
Avoiding the Global Sort: A Faster Contour Tree
Algorithm∗

Benjamin Raichel1 and C. Seshadhri2

1 Department of Computer Science, University of Texas at Dallas, Richardson,
USA
benjamin.raichel@utdallas.edu

2 Department of Computer Science, University of California, Santa Cruz, USA
scomandu@ucsc.edu

Abstract
We revisit the classical problem of computing the contour tree of a scalar field f : M→ R, where
M is a triangulated simplicial mesh in Rd. The contour tree is a fundamental topological structure
that tracks the evolution of level sets of f and has numerous applications in data analysis and
visualization.

All existing algorithms begin with a global sort of at least all critical values of f , which
can require (roughly) Ω(n logn) time. Existing lower bounds show that there are pathological
instances where this sort is required. We present the first algorithm whose time complexity
depends on the contour tree structure, and avoids the global sort for non-pathological inputs. If
C denotes the set of critical points in M, the running time is roughly O(

∑
v∈C log `v), where `v

is the depth of v in the contour tree. This matches all existing upper bounds, but is a significant
asymptotic improvement when the contour tree is short and fat. Specifically, our approach
ensures that any comparison made is between nodes that are either adjacent in M or in the same
descending path in the contour tree, allowing us to argue strong optimality properties of our
algorithm.

Our algorithm requires several novel ideas: partitioning M in well-behaved portions, a local
growing procedure to iteratively build contour trees, and the use of heavy path decompositions
for the time complexity analysis.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, I.1.2 Algorithms,
I.3.5 Computational Geometry and Object Modeling

Keywords and phrases contour trees, computational topology, computational geometry

Digital Object Identifier 10.4230/LIPIcs.SoCG.2016.57

1 Introduction

Geometric data is often represented as a function f : Rd → R. Typically, a finite repres-
entation is given by considering f to be piecewise linear over some triangulated mesh (i.e.
simplicial complex) M in Rd. Contour trees are a topological structure used to represent
and visualize the function f . It is convenient to think of f as a simplicial complex sitting in
Rd+1, with the last coordinate (i.e. height) given by f . Imagine sweeping the hyperplane
xd+1 = h with h going from +∞ to −∞. At every instance, the intersection of this plane
with f gives a set of connected components, the contours at height h. As the sweeping
proceeds various events occur: new contours are created or destroyed, contours merge into

∗ The full updated version of this paper is available on the arXiv [20].

© Benjamin Raichel and C. Seshadhri;
licensed under Creative Commons License CC-BY

32nd International Symposium on Computational Geometry (SoCG 2016).
Editors: Sándor Fekete and Anna Lubiw; Article No. 57; pp. 57:1–57:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2016.57
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

57:2 Avoiding the Global Sort: A Faster Contour Tree Algorithm

Figure 1 Two surfaces with different orderings of the maxima, but the same contour tree.

Figure 2 On left, a surface with a balanced contour tree, but whose join and split trees have
long tails. On right (from left to right), the contour, join and split trees.

each other or split into new components, contours acquire or lose handles. The contour tree
is a concise representation of all these events. Throughout we follow the definition of contour
trees from [24] which includes all changes in topology. For d > 2, some subsequent works,
such as [7], only include changes in the number of components.

If f is smooth, all points where the gradient of f is zero are critical points. These points
are the “events" where the contour topology changes and form the vertices of the contour tree.
An edge of the contour tree connects two critical points if one event immediately “follows"
the other as the sweep plane makes its pass. (We provide formal definitions later.) Figure 1
and Figure 2 show examples of simplicial complexes, with heights and their contour trees.
Think of the contour tree edges as pointing downwards. Leaves are either maxima or minima,
and internal nodes are either “joins" or “splits".

Consider f : M→ R, where M is a triangulated mesh with n vertices, N faces in total,
and t ≤ n critical points. (We assume that f : M → R a linear interpolant over distinct
valued vertices, where the contour tree T has maximum degree 3. The degree assumption
simplifies the presentation, and is commonly made [24].) A fundamental result in this
area is the algorithm of Carr, Snoeyink, and Axen to compute contour trees, which runs
in O(n logn + Nα(N)) time [7] (where α(·) denotes the inverse Ackermann function). In
practical applications, N is typically Θ(n) (certainly true for d = 2). The most expensive
operation is an initial sort of all the vertex heights. Chiang et al. build on this approach
to get a faster algorithm that only sorts the critical vertices, yielding a running time of
O(t log t+N) [8]. Common applications for contour trees involve turbulent combustion or
noisy data, where the number of critical points is likely to be Ω(n). There is a worst-case
lower bound of Ω(t log t) by Chiang et al. [8], based on a construction of Bajaj et al. [1].

All previous algorithms begin by sorting (at least) the critical points. Can we beat
this sorting bound for certain instances, and can we characterize which inputs are hard?
Intuitively, points that are incomparable in the contour tree do not need to be compared.
Look at Figure 1 to see such an example. All previous algorithms waste time sorting all the
maxima. Also consider the surface of Figure 2. The final contour tree is basically two binary
trees joined at their roots, and we do not need the entire sorted order of critical points to
construct the contour tree.

B. Raichel and C. Seshadhri 57:3

Our main result gives an affirmative answer. Remember that we can consider the contour
tree as directed from top to bottom. For any node v in the tree, let `v denote the length of
the longest directed path passing through v.

