and max;cp,,) degy(p;) < yng and all pair-
wise direction corruptions v;; € Sd-1 for ij € Ey, the convex program [2) has a unique minimizer

equal to {oz{tgo) - (}ie[nd,a{pgo) - C}je[ns]} for some positive a and for { = m <Zi6[nd tgo) + Z]—E[ns} p§-0)>.

This probabilistic recovery theorem is based on a set of deterministic conditions that we prove
are sufficient to guarantee exact recovery. These conditions are satisfied with high probability in
the model described above. See Section [2.1] for the deterministic conditions.

This recovery theorem is high-dimensional in the sense that the probability estimate and the
exponential upper bound on ny + ng are only meaningful for d = Q(1). Concentration of measure



in high dimensions and the upper bound on n, 4+ ns ensure control over the angles and distances
between random points. As a result, lower dimensional spaces are a more challenging regime for
recovery.

Numerical simulations empirically verify the main message of these recovery theorem: ShapeFit
simultaneously recovers a set of locations and structure points exactly from corrupted direction
observations, provided that up to a constant fraction of the observations at each location and
structure point are corrupted. We present numerical studies in the physically relevant setting of
R3, with an underlying random Erdés-Rényi bipartite graph of observations. Further numerical
simulations show that recovery is stable to the additional presence of noise on the uncorrupted
measurements. That is, locations and structure points are simultaneously recovered approximately
under such conditions, with a favorable dependence of the estimation error on the measurement
noise.

1.3 Organization of the paper

Section [I.4] presents the notation used throughout the rest of the paper. Section [2] presents the
proof of Theorem [Il Section [] presents results from numerical simulations.

1.4 Notation

Let [k] = {1,...,k}. Let Vp = [ng] and V; = [ng]. Let N = max(ng, ns) and n = min(ng, ng). . Let
e; be the ith standard basis element. For a bipartite graph G(V; U V, E), we write an arbitrary
edge as an ordered pair (7,j), where i € V; and j € Vi. Let K,,, ,,, be the complete bipartite graph
on ny + ng vertices. A cycle of length 4 will be denoted as Cy. Let E(K,, ) be the set of edges in
Ky, ne- Let || - ||2 be the standard ¢ norm on a vector. For any nonzero vector v, let 0 = v/[|v]|2.
For a subspace W, let Py be the orthogonal projector onto W. For a vector v, let P,. be the
orthogonal projector onto the orthogonal complement of the span of {v}.

Let T denote the set T = {t;};cv,, for t; € R%. Let P denote the set P = {p;}jev., for p; € R,
For i € Vy,j € V;, define t;; = t; —pj for all @ € Vy,j € Vi. For i,k €V, define t;, = t; — 1.

For j,1 € Vg, define t;y = p; — p;. Define ¢ = ﬁ <Zz’ew t; + Zjevs pj>. Define tz(-?), 7O, 0
PO similarly. We define 1o, = max;; HtEJO-)Hg. For a scalar ¢ and a set of vectors X C R, let

cX = {cz: x € X}. For a given G = G(V, UV, E) and {v;;}ijer, where v;; € R? have unit norm,
let R(T,P) =3 icpllP,tijll2. Let L(T, P) =3, p(tij, vij). Let £ij = (tij, vij), and similarly for
ij

KZ(-;)). In this notation, ShapeFit is

1}1111;1R(T, P) subject to L(T,P)=1, (=0

For vectors vy, ...,vg, let S(vi,...,v;) = span(vy,...,vx) be the vector space spanned by these

(0)

vectors. Given t;; and tijo- , define 0;;, 1;;, and s;; such that
0
tij = (14 8i)t) + mijsi;

where s;; is a unit vector orthogonal to tg-]) and n;; = HPt(O)LtinQ. Note that 7;; > 0.
ij

2 Proofs

We will prove Theorem [[lusing the same general strategy as in [4]. Specifically, the proof of Theorem
[ can be separated into two parts: a recovery guarantee under a set of deterministic conditions,



and a proof that the random model meets these conditions with high probability. These sufficient
deterministic conditions, roughly speaking, are (1) that the graph is connected and the nodes have
tightly controlled degrees; (2) that the camera and structure locations are all distinct; (3) that all
pairwise distances between cameras and locations are within a constant factor of each other; (4)
that any choice of two camera locations and two structure locations live in a three dimensional
affine space; (5) that the camera and structure locations are ‘well-distributed’ in a sense that we
will make precise; and (6) that there are not too many corruptions affecting a single camera location
or structure point. Theorem [2]in Section 2.T] states these deterministic conditions formally.

As in [4], we will prove the deterministic recovery theorem directly, using several geometric
properties concerning how deformations of a set of points induce rotations. Note that an infinitesi-
mal rigid rotation of two points {t;,t;} about their midpoint to {t; + h;,t; + h;} is such that h; —h;
is orthogonal to t;; = t; —t;. We will abuse terminology and say that HP% (hi — h;)|| is a measure
of the rotation in a finite deformation {h;, h;}, and we say that (h; — hj,t; —t;) is the amount of
stretching in that deformation. Using this terminology, the geometric properties we establish are:

e If a deformation stretches two adjacent sides of a C at different rates, then that induces a
rotation in some edge of the Cy (Lemma [2).

o [f a deformation rotates one edge shared by many Cys, then it induces a rotation over many
of those Cys, provided the opposite points of those triangles are ‘well-distributed’ (Lemma

3).

e A deformation that rotates bad edges, must also rotate good edges (Lemma [).

e For any deformation, some fraction of the sum of all rotations must affect the good edges
(Lemma [A]).

By using these geometric properties, we show that all nonzero feasible deformations induce a large
amount of total rotation. Since some fraction of the total rotation must be on the good edges, the
objective must increase.

The main technical difference between the present proof and the proof of [4] is that the proof in
[4] relies on the presence of many triangles in the graph of uncorrupted measurements. Because of
the bipartite structure of the present work, there are no triangles in the graph. Hence, the technical
novelty of the present proof is the establishment of the properties above when there are a sufficient
number of Cjys in the graph of uncorrupted measurements.

In Section 2.1l we present the deterministic recovery theorem. In Section 2.2 we present and
prove Lemma 2l In Section 23] we present and prove Lemmas BHEl In Section 24l we prove the
deterministic recovery theorem. In Section 2.5 we prove that Gaussians satisfy several properties
with high probability. In Section 26l we prove that Gaussians satisfy well-distributedness with high
probability. In Section 2.7 we prove that Erdés-Rényi graphs are connected and have controlled
degrees and codegrees with high probability. Finally, in Section 28 we prove Theorem [I1

2.1 Deterministic recovery theorem in high dimensions

To state the deterministic recovery theorem, we need two definitions. The first definition captures
the ‘regularity’ of the measurement graph. A random bipartite graph can easily be seen to satisfy
the conditions. Note that the definition does not depend on the vectors locations {¢;} and {p;}.

Definition 1. We say that a graph G(V, U Vg, E) is bipartite-p-typical if it satisfies the following
properties:



1. G is connected,
2. each vertex in Vy has degree between ingp and 2ngp, and
each vertex in Vs has degree between 5ngp and 2ngp.
3. each pair of vertices in V; has codegree between %nsp2 and 2ngp?, where the codegree of j,1 €
= |{i | ij € BE(G),il € E(G)}|. Each pair of vertices in Vs has codegree between sn,p* and
2np?.

