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Abstract
A graph drawing is greedy if, for every ordered pair of vertices (x, y), there is a path from x

to y such that the Euclidean distance to y decreases monotonically at every vertex of the path.
Greedy drawings support a simple geometric routing scheme, in which any node that has to send
a packet to a destination “greedily” forwards the packet to any neighbor that is closer to the
destination than itself, according to the Euclidean distance in the drawing. In a greedy drawing
such a neighbor always exists and hence this routing scheme is guaranteed to succeed.

In 2004 Papadimitriou and Ratajczak stated two conjectures related to greedy drawings. The
greedy embedding conjecture states that every 3-connected planar graph admits a greedy drawing.
The convex greedy embedding conjecture asserts that every 3-connected planar graph admits a
planar greedy drawing in which the faces are delimited by convex polygons. In 2008 the greedy
embedding conjecture was settled in the positive by Leighton and Moitra.

In this paper we prove that every 3-connected planar graph admits a planar greedy drawing.
Apart from being a strengthening of Leighton and Moitra’s result, this theorem constitutes a
natural intermediate step towards a proof of the convex greedy embedding conjecture.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases Greedy drawings, 3-connectivity, planar graphs, convex drawings

1 Introduction

Geographic routing is a family of routing protocols for ad-hoc networks, which are networks
with no fixed infrastructure – such as routers or access points – and with dynamic topo-
logy [17, 30, 31]. In a geographic routing scheme each node of the network actively sends,
forwards, and receives packets; further, it does so by only relying on the knowledge of its
own geographic coordinates, of those of its neighbors, and of those of the packet destina-
tion. Greedy routing – originally called Cartesian routing [16] – is the simplest and most
renowned geographic routing scheme. In this protocol, a node that has to send a packet
simply forwards it to any neighbor that is closer – according to the Euclidean distance – to
the destination than itself. The greedy routing scheme might fail to deliver packets because
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of the presence of a void in the network; this is a node with no neighbor closer to the destin-
ation than itself. For this reason, several variations of the greedy routing scheme have been
proposed; see, e.g., [8, 21, 22].

Apart from its failure in the presence of voids, the greedy routing protocol has two
disadvantages which limit its applicability. First, in order for the protocol to work, each
node of the network has to be equipped with a GPS, which might be expensive and might
consume excessive energy. Second, two nodes that are close geographically might be unable
to communicate with each other because of the presence of topological obstructions. Rao et
al. [29] introduced the following brilliant idea for extending the applicability of geographic
routing in order to overcome the above issues. Suppose that a network topology is known;
then one can assign virtual coordinates to the nodes and use these coordinates instead of the
geographic locations of the nodes in the greedy routing protocol. The virtual coordinates
can then be chosen so that the greedy routing protocol is guaranteed to succeed.

Computing the virtual coordinate assignment for the nodes of a network corresponds to
the following graph drawing problem: Given a graph G, construct a greedy drawing of G,
that is a drawing in the plane such that, for any ordered pair of vertices (x, y), there exists a
neighbor of x in G that is closer – in terms of Euclidean distance – to y than x. Equivalently,
a greedy drawing of G is such that, for any ordered pair of vertices (x, y), there exists a
distance-decreasing path from x to y, that is, a path (u1, u2, . . . , um) in G such that x = u1,
y = um, and the Euclidean distance between ui+1 and um is smaller than the one between
ui and um, for any i = 1, 2, . . . ,m− 2.

Greedy drawings experienced a dramatical surge of popularity in the theory community
in 2004, when Papadimitriou and Ratajczak [27] proposed the following two conjectures
about greedy drawings of 3-connected planar graphs.1

I Conjecture 1. (Greedy embedding conjecture) Every 3-connected planar graph admits a
greedy drawing.
I Conjecture 2. (Convex greedy embedding conjecture) Every 3-connected planar graph ad-
mits a convex greedy drawing.

Papadimitriou and Ratajczak [27, 28] provided several reasons why 3-connected planar
graphs are central to the study of greedy drawings. First, there exist non-3-connected
planar graphs and 3-connected non-planar graphs that do not admit any greedy drawing.
Thus, the 3-connected planar graphs form the largest class of graphs that might admit a
greedy drawing, in a sense. Second, all the graphs with no K3,3-minor admit a 3-connected
planar spanning graph, hence they admit a greedy drawing, provided the truth of the greedy
embedding conjecture. Third, the preliminary study of Papadimitriou and Ratajczak [27, 28]
provided evidence for the mathematical depth of their conjectures.