I Theorem 1. Consider a simplicial complex f : M → R, described as above, and denote
the contour tree by T with vertex set (the critical points) C(T). There exists an algorithm to
compute T in O(

∑
v∈C(T) log `v + tα(t) +N) time. Moreover, this algorithm only compares

function values at pairs of vertices that are ancestor-descendant in T or adjacent in M.

Essentially, the “run time per critical point" is the height/depth of the point in the
contour tree. This bound immediately yields a run time of O(t logD + tα(t) +N), where
D is the diameter of the contour tree. This is a significant asymptotic improvement for
short and fat contour trees. For example, if the tree is balanced, then we get a bound of
O(t log log t). Even if T contains a long path of length O(t/ log t), but is otherwise short, we
get the improved bound of O(t log log t).

1.1 A refined bound with optimality properties
Theorem 1 is a direct corollary of a stronger but more cumbersome theorem.

I Definition 2. For a contour tree T , a leaf path is any path in T containing a leaf, which is
also monotonic in the height values of its vertices. Then a path decomposition, P (T), is a
partition of the vertices of T into a set of vertex disjoint leaf paths.

I Theorem 3. There is a deterministic algorithm to compute the contour tree, T , whose
running time is O(

∑
p∈P (T) |p| log |p| + tα(t) + N), where P (T) is a specific path decom-

position (constructed implicitly by the algorithm). The number of comparisons made is
O(

∑
p∈P (T) |p| log |p| + N). In particular, comparisons are only made between pairs of

vertices that are ancestor-descendant in T or adjacent in M.

Note that Theorem 1 is a direct corollary of this statement. For any v, `v is at least
the length of the path in P (T) that contains v. This bound is strictly stronger, since for
any balanced contour tree, the run time bound of Theorem 3 is O(tα(t) + N), and O(N)
comparisons are made. (Since for a balanced tree, one can show

∑
p∈P (T) |p| log |p| = O(t).)

The bound of Theorem 3 may seem artificial, since it actually depends on the P (T)
that is implicitly constructed by the algorithm. Nonetheless, we prove that the algorithm
of Theorem 3 has strong optimality properties. For convenience, fix some value t = Ω(N),
and consider the set of terrains (d = 2) with t critical points. The bound of Theorem 3
takes values ranging from t to t log t. Consider some γ ∈ [t, t log t], and consider the set of
terrains where the algorithm makes γ comparisons. Then any algorithm must make roughly
γ comparisons in the worst-case over this set. (Further details are in the full version [20].)

I Theorem 4. There exists some absolute constant α such that the following holds. For
sufficiently large t and any γ ∈ [t, t log t], consider the set Fγ of terrains with t critical points
such that the number of comparisons made by the algorithm of Theorem 3 on these terrains
is in [γ, αγ]. Any algebraic decision tree that correctly computes the contour tree on all of
Fγ has a worst case running time of Ω(γ).

1.2 Previous Work
Contour trees were first used to study terrain maps by Boyell and Ruston, and Freeman
and Morse [3, 13]. Contour trees have been applied in analysis of fluid mixing, combustion

SoCG 2016

57:4 Avoiding the Global Sort: A Faster Contour Tree Algorithm

simulations, and studying chemical systems [15, 4, 2, 5, 16]. Carr’s thesis [6] gives various
applications of contour trees for data visualization and is an excellent reference for contour
tree definitions and algorithms.

The first formal result was an O(N logN) time algorithm for functions over 2D meshes and
an O(N2) algorithm for higher dimensions, by van Kreveld et al. [24]. Tarasov and Vyalya
[22] improved the running time to O(N logN) for the 3D case. The influential paper of Carr
et al. [7] improved the running time for all dimensions to O(n logn+Nα(N)). Pascucci and
Cole-McLaughlin [18] provided an O(n+ t logn) time algorithm for 3-dimensional structured
meshes. Chiang et al. [8] provide an unconditional O(N + t log t) algorithm.

Contour trees are a special case of Reeb graphs, a general topological representation for
real-valued functions on any manifold. Algorithms for computing Reeb graphs is an active
topic of research [21, 9, 19, 10, 14, 17], where two results explicitly reduce to computing
contour trees [23, 11].

2 Contour tree basics

We detail the basic definitions about contour trees, following the terminology of Chapter
6 of Carr’s thesis [6]. All our assumptions and definitions are standard for results in this
area, though there is some variability in notation. The input is a continuous piecewise-linear
function f : M→ R, where M is a simply connected and fully triangulated simplicial complex
in Rd, except for specially designated boundary facets. So f is explicitly defined only on the
vertices of M, and all other values are obtained by linear interpolation.

We assume that the boundary values satisfy a special property. This is mainly for
convenience in presentation.

I Definition 5. The function f is boundary critical if the following holds. Consider a
boundary facet F . All vertices of F have the same function value. Furthermore, all neighbors
of vertices in F , which are not also in F itself, either have all function values strictly greater
than or all function values strictly less than the function value at F .

This is convenient, as we can now assume that f is defined on Rd. Any point inside a
boundary facet has a well-defined height, including the infinite facet, which is required to
be a boundary facet. However, we allow for other boundary facets, to capture the resulting
surface pieces after our algorithm makes a horizontal cut.