The next definition captures how ‘well-distributed’ the location points {t;} and {p;} are in R%.
Definition 2.

(i) Let S = {(tr,pr)}k=1..m C R x R, Let z,y € RY. We say that S is c-well-distributed with
respect to (x,%) if the following holds for all h € R%:

Z ” span{p—z,t—p,y— t}l( )H2 >C’S’ HP(x y) ( )”2
(t,p)eS
(i) Let T = {t;}icv, and P = {pj}jev,. We say that (T, P) is c-well-distributed along G if for
alli € Vy,j € Vs, the set Sij = {(tr,pe) : i € E(G),kl € E(G),kj € E(G),k #i,0 # j} is
c-well-distributed with respect to (t;,p;).

We now state sufficient deterministic recovery conditions on the graph G, the subgraph FEj
corresponding to corrupted observations, and the locations T© and PO,

Theorem 2. Suppose T, PO) E, G satisfy the conditions
The underlying graph G is bipartite-p-typical,
All vectors in T©, PO gnd TO U PO gre distinct, respectively.

For all i,k € V; and j, £ € Vs, we have co||t,(€%)||2 < ||tl(~?)\|2,
For all 1 keVz,j,EeV such thatk;éij#ﬁ we have

mln<HPs an(t(o) t(o))L ’J ||2’ H span(t(o) t(O) it Z] H >/Ht2] ||2 2 p

5. The pair (T(O), PO)) is ¢1-well-distributed along G,
6. Each vertex in Vy (resp. Vi) has at most eng (resp. eny) incident edges in Ey,.

e v~

for constants 0<p, co,ﬂ,cl,a <1. Ife< % andng,ns > max(64, ) then L(T(O) p )) #0
and (T©, PO /L(T©, PO)) is the unique optimizer of ShapeFit.

Before we prove the theorem, we establish that L(T(®, P(0)) =£ 0 when ¢ is small enough. This
property guarantees that some scaling of (T(O), P(O)) is feasible and occurs, roughly speaking, when
| Ep| < |Egl.

Lemma 1. Ife < 2, then L(T©, pO)y £ 0.
£(0)

Proof. Since v;; = tj

0) 0)
Lr® PO = 3 @)z 3 - 3 1

ijeE(Q) ijeE, ijeEEy

for all ij € E,, we have

. 0 0 :
By Condition 3, copos|Eg| < 3¢k, ||t§j)||2 and fioo|Ep| > > 1icp, ||tl(~j)\|2. Thus it suffices to prove
that co|Ey| > |Ey|. As e < B, Condition 1 and 6 gives |Ey| > $ngmsp — engng > tnyngp. Since
|Ey| < engns, if € < 92, then we have co|Ey| > |Ep|. O



2.2 Unbalanced parallel motions induce rotation

The following lemma concerns geometric properties of deformations of a set of points. Specifically
it shows that if four points are deformed in a way that differentially scales the lengths of two edges,
then it necessarily induces a rotation somewhere in a C4 containing those points.

Lemma 2. Let d > 3. Let t1,t9,t3,t4 € RY be distinct. Let tij = t; —t; and fij = ”Zﬁ Let

v1,V2,V3,04 € R? and o € R. Let {Sz(z—i-l)} be such that <’UZ' — Vi+1 — ati(i+1), fZ(Z+1)> = ~i(i+l) ”ti(i-i-l) ”2
for each i € [4], where index summation is modulo 4.

(0 Z 1B, (= vl 2 |

(i) ZHPM v = i)l 2 |

Pspan(t23,t41)lt12H2 ‘512 — 534‘

span(t34,t41)lt12H2 ‘512 - 523‘ .

Proof. The given condition implies P, . )(fui —Vit1) = Vi — Uiyl — (a+5i(,~+1))t,~(i+1) for each i € [4].

(14

Therefore,
Z P, tmﬂ) —vir1)f2 = — Viy1 — <Oé + 5i(i+1)> tigi+1) )
1€[4] i€[4]
> Z Vi = Vit1 — <Oé + 5i(z‘+1)> tigi+1)
i€[4] 9
= ||d19t12 + dostos + O3atas + dartarfa. (3)

(~i) Since 53,4(1512 + ta3 + t34 + ta1) = 0, the right-hand-side of @) equals ”(512 — 534)t12 + (523 —
d34)tog + (041 — 034)t41]|2. The conclusion follows since
H(Slz — 834)t12 + (623 — 34)tas + (0a1 — 034)tas H2 > HlllenR 112 — d34)t12 — staz — 't [|2

jt)spam(lt23,t41)L (512 N 534)t12 H2 '

(Nii) Since (igg(tlgj- tog + tsg + t41) = 0, the right-hand-side of (B equals H(Slg — 523)1512 + (534 —
923)t34 + (041 — O23)t41]|2. The conclusion follows since

v

min [|(012 — d23)t12 — stzs — 8'ta1 |2
s,8’€R

Pspan(t34,t41)i (512 - 523)t12 H2 O

H(512 — 093)t12 + (034 — 093)t34 + (041 — da3)tar H2

2.3 (s inequality and rotation propagation

The following lemma is a generalization of the triangle inequality in a context of the rotational part
of structure deformations.

Lemma 3 (Cys Inequality). Let d > 4; z,y € R?. Let S = {(t1,p1), -, (tr, pr)} CRE X R If S
is c-well-distributed with respect to (x,y), then for all vectors hy, hy, he, -+ s hig hpy oo+ hy, € R
and sets X C [k], we have

Y 1Papyr o=ty )2 P, —yr (g =ha 2+ 11 Py, g1 (e =By )llz = (ck—=|X1)-| Plaeyyr (ho=hy)l2-

i€[k\X



Proof. For each i € [k|, define W; = span(x — p;, p; — ti,t; — y). Define P as the projection map to
the space of vectors orthogonal to x — y, and define P; for each i € [k]| as the projection map to
Wik, Since (x — p;)t D Wi, (pi — t;)F 2 Wi, and (t; — y)* 2 Wi, it follows that

> Pepr (he = Bp) 2 + 1Py sy (B, — B2 + 1Pty s (e, = 1yl

i€[k]\X
> > NPl = hy)ll2 + [ Pilhp, = bl + 1 PaChs, = hy)lla > D 1Pilhe = hy)l2-
i€[k\X ie[kN\X
Since {(t1,p1), -, (tg, px)} are well-distributed with respect to (x,y), we have
S 1P e — Byl = ck - [ P(hs — )l @
1€[k]

Since (z —y)*+ 2 Wi, we have ||Pi(hy — hy)|l2 < ||P(hy — hy)|2 for all i. Hence

D Pk = hy)lla = (ck = [X]) - [ P(he = By)|la,
i€[k]\X

proving the lemma. O

The proof of Theorem [2] will rely on the following two lemmas, which state that rotational
motions on some parts of the graph bound rotational motions on other parts. The following lemma

relates the rotational motions on bad edges to the rotational motions on good edges. Recall the
(0)

notation t;; = (1 +5ij)t,(~?) +1;55:5 where s;; is a unit vector orthogonal to tij and 7;; = ||Pt(o>¢tij\|2.
ij

