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Abstract. The (n, k)-hypersimplex is the convex hull of all 0/1-vectors of length n with
coordinate sum k. We explicitly determine the extension complexity of all hypersimplices as
well as of certain classes of combinatorial hypersimplices. To that end, we investigate the
projective realization spaces of hypersimplices and their (refined) rectangle covering numbers.
Our proofs combine ideas from geometry and combinatorics and are partly computer assisted.

1. Introduction

1.1. The extension complexity of hypersimplices. The extension complexity or non-
negative rank rk+(P ) of a convex polytope P is the minimal number of facets (i.e., describing

linear inequalities) of an extension, a polytope P̂ that linearly projects onto P . The motiva-
tion for this definition comes from linear optimization: The computational complexity of the
simplex algorithm is intimately tied to the number of linear inequalities and hence it can be

advantageous to optimize over P̂ . As a complexity measure, the nonnegative rank is an object
of active research in combinatorial optimization; see [KLTT15]. There are very few families
of polytopes for which the exact nonnegative rank is known. Besides simplices, examples are
cubes, crosspolytopes, Birkhoff polytopes and bipartite matching polytopes [FKPT13] as well
as all d-dimensional polytopes with at most d+ 4 vertices [Pad16]. Determining the nonneg-
ative rank is non-trivial even for polygons [FRT12, PP15, Shi, Shi14]. For important classes
of polytopes exponential lower bounds obtained in [FMP+15, Rot13, Rot14] are celebrated
results.

In the first part of the paper we explicitly determine the nonnegative rank of the family of
hypersimplices. For 0 < k < n, the (n, k)-hypersimplex is the convex polytope

(1) ∆n,k = conv {x ∈ {0, 1}n : x1 + · · ·+ xn = k} .
Hypersimplices were first described (and named) in connection with moment polytopes of
orbit closures in Grassmannians (see [GGMS87]) but, of course, they are prominent objects
in combinatorial optimization, appearing in connection with packing problems and matroid
theory; see also below. This marks hypersimplices as polytopes of considerable interest and
naturally prompts the question as to their extension complexity.

Note that ∆n,k is affinely isomorphic to ∆n,n−k. The hypersimplex ∆n,1 = ∆n−1 is the
standard simplex of dimension n − 1 and rk+(∆n−1) = n. Our first result concerns the
extension complexity of the proper hypersimplices, that is, the hypersimplices ∆n,k with
2 ≤ k ≤ n− 2.

Theorem 1.1. The hypersimplex ∆4,2 has extension complexity 6, the hypersimplices ∆5,2
∼=

∆5,3 have extension complexity 9. For any n ≥ 6 and 2 ≤ k ≤ n−2, we have rk+(∆n,k) = 2n.
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It is straightforward to check that

(2) ∆n,k = [0, 1]n ∩ {x ∈ Rn : x1 + · · ·+ xn = k}
and that for 1 < k < n− 1, all 2n inequalities of the n-dimensional cube are necessary. The
nonnegative rank of a polytope is trivially upper bounded by the minimum of the number of
vertices and the number of facets. We call a polytope P extension maximal if it attains
this upper bound. Cubes as well as their duals, the crosspolytopes, are know to be extension
maximal; see also Corollary 2.5. Theorem 1.1 states that in addition to simplices, cubes, and
crosspolytopes, all proper hypersimplices except for ∆5,2 are extension maximal.

1.2. Psd rank and 2-level matroids. Our original motivation for studying the nonnegative
rank of hypersimplices comes from matroid theory [Oxl11]. For a matroid M on the ground

set [n] := {1, . . . , n} and bases B ⊆ 2[n], the associated matroid base polytope is the
polytope

PM := conv{1B : B ∈ B},
where 1B ∈ {0, 1}n is the characteristic vector of B ⊆ [n]. Hence, the (n, k)-hypersimplex is
the matroid base polytope of the uniform matroid Un,k. In [GS], the first and third author
studied 2-level matroids, which exhibit extremal behavior with respect to various geometric
and algebraic measures of complexity. In particular, it is shown that M is 2-level if and
only if PM is psd minimal. The psd rank rkpsd(P ) of a polytope P is the smallest size
of a spectrahedron (an affine section of the positive definite cone) that projects onto P .
In [GRT13] it is shown that rkpsd(P ) ≥ dimP + 1 and polytopes attaining this bound are
called psd minimal. Our starting point was the natural question whether the class of 2-level
matroids also exhibits an extremal behavior with respect to the nonnegative rank. We recall
from [GS, Theorem 1.2] the following synthetic description of 2-level matroids: A matroid M
is 2-level if and only if it can be constructed from uniform matroids by taking direct sums or
2-sums. So, the right starting point are the hypersimplices.

To extend Theorem 1.1 to all 2-level matroids, it would be necessary to understand the effect
of taking direct and 2-sums on the nonnegative rank. The direct sum of matroids translates
into the Cartesian product of matroid polytopes. Two out of three authors of this paper
believe in the following conjecture, first asked during a Dagstuhl seminar in 2013 [BKLT13].

Conjecture 1. The nonnegative rank is additive with respect to Cartesian products, that is,

rk+(P1 × P2) = rk+(P1) + rk+(P2),

for polytopes P1 and P2.

We provide evidence in favor of Conjecture 1 by showing it to hold whenever one of the
factors is a simplex (cf. Corollary 2.4). By taking products of extensions it trivially follows
that the nonnegative rank is subadditive with respect to Cartesian products. As for the 2-sum
M1 ⊕2 M2 of two matroids M1 and M2, it follows from [GS, Lemma 3.4] that PM1⊕2M2 is a
codimension-1 section of PM1 × PM2 and the extension complexity is therefore dominated by
that of the direct sum. Combined with Theorem 1.1 and [GS, Theorem 1.2] we obtain the
following simple estimate.

Corollary 1.2. If M is a 2-level matroid on n elements, then rk(PM ) ≤ 2n.

1.3. Extension complexity of combinatorial hypersimplices. The extension complex-
ity is not an invariant of the combinatorial type. That is, two combinatorially isomorphic
polytopes do not necessarily have the same extension complexity. For example, the extension
complexity of a hexagon is either 5 or 6 depending on the incidences of the facet-defining
lines [PP15, Prop. 4]. On the other hand, the extension complexity of any polytope com-
binatorially isomorphic to the n-dimensional cube is always 2n; cf. Corollary 2.5. The close
connection to simplices and cubes and Theorem 1.1 raises the following question for combi-
natorial (n, k)-hypersimplices.
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Question 1. Is rk+(P ) = 2n for any combinatorial (n, k)-hypersimplex P with n ≥ 6 and
2 ≤ k ≤ n− 2?