In 2008 Leighton and Moitra [23, 24] settled the greedy embedding conjecture in the
affirmative; the same result was established (independently and slightly later) by Angelini
et al. [4, 5]. In this paper we show the following result.

I Theorem 1. Every 3-connected planar graph admits a planar greedy drawing.

Given a 3-connected planar graph G, both the algorithm by Leighton and Moitra [23, 24]
and the one by Angelini et al. [4, 5] find a certain spanning subgraph S of G and construct
a (planar) greedy drawing of S; then they embed the edges of G not in S as straight-
line segments obtaining a, in general, non-planar greedy drawing of G. Thus, Theorem 1

1 The convex greedy embedding conjecture has not been stated in the journal version [28] of Papadi-
mitriou and Ratajczak paper [27].
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strengthens Leighton and Moitra’s and Angelini et al.’s results. Furthermore, convex draw-
ings, in which all the faces are delimited by convex polygons, are planar, hence Theorem 1
provides a natural step towards a proof of the convex greedy embedding conjecture.

Our proof employs a structural decomposition for 3-connected planar graphs which finds
its origins in a paper by Chen and Yu [9]. This decomposition actually works for a super-
class of the 3-connected planar graphs known as strong circuit graphs. We construct a
planar greedy drawing of a given strong circuit graph G recursively: We apply the structural
decomposition to G in order to obtain some smaller strong circuit graphs, we recursively
construct planar greedy drawings for them, and then we suitably arrange these drawings
together to get a planar greedy drawing of G. For this arrangement to be feasible, we need to
ensure that the drawings we construct satisfy some coercive geometric requirements; these
are described in the main technical theorem of the paper – Theorem 7.

Related results. Planar greedy drawings always exist for maximal planar graphs [12].
Further, every planar graph G with a Hamiltonian path P = (u1, u2, . . . , un) has a planar
greedy drawing. Namely, construct a planar straight-line drawing Γ of G such that y(u1) <
y(u2) < · · · < y(un); such a drawing always exists [13]; scale Γ down horizontally, so
that P is “almost vertical”. Then, for any 1 ≤ i < j ≤ n, the paths (ui, ui+1 . . . , uj)
and (uj , uj−1 . . . , ui) are distance-decreasing. A characterization of the trees that admit a
(planar) greedy drawing is known [25]; indeed, a greedy drawing of a tree is always planar [2].

Algorithms have been designed to construct succinct greedy drawings, in which the vertex
coordinates are represented with a polylogarithmic number of bits [14, 18, 19]; this has been
achieved by allowing the embedding space to be different from the Euclidean plane or the
metric to be different from the Euclidean distance.

Planar graph drawings have been studied in which paths between pairs of vertices are
required to exist satisfying properties different from being distance-decreasing. Consider a
path P = (u1, u2, . . . , um) in a graph drawing. We say that P is self-approaching [1, 26]
if, for any three points a, b, c in this order along P from u1 to um, the Euclidean distance
between a and c is larger than the one between b and c – then a self-approaching path is also
distance-decreasing. We say that P is increasing-chord [1, 11, 26] if it is self-approaching in
both directions. We say that P is strongly monotone [3, 15, 20] if the orthogonal projections
of the vertices of P on the line ` through u1 and um appear in the order u1, u2, . . . , um. We
explicitly mention [15] the recent proof that every 3-connected planar graph admits a planar
drawing in which every pair of vertices is connected by a strongly monotone path.

2 Preliminaries

In this section we introduce some preliminaries. For a graph G, we denote by V (G) and
E(G) its vertex and edge sets, respectively.