Lemma 4. Fiz T,P. Ife < C}l’;) and p > \/g, then ZijeEg nij > % > ijem, Mij-

Proof. Let i € Vp,j € Vi. Note that Condition 1 implies [{(k,£) | k # i;£ # j;il,kl, kj € E(G)}| >
(%nsp — 1)(%7151)2 -1) > %ngnsp?’ if p> \/g. By Condition 6, the number of pairs (k,¢) € V; x Vj
such that at least one of the edges i/, kl, kj are in Ej can be counted by considering the case when
il € Ey, (at most (eng)ng pairs), kj € Ey (at most (eng)ns pairs), and k¢ € Ej, (at most engny pairs).
Hence in total, there are at most 3engn, such pairs. By Lemma B], the c¢;-well-distributedness of

(T, PO)Y along G, and the assumption that & < C}g, we have

1 3 ! 3
Z (Mie + e +1rz) > | €1 - gnmsp —3enyns | - nij = 1—6nmsp Mij-
keVy LeVsy

k#i b+
il k0, kjEE,

Therefore, if we sum the inequality above for all bad edges ij € Fp, then

1
Z Z (e + Mke + Mj) = 1—6nmsp3 : Z Nij-

iJEE, keVy LeVy iJERY
k#i,0#j
il,kl,kjeElE,

For fixed k¢ € E,, the left-hand-side may sum 7, as many times as the number of Cys in E(G)
that contain k¢ and exactly one bad edge. This is the same as the number of C4s whose edge
opposite k£ is bad, plus the number of Cys whose edge adjacent to £ is bad, plus the number of



Cy4s whose edge adjacent to k is bad. In each case, there are at most enyng such Cys. Hence, the
left-hand-side of above is at most

Z Z (Mie + e + Mij) < 3engng - Z Mij-

iGEE, kEVyLeVs ijeE,
ki l#£]
ikl kjEE,

Therefore by combining the two inequalities above, we obtain
48¢
domi<—— > i O
ijEE, 1P° ek,

The following lemma relates the rotational motions over the good graph Ej, to rotational motions
over the complete bipartite graph K, ;.

. 3
Lemma 5. Fiz T,P. If¢ < 9% and p > \/g, then ZijeEg Nij > 1o ZijeE(Kne,ns) Nij-

Proof. Let i € Vp,j € V5. Note that Condition 1 implies [{(k,£) | k # i;£ # j;il, kl, kj € E(G)}| >
(%nsp — 1)(%7151)2 -1) > %nmspg if p> \/g. Similarly as in Lemma [ Condition 6 implies that
the number of pairs (k,¢) € Vy x V; such that at least one of the edges ¢, k¢, kj are in Ej, is at most
3engns. By Lemma[3] the ci-well-distributedness of (T ©, P©)) along G, and the assumption that

3
e < C}lg , we have

1 3 C1 3
Z (Mie + ke +mry) > (e gTnsP” — 3engns | - i > T HnsP” " Mhij-
keVp LeVs
k#i,b#5
il kb kjEE,
Therefore, if we sum the inequality above for all i € Vp,j € Vg, or equivalently over all ij €
E(K,, n,), then

1
Z Z (Mie + ke + Mj) = 1—671@715173 : Z Mij-

1JEE(Kny,ns) kEVe,LEVS 1§EE(Kny,ns)
k#i -]
i kekjEE,

For fixed k¢ € E,, the left-hand-side may sum 7, as many times as the number of paths of
length 3 in G that contain kf. Each path of length 3 can be thought of as an edge originating from
Vs, an edge in the middle, and an edge terminating in V5. The total number of paths of length 3
in G containing k¢ equals the number which have k¢ as the middle edge, plus the number with k¢
as the edge originating from Vj, plus the number with k¢ as the edge terminating in V. In each of
these cases, Condition 1 ensures that there are at most 4p>nyns such paths of length 3. Hence, the
term 7y, appears at most 12p?ngng times. Hence, the left-hand-side of above is at most

Z Z (Mie + Mg + Miz) < 12p%nyns - Z Mij-

JEE(Knyng) KEVLEV: ijEE,
ki
ikl kjEE,

Therefore by combining the two inequalities above, we obtain

12-16
Z Nij < oap Z Nij- |

ijEE(Kne,ns) ’ijEEg

10



2.4 Proof of Theorem

We now prove the deterministic recovery theorem.

Proof of Theorem [2. By Lemmal[lland the fact that Conditions 1-6 are invariant under global trans-
lation and nonzero scaling, We can take (9 = 0 and L(T(O), P(O)) = 1 without loss of generality.
The variable fio, = max;; Ht” |l2 is to be understood accordingly.

We will directly prove that R(T,P) > R(T©®,PO) for all (T,P) # (T'©, P©) such that
L(T,P) =1 and t + p = 0. Consider an arbitrary feasible T, P and recall the notation t;; =
)

1+ 5ij) O 4 1;j5i; where s;; is a unit vector orthogonal to t( and n7;; = HPt(o)J_tinQ. Since
ij

Vi = fg-]) holds for all ij € Eg4, a useful lower bound for the objective R(T', P) is given by

R(T,P)= ) 1Bpstijllz = domit Y, 15,5852

ijEE(G) ij€E, ijeEy
0 0
> Yoty <HPviljt§j)H2— 851115112 = )
ijeEg ijeEb
0
> RTO,POY+ Sy — S (05112 +mi). (5)
ij€E, ijeEy

ClP

Suppose that >, e, |5Z.7|||tz] 2 <> ijem, mij- Since Lemma @ for e <
%ZzgeEg 1ij 5 by (H) we have

R(T,P) > RTOPOY+ S ny— S (18511112 + mis)

implies ZijeEb Nij <

ijEE, ijER,
> RITO,POY+ N mi;— > 2y > RO, PO).
ijEE, ijER,
Hence we may assulne
> 18351115 [l2 > > i (6)
ijeEy ijeEy

In the case |Ey| # 0, define & = \lel >_ijen, [0ij| as the average ‘relative parallel motion’ on the
bad edges. For a pair of vertex-disjoint edges ij, k¢ € E(Ky, n,), define n(ij, k€) = i+ +1ke+nic,

Case 0. |Ey| =0or § = 0.

Note that § = 0 implies 0;j = 0 for all ij € Ep, which by (@) implies 7;; = 0 for all ij € Ej.
Therefore by (Bl), we have

R(T,P) = R(TY, PO+ Y~ ny.
ijEE,

If ZijeEg ni; > 0, then we have R(T, P) > R(T®, P(0)). Thus we may assume that 7;; = 0 for all
ij € E4. In this case, we will show that T' = T© and P = PO,

By Lemmal] if ¢ < 0218’3, then n;; = 0 for all ij € E(G) implies that 77,] = 0forallij € E(Kp,n,)-
For ij € Ey, since 9;; = n;; = 0, it follows that ¢;; = 6(- ). Since 5ng?5 Hg =l — KZ(-;)) for ij € E,,
we have

0= > (i~ = (b — N+ > (b D)= S Wy — 6y =3 6411t 2.

ijEE(Q) ijeE, ijEE, ijEB, ijEE,

11



where the first equality is because L(T,P) = L(T®, P(©)) = 1. By Condition 2, Htg»))Hg # 0 for
all i # j. Therefore, if 6;; # 0 for some ij € Eg4, then there exists ab,cd € E, such that 64, > 0
and d.g < 0. If ab and cd are vertex-disjoint, Lemma [2l and Conditions 2 and 4 force n(ab, cd) > 0,
which contradicts the fact that 7;; = 0 for all ij € E(K,,n,). If ab and cd are not vertex-disjoint,
then, let abd’d’ be an arbitrary Cy containing ab and c¢d. Then Lemma[2 implies the same result as
above. Therefore ¢;; = 0 for all ij € E,;, and hence 6;; = 0 for all ij € E(G).