For n = 6 and k ∈ {2, 3} this is true due to Proposition 3.3 but we suspect that the answer
is no for some n > 6 and k = 2, n− 2. The rectangle covering number rc(P ) of a polytope P
is a combinatorial invariant that gives a lower bound on rk+(P ); see Section 3. While the
rectangle covering number of the small hypersimplices ∆6,2 and ∆6,3 is key to our proof of
Theorem 1.1, it is not strong enough to resolve Question 1 (see Proposition 3.4).

We introduce the notions of F -, G-, and FG-genericity of combinatorial hypersimplices, that
are defined in terms of the relative position of certain facets and that play a crucial role. We
show that all FG-generic hypersimplices are extension maximal (Theorem 4.1). Unfortunately,
FG-genericity is not a property met by all hypersimplices, which is confirmed by the existence
of a non-FG-generic realization of ∆6,2; see Proposition 5.2. On the other hand, we show that
hypersimplices with n ≥ 6 and bn2 c ≤ k ≤ d

n
2 e are FG-generic, which ensues the following.

Corollary 1.3. If P is a combinatorial (n, k)-hypersimplex with n ≥ 6 and 2 ≤ k ≤ dn2 e,
then

rk+(P ) ≥

{
n+ 2k + 1 if k <

⌊
n
2

⌋
,

2n otherwise.

We do not know of any realization of a (n, k)-hypersimplex with n ≥ 6 of extension complexity
less than 2n, but we do not dare to conjecture that every combinatorial (n, k)-hypersimplex
with n ≥ 6 and 2 ≤ k ≤ n is extension maximal.

1.4. Realization spaces of hypersimplices. The projective realization space Rn,k of
combinatorial (n, k)-hypersimplices parametrizes the polytopes combinatorially isomorphic to
∆n,k up to projective transformation. (Projective) realization spaces of polytopes are provably
complicated objects. The universality theorems of Mnëv [Mnë88] and Richter-Gebert [RG96]
assert that realization spaces of polytopes of dimension ≥ 4 are as complicated as basic open
semialgebraic sets defined over the integers. In contrast, for a 3-dimensional polytope P
with e ≥ 9 edges, it follows from Steinitz’ theorem that the projective realization space is
homeomorphic to an open ball of dimension e− 9; see also [RG96, Thm. 13.3.3].

For our investigation of the extension complexity of combinatorial hypersimplices, we study
their realization spaces. The observation that every hypersimplex is either F - or G-generic
(Lemma 4.2) turns out to be instrumental in our study. For k = 2, we are able to give a full
description.

Theorem 1.4. For n ≥ 4, Rn,2 is rationally equivalent to the interior of a
(
n−1
2

)
-dimensional

cube. In particular, Rn,2 is homeomorphic to an open ball and hence contractible.

Rationally equivalent means that the homeomorphism as well as its inverse are given by
rational functions (c.f. [RG96, Sect. 2.5]).

A key tool in the context of the Universality Theorem is that the projective realization of a
facet of a high-dimensional polytope can not be prescribed in general; see, for example, [Zie95,
Sect. 6.5]. In contrast, the shape of any single facet of a 3-polytope can be prescribed [BG70].
This description ofRn,2 allows us to show that facets of (n, 2)-hypersimplices can be prescribed
(Corollary 5.4), but also allows us to construct hypersimplices that are not FG-generic, which
implies that facets of hypersimplices cannot be prescribed in general (Corollary 5.3).

For 2 < k < n− 2, the realization spaces are more involved and, in particular, related to the
algebraic variety of n-by-n matrices with vanishing principal k-minors that was studied by
Wheeler [Whe]. In Theorem 4.4, we show that certain facets of ∆n,k completely determine
the realization, which then gives an upper bound on the dimension of the realization space.
However, we can currently not exclude that Rn,k is disconnected and has components of
different dimensions.
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The extension complexity is invariant under (admissible) projective transformations and hence
rk+ is well-defined onRn,k. The locus En,k ⊆ Rn,k of extension maximal (n, k)-hypersimplices
is open and Theorem 1.1 implies that En,k is non-empty for n ≥ 6 and 2 ≤ k ≤ n − 2. For
k = 2, we can say considerably more.

Corollary 1.5. For n ≥ 5, the combinatorial (n, 2)-hypersimplices with extension complexity
2n are dense in Rn,2.

Our results on FG-generic hypersimplices, which are characterized by the non-vanishing of a
determinantal condition on Rn,k, strongly suggest that Corollary 1.5 extends to all the cases.

Conjecture 2. For n ≥ 5 and 2 ≤ k ≤ n−2, the combinatorial hypersimplices of nonnegative
rank 2n form a dense open subset of Rn,k.

1.5. Structure of the paper. Theorem 1.1 is proved in Sections 2 and 3. In Section 2 we
investigate the discrete geometry of extensions and we set up an induction that deals with
the large hypersimplices ∆n,k with n > 6. In particular, we devise general tools for upper
bounding the extension complexity. For the small hypersimplices ∆6,2 and ∆6,3, we make
use of rectangle covering numbers in Section 3. We show that most of the geometric tools
of Section 2 have combinatorial counterparts for rectangle covering numbers. Section 4 is
devoted to the study of combinatorial hypersimplices and the associated realization spaces.
In Section 5 we focus on the combinatorial (n, 2)-hypersimplices.

2. The geometry of extensions and large hypersimplices

In this section we develop some useful tools pertaining to the geometry of extensions. These
will be used to give an inductive argument for the large hypersimplices ∆n,k with n > 6 and
1 < k < n− 1. The small hypersimplices are treated in the next section.

For a polytope P , we write v(P ) for the number of vertices of P and f(P ) for the number of

facets. Moreover, P̂ will typically denote an extension of P , and the linear projection that

takes P̂ to P is denoted by π. We start with the simple observation that the nonnegative
rank is strictly monotone with respect to taking faces.

Lemma 2.1. Let P be a polytope and F ⊂ P a facet. Then

rk+(P ) ≥ rk+(F ) + 1.

Proof. Let P̂ be a minimal extension of P . The preimage F̂ = π−1(F ) ∩ P̂ is an extension

of F . Every facet of F̂ is the intersection of a facet of P̂ with F̂ . Moreover, since F̂ is a proper

face of P̂ , there are at least c ≥ 1 facets of P̂ that contain F̂ and hence do not contribute

facets to F̂ . It follows that

rk+(P ) = f(P̂ ) ≥ f(F̂ ) + c ≥ rk+(F ) + 1,

which proves the claim. �

By induction, this extends to lower dimensional faces.