Subgraphs and connectivity. Let G be a graph and U ⊆ V (G); we denote by G−U
the graph obtained from G by removing the vertices in U and their incident edges. Further,
if e ∈ E(G), we denote by G − e the graph obtained from G by removing the edge e. Let
H be a subgraph of G. An H-bridge B of G is either an edge of G not in H with both the
end-vertices in H (then we say that B is a trivial H-bridge), or a connected component of
G − V (H) together with the edges from that component to the vertices in V (H) (then we
say that B is a non-trivial H-bridge); the vertices in V (H) ∩ V (B) are the attachments of
B in H. Further, for a vertex v ∈ V (G)− V (H), we denote by H ∪ {v} the subgraph of G
composed of H and of the isolated vertex v. Further,

A vertex k-cut (in the following simply called k-cut) in a connected graph G is a set of
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k vertices whose removal disconnects G. For k ≥ 2, a connected graph is k-connected if it
has no (k − 1)-cut. A k-connected component of a graph G is a maximal (with respect to
both vertices and edges) k-connected subgraph of G. Given a 2-cut {a, b} in a 2-connected
graph G, an {a, b}-component is either the edge ab (then we say that the {a, b}-component
is trivial) or a subgraph of G induced by a, b, and the vertices of a connected component of
G− {a, b} (then we say that the {a, b}-component is non-trivial).

Plane graphs and embeddings. A drawing of a graph is planar if no two edges
intersect except at common end-vertices. A plane graph is a planar graph together with a
plane embedding; a plane embedding of a connected planar graph G is an equivalence class of
planar drawings of G, where two drawings Γ1 and Γ2 are equivalent if: (i) for each v ∈ V (G),
the clockwise order of the edges incident to v coincides in Γ1 and in Γ2; and (ii) the clockwise
order of the edges composing the walks delimiting the outer faces of Γ1 and Γ2 is the same.
When we talk about a planar drawing of a plane graph G, we always mean that it respects
the plane embedding of G. We assume that any subgraph H of G is associated with the
plane embedding obtained from the one of G by deleting the vertices and edges not in H.
In a plane graph G a vertex is external or internal depending on whether it is or it is not
incident to the outer face of G, respectively.

Refer to Fig. 1. For two external vertices u and v of a 2-connected plane graph G, let
τuv(G) and βuv(G) be the paths composed of the vertices and edges encountered when walk-
ing along the boundary of the outer face of G in clockwise and counter-clockwise direction
from u to v, respectively. Note that τuv(G) and βvu(G) have the same vertices and edges,
however in reverse linear orders.

vu G

βuv(G)

τuv(G)

Figure 1 The paths τuv(G) and βuv(G) in a 2-connected plane graph G.

Geometry. In this paper every angle is measured in radians, even when not explicitly
stated. The slope of a half-line ` is defined as follows. Denote by p the starting point of ` and
let `′ be the vertical half-line starting at p and directed towards decreasing y-coordinates.
Then the slope of ` is the angle spanned by a counter-clockwise rotation around p bringing `′
to coincide with `, minus π

2 . Note that, because of this definition, the slope of any half-line
is assumed to be between -π2 (included) and 3π

2 (excluded); in the following, there will be
very few exceptions to this assumption, which will be however evident from the text. Every
angle expressed as arctan(·) is assumed to be between -π2 and π

2 . We define the slope of an
edge uv in a graph drawing as the slope of the half-line from u through v. Note that the
slope of an edge uv is equal to the slope of the edge vu plus or minus π. For a directed line
`, we let its slope be equal to the slope of any half-line starting at a point of ` and directed
as `. We denote by ∆pqr a triangle with vertices p, q, r, and we denote by ]pqr the angle
of ∆pqr incident to q; note that ]pqr is between 0 and π.

Let Γ be a drawing of a graph G and let u, v be vertices in V (G). We denote by d(Γ, uv)
the Euclidean distance between u and v in Γ. We also denote by dH(Γ, uv) the horizontal
distance between u and v in Γ, that is, the absolute value of the difference between the x-
coordinates of u and v in Γ; the vertical distance dV (Γ, uv) between u and v in Γ is defined
analogously. With a slight abuse of notation, we will use d(Γ, pq), dH(Γ, pq), and dV (Γ, pq)
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even if p and q are points in the plane (and not necessarily vertices of G). A drawing of a
graph is a straight-line drawing if each edge is represented by a straight-line segment.

The following lemma argues that the planarity and the greediness of a drawing are not
lost as a consequence of any sufficiently small perturbation of the vertex positions.