Define t; = tgo) + h; for each i € V. Define p; = pg-o) + hj for j € Vi. Because 7;; = 0;; = 0 for
all ij € E(G), we have h; = h; for all ij € E(G). Since G is connected by Condition 1, this implies
hi = h; for all i € V4, j € V5. Then by the constraint >,y t; + >y, pj = 0, we get h; = 0 for all
i € Vpand hj =0 for all j € V;. Therefore T' = T7©) and P = PO,

Case 1. |Ey| # 0 and 6 # 0 and > ijer, 10l < 20| E,|.
Define Ly, = {ij € Ej : |6;;| > 36}. Note that ijer\1, 1] < 0| Ep| and therefore
1- 1-
S 1ol = >0 16l = >0 16> Y 161 - 301 Eb| = 50| Ep)- (7)
ijE€Ly ijEE ijEEb\Lb ijEE
Define F, = {ij € E, : |6;j| < $6}. Then by the condition of Case 1,
1- 1—
301 Bl > Stz D 165l > 10189 \ Fyl,
ijE€Eq ijEEG\Fy

and therefore |E, \ Fy| < 3|Ey|, or equivalently, |Fy| > 1|E,|.

For each ij € Ly, define Fy(i,5) = {kl € F, | k # i,0 # j}. Note that by Condition 1,
|Fy(3,5)] > 3|E4| — 2p(ne + ns). For any kl € Fy(i, ), since |6;;] > 16 and [6y| < 30, we have
|6, — Oke| > 1[6;;]. Thus Lemma 2l and Conditions 3 and 4 give n(ij, k¢) > B|6;; — Sxe| - ||tg-))\|2 >

L1651 £ > Zettte=|5,;|. Therefore by Condition 1,

S Y ik = Y Y BV o S g ) Py

ijEE, kicE, ij€Ly k0EFy(i,j) ijeLy
k#i,l#]
> 30 O (L ap(ng 4 ) I3
4 2 2777 !
ijE€Ly

Note that if € < 1p, then |E;| > 202 — |F,| > 2L Further note that ng,ng > 64 implies that
2p(ng + ng) < 1—16ngnsp. Hence by (1),

SN g ko) > ﬁ;"“ Zwm_ﬁ%”m ns.%5|Eb|.

ijEE), kl€E, ijELy
k#i 0#j

For each ij € E(Kp, ), we would like to count how many times each 7;; appear on the left hand
side. If ij € Ej, then there are at most nyns Cys containing 7j; hence n;; may appear at most 4nyng
times. If ij ¢ E}, then 7;; appears when there is a Cy containing ij and some bad edge. If the bad
edge is incident to ij, then there are at most 2enyng such Cys, and if the bad edge is not incident to

12



ij, then there are at most |Ep| < engng such Cys. Thus 7;; may appear at most 4-3engns = 12enyn
times. Therefore

Z Z n(ij, kl) < Z dngns - n;j + Z 12enns - nij.

ijEEy ki€ E, ijEE, iJE€E(Knpons)
By Lemmald], if e < %, we have
Z Z (i, k) < 456871(715 Z Nij + Z 12enyns - mij < %”ms Z Tij-
ijEEy kIcE, 1P ijEE, i§€EE(Kny,ns) ap’ iJEE(Kny,ns)
Hence 904e Beotion ~
p? NyNg Z nij > ol nens - 0| Ep|.

iJEE(Knyns)

Ife < %, then by Condition 3, § # 0, and |Ep| # 0, the above implies

Beoerp® <
> o> 0E ) LB|E
g i 2 505 gaztoe " O1F
ijEE(Knyne)

384 384 0
> " oo BB = T S 1ale

ijELy
Lemma (Bl implies
c1p 0
> > 192 S mi>2 > Iyl
ijeEg ’ijEE(K7Le,7Ls) ijeEb

0 . . 3 2pt
Therefore by (@),we have EijeEg Nij > EijeEb(\&j]Htl(-j)Hg + 1) if e < mln{%, 2 %} and

p > /2. By (@), this shows R(T,P) > R(T®, P©). This condition on ¢ is satisfied under the

Beoctp?
S 38220164

assumption €

Case 2. |Ey| #0 and 6 # 0 and Yijen, 10i] = 20| Ey|.

Define B, = {ij € Ey : 6;; > 0} and E_ = {ij € E, : §;; < 0}. Since £i; — (1)) = §;;[t||2 for
ij € Ey, we have

0= (i~ = 3 -+ > 51t o

jEE(G) iJERY 1j€E,
where the first equality follows from L(T, P) = L(T®, P(9)). Therefore,
0 0 0 <
>yl lla| < | 3 (g 6| < 3 (05117 12 + 1) < 2e01 B,
ijeEg ij€Ey ijEEy

where the last inequality follows from (@), Condition 3, and the definition of 6. On the other hand,
the condition of Case 2 and Condition 3 implies ;¢ 5. |5ij|||t,('?) ll2 > %copocd|Eg|. Therefore

1/1 - -
> Ol =5 (= X aullel o+ X ullelle ) = 5 (Gl - 20l )

igeb_ ijely, igely

13



If e < tizcop, then since |Ep| < engng and |Ey| > ML — |Ey| > M2 we see that £copecd|Eg| —
0
zﬂoo5|Eb| > L copicd|Ey|. Therefore Y,.cp (— w)||t Ny > SQCO%M | Similarly, Y e, 5165 [l2 >

32 COMOO5|E |
If |E4| > 1|E,|, then by Lemma 2 and Conditions 3 and 4, we have

Z Z (ij, kt) > Z Z B(—bij ||t H2

ijelb_ kleEy ijeb_ kleEy
k#i b+ k#i b+

> S (<o) 18 - BUEL | — 2p(ne + 1))
ijeF_

1 _
> 3_200N005|Eg| : 5(|E+| - 2]9(71@ + ns))

B _ 1
> — - — .
> copoad| Byl (5Bl — 2p(ne +ny))

Note that if € < 1p, then |E;| > 20:2 — |F,| > 2L Further note that ng, ng > 64 implies that
2p(ng +ng) < 1—16ngnsp. Hence,

1 ~ nngp nengp _ Peopiecdngnip?
E E n(ij, kl) > —=Bcoplood - - >
e 32 4 16 32 64
ki 1£

Similarly, if |[E_| > |E,|, then we can switch the order of summation and consider Yijer, 2weer. N, kL)
to obtain the same conclusion.
Since each edge is contained in at most nyng copies of Cy and there are 4 edges in a Cy, we have

Z Z n(ij, kl) < dnyng Z ij -
ijelb_ klcEy ZJEE(Kne,nS)
ki l#]