We think of the dimension d, as constant, and assume that M is represented in a data
structure that allows constant-time access to neighboring simplices in M (e.g. incidence
graphs [12]). (This is analogous to a doubly connected edge list, but for higher dimensions.)
Observe that f : M→ R can be thought of as a d-dimensional simplicial complex living in
Rd+1, where f(x) is the “height" of a point x ∈M, which is encoded in the representation of
M. Specifically, rather than writing our input as (M, f), we abuse notation and typically
just write M to denote the lifted complex.

I Definition 6. The level set at value h is the set {x|f(x) = h}. A contour is a connected
component of a level set. An h-contour is a contour where f -values are h.

Note that a contour that does not contain a boundary is itself a simplicial complex of
one dimension lower, and is represented (in our algorithms) as such. We let δ and ε denote
infinitesimals. Let Bε(x) denote a ball of radius ε around x, and let f |Bε(x) be the restriction
of f to Bε(x).

B. Raichel and C. Seshadhri 57:5

I Definition 7. The Morse up-degree of x is the number of (f(x) + δ)-contours of f |Bε(x)
as δ, ε → 0+. The Morse down-degree is the number of (f(x) − δ)-contours of f |Bε(x) as
δ, ε→ 0+.

A regular point has both Morse up-degree and down-degree 1. A maximum has Morse
up-degree 0, while a minimum has Morse down-degree 0. A Morse Join has Morse up-degree
strictly greater than 1, while a Morse Split has Morse down-degree strictly greater than 1.
Non-regular points are called critical.

The set of critical points is denoted by V(f). Because f is piecewise-linear, all critical
points are vertices in M. A value h is called critical, if f(v) = h, for some v ∈ V(f). A
contour is called critical, if it contains a critical point, and it is called regular otherwise.

The critical points are exactly where the topology of level sets change. By assuming
that our simplicial complex is boundary critical, the vertices on a given boundary are either
collectively all maxima or all minima. We abuse notation and refer to this entire set of
vertices as a maximum or minimum.

I Definition 8. Two regular contours ψ and ψ′ are equivalent if there exists an f -monotone
path p connecting a point in ψ to ψ′, such that no x ∈ p belongs to a critical contour.

This equivalence relation gives a set of contour classes. Every such class maps to intervals
of the form (f(xi), f(xj)), where xi, xj are critical points. Such a class is said to be created
at xi and destroyed at xj .

I Definition 9. The contour tree is the graph on vertex set V = V(f), where edges are
formed as follows. For every contour class that is created at vi and destroyed vj , there is an
edge (vi, vj). (Conventionally, edges are directed from higher to lower function value.)

We denote the contour tree of M by C(M). The corresponding node and edge sets are
denoted as V(·) and E(·). It is not immediately obvious that this graph is a tree, but alternate
definitions of the contour tree in [7] imply this is a tree. Since this tree has height values
associated with the vertices, we can talk about up-degrees and down-degrees in C(M). Similar
to [24] (among others), multi-saddles are treated as a set of ordinary saddles, which can be
realized via vertex unfolding (which can increase surface complexity if multi-saddle degrees
are allowed to be super-constant). Therefore, to simplify the presentation, for the remainder
of the paper up and down-degrees are at most 2, and total degree is at most 3.

See the full version [20] for further technical remarks on the above definitions.

3 Divide and conquer through contour surgery

The cutting operation: We define a “cut" operation on f : M → R that cuts along a
regular contour to create a new simplicial complex with an added boundary. Given a contour
φ, roughly speaking, this constructs the simplicial complex M \φ. We will always enforce the
condition that φ never passes through a vertex of M. Again, we use ε for an infinitesimally
small value. We denote φ+ (resp. φ−) to be the contour at value f(φ) + ε (resp. f(φ)− ε),
which is at distance ε from φ.

An h-contour is achieved by intersecting M with the hyperplane xd+1 = h and taking a
connected component. (Think of the d+ 1-dimension as height.) Given some point x on an
h-contour φ, we can walk along M from x to determine φ. We can “cut" along φ to get a
new (possibly) disconnected simplicial complex M′. This is achieved by splitting every face
F that φ intersects into an “upper" face and “lower" face. Algorithmically, we cut F with φ+

and take everything above φ+ in F to make the upper face. Analogously, we cut with φ−

SoCG 2016

57:6 Avoiding the Global Sort: A Faster Contour Tree Algorithm

to get the lower face. The faces are then triangulated to ensure that they are all simplices.
This creates the two new boundaries φ+ and φ−, and we maintain the property of constant
f -value at a boundary.

Note that by assumption φ cannot cut a boundary face, and moreover all non-boundary
faces have constant size. Therefore, this process takes time linear in |φ|, the number of
faces φ intersects. This new simplicial complex is denoted by cut(φ,M). We now describe a
high-level approach to construct C(M) using this cutting procedure.

surgery(M, φ)
1. Let M′ = cut(M, φ).
2. Construct C(M′) and let A,B be the nodes corresponding to the new boundaries

created in M′. (One is a minimum and the other is maximum.)
3. Since A,B are leaves, they each have unique neighbors A′ and B′, respectively.

Insert edge (A′, B′) and delete A,B to obtain C(M).

The following theorems are intuitively obvious, and are proven in the full version [20].

I Theorem 10. For any regular contour φ, the output of surgery(M, φ) is C(M).

I Theorem 11. cut(M, φ) consists of two disconnected simplicial complexes.

4 Raining to partition M

In this section, we describe a linear time procedure that partitions M into special extremum
dominant simplicial complexes.