Corollary 2.2. Let P be a polytope and F ⊂ P a face. Then

rk+(P ) ≥ rk+(F ) + dim(P )− dim(F ).

We can strengthen this observation if we take into consideration more than one facet.

Lemma 2.3. Let P be a polytope and let F1 and F2 be two disjoint facets of P . Then

rk+(P ) ≥ min {rk+(F1), rk+(F2)}+ 2.
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Proof. If rk+(F1) > rk+(F2), the claim follows from Lemma 2.1. Hence, we can assume that

rk+(F1) = rk+(F2) = k. Extending the argument of Lemma 2.1, let P̂ be a minimal extension

of P and F̂i the preimage of Fi for i = 1, 2. Let ci be the number of facets of P̂ containing

F̂i. Since f(P̂ ) ≥ k + ci, the relevant case is c1 = c2 = 1. Now, π(F̂1 ∩ F̂2) ⊆ F1 ∩ F2 = ∅
implies that F̂1 and F̂2 are disjoint facets of P̂ . Hence, rk+(P ) = f(P̂ ) ≥ k + 2. �

We cannot replace min with max in Lemma 2.3: The convex hull of the 12 columns of the
matrix 

1 −1 −1 1 2 2 −2 −2 1 −1 1 −1
2 2 −2 −2 1 −1 −1 1 1 1 −1 −1
1 1 1 1 1 1 1 1 −1 −1 −1 −1
1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1


gives rise to a 4-dimensional polytope Q combinatorially isomorphic to product of a trian-
gle and a quadrilateral, and consequently has 7 facets. If we project onto the first three
coordinates we obtain a 3-dimensional polytope P with two parallel facets, F1 and F2,
that are an octagon and a square, with nonnegative ranks 6 and 4, respectively. Thus,
rk+(P ) ≤ 7 < max{rk+(F1), rk+(F2)} + 2 = 8. Figure 1 gives an idea of the geometry
underlying Q.

Figure 1. The left figures gives a sketch (not a Schlegel diagram) of the
geometric idea underlying the construction of Q. It is a union of three facets
that yield the projection on the right. We highlighted the structure as a
product of polygons, that makes it more visible how the two square faces of Q
yield the octogonal face of P .

Combining Lemma 2.1 and Lemma 2.3 yields the following result pertaining to Conjecture 1.

Corollary 2.4. Let P be a non-empty convex polytope and k ≥ 1. Then

rk+(P ×∆k) = rk+(P ) + k + 1.

Proof. Let P̂ be a minimal extension of P with rk+(P ) facets. Since the number of facets of

a product add up, P̂ ×∆k is an extension of P ×∆k with rk+(P ) + k + 1 facets. Thus, we
need to show that rk+(P ) + k + 1 is also a lower bound.

For k = 1, the polytope P ×∆1 is a prism over P with two distinct facets isomorphic to P
and the claim follows from Lemma 2.3. If k > 1, note that P ×∆k−1 is a facet of P ×∆k,
and an application of Lemma 2.1 yields the claim by induction on k. �

Another byproduct is a simple proof that every combinatorial cube is extension maximal (see
[FKPT13, Proposition 5.9]).

Corollary 2.5. If P is combinatorially equivalent to the n-dimensional cube Cn = [0, 1]n,
then rk+(P ) = 2n.

Proof. Since f(P ) = f(Cn) = 2n, we only need to prove rk+(P ) ≥ 2n. For n = 1, P is
a 1-dimensional simplex for which the claim is true. For n ≥ 2 observe that P has two
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disjoint facets F1, F2 that are combinatorially equivalent to (n− 1)-cubes. By induction and
Lemma 2.3 we compute rk+(P ) ≥ rk+(Cn−1) + 2 = 2n. �

With these tools, we are ready to prove Theorem 1.1 for the cases with n > 6. The case
n = 6 and 1 < k < n − 1 will be treated in Proposition 3.3 in the next section. A key
property, inherited from cubes, that allows for an inductive treatment of hypersimplices is
that for 1 < k < n− 1, the presentation (2) purports that

(3)
Fi := ∆n,k ∩ {xi = 0} ∼= ∆n−1,k, and

Gi := ∆n,k ∩ {xi = 1} ∼= ∆n−1,k−1,

are disjoint facets for any 1 ≤ i ≤ n. We call these the F -facets and G-facets, respectively.

Proposition 2.6. Assume that rk+(∆6,2) = rk+(∆6,3) = 12. Then rk+(∆n,k) = 2n for all
n > 6 and 1 < k < n− 1.

Proof. Let n ≥ 7. For 2 < k < n−2, the pairs of disjoint facets (3) allow us to use Lemma 2.3
together with induction on n and k to establish the result. Hence, the relevant cases are n ≥ 7
and k = 2 (which is equivalent to k = n− 2).

For k = 2, let

P̂ = {y ∈ Rm : `i(y) ≥ 0 for i = 1, . . . ,M}
be an extension of ∆n,k given by affine linear forms `1, . . . , `M and M = rk+(∆n,k). For
convenience, we can regard ∆n,k as a full-dimensional polytope in the affine hyperplane

{x ∈ Rn : x1 + · · ·+ xn = k} ∼= Rn−1. Let π : Rm → Rn−1 the linear projection that takes P̂

to ∆n,k. If for some 1 ≤ i ≤ n, the preimage F̂i = π−1(Fi) ∩ P̂ is not a facet then

f(P̂ ) ≥ rk+(Fi) + 2 = 2n by induction and we are done. So, we have to assume that

F̂i = {y ∈ P̂ : `i(y) = 0} is a facet of P̂ for all i = 1, . . . , n.

It is sufficient to show that the polyhedron Q̂ := {y ∈ Rm : `i(y) ≥ 0 for i = n + 1, . . . ,M}
is bounded and hence has f(Q̂) ≥ m+ 1 ≥ n facets. Since f(P̂ ) = n+ f(Q̂) this implies the
result. The key observation is that the polyhedron Q ⊂ Rn−1 bounded by the hyperplanes
defining the facets Gi of ∆n,k is a full-dimensional simplex and hence bounded. We claim

that π(Q̂) ⊆ Q. For this it is sufficient to show that if Hi is the unique hyperplane containing

Gi, then π−1(Hi) supports a face of Q̂. By construction, π−1(Hi) supports the face Ĝi :=

π−1(Gi) ∩ P̂ of P̂ . Now, if Ĝi ⊆ F̂j for some 1 ≤ j ≤ n, this would imply Gi ⊆ Fj .