Beoca p® : 5
If € < 5144551 then since § # 0 and |Ey| < engns, we have

1 2
Z Beotocd ninlp? > Beop

>
M= e 3264 4P = 430 ealt

— 384 -
5’1’Lg’l’Ls > —,uoo5|Eb|.
- Cc1p
ZJEE(KnZ,ns)

By Lemma 5] if ¢ < AP’ then this implies

48
Cc1p 5
Z Nij = 102 ) Z MNij > 24000| Ep|.
ijeE, 1jEE(Kny,ns)

Therefore from (&)), (@), and Condition 3, if ¢ < min{{%, Cé’é 4, 3864030315 g gt and p > \/7 then

R(T,P) > RTOPOY+ S ny— S (18511t + nmij)
ij€Ey ijeEy
> R(TO, PO) 4 23 By| — Y 2031t [l2 > R, PO),
ijeEy

. oy . . . Bcoclp
This condition on ¢ is satisfied under the assumption ¢ < sgr557=. ]
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2.5 Properties of Gaussians

In this section, we prove that i.i.d. Gaussians satisfy properties needed to establish Conditions
3-5 in Theorem 2l We begin by recording some useful facts regarding concentration of random
Gaussian vectors:

Lemma 6. Let x,y be i.i.d. N(0,15xq), and € < 1, then
P(d(1—€) <|z]}3 <d(1+€) >1—e 1

and ,
P (|(z,y)| > de) < e ¢

where ¢ > 0 s an absolute constant.

Proof. Both statements follow from Corollary 5.17 in [10], concerning concentration of sub-exponential
random variables. O

Lemma 7. Corollary 5.35 in [10]. Let A be an n x d matriz with iid N'(0,1) entries. Then for
any t >0,

2
P (0mae(4) > Vi + Vd+t) <2077
where omax(A) is the largest singular value of A.

Lemma 8. Let t;,t;,t,t; ~ N(0,14x4q) be independent. There is a universal constant ¢ such that
with probability at least 1 — 15e~°%,

H span(ty—t;,t;—te)+ (t _tj)H
[t — ¢

>

|

Proof. Let c be the constant from Lemma [6l Let v =t; —ty,y =t —t;,2 =t; —t;. Observe

((27 g>g - <2A:7 ng>:gzL‘l)
(ggt - Qxi-zjil)’a

Pspan(x,y)i'g =Z- <27‘%>:’% - <27gxi>gxi =Z— <27£>£ - <§,Q>@

where §,1 = ﬁ, which is well defined with probability 1. By the triangle inequality,
|| span(z,y lé” > V1= |<27j>|2 - |<27Z)>| - Hggt - g:{:lgfclnop
For arbitrary unit vectors a,b € R%, ||aa’ — bbt||op = |sin @], where 8 is the angle between & and

b. This fact can be verified by direct computatlon after taking a = e; and b= cosf e +sinf ey
without loss of generality. Hence, [|§4" —,.9" . [lop = |sin 6] = | cos a|, where 6 is the angle between
g and §,1, and o is the angle between ¢ and &. Thus [|§9" — 9,19 . [lop = |(4, %)]. So,

H pan(xyién2 1_|<27§j>|2_|<27g>|_|<§7j>|

Now, note that

(ti —tj ti —t))®  (ltll* — {ti, te) — (b, ta) + (8, t0))?

(2, 2)]* = =
’ 1t — t5112[1t: — tell? [t — t5112([t: — tell?
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By Lemma [6] with e = 0.01,

e (d(14¢) + 3de)?
< 0.
(2, 8)]° < B0 =03

92 <0.3 With the
v,

with probability at least 1 — 6e~°? for some universal constant c. Similarly, |(2
01, [(7,2)] < 5 ) < 2e

same probability. Since § and Z are independent, by Lemma [6] with £ = 0.01, |(

with probability at least 1 — 3e=°®. Thus, we observe

|| pan(wyi-z||>v1_0 -V —0.02

NH

O

with probability at least 1 — 15e~%.
Lemma 9. Let t;,t;,t,t, ~ N(0,14%q) be independent for d > 3. There is a universal constant c

such that with probability at least 1 — Te?,

” span(t; —tg,tp—te)L (ti_
[[5 — ]2

Proof. Let ¢ be the constant from Lemmal6l Let u = tl\g‘ LU= t‘\g’ ,w=tj,x = t;. Each of these

variables are i.i.d. A(0,1). Note that
v
Pspan(ti—tl,tk—tg)i-(ti - tj) = _Pspan(u,m—%)l (w - ﬁ) .

Without loss of generality, rotate coordinates so that u is in the direction of e;. Thus, it suffices to
bound HPE_%)L@D — %)H2 where 0,1W,% ~ N(0,I5_1x4-1). Note that & — % and W — % both

follow the distribution N (0, %Id_l xd—1). Note that

ERP R0
e s (@ ) = ol -2 =
1 (0,5) - 15(0,5) + 142)?

=[5l - & — 5|7

Hence Lemma [6] with ¢ = 0.01 shows that with probability at least 1 — 6e=°¢, the above is at

least
(3(d—1)(1 +&) — 3<(d - 1))2
> (d—1) > =d,

3
Sd—1(1—¢) - 3d-1)(1-¢)

[SVRI

Thus, we have that
” span(tj—tg,t—te) "+ (ti -

with probability at least 1 —6e~°?. To conclude the proof, note that Lemma[@ with ¢ = 0.01 implies
that ||t; — ¢;]|% > 2d(1 + ¢) with probability at least 1 — e~ O
We can now establish Conditions 3—4 of Theorem [2] with high probability.
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Lemma 10. Let t;,p; ~ N(0,Iixq) fori € Vi, j € Vy be independent. Condition 8 of Theorem
holds with ¢y = % with probability at least 1 — 2nymse for a universal constant c. Condition 4
of Theorem[d holds with 8 = % with probability at least 1 — 22n§n26_0d.

S

Proof. Condition 3 follows from applying Lemma [6] with € = 0.01 and a union bound to [|t; — p;||2
for all nyng pairs (i,5) € Vp x Vz. Condition 4 follows from applying Lemmas [§ and [0 and a union
bound over the at most n%ng choices of i,k € V; and j,£ € V. O

2.6 Gaussians are well-distributed
In this section we prove that Condition 5 of Theorem 2l holds with high probability.

Lemma 11. There exist constants dy and Ky such that the following holds. Let G = (V, U Vg, E)
be a bipartite-p-typical graph. Let t;,p; ~ N(0,Igxq) fori € Vi, j € Vi be independent from G and
each other. Let T = {t;}icy, and P = {pj}jev,. If d > dy and ng,ng > max (Ko, 160d), then (T, P)
18 %O—well—distributed along G with probability at least 1—O(n§n§e_6d) for universal constants ¢, K.
We start by proving an intermediate lemma asserting the well-distributedness of pairs of random
Gaussian vectors {(t;, p;) }ic[r) With respect to a fixed pair of random Gaussian vectors (z,y).

Lemma 12. There exist positive constants dy, Ko such that the following holds. Let x,y,t;,p; ~
N(0,Igxq) be independent, where i € [k]. Then the set {(ti,p:)}icik) 5 %-well-distm’buted with
respect to (x,y) with probability 1 — 6ke=® if k > max(Ky, 10d) and d > dy.