I Lemma 2. Let Γ be a planar straight-line drawing of a graph G. There exists a value
ε∗Γ > 0 such that the following holds true. Let Γ′ be any straight-line drawing in which,
for every vertex z ∈ V (G), the Euclidean distance between the positions of z in Γ and Γ′
is at most ε∗Γ; then Γ′ is planar and any path which is distance-decreasing in Γ is also
distance-decreasing in Γ′.

Proof. Let δ be the minimum Euclidean distance in Γ between any two vertices, or between
any vertex and any non-incident edge, or between any two non-adjacent edges, where the
Euclidean distance between a point p and a straight-line segment s is the minimum Euclidean
distance between p and any point of s, and the Euclidean distance between two straight-line
segments s1 and s2 is the minimum Euclidean distance between any point of s1 and any
point of s2. Note that δ > 0, since Γ is planar. Further, let γ = min{d(Γ, uz) − d(Γ, vz)},
where the minimum is taken over all the ordered triples (u, v, z) of distinct vertices of G
such that d(Γ, uz) > d(Γ, vz). Note that γ > 0. Set ε∗Γ = min{ δ3 ,

γ
5 }. Note that ε∗Γ > 0.

Consider any straight-line drawing Γ′ of G in which, for each vertex z ∈ V (G), the
Euclidean distance between the positions of z in Γ and Γ′ is at most ε∗Γ.

We prove that Γ′ is planar. In order to do that, we exploit the following observation. For
any point p′ that belongs to the straight-line segment s′ representing an edge e in Γ′, there
exists a point p whose distance from p′ is at most ε∗Γ and that belongs to the straight-line
segment s representing e in Γ. This is because s′ is contained in the convex hull of the two
disks with radius ε∗Γ centered at the end-points of s or, equivalently, in the region which
is the Minkowski sum of s with a disk with radius ε∗Γ. Now suppose, for a contradiction,
that in Γ′ two distinct vertices v1 and v2 coincide at a point p′, or an edge e overlaps a
non-incident vertex v at a point p′, or two non-adjacent edges e1 and e2 cross at a point
p′. Then there exist two points p1 and p2 in Γ that are at distance at most ε∗Γ from p′ and
hence at most 2ε∗Γ from each other and such that v1 and v2 are placed at p1 and p2 in Γ,
or such that v is placed at p1 and p2 belongs to the straight-line segment representing e in
Γ, or such that p1 and p2 belong to the straight-line segments representing e1 and e2 in Γ,
respectively. However, 2ε∗Γ ≤ 2δ

3 < δ, which contradicts the definition of δ.
We prove that any path P = (u1, u2, . . . , um) which is distance-decreasing in Γ is

also distance-decreasing in Γ′. Since P is distance-decreasing, we have that d(Γ, uium) >
d(Γ, ui+1um), for every i = 1, 2 . . . ,m − 2. Since the Euclidean distance between the posi-
tions of any vertex z ∈ V (G) in Γ and Γ′ is at most ε∗Γ, for any i = 1, . . . ,m−2, we have that
d(Γ′, uium) ≥ d(Γ, uium)−2ε∗Γ and that d(Γ′, ui+1um) ≤ d(Γ, ui+1um)+2ε∗Γ. It follows that
d(Γ′, uium)− d(Γ′, ui+1um) ≥ d(Γ, uium)− d(Γ, ui+1um)− 4ε∗Γ ≥

d(Γ,uium)−d(Γ,ui+1um)
5 > 0.

Hence, d(Γ′, uium) > d(Γ′, ui+1um) for i = 1, . . . ,m − 2. It follows that P is distance-
decreasing in Γ′. J

We conclude this section with a technical lemma we are going to exploit heavily in the
next section. Refer to Fig. 2a.