This, however, cannot happen as Gi = π(Ĝi) and Fj are distinct facets of ∆n,k. Thus,

Ĝi = {y ∈ P̂ : `j(y) = 0 for j ∈ J} for some J ⊆ {n + 1, . . . ,M} and consequently Hi

supports a face of Q̂. Moreover, Q̂ ⊆ π−1(Q) and hence, the lineality space of Q̂ is contained
in kerπ. However the hyperplanes {y : `i(y) = 0} with 1 ≤ i ≤ n are parallel to kerπ, because

they are preimages of the hyperplanes supporting the facets Fi. Therefore, Q̂ is bounded since

we assumed that P̂ = Q̂ ∩ {y : `i(y) ≥ 0 for i = 1, . . . , n} is bounded. �

3. Rectangle covering numbers and small hypersimplices

In this section we treat the small hypersimplices 4 ≤ n ≤ 6 and 1 < k < n − 1. We will
do this by way of rectangle covering numbers. The rectangle covering number, introduced
in [FKPT13], is a very elegant, combinatorial approach to lower bounds on the nonnegative
rank of a polytope. For a polytope

P = {x ∈ Rd : `1(x) ≥ 0, . . . , `M (x) ≥ 0} = conv(v1, . . . , vN ),

where `1(x), . . . , `M (x) are affine linear forms, the slack matrix is the nonnegative matrix

SP ∈ RM×N
≥0 with (SP )ij = `i(vj). A rectangle of SP is an index set R = I×J with I ⊆ [M ],

J ⊆ [N ] such that (SP )ij > 0 for all (i, j) ∈ R. The rectangle covering number rc(SP ) is
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the smallest number of rectangles R1, . . . , Rs such that (SP )ij > 0 if and only if (i, j) ∈
⋃

tRt.
As explained in [FKPT13, Section 2.4]

rc(SP ) ≤ rk+(P ).

There are strong ties between the geometry of extensions and rectangle covering numbers.
In particular our geometric tools from Section 2 have independent counterparts for rectangle
covering numbers. Note that although the results are structurally similar they do not imply
each other and even the proofs are distinct.

Lemma 3.1. Let P be a polytope and F ⊂ P a facet. Then

rc(SP ) ≥ rc(SF ) + 1.

Moreover, if there is a facet G ⊂ P disjoint from F , then

rc(SP ) ≥ min{rc(SF ), rc(SG)}+ 2.

Proof. In the first case, part of the slack matrix of SP is of the form 0 · · · 0 a
∗

SF
...
∗

 ,
and since F is a facet, a > 0. There are at least rc(SF ) rectangles necessary to cover SF .
None of these rectangles can cover a as this is obstructed by the zero row above SF .

For the second case, we may assume that r = rc(SF ) = rc(SG). Similarly, we can assume that
parts of SP look like 

0 · · · 0 a1 · · · al
b1 · · · bk 0 · · · 0

∗ · · · ∗
SF

...
...

∗ · · · ∗
∗ · · · ∗
...

... SG
∗ · · · ∗


with a1, . . . , al, b1, . . . , bk > 0. There are r rectangles necessary to cover SF . None of these
rectangles can cover the first row. If the first row is covered with ≥ 2 rectangles, we are done.
If, however, a single rectangle covers the first row, then it cannot cover any row of SG. Indeed,
every row of SG corresponds to a facet of G and contains at least one vertex of G. Hence,
every row of SG has one zero entry. Since also SG needs at least r rectangles to be covered, by
the same token we obtain that the second row must be covered by a unique rectangle which
does not extend to SF or SG. Consequently, at least r + 2 rectangles are necessary. �

The example from Section 2 shows that similar to Lemma 2.3, we cannot replace min with
max. It can be checked that the rectangle covering number of an octagon is 6.

As direct consequence we obtain a lower bound on rectangle covering numbers (cf. [FKPT13,
Prop. 5.2]).

Corollary 3.2. Let P be a d-polytope, then rc(SP ) ≥ d+ 1.

It was amply demonstrated in [KW15, FMP+15] that the rectangle covering number is a very
powerful tool. We use it to compute the nonnegative rank of small hypersimplices. For a given
polytope P with slack matrix S = SP the decision problem of whether there is a rectangle
covering with r rectangles can be phrased as a satisfiability problem: For every rectangle Rl

and every (i, j) with Sij > 0 we designate a Boolean variable X l
ij . If X l

ij is true, this signifies

that (i, j) ∈ Rl. Every (i, j) has to occur in at least one rectangle. Moreover, for (i, j) and
(i′, j′) if Sij ·Si′j′ > 0 and Sij′ ·Si′j = 0, then (i, j) and (i′, j′) cannot be in the same rectangle.
The validity of the resulting Boolean formula can then be verified using a SAT solver. For
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the hypersimplices ∆n,k with 1 < k < n − 1, the sizes of the slack matrix is 2n ×
(
n
k

)
. For

n ≤ 6 these sizes are manageable and the satisfiability problem outlined above can be decided
by a computer. For example, for (n, k) = (6, 3) this yields 1320 Boolean variables and 55566
clauses in a conjunctive normal form presentation. The attached python script produces a
SAT instance for all (n, k, r) and we used lingeling [BHJ14] for the verification. This gives
a computer-aided proof for the small cases which also completes our proof for Theorem 1.1.

Proposition 3.3. For n ≤ 6, rc(∆n,k) = rk+(∆n,k) for all 1 ≤ k ≤ n. In particular,
rk+(∆4,2) = 6, rk+(∆5,2) = rk+(∆5,3) = 9, and rk+(∆6,2) = rk+(∆6,3) = 12.

Proof. The hypersimplex ∆4,2 is a 3-dimensional polytope with 6 vertices and, more precisely,
affinely isomorphic to the octahedron. Since the nonnegative rank is invariant under taking
polars, Corollary 2.5 asserts that the nonnegative rank is indeed 6. The polytope ∆5,2 is a 4-
dimensional polytope with 10 vertices and facets. Its nonnegative rank is 9. It was computed
in [OVW, Table 3] under the ID 6014. Alternatively it can be computed with the python

script in the appendix. Using, for example, polymake [GJ00], removing two non-adjacent
vertices of ∆5,2 yields a 4-dimensional polytope Q with 8 vertices and 7 facets. Taking a
2-fold pyramid over Q gives an extension of ∆5,2 with 9 facets. Finally, ∆6,2 and ∆6,3 are
5-polytopes with 12 facets and the SAT approach using the attached python script yields the
matching lower bound on the rectangle covering number. �

The hypersimplex ∆5,2 is special. We will examine it more closely in Section 5.1 and we
will, in particular, show that up to a set of measure zero all realizations have the expected
nonnegative rank 10.