I Definition 12. A simplicial complex is minimum dominant if there exists a minimum x such
that every non-minimal vertex in the complex has a non-ascending path to x. Analogously
define maximum dominant.

The first aspect of the partitioning is “raining”. Start at some point x ∈M and imagine
rain at x. The water will flow downwards along non-ascending paths and “wet” all the points
encountered. Note that this procedure considers all points of the complex, not just vertices.

I Definition 13. Fix x ∈M. The set of points y ∈M such that there is a non-ascending path
from x to y is denoted by wet(x,M) (which in turn is represented as a simplicial complex). A
point z is at the interface of wet(x,M) if every neighborhood of z has non-trivial intersection
with wet(x,M) (i.e. the intersection is neither empty nor the entire neighborhood).

The following claim gives a description of the interface.

I Claim 14. For any x, each component of the interface of wet(x,M) contains a join vertex.

Proof. If p ∈ wet(x,M), all the points in any contour containing p are also in wet(x,M).
(Follow the non-ascending path from x to p and then walk along the contour.) The converse
is also true, so wet(x,M) contains entire contours.

Let ε, δ be sufficiently small as usual. Fix some y at the interface. Note that y ∈ wet(x,M).
(Otherwise, Bε(y) ∩M is dry.) The points in Bε(y) ∩M that lie below y have a descending
path from y and hence must be wet. There must also be a dry point in Bε(y) ∩M that is
above y, and hence, there exists a dry, regular (f(y) + δ)-contour φ intersecting Bε(y).

Let Γy be the contour containing y. Suppose for contradiction that ∀p ∈ Γy, p has
up-degree 1 (see Definition 7). Consider the non-ascending path from x to y and let z be the
first point of Γy encountered. There exists a wet, regular (f(y) + δ)-contour ψ intersecting

B. Raichel and C. Seshadhri 57:7

Bε(z). Now, walk from z to y along Γy. If all points w in this walk have up-degree 1,
then ψ is the unique (f(y) + δ)-contour intersecting Bε(w). This would imply that φ = ψ,
contradicting the fact that ψ is wet and φ is dry. J

Note that wet(x,M) (and its interface) can be computed in time linear in the size of
the wet simplicial complex. We perform a non-ascending search from x. Any face F of M
encountered is partially (if not entirely) in wet(x,M). The wet portion is determined by
cutting F along the interface. Since each component of the interface is a contour, this is
equivalent to locally cutting F by a hyperplane. All these operations can be performed to
output wet(x,M) in time linear in |wet(x,M)|.

We define a simple lift operation on the interface components. Consider such a
component φ containing a join vertex y. Take any dry increasing edge incident to y, and pick
the point z on this edge at height f(y) + δ (where δ is an infinitesimal, but larger than the
value ε used in the definition of cut). Let lift(φ) be the unique contour through the regular
point z. Note that lift(φ) is dry. The following claim follows directly from Theorem 11.

I Claim 15. Let φ be a connected component of the interface. Then cut(M, lift(φ)) results
in two disjoint simplicial complexes, one consisting entirely of dry points.

We describe the main partitioning procedure that cuts a simplicial complex N into
extremum dominant complexes. It takes an additional input of a maximum x. To initialize,
we begin with N set to M and x as an arbitrary maximum. When we start, rain flows
downwards. In each recursive call, the direction of rain is switched to the opposite direction.
This is crucial to ensure a linear running time. The switching is easily implemented by
inverting a complex N′, achieved by negating the height values. We can now let rain flow
downwards, as it usually does in our world.

rain(x,N)

1. Determine interface of wet(x,N).
2. If the interface is empty, simply output N. Otherwise, denote the connected

components by φ1, φ2, . . . , φk and set φ′i = lift(φi).
3. Initialize N1 = N.
4. For i from 1 to k:

a. Construct cut(Ni, φ′i), consisting of dry complex Li and remainder Ni+1.
b. Let the newly created boundary of Li be Bi. Invert Li so that Bi is a

maximum. Recursively call rain(Bi,Li).
5. Output Nk+1 together with any complexes output by recursive calls.

For convenience, denote the total output of rain(x,M) by M1,M2, . . . ,Mr.

I Lemma 16. Each output Mi is extremum dominant.

Proof. Consider a call to rain(x,N). If the interface is empty, then all of N is in wet(x,N),
so N is trivially extremum dominant. So suppose the interface is non-empty and consists
of φ1, . . . , φk (as denoted in the procedure). By repeated applications of Claim 15, Nk+1
contains wet(x,M). Consider wet(x,Nk+1). The interface is exactly φ1, . . . , φk. So the only
dry vertices are those in the boundaries B1, . . . , Bk. But these boundaries are maxima. J

As rain(x,M) proceeds, new faces/simplices are created because of repeated cutting.
The key to the running time of rain(x,M) is bounding the number of newly created faces,
for which we have the following lemma.

SoCG 2016

57:8 Avoiding the Global Sort: A Faster Contour Tree Algorithm

I Lemma 17. A face F ∈M is cut1 at most once during rain(x,M).

Proof. Notation here follows the pseudocode of rain. First, by Theorem 11, all the pieces
on which rain is invoked are disjoint. Second, all recursive calls are made on dry complexes.