I Lemma 3. Let G be a 2-connected plane graph whose outer face consists of two paths
(u = u1, u2, . . . , up = v) and (u = v1, v2, . . . , vq = v). Let `1, `2, and `3 be three directed
lines that pass through a point pu and that have slopes s1, s2, and s3, respectively, where
0 < s1 ≤ s2 ≤ s3 < π. Let Γ be a planar drawing of G such that u lies at pu; let
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`3

u

`2 `1

v
u2

v2

Γ

a

up

slope s3−π

Wi+1Wi

ui+1
ui

slope s1

b

Figure 2 (a) Illustration for the statement of Lemma 3. (b) Illustration for the proof of Lemma 3.

sm (sM ) be the minimum (maximum, respectively) slope of an edge uiui+1 or vjvj+1. If
s3 − π < sm ≤ sM < s1 (if s3 < sm ≤ sM < s1 + π), then Γ lies entirely to the right (to the
left, respectively) of `2, except for the vertex u.

Proof. We only prove that, if s3 − π < sm ≤ sM < s1, then Γ lies entirely to the right of
`2, except for the vertex u; the proof that, if s3 < sm ≤ sM < s1 + π, then Γ lies entirely to
the left of `2, except for the vertex u, is symmetric.

Further, it suffices to prove that the paths (u = u1, u2, . . . , up) and (u = v1, v2, . . . , vq)
lie to the right of `2, except for the vertex u; indeed, if that is the case, then the planarity
of Γ implies that the entire drawing Γ, except for the vertex u, lies to the right of `2.

We now prove that the path (u = u1, u2, . . . , up) lies to the right of `2, except for the
vertex u; the proof for the path (u = v1, v2, . . . , vq) is analogous.

For i = 1, . . . , p, let Wi be the open wedge delimited by the half-lines starting at ui with
slopes s3 − π and s1; that is, Wi is the region of the plane that is spanned by a half-line
starting at ui with slope s3−π while rotating counter-clockwise around ui until it has slope
s1. We claim thatWi contains the path (ui, ui+1, . . . , up) in its interior, except for the vertex
ui which is on the boundary of Wi. Observe that the claim (with i = 1) implies the lemma,
since Wi lies to the right of `2, given that s2 − π ≤ s3 − π and s1 ≤ s2.

We now prove the claim by reverse induction on i. The case i = p is trivial. Hence,
assume that Wi+1 contains the path (ui+1, ui+2, . . . , up) in its interior, except for the vertex
ui+1 which is on the boundary of Wi+1. See Fig. 2b. Since s3 − π < sm ≤ sM < s1, the
edge uiui+1 lies in the interior of the wedge Wi, except for the vertex ui which is on the
boundary of Wi. Further, since ui+1 lies in the interior of Wi, the entire wedge Wi+1, and
hence the path (ui+1, ui+2, . . . , up), lies in the interior of Wi. This completes the induction
and hence concludes the proof of the lemma. J

3 Proof of Theorem 1

In this section we prove Theorem 1. Throughout the section, we will work with plane graphs.
Further, we will deal with a class of graphs that is wider than the one of 3-connected planar
graphs. The graphs in this class have been introduced by Chen and Yu [9] with the name of
strong circuit graphs, as they constitute a subclass of the well-known circuit graphs, whose
definition is due to Barnette and dates back to 1966 [6]. Here we rephrase the definition of
strong circuit graphs as follows.

I Definition 4. A strong circuit graph is a triple (G, u, v) such that either: (i) G is an edge
uv or (ii) |V (G)| ≥ 3 and the following properties are satisfied.

(a) G is a 2-connected plane graph;
(b) u and v are two distinct external vertices of G;



G. Da Lozzo, A. D’Angelo, and F. Frati 7

(c) if edge uv exists, then it coincides with the path τuv(G); and
(d) for every 2-cut {a, b} of G we have that a and b are external vertices of G and at least

one of them is an internal vertex of the path βuv(G); further, every non-trivial {a, b}-
component of G contains an external vertex of G different from a and b.

Several problems are more easily solved on (strong) circuit graphs than on 3-connected
planar graphs. This is because the (strong) circuit graphs can be easily decomposed into
smaller (strong) circuit graphs, and hence are suitable for inductive proofs. We now present
a structural decomposition for strong circuit graphs whose main ideas can be found in a
paper by Chen and Yu [9] (see also a recent paper by Da Lozzo et al. [10] for an application
of this decomposition to cubic strong circuit graphs).

Consider a strong circuit graph (G, u, v) such that G is neither a single edge nor a simple
cycle. The decomposition distinguishes the case in which the path τuv(G) coincides with
the edge uv (Case A) from the case in which it does not (Case B).