It is tempting to think that Proposition 2.6 might hold on the level of rectangle cover-
ing numbers. Indeed, such a result would imply that all combinatorial hypersimplices are
extension maximal. As can be checked with the python script in the appendix, Proposi-
tion 3.3 extends at least to n = 8. In fact, the results above imply that rc(∆n,k) = 2n when
max{2, n− 6} ≤ k ≤ min{n− 2, 6}. However, the same script also shows that rc(∆10,2) ≤ 19
and the following result (a corollary of [FKPT13, Lemma 3.3]) shows just how deceiving the
situation is in small dimensions.

Proposition 3.4. The rectangle covering number of the (n, k)-hypersimplex satisfies

n ≤ rc(∆n,k) ≤ n+ de (k + 1)2 log(n)e.

Proof. The lower bound follows from Corollary 3.2. For the upper bound, consider the matrix
G(n, k) whose columns are the 0/1 vectors with k zeros. If 2 ≤ k ≤ n − 2, the rows of the
slack matrix of ∆n,k induced by the Gi facets provide a copy of G(n, k), and the rows induced
by Fi facets a copy of G(n, n− k). Thus,

rc(∆n,k) ≤ rc(G(n, n− k)) + rc(G(n, k)).

Observing that rc(G(n, n− k)) is trivially bounded from above by n (take a rectangle for each
row), it suffices to see that rc(G(n, k)) ≤ de (k + 1)2 log(n)e, which is shown in [FKPT13,
Lemma 3.3].

We reproduce their nice argument for completeness. The rows and columns of G(n, k) are

indexed by the sets [n] and
( [n]
n−k
)
, respectively. The non-zero elements are the pairs (x, S) ∈

[n]×
( [n]
n−k
)

with x ∈ S. The inclusion-maximal rectangles are of the form

RI :=

{
(x, S) ∈ [n]×

(
[n]

n− k

)
: x ∈ I and I ⊆ S

}
,

for I ⊆ [n]. We can pick an I at random by selecting every element in I independently with
probability p = 1

k+1 . The probability then that an entry (x, S) with x ∈ S is covered by RI is

p(1− p)k. Hence, if we choose r = de (k + 1)2 log(n)e such rectangles RI independently, then
probability that an entry is not covered by any of the rectangles is (1− p(1− p)k)r.
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The total number of non-zero entries of G(n, k) is (n−k)·
(
n
k

)
< nk+1. Therefore, the logarithm

of the expected number of non-zero entries of G(n, k) that are not covered by any rectangle
is at most

log
(

(1− p(1− p)k)rnk+1
)

= r log
(

1− p(1− p)k
)

+ (k + 1) log(n)

≤ −rp(1− p)k + (k + 1) log(n) = −r kk

(k + 1)k+1
+ (k + 1) log(n).

If this is negative, then there is at least one covering with r rectangles. That is, whenever

r >
(k + 1)k+2

kk
log(n).

Observing that

(k + 1)k+2

kk
log(n) = (k + 1)2

(
k + 1

k

)k

log(n) < e (k + 1)2 log(n)

concludes the proof. �

4. Combinatorial hypersimplices and realization spaces

Typically, the extension complexity is not an invariant of the combinatorial isomorphism class
of a polytope (see, for example, the situation with hexagons [PP15]). However, Corollary 2.5
states that every combinatorial cube, independent of its realization, has the same extension
complexity. The proximity to cubes and the results in Sections 2 and 3 raised the hope that
this extends to all hypersimplices. A combinatorial (n, k)-hypersimplex is any polytope
whose face lattice is isomorphic to that of ∆n,k. One approach would have been through
rectangle covering numbers but Proposition 3.4 refutes this approach in the strongest possible
sense.

We extend the notions of F - and G-facets from (3) to combinatorial hypersimplices. The cru-
cial property that we used in the proof of Proposition 2.6 was that in the standard realization
of ∆n,k, the polyhedron bounded by hyperplanes supporting the G-facets is a full-dimensional
simplex. We call a combinatorial hypersimplex G-generic if the hyperplanes supporting the
G-facets are not projectively concurrent, that is, if the hyperplanes supporting combinatorial
(n − 1, k − 1)-hypersimplices do not meet in a point and are not parallel to a common line.
We define the notion of F-generic hypersimplices likewise and we simply write FG-generic
if a hypersimplex is F - and G-generic.

Now, if a combinatorial hypersimplex P is G-generic, then there is an admissible projective
transformation that makes the polyhedron induced by the G-facets bounded. To find such a
transformation, one can proceed as follows: translate P so that it contains 0 in the interior,
then take the polar P ◦ and translate it so that the origin belongs to the interior of the convex
hull of the G-vertices. This is possible because G-genericity implies that these vertices span
a full-dimensional simplex. Taking the polar again yields a polytope P ′ that is projectively
equivalent to P . Since projective transformations leave the extension complexity invariant,
the proof of Proposition 2.6, almost verbatim, carries over to FG-generic hypersimplices.

Indeed, with the upcoming Lemma 4.2, it is straightforward to verify that F -facets of an
FG-generic (n, k)-hypersimplex with 2k ≥ n are again FG-generic; and the same works with
G-facets when 2k ≤ n. Hence, one can apply the inductive reasoning of the k = 2 case of
Proposition 2.6 and together with Proposition 3.3, this proves the following theorem.

Theorem 4.1. If P is an FG-generic combinatorial (n, k)-hypersimplex with n ≥ 6 and
2 ≤ k ≤ n− 2, then rk+(P ) = 2n.

The following lemma states that every combinatorial hypersimplex is either F -generic or
G-generic.
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Lemma 4.2. Every combinatorial (n, k)-hypersimplex is

(i) F -generic if 2k < n+ 2, and
(ii) G-generic if 2k > n− 2.

In particular, every combinatorial (n, k)-hypersimplex is FG-generic for n− 2 < 2k < n+ 2.

Proof. The two statements are dual under the affine equivalence ∆n,k
∼= ∆n,n−k. Hence,

we only prove the second statement. For this, let P ◦ be polar to a combinatorial (n, k)-
hypersimplex with 2k > n − 2. Thus, P ◦ is a polytope of dimension n − 1 with 2n vertices
f1, . . . , fn and g1, . . . , gn corresponding to the F - and G-facets. In this setting, G-genericity
means that the polytope Q = conv(g1, . . . , gn) is of full dimension n− 1. From the combina-
torics of (n, k)-hypersimplices, we infer that for every I ⊆ [n] with |I| = k, the set

conv ({gi : i ∈ I} ∪ {fi : i 6∈ I})
is a face of P ◦ and hence conv(gi : i ∈ I) is a face of Q. Thus Q is a k-neighborly polytope
with 2k ≥ n − 1 ≥ dimQ. It follows from [Grü03, Thm. 7.1.4] that Q is a simplex and thus
of dimension n− 1. �

Although we will later see that not every combinatorial hypersimplex is FG-generic (cf. Propo-
sition 5.2), this has some immediate consequences for the extension complexity of combinato-
rial hypersimplices. The following corollary can be deduced from Figure 2, using Corollary 2.2
to navigate along the arrows to the (thick) diagonal.