Consider the first time that F is cut, say, during the call to rain(x,N). Specifically, say
this happens when cut(Ni, φ′i) is constructed. cut(Ni, φ′i) will cut F with two horizontal
cutting planes, one ε above φ′i and one ε below φ′i. This breaks F into lower and upper
portions which are then triangulated (there is also a discarded middle portion). The lower
portion, which is adjacent to φi, gets included in Nk+1, the complex containing the wet
points, and hence does not participate in any later recursive calls. The upper portion (call it
U) is in Li. Note that the lower boundary of U is in the boundary Bi. Since a recursive call
is made to rain(Bi,Li) (and Li is inverted), U becomes wet. Hence U , and correspondingly
F , will not be subsequently cut. J

The following are direct consequences of Lemma 17 and the surgery procedure.

I Theorem 18. The total running time of rain(x,M) is O(|M|).

I Claim 19. Given C(M1), C(M2), . . . , C(Mr), C(M) can be constructed in O(|M|) time.

5 Contour trees of extremum dominant complexes

The previous section allows us to restrict attention to extremum dominant complexes. We will
orient so that the extremum in question is always a minimum. We will fix such a simplicial
complex M, with the dominant minimum m∗. For vertex v, we use M+

v to denote the
simplicial complex obtained by only keeping vertices u such that f(u) > f(v). Analogously,
define M−v . Note that M+

v may contain numerous connected components.
The main theorem of this section asserts that contour trees of minimum dominant

complexes have a simple description. Intuitively, the cutting procedure of Section 4 introduced
“stumps” where we made cuts, which is why we allowed for non-dominant minima and maxima
in the definition of extremum dominant complexes. The punchline is that, ignoring these
stumps, the contour tree of an extremum dominant complex is equivalent to its join (or
split) tree, defined in [7]. Hence the critical join tree below is just the join tree without these
stumps. Additional definitions and proofs are given in the full version [20].

I Definition 20. The critical join tree JC(M) is built on the set V ′ of all critical points
other than the non-dominant minima. The directed edge (u, v) is present when u is the
smallest valued vertex in V ′ in a connected component of M+

v and v is adjacent (in M) to a
vertex in this component. The join tree, J (M), is defined analogously, but instead on V(M).

Each non-dominant minimum, mi, connects to the contour tree at a corresponding split
si. We have the following (see the full version [20] for more details).

I Theorem 21. Let M have a dominant minimum. The contour tree C(M) consists of all
edges {(si,mi)} and JC(M).

I Remark 22. The above theorem, combined with the previous sections, implies that in
order to get an efficient contour tree algorithm, it suffices to have an efficient algorithm for
computing JC(M). Due to minor technicalities, it is easier to phrase the following section

1 Technically what we are calling a single cut is done with two hyperplanes.

B. Raichel and C. Seshadhri 57:9

instead in terms of computing J (M) efficiently. Note however that for minimum dominant
complexes output by rain, converting between JC and J is trivial, as J is just JC with
each non-dominant minimum mi augmented along the edge leaving si.

6 Painting to compute contour trees

The main algorithmic contribution is a new algorithm for computing join trees of any
triangulated simplicial complex M.

Painting: The central tool is a notion of painting M. Initially associate a color with each
maximum. Imagine there being a large can of paint of a distinct color at each maximum x.
We will spill different paint from each maximum and watch it flow down. This is analogous
to the raining of Section 4, but paint is a much more viscous liquid. So paint only flows down
edges, and it does not color the interior of higher dimensional faces. Furthermore, paints
do not mix, so every edge of M gets a unique color. This process (and indeed the entire
algorithm) works purely on the 1-skeleton of M, which is just a graph.

I Definition 23. Let the 1-skeleton of M have edge set E and maxima X. A painting of M
is a map χ : X ∪ E → [|X|], where χ(z) is referred to as the color of z, with the following
property. Consider an edge e. There exists a descending path from some maximum x to e
consisting of edges in E, such that all edges along this path have the same color as x.

An initial painting also requires that the restriction χ : X → [|X|] is a bijection.

I Definition 24. Fix a painting χ and vertex v.
An up-star of v is the set of edges that all connected to a fixed component of M+

v .
A vertex v is touched by color c if v is incident to a c-colored edge with v at the lower
endpoint. For v, col(v) is the set of colors that touch v.
A color c ∈ col(v) fully touches v if all edges in an up-star are colored c.
For any maximum x ∈ X, we say that x is both touched and fully touched by χ(x).

6.1 The data structures
The binomial heaps T (c): For each color c, T (c) is a subset of vertices touched by c, This
is stored as a binomial max-heap keyed by vertex heights. Abusing notation, T (c) refers both
to the set and the data structure used to store it.

The union-find data structure on colors: We will repeatedly perform unions of classes of
colors, and this will be maintained as a standard union-find data structure. For any color c,
rep(c) denotes the representative of its class.

Color list col(v): For each point v, we maintain col(v) as a simple list. In addition, we
will maintain another (sub)list of colors L such that ∀c ∈ L, v is not the highest vertex in
T (rep(c)). Note that given c ∈ col(v) and rep(c), this property can be checked in constant
time. If c is ever removed from this sublist, it can never enter it again.

For notational convenience, we will not explicitly maintain this sublist. We simply assume
that, in constant time, one can determine (if it exists) an arbitrary color c ∈ col(v) such that
v is not the highest vertex in T (rep(c)).

The stack K: This consists of non-extremal critical points, with monotonically increasing
heights as we go from the base to the head.

SoCG 2016

57:10 Avoiding the Global Sort: A Faster Contour Tree Algorithm

Attachment vertex att(c): For each color c, we maintain a critical point att(c) of this
color. We will maintain the guarantee that the portion of the join tree above (and including)
att(c) has already been constructed.