The proof of this lemma appears at the end of this section. We will deduce Lemma [Tl from
Lemma [12] by partitioning the edge set of G into sets of vertex-disjoint edges. A matching is a set
of vertex-disjoint edges. A perfect matching of a graph is a matching that intersects all vertices.
The following is a well-known lemma in Graph theory.

Lemma 13. Let G = (V, E) be a bipartite graph with vertex partition V.= Vi U Va, and let A be
the maximum degree of G. There exists an edge-partition E = E1 U ---U Ea such that E, forms a
matching for each a € [A].

Proof. By adding vertices and edges to G if necessary, we can obtain a A-regular bipartite multi-
graph G’. By Hall’s theorem, every non-empty regular multi-graph contains a perfect matching
(see [2, Corollary 2.1.3]). Let Fy be an arbitrary perfect matching of G’. Remove Fj from the edge
set of G’, and note that the remaining graph is still regular. Thus we can repeat the process to
obtain a partition E(G’) = Fy U--- U Fa of the edge set of G’ into perfect matchings. The sets
E, = F,NE(G) for a € [A] satisfy the claimed condition. O

The proof of Lemma [[T] follows from the two lemmas above.

Proof of Lemma 11l Recall the notation that N = max{|Vy|,|Vi|} and n = min{|V}|, |Vs|}. Since G
is a bipartite-p-typical graph, the maximum degree A of G is at most 2Np. By Lemma [I3] there
exists an edge-partition £ = FyU---UFEA such that each E, for a =1,2,..., A forms a matching.
Fix a pair of indices (ig, jo) for ig € Vy and jo € Vi. Let E' C E be the subset of edges that do

not intersect i or jo, and for each a € [A], let E! C E, be the subset of edges that do not intersect
i or jo. Let A C [A] be the set of indices a for which |E/| > max(Kjy,10d). For each a € A, by
Lemma [I2] we see that with probability at least 1 — O(|E/|e~¢?),

DI PP (3] e ] 11

ijEE!,

17



holds for all h € RY. Therefore by the union bound, with probability at least 1—O(>_ ¢ 4 |Efle ™) >
— O(|E'|e=¢) > 1 — O(nNe~*?), the above holds simultaneously for all a € [A]. Conditioned on
this event, for all h € R,

Z HPspan{ij —t3,ti—Pj.Pj —tio}l (h’) H2

ijEE
1
> Z Z HPspan{ij—ti,ti—pj,pj—tio}l (h)H2 > Z E|E¢/1|||h”2
a€A ijEE), a€A

Since |E'| = 23:1 |E!|, we see that

> Pty tote-prms-tigy- (Wll2 > 15 <|E’ ZIE’>IIth- (8)

ijer’ ag A

Since G is bipartite-p-typical, we have |E’| > 2an — 2(N +n)p > 4an if n > 16, and by the
definition of A, we have 3_ ¢ 4 ]E’] < max(Kjp, 10d)-A < InNpifn > 16- -max(Kp, 10d). Hence the
r1ght hand-side of (8) is at least 551 E' ||| ]2 for all h € R<. Th1s shows that the set {(;, p;) Yiio,j#jo
is %—well distributed with respect to (¢;,, pj,) with probability at least 1 — O(nNe~“?). By taking
the union bound over all choices of pairs (ig, jo) € Vy X Vi, we can conclude that (T, P) is 2—10—Well-
distributed along G' with probability at least 1 — O(n?N2e=?). O

We now prove Lemma

Proof of Lemma[IZ. Throughout the proof, the positive constant ¢ may change from line to line,
but is always bounded below by the positive constant of the lemma statement.

For each i, let W; = span(t; — y,p; — x,t; — p;) = span(z — y,p; + t; — (x + y),t; — p;). Thus
PWiL oPg_y1 = PWZ_L. Therefore, it is enough to show that for all h 1 z —y, with high probability

1
Z 1w (W)llz 2 757 lAll2-
Letting V; = span(z — y,p; + t; — ¢ — y), we have

Wi = span(z —y,pi +ti — & — y, ti — pi) = span(:c —ypitti—x—y, Pyt —pi)).

Now, for any h L (z —y),

n
Z 1Py (Wll2 > || 3 Py (1)

i=1

n

- ; <pViL(h) Pr, _m(h))

f: Py (h
=1

> Py
=1

2

2

v

J_ (tz _pz

2 2

PPV;_ (ti—pi)(h) - P(ti—pi)(h)

n

—Z

2 =1

v

> Pai—py(h)
=1

2
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Since || P,(h) — Py(h)||2 < [|09" — @it ||op||R]l2 < ||& — @||2]|h]|2 holds for all vectors v,w, h € R,
the above is at least

n

m[ = lnlle )
2 i=1
Note that when v = P(w) for some orthogonal projection operator P, we have

ool — 901 o) — 2 (1 PE@Lw) 1P
o=l =201~ 00) =2 (1 - e ) =2 (1 e ).

Hence (@) is at least

Py 1 (ti — pi) (t;

3

1Pyt —pi)lla it — szz

9)

2

Thus,

Pvil(ti — i) (t;
HPVZ.J-(ti_pi)H2 It —pz||2

_ s \/ 1Pyt = Pl

1ti — pill2

"l Pyt —pi) (ti — pi) 1 &
)| = lIRll2 - -l == (ts —pa)(ti = pa)*|| IRl
, ; 1Pyt =pilla NIt = pillz2 ||, min(llti — pill3) ; o
. - | VL( —pi)ll2 1 n
P, (h)|| —|h 24/1 — ti — pi)(ti — pi)* hl2.
2 P ®| bl 2V = e g |25 P e Al

op
We will now expand the first term, || > ; PViL(h)HQ. Let u=x—yand z; =x+y— (p;i +t;). We
have
Pyi(h) = Ps(y,z,)+ (h)

= Psu,p | (z))+ (h)

— b= Py(h) = Pp., (o (D)

b= Py, oy () + Pey(B) — oy (1)

= P.1(h) = Pp | (2,)(h) + Pz (h),

where we used h 1 u in the fourth inequality. Thus,
I Pl = 1 (Ps () = Pr () + Po(0)) I
i=1 i=1

> | Z Pa(h)ll2 — Z 1Pp, , (z)(h) = Pz (h)]l2

> || ZPL M2 — \thZ

—HZPL Hz—\thZ\/_ ~ [ il

szHz

Pul(zi) B Z;
WLzl Mzill2 ]l
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) (17 J_(tz_pZ)”Z Py @ty —ti— p1)||2
Letting X; = W ( ”?;)er o and Z; = ||>0 (6 — pi) (i —pi)*HOp, we
have shown that for any h L = — y,

Z HPW@'L (R)ll2 = Z HP(ﬂﬁ'i‘y—ti—zui)l (h)H2
i=1 i=1

e Y VE [T+ VI, !
=1

} min; ([[t; — pi13)

Zi||hll2  (10)

We will separately bound the first term and last two terms with high probability.
We now show that the first term of (I0) is bounded below by 0.3n|/h||2 with high probability.
Because t; + p; =% v/2t;, it suffices to show that with high probability