Corollary 1.3. If P is a combinatorial (n, k)-hypersimplex with n ≥ 6, then

rk+(P ) ≥


n+ 2k + 1, if 2 ≤ k <

⌊
n
2

⌋
,

2n, if
⌊
n
2

⌋
≤ k ≤

⌈
n
2

⌉
, and

n+ 2(n− k) + 1, if
⌈
n
2

⌉
< k ≤ n− 2.

Proof. For
⌊
n
2

⌋
≤ k ≤

⌈
n
2

⌉
, we get the result as a combination of Theorem 4.1 with Lemma 4.2.

If P is a combinatorial (n, k)-hypersimplex with k <
⌊
n
2

⌋
, then P has a 2k-dimensional face

Q isomorphic to ∆2k+1,k (by successively taking F -facets). By the previous case, rk+(Q) =
2(2k+1). By Corollary 2.2, rk+(P ) ≥ n+2k+1. The case k >

⌈
n
2

⌉
follows symmetrically. �

4.1. Realization spaces of hypersimplices. A combinatorial (n, k)-hypersimplex is a poly-
tope P ⊂ Rn−1 given by 2n linear inequalities fi(x) = fi0 +

∑
j fijxj ≥ 0 and gi(x) =

gi0 +
∑

j gijxj ≥ 0 for i = 1, . . . , n such that P is combinatorially isomorphic to ∆n,k under
the correspondence

Fi = {x ∈ ∆n,k : xi = 0} −→ {x ∈ P : fi(x) = 0}, and

Gi = {x ∈ ∆n,k : xi = 1} −→ {x ∈ P : gi(x) = 0}.
Of course, the inequalities are unique only up to a positive scalar and hence the group
(R2n

>0, ·) acts on ordered collections of linear inequalities furnished by all combinatorial (n, k)-
hypersimplices in Rn−1. We only want to consider realizations that are genuinely distinct and
it is customary to identify two realizations of ∆n,k that differ by an affine transformation or
an (admissible) projective transformation; see, for example, [RG96, Sect. 2.1] or [BLS+99,
Sect. 8.1]. We do the latter. However, care has to be taken as the projective linear group
does not act on the realization space. To that end, we identify P with its homogenization

hom(P ) := cone({1} × P ) =

{(
x0
x

)
∈ Rn :

g0ix0 + · · ·+ gnixn ≥ 0
f0ix0 + · · ·+ fnixn ≥ 0

for i = 1, . . . , n

}
.

Under this identification, one verifies that two (n, k)-hypersimplices P and P ′ are projec-
tively equivalent if and only if hom(P ) and hom(P ′) are linearly isomorphic. The projec-
tive realization space Rn,k of combinatorial (n, k)-hypersimplices is the set of matrices
(g1, . . . , gn, f1, . . . , fn) ∈ Rn×2n that yield cones isomorphic to the homogenization of the
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Figure 2. The smaller hypersimplices. Arrows represent the structure of the
F - and G-facets. Those in the upper half are F -generic, those in the lower half
are G-generic and those in the middle are FG-generic.

(n, k)-hypersimplex modulo the action of GLn × R2n
>0. We write g⊥i and f⊥i for the facet

defining hyperplanes of hom(P ) corresponding to gi and fi, respectively.

Let us fix 1 < k ≤ n
2 and let P be a combinatorial (n, k)-hypersimplex. By Lemma 4.2, the

F -facets are generic and hence bound a simplex Q up to projective transformation. That is,

hom(Q) = {x ∈ Rn : f0ix0 + · · ·+ fnixn ≥ 0 for i = 1, . . . , n} ∼= Rn
≥0

by a linear transformation. Hence, we can choose a matrix representing hom(P ) of the form

(4)

 | | | 1

g1 g2 · · · gn
. . .

| | | 1

 .

Modulo positive column and row scaling, the matrix (g1, . . . , gn) uniquely determines P up
to projective transformations. Indeed, by using suitable positive column scaling on the fi’s,
the effect of positively scaling rows of (4) leaves the identity matrix of (4) invariant.

For example, a representative of the standard realization of ∆n,k is given by the G-matrix:

(5)


−k + 1 1 · · · 1

1 −k + 1 · · · 1
...

...
. . .

...
1 1 · · · −k + 1

 .

The G-matrix also gives us a condition for G-genericity. The hyperplanes to G-facets are
projectively concurrent if there is a nonzero element in the kernel of the G-matrix. This
proves the following useful criterion.

Lemma 4.3. Let P be a combinatorial (n, k)-hypersimplex with k ≤ n
2 . Then P is G-generic

if and only if det(g1, . . . , gn) 6= 0.

Notice that the principal k-minors of (5) vanish. This is common to all combinatorial hy-
persimplices. Indeed, the combinatorics of hypersimplices dictates that for any I ⊆ [n] with
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|I| = k, the intersection of the hyperplanes {g⊥i : i ∈ I} and {f⊥i : i 6∈ I} with hom(P ) is a
face of dimension 1. By our choice of f1, . . . , fn, this is equivalent to

(6) rk(GII) = k − 1 for all I ⊆ [n] with |I| = k.

Notice that these are the only equality constrains for Rn,k. The remaining conditions are only
strict inequalities coming vertex-facet-nonincidences.

The complex variety of n-by-n matrices with vanishing principal k-minors was studied by
Wheeler in [Whe], which turns out to be a rather complicated object. For example, it is not
known if the variety is irreducible and even the dimension is only known in certain cases. The
following result yields an upper bound on the dimension of Rn,k.

Theorem 4.4. For 2 < k < n− 2, every P ∈ Rn,k is completely identified by a realization of
∆n−1,k−1 unique up to affine transformation. In particular, for 2 ≤ k ≤ n− 2, the dimension

of Rn,k is at most
(
n−1
2

)
.

Proof. Let P be a combinatorial (n, k)-hypersimplex. By a suitable projective transformation,
we can assume that the facet-defining hyperplanes of F1 and G1 are parallel. This assumption
fixes the intersection of aff(G1) with the hyperplane at infinity and hence fixes G1 up to an
affine transformation.

Since F1 and G1 lie in parallel hyperplanes, the corresponding facets of F1 and G1 are parallel
(because they are induced by the intersection of the same supporting hyperplanes of ∆n,k

with these two parallel hyperplanes).