G1 G2
G3

u2 uk−1u1
uk=v

Gk

u0=u
u3

Figure 3 Structure of (G, u, v) in Case A.

I Lemma 5. Suppose that we are in Case A (refer to Fig. 3). Then the graph G′ = G− uv
consists of a sequence of graphs G1, . . . , Gk, with k ≥ 1, such that:

5a: for i = 1, . . . , k − 1, the graphs Gi and Gi+1 share a single vertex ui; further, Gi is
in the outer face of Gi+1 and vice versa in the plane embedding of G;
5b: for 1 ≤ i, j ≤ k with j ≥ i+ 2, the graphs Gi and Gj do not share any vertex; and
5c: for i = 1, . . . , k with u0 = u and uk = v, (Gi, ui−1, ui) is a strong circuit graph.

Proof. Consider the BC-tree T ′ of G′, which is the tree that is defined as follows. The tree T ′
contains a B-node for each 2-connected component of G′ and a C-node for each 1-cut of G′;
further, T ′ contains an edge between a B-node b and a C-node c if the 1-cut corresponding
to c is a vertex of the 2-connected component corresponding to b.

u v

w

a

w3

w1

w2

B

u v

b
G1 G2

G3
G4 G5

u1 u2 u3 u4
u v

c

Figure 4 (a) The BC-tree T ′ of G′ contains a node with degree at least 3 corresponding to a
1-cut {w} of G′. (b) The BC-tree T ′ of G′ contains a node with degree at least 3 corresponding to
a 2-connected component B of G′. (c) The vertices u and v are not in G1.

First, we have that T ′ is a path. Namely suppose, for a contradiction, that T ′ has a node
t with degree at least 3. If t corresponds to a 1-cut {w} of G′, as in Fig. 4a, then w belongs
to at least three 2-connected components of G′ and the graph G′′ = G′ − {w} consists of at
least three connected components. Hence, the graph G′′ plus edge uv is disconnected, which
implies that {w} is a 1-cut of G; this contradicts Property (a) of (G, u, v). Analogously, if
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t corresponds to a 2-connected component B of G′, as in Fig. 4b, then B contains three
distinct 1-cuts {w1}, {w2}, and {w3} of G′; for each i ∈ {1, 2, 3}, the removal of wi from
G′ disconnects G′ into at least two connected components, at least one of which, denoted
by Gi, does not contain vertices of B. Since G1, G2, and G3 share no vertex, the edge uv
connects at most two components Gi and Gj with i, j ∈ {1, 2, 3}, which implies that {wh}
is a 1-cut of G, where h 6= i, j and h ∈ {1, 2, 3}; this contradicts Property (a) of (G, u, v).
Hence T ′ is a path (b1, c1, b2, c2, . . . , bk−1, ck−1, bk).

Let Gi be the 2-connected component of G′ corresponding to the B-node bi and let {ui}
be the 1-cut of G′ corresponding to the C-node ci. Then, for i = 1, . . . , k− 1, the graphs Gi
and Gi+1 share a single vertex ui, while for 1 ≤ i, j ≤ k with j ≥ i + 2 the graphs Gi and
Gj do not share any vertex. The vertices u and v are one in G1 and one in Gk; indeed, if
say G1 did not contain any of u and v, as in Fig. 4c, then {u1} would be a 1-cut of G; this
would contradict Property (a) of (G, u, v). Assume, w.l.o.g. up to renaming, that u belongs
to G1 and v belongs to Gk. We also have that u 6= u1, as if u = u1 then {u1} would be a
1-cut of G, again contradicting Property (a) of (G, u, v); analogously, v 6= uk−1.

We prove that Gi+1 lies in the outer face of Gi in the plane embedding of G, for every
i = 1, . . . , k − 1. Suppose for a contradiction that, for some i ∈ {1, . . . , k − 1}, the graph
Gi+1 lies inside an internal face f of Gi (except for the vertex ui, which is on the boundary
of f) in the plane embedding of G. Since the graphs Gi+2, . . . , Gk do not share any vertex
with Gi, by planarity they all lie inside f . It follows that the vertex v lies inside f (note
that v 6= ui even if k = i + 1) and hence it is not incident to the outer face of G, which
contradicts Property (b) of (G, u, v). An analogous proof shows that Gi lies in the outer
face of Gi+1 in the plane embedding of G, for every i = 1, . . . , k − 1.