6.2 The algorithm
We formally describe the algorithm below. We require a technical definition of ripe vertices.

I Definition 25. A vertex v is ripe if: for all c ∈ col(v), v is present in T (rep(c)) and is also
the highest vertex in this heap.

init(M)
1. Construct an initial painting of M using a descending BFS from maxima that

does not explore previously colored edges.
2. Determine all critical points in M. For each v, look at (f(v)± δ)-contours in

f |Bε(v) to determine the up and down degrees.
3. Mark each critical v as unprocessed.
4. For each critical v and each up-star, pick an arbitrary color c touching v. Insert

v into T (c).
5. Initialize rep(c) = c and set att(c) to be the unique maximum colored c.
6. Initialize K to be an empty stack.

build(M)

1. Run init(M).
2. While there are unprocessed critical points:

a. Run update(K). Pop K to get h.
b. Let cur(h) = {rep(c)|c ∈ col(h)}.
c. For all c′ ∈ cur(h):

i. Add edge (att(c′), h) to J (M).
ii. Delete h from T (c′).

d. Merge heaps {T (c′)|c′ ∈ cur(h)}.
e. Take union of cur(h) and denote resulting color by ĉ.
f. Set att(ĉ) = h and mark h as processed.

update(K)

1. If K is empty, push arbitrary unprocessed critical point v.
2. Let h be the head of K.
3. While h is not ripe:

a. Find c ∈ col(h) such that h is not the highest in T (rep(c)).
b. Push the highest of T (rep(c)) onto K, and update head h.

A few simple facts:
At all times, the colors form a valid painting.
Each vertex is present in at most 2 heaps. After processing, it is removed from all heaps.
After v is processed, all edges incident to v have the same (representative) color.
Vertices on the stack are in increasing height order.

I Observation 26. Each unprocessed vertex is always in exactly one queue of the colors in
each of its up-stars. Specifically, for a given up-star of a vertex v, init(M) puts v into the

B. Raichel and C. Seshadhri 57:11

queue of exactly one of the colors of the up-star, say c. As time goes on this queue may
merge with other queues, but while v remains unprocessed, it is only ever (and always) in
the queue of rep(c), since v is never added to a new queue and is not removed until it is
processed. In particular, finding the queues of a vertex in update(K) requires at most two
union find operations (assuming each vertex records its two colors from init(M)).

6.3 Proving correctness
Our main workhorse is the following technical lemma. In the following, the current color of
an edge, e, is the value of rep(χ(e)), where χ(e) is the color of e from the initial painting.

I Lemma 27. Suppose vertex v is connected to a component P of M+
v by an edge e which is

currently colored c. At all times: either all edges in P are currently colored c, or there exists
a critical vertex w ∈ P fully touched by c and touched by another color.

Proof. Since e has color c, there must exist vertices in P touched by c. Consider the highest
vertex w in P that is touched by c and some other color. If no such vertex exists, this means
all edges incident to a vertex touched by c are colored c. By walking through P, we deduce
that all edges are colored c.

So assume w exists. Take the (f(w) + δ)-contour φ that intersects Bε(w) and intersects
some c-colored edge incident to w. Note that all edges intersecting φ are also colored c, since
w is the highest vertex to be touched by c and some other color. (Take the path of c-colored
edges from the maximum to w. For any point on this path, the contour passing through this
point must be colored c.) Hence, c fully touches w. But w is touched by another color, and
the corresponding edge cannot intersect φ. So w must have up-degree 2 and is critical. J

I Corollary 28. Each time update(K) is called, it terminates with a ripe vertex on top of
the stack.

Proof. update(K) is only called if there are unprocessed vertices remaining, and so by the
time we reach step 3 in update(K), the stack has some unprocessed vertex h on it. If h is
ripe, then we are done, so suppose otherwise.

Let P be one of the components of M+
h . By construction, h was put in the heap of

some initial adjacent color c. Therefore, h must be in the current heap of rep(c) (see
Observation 26). Now by Lemma 27, either all edges in P are colored rep(c) or there is some
vertex w fully touched by rep(c) and some other color. The former case implies that if there
are any unprocessed vertices in P then they are all in T (rep(c)), implying that h is not the
highest vertex and a new higher up unprocessed vertex will be put on the stack for the next
iteration of the while loop. Otherwise, all the vertices in P have been processed. However, it
cannot be the case that all vertices in all components of M+

h have already been processed,
since this would imply that h was ripe, and so one can apply the same argument to the other
non-fully processed component.

Now consider the latter case, where we have a non-monochromatic vertex w. In this case
w cannot have been processed (since after being processed it is touched only by one color),
and so it must be in T (rep(c)) since it must be in some heap of a color in each up-star (and
one up-star is entirely colored rep(c)). As w lies above h in M, this implies h is not on the
top of this heap. J

I Claim 29. Consider a ripe vertex v and take the up-star connecting to some component of
M+
v . All edges in this component and the up-star have the same color.

SoCG 2016

57:12 Avoiding the Global Sort: A Faster Contour Tree Algorithm

Proof. Let c be the color of some edge in this up-star. By ripeness, v is the highest in
T (rep(c)). Denote the component of M+

v by P. By Lemma 27, either all edges in P are
colored rep(c) or there exists critical vertex w ∈ P fully touched by rep(c) and another color.
In the latter case, w has not been processed, so w ∈ T (rep(c)) (contradiction to ripeness).
Therefore, all edges in P are colored rep(c). J

I Claim 30. The partial output on the processed vertices is exactly the restriction of J (M)
to these vertices.