> 0.3n]h||2.
2

> Plaiy-va (7)

i=1

Let v=2+y and w; = —+/2t;. Note that

n

3 (h _ m(h,v +wi)(v +wi)>

(v+wi)+
2 i=1 2
anhHg— (v 4+ w;)(v+w;)*h
P 2
= nl|hllz — ot e (v+wi)(v+w)*|| (k]2
Wi |9 op
1 n
>l (n— ———3 (v + w;) (v + w;)* ,
min; [|v + w; |3 ; ! !
- op
where in the last inequality we used
= 1
vtw)(v+w)  —m v+ w;) (v + w;)*.
2 v ) S R 2 Z o)

Now, let A =" e;w! € R™4. We have

n n
Z(v—i—wi)(v—i-wi)* = Z(vv* + vw; + wv* 4+ ww;)
i=1 op izt op
n * n
< nfjvv*||op + ||V <Z wi) + <Z wi) v
i=1 i=1 op op
n n
< nloll3 + 2follz || D wi
1=1 2 op
n
= nlloll3 +2]vll2 | D wil| + Tmax(A)*.
1=1 2




Thus,
2 n 2
Z HPU—I-wZ H > 1Al [ n|jv[|3 [vll2 (22527 willy, + omax(A)

min; ||v + wZH%

Now, consider the event

2

< 2nd/837 UmaX(A)2 < 271/84

n

S

By = { min o+ wil|3 > 4dBy,  |o]3 < 2dBs,

=1 2
On E; we have,
ZHPMW H > 1Al n—m<2ndﬁ2+2\/2dﬁ2\/_\/_\/7+2nﬁ4)}
_ 1 222 4dy/ny/BaBs B
B AL _2d51n]
— |14l _n<1_1@_ B4 _L\/ﬂzﬁ?,)]
“ 280 2B Vo B

Now, let g1 =1 — ﬁ, Bo=pP3 =1+ ﬁ, By = %dﬁl. This gives

1@:1/2“/99, ﬂ:mo V205

2 B 2d ’ \/_ b1

Assuming n > 550, we see that on F,

5\“

E]p@ﬂ4rmymw220mmw2
i=1

2 .
Now, we bound P(E;). Note that 1{jv+w;||3 = 3|v]|3 = & |30, will; = x*(d) and %A s
a random n X d matrix with i.i.d. N'(0,1) entries. Thus, by applying Lemma [6] we have

P<4d(1 —€) < v+ w2 < 4d(1 + e)) > 1 eme’d

P (2d(1 — ) < |[v]|3 < 2d(1 4 €)) > 1 — e~

P | 2nd(1—¢) < <2nd1+e) > 1 — e

)

where ¢ > 0 is a universal constant. Also by taking ¢ = 2v/d in Lemma [7 we get

1 —2d
We have

P <Umax(%z4) > \/n—ﬁ4> <P (amax(%fl) > \Vn+ 3x/3> < 2¢ 2
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whenever \/n + 3v/d < \/nfBy, or equivalently ( 5—51\/8 — 1)y/n > 3v/d, which holds when n > 550
and d > 10. Thus for n > 550, we have
P(E;) > 1 — 2ne .

We now show that the second term of (I0]) is bounded above by 0.2n||h||2 with high probability.
Define the event

1 1 1
Ey=<3X;>21——, Y;>1—
800

800" min([[t; — pill2)

Z; <01ln, i= 1,2...n}
On FE,, we have

3 1
Il Y V2 [VI= X+ VT- Y] +
1=1

] min; ([[t; — pi13)

Zillhlls < 0:2n ]l

We now estimate P(E3). For X;, since (¢; — p;) is independent from (x — y,p; +t; — x — y), we
can view the latter as fixed. That is, by conditioning on V;, and applying a rotation R such that
R(V;) = span(eq, e2), we have
[Py (ti = pi)ll2
[ti — pill2

where ¢;(j) is the jth entry of ;. As Zd:2 ti(j)* ~ x3_, and Z;i 1ti(5)? ~ x3, Lemma [l can
be repeatedly applied to give P(X; > 1 — 800 for all i) > 1 — 2ne~°?. A similar argument gives
P(Y; >1— ﬁ for all i) > 1 — 2ne~°® because x — y and = + y — (t; 4+ p;) are independent.
We now bound the probability of the third condition in the definition of Fy. Note that
n

Z(ti —pi)(ti —pi)" Zt tr
i=1

Let B = Z? Leity. By Lemmalll || S0 titf]lop = Omax(B)? > n(l + 3\/E> with probability at
least 1 — 2¢724. By Lemma[6 ||;]|3 > d(1 — ¢) for all i with probability at least 1 — ne=°’d, We

conclude
(a3

= dl—-e)

1
min, (|[t; — pill3)

d

min; Ht ||

Ztt

with probability at least 1 — 2ne= o Ife = 0.01, d > 40,n > 10d, we have
1
IP’( ,
A

min; ||tl||

Z; < 0.1n) > 1 — 2pe—cd

Hence, if d > 40,n > 10d,
P(Ey) > 1 — 6ne“,
In conclusion, there exist positive integers dy and ng such that for all d > dy, n > ng, n > 10d,
and all h Lz —y,

]P <
i=1

> Pyi(h)

1

—0Hh”2> >1—P[(E;NEy)]>1—6ne
2
for some ¢ > 0, which implies the statement of the lemma.
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2.7 Random graphs are p-typical with high probability
We prove that Condition 1 of Theorem [2] holds with high probability.

Lemma 14. There exists an absolute constant ¢ > 0 such that for all positive real numbers p < 1
satisfying naop > 2log(eny) and nip > 2log(ens), G(ny,ng;p) is p-typical with probability at least
1 — nyng2mitnze—prnz/4 n%nge_g("”z) - nln%e_g("lpz).

Proof. Let Vi and V3 be vertex sets of sizes |Vi| = ny and |V2| = ny. Throughout the proof, we
let V4 U V4 be the bipartition of the random graph G(nj,ne;p). The bipartite graph G(n1,no;p)
is not connected only if there exist partitions Vi = Vi1 U Vie and Vo = Va1 U Va9 such that
the sets V11 U Vo1 and Vi U Va9 are both non-empty and have no edges between them. Let
Via| = k1, |Vai| = ke, [Vi2| = n1 — k1 and |V 2| = ng — ko. For fixed ky, k2, by the union bound,
the probability that there exists a partition as above is at most

(1) (12) 1 - i, l

and ky < %2, then by Stirling’s formula, (II]) is at most

em\ " (ena\"™ | im0 )" (02 mp )
kq k‘Q p - kq ko '

If k; > & and ko > 2, then let £1 = ny — k1 and ¢o = ny — ko. Then (IIJ) is at most

en1 ! [eny\® Oyl eny b (eny “
<_> (_) (1 —p)( 1n2+len)/2 < (_e—nzp/2> <_e—n1p/2> )
4 Lo 4 lo

If (ky <% and kp > 22) or (k; > % and ky < %2), then, by (}) < 2" for all 0 < k < n, () is at
most

Ifk <

w|§

2n1+n2(1 _p)n1n2/4 < 2n1+nze—pnm2/4.