A result of Shephard (see [Grü03, Thm. 15.1.3, p.321]) states that if all the 2-dimensional
faces of a polytope R ⊂ Rd are triangles, then for any representation R = R1 + R2 of R as
Minkowski sum, there are ti ∈ Rd and λi ≥ 0 such that Ri = ti + λiR for i = 1, 2. Now, if Q
and Q′ are normally equivalent polytopes, i.e. combinatorially equivalent and corresponding
facets are parallel, and Q has only triangular 2-faces, then, by [Zie95, Prop. 7.12], all 2-faces
of Q+Q′ are triangles as well. It follows that Q and Q′ are positively homothetic.

Since every face of a hypersimplex is a hypersimplex and 2-dimensional hypersimplices are
triangles, this shows that realizations of hypersimplices are determined up to positive homo-
thety once their facet directions are determined. In particular, this shows that given G1, F1

is determined up to a positive homothety. Hence, given G1, P is unique up to projective
transformations.

The bound on the dimension follows by induction on k. We will see in Theorem 1.4 that
dimRn,2 =

(
n−1
2

)
, settling the base case. The affine group of Rd is a codimension d subgroup

of the projective group. Hence, by induction,

dimRn,k ≤ dimRn−1,k−1 + (n− 2) ≤
(
n− 2

2

)
+ (n− 2) =

(
n− 1

2

)
. �

5. The (n, 2)-hypersimplices

Although realization spaces are notoriously difficult objects and it is generally difficult to ac-
cess different realizations of a given polytope, in the case of (n, 2)-hypersimplices we have
a simple construction and a nice geometrical interpretation. Let us denote by ∆n−1 =
conv(e1, . . . , en) ⊂ Rn the standard simplex of dimension n− 1.

Theorem 5.1. For n ≥ 4, let pij be a point in the relative interior of the edge [ei, ej ] ⊂ ∆n−1
for 1 ≤ i < j ≤ n. Then

P := conv{pij : 1 ≤ i < j ≤ n}
is a combinatorial (n, 2)-hypersimplex. Up to projective transformation, every combinatorial
(n, 2)-hypersimplex arises this way.
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Proof. Since ∆n−1 is a simple polytope, the polytope P is the result of truncating every vertex
ei of ∆n−1 by the unique hyperplane spanned by {pij : j 6= i}. Hence, P has

(
n
2

)
vertices and

every pij is incident to exactly two facets isomorphic to ∆n−1,1 ∼= ∆n−2. If n = 4, then it is
easily seen that P is an octahedron. For n > 4, we get by induction on n that the remaining
facets P ∩ {x : xi = 0} are isomorphic to ∆n−1,2, which implies the first claim.

For the second statement, let P be a combinatorial (n, 2)-hypersimplex. We know from
Lemma 4.2 that the F -facets bound a projective simplex. By a suitable projective transfor-
mation, we may assume that this is exactly ∆n−1. Each vertex of P lies in all the F -facets
except for two. So every vertex of P lies in the relative interior of a unique edge of ∆n−1. �

Note that the representation given in Theorem 5.1 is not unique up to projective transfor-
mation. The simplest way to factor out the projective transformations is to perform a first
truncation at the vertex e1 of ∆n−1. Then conv{p12, . . . , p1n, e2, . . . , en} is a prism over a
simplex, which is projectively unique (cf. [Grü03, Ex. 4.8.30]). It then only remains to choose(
n−1
2

)
points in the interior of every edge of the base of the prism. Each choice produces a

projectively distinct (n, 2)-hypersimplex, and every (n, 2)-hypersimplex arises this way, up to
projective transformation. This completes the proof of Theorem 1.4.

Theorem 1.4. For n ≥ 4, Rn,2 is rationally equivalent to the interior of a
(
n−1
2

)
-dimensional

cube. In particular, Rn,2 is homeomorphic to an open ball and hence contractible.

To recover the description as an n×n matrix, we can proceed as follows. Set the (projective)
simplex ∆F bounded by the F -facets to be the standard simplex. Now, for every (oriented)

edge [ei, ej ] of ∆F , consider the ratio ρij =
‖ei−pij‖
‖ej−pij‖ for i 6= j. It is not hard to see that the

diagonal entries of the G-matrix are negative and that, if we scale its columns so that they
are −1, then we are left with the matrix

(7)


−1 ρ12 · · · ρ1n
ρ21 −1 · · · ρ2n
...

...
. . .

...
ρn1 ρn2 · · · −1

 ;

containing −1 in the diagonal and the ratios ρij in the remaining entries. Notice how the

condition on the vanishing 2 × 2 principal minors coincides with the relation ρij = ρ−1ji . By
Theorem 5.1, any choice of positive ratios fulfilling this relation gives rise to a realization of
an (n, 2)-hypersimplex.

All non-diagonal entries are positive by construction. Multiplying the ith column by ρi1 and
the ith row by ρ1i for 2 ≤ i ≤ n, which corresponds to a projective transformation, we are
left with an equivalent realization. Relabelling the ratios, it is of the form:

(8)


−1 1 · · · 1

1 −1 · · · ρ2n
...

...
. . .

...
1 ρn2 · · · −1

 .

Choosing a realization of ∆n,2 up to projective transformation amounts to choosing
(
n−1
2

)
positive ratios and we recover the description of Theorem 1.4. Actually, this is the transfor-
mation that we also used before, which transforms the truncated simplex into a prism over a
simplex. The

(
n−1
2

)
remaining ratios correspond to the edges of the basis of the prism.

Notice that, although a similar argumentation provides the realization space up to affine
transformation, that setup is slightly more delicate. While a choice of a point on each of the

(
n
2

)
edges of a standard simplex gives a unique affine realization of ∆n,2, not every affine realization
can be obtained this way: The F -simplex might be unbounded for some realizations of ∆n,2.
Hence, there are several “patches” in the affine realization space, each one corresponding to
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a different relative position of the F -simplex with respect to the hyperplane at infinity. For
every patch, realizations are parametrized by the position of the points in the edges of ∆F .

Example 1. To show an example, we will work with ∆3,2, which we look at as two nested
projective simplices, the second being the convex hull of a point in each edge of the first. Even
though this is not strictly a hypersimplex, it provides simpler figures than ∆4,2. Figure 3
depicts four such realizations.

Figure 3. Four (projectively equivalent) realizations of ∆3,2 as two nested
(projective) simplices.

In the first three, the outer simplex is a standard simplex. Computing the ratios of (7) we
recover the matrices −1 3 1

1
3 −1 3
1 1

3 −1

 ,

 −1 3 1
3

1
3 −1 1
3 1 −1

 and

 −1 3 3
1
3 −1 9
1
3

1
9 −1

 .