Proof. More generally, we prove the following: all outputs on processed vertices are edges of
J (M) and for any current color c, att(c) is the lowest processed vertex of that color. We
prove this by induction on the processing order. The base case is trivially true, as initially
the processed vertices and attachments of the color classes are the set of maxima. For the
induction step, consider the situation when v is being processed.

Since v is being processed, we know by Corollary 28 that it is ripe. Take any up-star of v,
and the corresponding component P of M+

v that it connects to. By Claim 29, all edges in P
and the up-star have the same color (say c). If some critical vertex in P is not processed,
it must be in T (c), which violates the ripeness of v. Thus, all critical vertices in P have
been processed, and so by the induction hypothesis, the restriction of J (M) to P has been
correctly computed. Additionally, since all critical vertices in P have processed, they all
have the same color c of the lowest critical vertex in P. Thus by the strengthened induction
hypothesis, this lowest critical vertex is att(c).

If there is another component of M+
v , the same argument implies the lowest critical vertex

in this component is att(c′) (where c′ is the color of edges in the respective component).
Now by the definition of J (M), the critical vertex v connects to the lowest critical vertex in
each component of M+

v , and so by the above v should connect to att(c) and att(c′), which is
precisely what v is connected to by build(M). Moreover, build merges the colors c and c′
and correctly sets v to be the attachment, as v is the lowest processed vertex of this merged
color (as by induction att(c) and att(c′) were the lowest vertices before merging colors). J

I Theorem 31. Given an input complex M, build(M) terminates and outputs J (M).

Proof. First observe that each vertex can be processed at most once by build(M). By
Corollary 28, we know that as long as there is an unprocessed vertex, update(K) will be
called and will terminate with a ripe vertex which is ready to be processed. Therefore,
eventually all vertices will be processed, and so by Claim 30 the algorithm will terminate
having computed J (M). J

6.4 Upper Bounds for Running Time
The algorithm build(M) processes vertices in J (M) one at a time. The main processing
cost comes from priority queue operations. The cost of these operations is a function of the
size of the queue which is in turn a function of the choices made by the subroutine init(M).

I Definition 32. A leaf assignment χ of a binary tree T assigns two distinct leaves to each
internal vertex v, one from the left and one from the right subtree of v (or only one leaf if v
has only one child). The subroutine init(M) naturally defines a leaf assignment to J (M)
(which is a rooted binary tree) according to the priority queue for each up-star we put a
given vertex in. Call this the initial coloring of the vertices in J (M), and denote it by χ.

For a vertex v in J (M), let L(v) denote the set of leaves of the subtree rooted at v,
and let A(v) denote the set of ancestors of v, i.e. the vertices on the v to root path. For a

B. Raichel and C. Seshadhri 57:13

vertex v ∈ J (M), and an initial coloring χ, we use Hv to denote the heap at v. Formally,
Hv = {u|u ∈ A(v), χ(u) ∩ L(v) 6= ∅}, i.e. the set of ancestors colored by some leaf in L(v).

Given the above technical definition, the proof of the following lemma is straightforward,
though long and so has been moved to the full version [20].

I Lemma 33. Let M be a simplicial complex with t critical points. The running time of
build(M) is O(N + tα(t) +

∑
v∈J (M) log |Hv|), where Hv is defined by an initial coloring.

Our main result, Theorem 1, is an easy corollary of the above lemma.

Proof of Theorem 1. Consider a critical point v of the initial input complex. By Theorem 11
this vertex appears in exactly one of the pieces output by rain. As in the Theorem 1 statement,
let `v denote the length of the longest directed path passing through v in the contour tree of
the input complex, and let `′v denote the longest directed path passing through v in the join
tree of the piece containing v. By Theorem 10, ignoring non-dominant extrema introduced
from cutting (whose cost can be charged to a corresponding saddle), the join tree on each
piece output by rain is isomorphic to some connected subgraph of the contour tree of the
input complex, and hence `′v ≤ `v. Moreover, |Hv| only counts vertices in a v to root path
and so trivially |Hv| ≤ `′v, implying Theorem 1. J

Note that there is fair amount of slack in this argument as |Hv| may be significantly
smaller than `′v. This slack allows for the more refined upper and lower bounds mentioned in
Section 1.1. Quantifying this slack however is quite challenging, and requires a significantly
more sophisticated analysis involving path decompositions, detailed in the full version [20].

Acknowledgements. We thank Hsien-Chih Chang, Jeff Erickson, and Yusu Wang for
numerous useful discussions. This work is supported by the Laboratory Directed Research
and Development (LDRD) program of Sandia National Laboratories. Sandia National
Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of
Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

References
1 C. Bajaj, M. van Kreveld, R. W. van Oostrum, V. Pascucci, and D. R. Schikore. Con-

tour trees and small seed sets for isosurface traversal. Technical Report UU-CS-1998-25,
Department of Information and Computing Sciences, Utrecht University, 1998.

2 K. Beketayev, G. Weber, M. Haranczyk, P.-T. Bremer, M. Hlawitschka, and B. Hamann.
Visualization of topology of transformation pathways in complex chemical systems. In
Computer Graphics Forum (EuroVis 2011), pages 663–672, 2011.