It remains to prove that, for i = 1, . . . , k, the triple (Gi, ui−1, ui) is a strong circuit
graph, where u0 = u and uk = v. We are going to use the fact that βuv(G) is composed
of the paths βuu1(G1), βu1u2(G2), . . . , βuk−1v(Gk). This is because uv coincides with τuv(G)
by Property (c) of (G, u, v) and because Gi+1 lies in the outer face of Gi and vice versa in
the plane embedding of G.

(a) Graph Gi is 2-connected by assumption and it is associated with a plane embedding,
given that it is a subgraph of the plane graph G.

(b) For i = 1, . . . , k− 1, the vertex ui is external in the plane embedding of Gi, since Gi
is in the outer face of Gi+1 and vice versa; analogously, for i = 2, . . . , k, the vertex ui−1 is
external in the plane embedding of Gi. Further, u0 = u and uk = v are external in the plane
embeddings of G1 and Gk, respectively, since they are external in the plane embedding of
G. Finally, for i = 1, . . . , k, the vertices ui−1 and ui are distinct, as otherwise {ui−1 = ui}
would be a 1-cut of G, which would contradict Property (a) of (G, u, v).

(c) Suppose, for a contradiction, that the edge ui−1ui exists and that it does not coincide
with τui−1ui(Gi). This implies that Gi contains vertices different from ui−1 and ui, and
hence that {ui−1, ui} is a 2-cut of G. The {ui−1, ui}-component Hi of G that contains
τui−1ui(Gi) is non-trivial, given that τui−1ui(Gi) does not coincide with ui−1ui. Further,
no vertex of Hi other than ui−1 and ui is incident to the outer face of G, given that
all the vertices of Hi other than ui−1 and ui lie inside the region delimited by the cycle
βuu1(G1)∪ · · · ∪ βui−2ui−1(Gi−1)∪ ui−1ui ∪ βuiui+1(Gi+1)∪ · · · ∪ βuk−1v(Gk)∪ vu. However,
this contradicts Property (d) of (G, u, v).

(d) Consider any 2-cut {a, b} ofGi; thenGi has at least two non-trivial {a, b}-components.
We prove that a and b are external vertices of Gi. Suppose, for a contradiction, that a

is an internal vertex of Gi (the argument if b is an internal vertex of Gi is analogous), as in
Fig. 5a. Then the cycle delimiting the outer face of Gi belongs to a single {a, b}-component
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H of Gi, and there is a non-trivial {a, b}-component H ′ 6= H of Gi that does not contain
any external vertices of Gi other than b. Since all the edges in E(G)−E(Gi) lie in the outer
face of Gi in the plane embedding of G, it follows that {a, b} is a 2-cut of G, and that H ′ is
a non-trivial {a, b}-component of G that does not contain any external vertices of G other
than b. However, this contradicts Property (d) of (G, u, v).

H ′
H

b

a

a

H
H ′a=ui−1 ui

βuui−1(G) βuiv(G)
u v

b

b

Figure 5 Illustration for the proof that (Gi, ui−1, ui) satisfies Property (d) of a strong circuit
graph. (a) A vertex a of a 2-cut {a, b} of Gi is an internal vertex of Gi. (b) The {a, b}-component
H of Gi containing τab(Gi) contains no internal vertex of βab(Gi).

Next, we prove that at least one of a and b is an internal vertex of βui−1ui(Gi). Suppose,
for a contradiction, that a and b are both in τui−1ui(Gi). Assume, w.l.o.g. up to renaming of
a and b, that ui−1, a, b, and ui appear in this order in τui−1ui(Gi), where possibly ui−1 = a

and/or b = ui. Let H be the {a, b}-component of Gi containing τab(Gi); let H ′ be any
non-trivial {a, b}-component of Gi different from H.