We can transform the first into the second (resp. third) by multiplying the third row by 3
(resp. 1

3) and the third column by 1
3 (resp. 3), which means that they represent projectively

equivalent realizations. To fix a unique projective representative, we send e1 to infinity, and
impose that p12, p13, e2, e3 form a prism over a standard simplex (in this case a square), as
in the fourth figure. The ratios that we get on the base of the prism give the entries of the
matrix corresponding to (8):  −1 1 1

1 −1 9
1 1

9 −1

 .

In this example, this projective transformation corresponds to multiplying the second row and
the third column of the first matrix by 3, and its third row and second column by 1

3 .

With the aid of this description, we can produce our first example of a non FG-generic
hypersimplex. The following is due to Francisco Santos (personal communication), who found
nicer coordinates than our original example.

Proposition 5.2. There are (6, 2)-hypersimplices that are not G-generic.

Proof. The following matrix corresponds to a non-G-generic realization of ∆6,2
−1 2

√
6 + 5 −2

√
6 + 5 1 1 1

−2
√

6 + 5 −1 2
√

6 + 5 1 1 1

2
√

6 + 5 −2
√

6 + 5 −1 1 1 1
1 1 1 −1 1 1
1 1 1 1 −1 1
1 1 1 1 1 −1

 .

It can be checked that the determinant is zero and Lemma 4.3 finishes the proof. �
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Corollary 5.3. Not every combinatorial (n, k)-hypersimplex is a facet of a combinatorial
(n+ 1, k + 1)-hypersimplex.

Proof. Every combinatorial (7, 3)-hypersimplex is FG-generic by Lemma 4.2, a property that
is inherited by its G-facets. Hence, the combinatorial (6, 2)-hypersimplex of Proposition 5.2
is not a facet of any combinatorial (7, 3)-hypersimplex. �

In contrast, the shape of facets of (n, 2)-hypersimplices can be prescribed. This is a direct
corollary of the construction from Theorem 5.1.

Corollary 5.4. Every combinatorial (n, 2)-hypersimplex is a facet of a combinatorial (n +
1, 2)-hypersimplex.

5.1. The (5, 2)-hypersimplex. The (5, 2)-hypersimplex is special. As we argued in the proof
of Proposition 3.3, the nonnegative rank of the hypersimplex ∆5,2 in its defining realization (1)
is equal to 9. In light of Theorem 1.1, this deviates from the ‘expected’ nonnegative rank.
The goal of this section is to show that generic realizations of ∆5,2 have nonnegative rank 10.

We just described the (projective) realization space of ∆5,2 obtained by choosing an interior
point in every edge of the base of ∆3 ×∆1. That means that dimR5,2 = 6.

We now claim that the realization P of ∆5,2 given as the convex hull of the columns

(9)


35 35 35 35 0 0 0 0 0 0
35 0 0 0 50 42 20 0 0 0
0 35 0 0 20 0 0 56 60 0
0 0 35 0 0 28 0 14 0 42
0 0 0 35 0 0 50 0 10 28


has nonnegative rank 10. To prove this, we again use a computer to compute the refined
rectangle covering number from [OVW]. Like the ordinary rectangle covering number, the
refined rectangle covering number yields lower bounds on the nonnegative rank of a polytope
P but instead of only the support pattern of the slack matrix SP , it takes into account simple
relations between the actual values. A covering of S = SP by rectangles R1, . . . , Rs is refined
if for any pair of indices (i, k), (j, l) such that

(10) SikSjl > SilSjk,

then the number of rectangles containing Sik or Sjl is at least two. (necessarily positive)
entries Sik, Sjl are contained in at least two rectangles. Of course, if Sil or Sjk are zero, then
this reduces to the condition for ordinary coverings by rectangles. The refined rectangle
covering number rrc(SP ) is the least size of a refined covering. It is shown in [OVW,
Theorem 3.4] that rrc(SP ) lies between rc(SP ) and rk+(P ) and thus yields a possibly better
lower bound on the nonnegative rank. We will work with the following relaxation that we call
the generic refined rectangle covering number. We consider coverings by ordinary rectangles
with the additional condition that for any pair of indices (i, k), (j, l) such that

(11) Sik, Sjl, Sil, Sjk > 0 and SikSjl 6= SilSjk,

the four entries Sik, Sjl, Sil, Sjk are covered by at least two rectangles. The denomination
‘generic’ is explained in the proof of Theorem 5.5 below.

As for the rectangle covering number, to determine if there is a generic refined covering of a
given size can be phrased as a Boolean formula. For the example given above and the number
of rectangles set to 9, a python script in the appendix produces such a formula with 450
Boolean variables and 16796 clauses. Any suitable SAT solver verifies that this formula is
unsatisfiable which proves that the (5, 2)-hypersimplex given in (9) has nonnegative rank 10.

Theorem 5.5. The combinatorial (5, 2)-hypersimplices with nonnegative rank 10 form a dense
open subset of R5,2.
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Proof. Let I be the collection of all pairs of indices (i, k; j, l) satisfying (11) in the realization
of ∆5,2 given in (9). The set of realizations X ⊆ R5,2 for which (11) is not satisfied for some
(i, k; j, l) ∈ I form an algebraic subset of R5,2. Since the realization (9) is not in X, this
shows that X is a proper subset and hence of measure zero in the open set R5,2. �

The same result extends easily to the remaining (n, 2)-hypersimplices.

Corollary 1.5. For n ≥ 5, the combinatorial (n, 2)-hypersimplices with extension complexity
2n are dense in Rn,2.

Proof. For n = 5, this is the previous result. For n ≥ 6, this follows from Theorem 4.1 with the
fact that FG-generic hypersimplices form a dense open subset of Rn,2, because G-genericity
is equivalent to the determinant of (8) being non-zero (Lemma 4.3). �

As of now, we are unable to extend this result to higher values of k. Nevertheless, we conjecture
that except for a subset of zero measure, all (n, k)-hypersimplices have nonnegative rank 2n
(for n ≥ 5). (Notice that the existence of particular instances already ensures the existence
of open neighborhoods of hypersimplices of nonnegative rank 2n.)

Conjecture 2. For n ≥ 5 and 2 ≤ k ≤ n−2, the combinatorial hypersimplices of nonnegative
rank 2n form a dense open subset of Rn,k.

Theorem 4.1 implies that combinatorial hypersimplices of nonnegative rank 2n are an open
subset of Rn,k. However, notice that Rn,k is a quotient of the variety of vanishing principal
k-minors, which has irreducible components of different dimensions [Whe]. We cannot certify
that the nonnegative rank 2n subset is dense because it could skip a whole component.
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