3 R. Boyell and H. Ruston. Hybrid techniques for real-time radar simulation. In Proceedings
of Fall Joint Computer Conference, pages 445–458, 1963.

4 P.-T. Bremer, G. Weber, V. Pascucci, M. Day, and J. Bell. Analyzing and tracking burning
structures in lean premixed hydrogen flames. IEEE Transactions on Visualization and
Computer Graphics, 16(2):248–260, 2010.

5 P.-T. Bremer, G. Weber, J. Tierny, V. Pascucci, M. Day, and J. Bell. Analyzing and tracking
burning structures in lean premixed hydrogen flames. IEEE Transactions on Visualization
and Computer Graphics, 17(9):1307–1325, 2011.

6 H. Carr. Topological Manipulation of Isosurfaces. PhD thesis, University of British
Columbia, 2004.

SoCG 2016

57:14 Avoiding the Global Sort: A Faster Contour Tree Algorithm

7 H. Carr, J. Snoeyink, and U. Axen. Computing contour trees in all dimensions. Computa-
tional Geometry: Theory and Applications, 24(2):75–94, 2003.

8 Y. Chiang, T. Lenz, X. Lu, and G. Rote. Simple and optimal output-sensitive construction
of contour trees using monotone paths. Computational Geometry: Theory and Applications,
30(2):165–195, 2005. doi:10.1016/j.comgeo.2004.05.002.

9 K. Cole-McLaughlin, H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci. Loops in
reeb graphs of 2-manifolds. In Proceedings of the Symposium on Computational Geometry
(SoCG), pages 344–350, 2003. doi:10.1145/777792.777844.

10 H. Doraiswamy and V. Natarajan. Efficient algorithms for computing reeb graphs. Com-
putational Geometry: Theory and Applications, 42:606–616, 2009.

11 H. Doraiswamy and V. Natarajan. Computing reeb graphs as a union of contour trees.
IEEE Transactions on Visualization and Computer Graphics, 19(2):249–262, 2013.

12 H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer, 1987.
13 H. Freeman and S. Morse. On searching a contour map for a given terrain elevation profile.

Journal of the Franklin Institute, 284(1):1–25, 1967.
14 W. Harvey, Y. Wang, and R. Wenger. A randomized o(m log m) time algorithm for

computing reeb graph of arbitrary simplicial complexes. In Proceedings of the Symposium
on Computational Geometry (SoCG), pages 267–276, 2010.

15 D. Laney, P.-T. Bremer, A. Macarenhas, P. Miller, and V. Pascucci. Understanding the
structure of the turbulent mixing layer in hydrodynamic instabilities. IEEE Transactions
on Visualization and Computer Graphics, 12(6):1053–1060, 2006.

16 A. Mascarenhas, R. Grout, P.-T. Bremer, V. Pascucci, E. Hawkes, and J. Chen. Topolo-
gical feature extraction for comparison of length scales in terascale combustion simulation
data. In Topological Methods in Data Analysis and Visualization: Theory, Algorithms, and
Applications, pages 229–240, 2011.

17 S. Parsa. A deterministic o(m log m) time algorithm for the reeb graph. In Proceedings of
the Symposium on Computational Geometry (SoCG), pages 269–276, 2012.

18 V. Pascucci and K. Cole-McLaughlin. Efficient computation of the topology of level set. In
IEEE Visualization, pages 187–194, 2002. doi:10.1109/VISUAL.2002.1183774.

19 V. Pascucci, G. Scorzelli, P.-T. Bremer, and A. Mascarenhas. Robust on-line computation
of reeb graphs: simplicity and speed. ACM Transactions on Graphics, 26(58), 2007.

20 B. Raichel and C. Seshadhri. Avoiding the global sort: A faster contour tree algorithm.
CoRR, abs/1411.2689, 2014.

21 Y. Shinagawa and T. Kunii. Constructing a reeb graph automatically from cross sections.
IEEE Comput. Graphics Appl., 11(6):44–51, 1991.

22 S. Tarasov and M. Vyalyi. Construction of contour trees in 3d in O(n logn) steps. In
Proceedings of the Symposium on Computational Geometry (SoCG), pages 68–75, 1998.
doi:10.1145/276884.276892.

23 J. Tierny, A. Gyulassy, E. Simon, and V. Pascucci. Loop surgery for volumetric meshes:
Reeb graphs reduced to contour trees. IEEE Trans. on Visualization and Computer Graph-
ics, 15(6):1177–1184, 2009.

24 M. van Kreveld, R. van Oostrum, C. Bajaj, V. Pascucci, and D. Schikore. Contour trees and
small seed sets for isosurface traversal. In Proceedings of the Symposium on Computational
Geometry (SoCG), pages 212–220, 1997. doi:10.1145/262839.269238.

http://dx.doi.org/10.1016/j.comgeo.2004.05.002
http://dx.doi.org/10.1145/777792.777844
http://dx.doi.org/10.1109/VISUAL.2002.1183774
http://dx.doi.org/10.1145/276884.276892
http://dx.doi.org/10.1145/262839.269238

	Introduction
	A refined bound with optimality properties
	Previous Work

	Contour tree basics
	Divide and conquer through contour surgery
	Raining to partition M
	Contour trees of extremum dominant complexes
	Painting to compute contour trees
	The data structures
	The algorithm
	Proving correctness
	Upper Bounds for Running Time