Hence the probability that G(n1,ne;p) is disconnected is at most

[n1/2] [n2/2] ny y k1 ens y ko [n1/2] [n2/2] eny / k1 ensg y k2
2 : z : —n 2 -n 2 2 : 2 : —n 2 —-n 2
( . > ( k e > < . > < k e >

ki=1 ky=0 2 2
[n1/2] [n2/2] en U e £y L"1/2J n2/2J en 9 /e 05

+ Z Z ( 1 —nzp/2> <T2e—n1p/2> Z Z < 1 —nzp/2> <€_26—n1p/2>
li=1 £9=0 2 0 fo—1 2

ni+ns —pnins/4
+ ning2 e P / ,

where the indeterminate factors in the sums corresponding to k1 = 0, kg = 0, /1 =0, or fo =0
are taken to be unity. Since nop > 2log(eny) and nip > 2log(ens), the four sums above are
maximized at (k1,k2) = (1,0),(0,1), (¢1,¢2) = (1,0),(0,1), respectively. Therefore the probability
that G(n1,n2;p) is disconnected is at most

2ning - eny - e "2p/2 | 2n1ns - eng - e~mp/2 4 n1n22”1+n26_p"1"2/4.

For a fixed vertex v € Vi, the expected value of deg(v) is nap, and for a pair of vertices v, w € Vi,
the expected value of the codegree of v and w is nop?. Therefore by Chernoff’s inequality (see Fact

4 from [1]) and a union bound, the probability that all vertices in V1 have degree between ;ngp

and 2n9p, and all pairs of vertices in V; have codegree between 3 ngp and 2nop? is 1 — e~ Un2p?),
Similarly, the probability that all vertices in V5 have degree between zn1p and 2ngp, and all pairs

of vertices in V5 have codegree between %n1p2 and 2n,p? is 1 — n%e_g("1p2). The conclusion follows
by taking a union bound over all events. O
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2.8 Proof of Theorem [
We can now prove the high dimensional recovery theorem, which we state here again for convenience:

Theorem 1. Let N = max(ng,ns),n = min(ng,ns). Let G(V; UV, E) be drawn from a bipartite-

Erdés-Rényi graph with p > 0. Take tgo), . t%o()’pgo)’ - ,p,({? ~ N(0,I4%q) to be independent from

each other and G. Then, there exist absolute constants c,cs,C > 0 such that for v = csp?, if

1 21 N
max( Cd, og(eN)

1 ,Q(c?,log2N)> §n§N§e%Cd
C3p p

and d = Q(1), then there exists an event with probability at least 1 — O(e_Q(%63 Vi) e_%Cd)

which the following holds:

, on

For all subgraphs Ej satisfying max;c(,,) deg,(t;) < yns and maxjep,, degy(pj) < yng and all pair-
wise direction corruptions v;; € S forij € Ey, the convex program () has a unique minimizer

equal to {oz{tgo) - (}Z-E[nd,oz{pgo) - C}je[ns]} for some positive a and for { = ﬁ <Zi6[nd tgo) + Z]—E[ns} p§-0)>.

Proof. Let ¢ be minimum of the constants from Lemmas [I0l and IIl Let Ky be the constant from
Lemmal[I1l It is enough to verify that G, T" and Ej in the assumption of the present theorem satisfy
the deterministic conditions 1-6 in Theorem [2, with appropriate constants p, 3, cg, €, ¢1, and with
the purported probability. By Lemma [I4], Condition 1 holds with probability at least

1- nm52m+nse—pnms/4 _ n%nse—ﬂ(nsp ) _ ’I’Ll’I’L e —Q(nip?) _ -1 _ O(Nge_g(npz))

if np > 2log(eN). Condition 2 holds with probability 1. By Lemma [I0] Condition 3 holds for
co = % with probability at least 1—2n,nse~°?, and Condition 4 holds for 8= 3 L with probability at
least 1 —22n§n§e‘“l. By Lemma [Tl Condition 5 holds for ¢; = 0 with probability 1—O(n2n2e —cd)
if n > max(Ky, 160d), and d > dy. Thus, Conditions 1-5 hold together with probability at least

o O(N4e—cd + N3e—Q(np2))'

Take v = c3p* < 1011 Because v < %, Theorem [2] implies that recovery via ShapeFit

is guaranteed. Note that the conditions max;cy, deg,(i) < yns and max;ey, deg,(j) < yng are
—1/2
nontrivial when p > ¢, A1/, Using this inequality, we have N3e —Q(np?) < N3e—Sey n'/?) <
—1/2
e~z ) gy = Q(czlog? N) and Nte=o < e /2 if N < escd, Thus, the probability of exact
recovery via ShapeFit, uniformly in Ej, and v;; satisfying the assumptions of the theorem, is at

least s )
1— O(eUzes "n'?) 4 gmged) O

3 Numerical simulations

In this section, we use numerical simulation to verify that ShapeFit recovers Gaussian camera
locations and Gaussian structure locations in R? in the presence of corrupted pairwise direction
measurements. Further, we empirically demonstrate that ShapeFit is robust to noise in the uncor-
rupted measurements.

Let fgo) € R? be independent A(0, I3x3) random variables for i = 1,...,ny. Let 13§-0) € R? be
independent N (O,ngg) random variables for j = 1,...,ng. Let

()_~Z(0 Ny + Ng <Z~(0 +Zp€ )andp]) ~§0 Ny + N <Z~(O ZN(())‘
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Let the graph of observations G be a bipartite Erd6s-Rényi graph G(ng,ns,p) on ng + ng vertices,
for p=1/2. For ij € E(G), let

Zij with probability g,
Ui = {0 _pl®

m +0z;;  with probability 1 — ¢,
i J

where z;; are independent and uniform over S?. Let v;; = ;;/||9;; /2. That is, each observation is
corrupted with probability ¢, and each corruption is in a random direction. In the noiseless case,
with o = 0, each observation is exact with probability 1 — q.

We solved ShapeFit using the SDPT3 solver [8, 9] and YALMIP [5]. For output S = (7, P) =
({ti}ie[m]7 {p; }je[ns})v define its relative error with respect to S = (7, p0)) = ({tgo)}ie[nd, {p§0)}j€[ns]>
as
S 5(0)

ISllF - 1S ]|r

F

where [|S||F is the Frobenius norm of the matrix whose column are given by {¢;} and {p;}. This
error metric amounts to an 5 norm after rescaling.

Figure [Il shows the mean relative error of the output of ShapeFit over 10 independent trials for
locations in R? generated by p = 1/2, ny = ns, o € [0,0.05], and a range of values 10 < ny+ns < 70
and 0 < ¢ < 0.5. White blocks represent zero average relative error, and black blocks represent
an average relative error of 1 or higher. Average residuals between 0 and 1 are represented by the
appropriate shade of gray. The figure shows that ShapeFit can empirically recover 3d locations
in the presence of a surprisingly large probability of corruption, provided n is big enough. For
example, if n > 50, ShapeFit outputs a structure with small relative error even when around
15% of all measurements are randomly corrupted. Further, successful recovery occurs both in the
noiseless case, and in the noisy case with ¢ = 0.05.

Figure Pl shows the median residual over 10 independent trials for locations in R? generated by
p=1/2, ny =ng =25, ¢ = 0.1 and a range of values of 1076 < ¢ < 10". We see that ShapeFit
is empirically stable to noise, with median residuals that are approximately linear in the noise
parameter o.
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