If H contains an internal vertex of βab(Gi), then it contains the entire cycle delimiting
the outer face of Gi. The planarity of Gi implies that H ′ lies inside an internal face of
H, except at vertices a and b. This has two consequences. First, since all the edges in
E(G) − E(Gi) lie in the outer face of Gi (and of H) in the plane embedding of G, the
set {a, b} is a 2-cut of G and hence H ′ is a non-trivial {a, b}-component of G. Second,
no vertex of H ′ other than a and b is incident to the outer face of Gi or to the outer face
of G. These two statements contradict Property (d) for (G, u, v).
If H contains no internal vertex of βab(Gi), as in Fig. 5b, then ui−1, ui /∈ V (H)−{a, b},
hence no edge in E(G)−E(Gi) is incident to a vertex of H different from a and b. Since
the vertices of βui−1ui(Gi) are the only external vertices of G in V (Gi), it follows that H
is a non-trivial {a, b}-component of G that contains no external vertex of G other than,
possibly, a and b. This contradicts Property (d) for (G, u, v).

Finally, we prove that every non-trivial {a, b}-component H of Gi contains an external
vertex of Gi different from a and b. Namely, if that is not the case for a non-trivial {a, b}-
component H of Gi, then no edge in E(G) − E(Gi) is incident to a vertex of H different
from a and b. This implies that the set {a, b} is a 2-cut of G and H is a non-trivial {a, b}-
component of G. However, no vertex of H other than, possibly, a and b is incident to the
outer face of G. This contradicts Property (d) for (G, u, v). J

Given a strong circuit graph (G, u, v) that is not a single edge, the vertex u belongs to
one 2-connected component of the graph G− {v}. Indeed, if it belonged to more than one
2-connected component of G−{v}, then {u} would be a 1-cut of G−{v}, hence {u, v} would
be a 2-cut of G, which contradicts Property (d) for (G, u, v). We now present the following.

I Lemma 6. Suppose that we are in Case B (refer to Fig. 6). Let H be the 2-connected
component of the graph G − {v} that contains u; then we have |V (H)| ≥ 3. Further, let
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uk=v

u

u0=y`

y1
y2

G1 G2

Gku1 u2

H

Figure 6 Structure of (G, u, v) in Case B.

H ′ denote the graph H ∪ {v}. Then G contains ` distinct H ′-bridges B1, . . . , B`, for some
` ≥ 2, such that:

6a: each H ′-bridge Bi has two attachments, namely v and a vertex yi ∈ V (H);
6b: the H ′-bridges B1, . . . , B`−1 are trivial, while B` might be trivial or not;
6c: any two among y1, . . . , y` are distinct except, possibly, for y`−1 and y`; also if ` = 2,
then y1 and y2 are distinct;
6d: y1 is an internal vertex of τuv(G); further, B1 is an edge that coincides with τy1v(G);
6e: y` is an internal vertex of βuv(G) and βuy1(H); further, B` contains the path βy`v(G);
6f: B1, . . . , B`−1 appear in this counter-clockwise order around v and lie in the outer face
of B` in the plane embedding of G;
6g: the triple (H,u, y1) is a strong circuit graph; and
6h: B` consists of a sequence of graphs G1, . . . , Gk, with k ≥ 1, such that:

for i = 1, . . . , k− 1, the graphs Gi and Gi+1 share a single vertex ui; further, Gi is in
the outer face of Gi+1 and vice versa in the plane embedding of G;
for 1 ≤ i, j ≤ k with j ≥ i+ 2, the graphs Gi and Gj do not share any vertex; and
for i = 1, . . . , k with u0=y` and uk=v, the triple (Gi, ui−1, ui) is a strong circuit graph.

Proof. We first prove that |V (H)| ≥ 3. Suppose, for a contradiction, that H is a single edge
uy1. If the degree of u in G is one, then {y1} is a 1-cut of G; this contradicts Property (a)
for (G, u, v). Otherwise, there is a (H ∪ {v})-bridge Bi of G whose attachment in H is u. If
Bi is trivial, then it coincides with the edge uv; however, this contradicts the hypothesis of
Case B. Otherwise, Bi is non-trivial; however, this implies that {u, v} is a 2-cut of G, as the
removal of u and v from G disconnects y1 from the vertices in V (Bi)− {u, v}; since neither
u nor v is an internal vertex of βuv(G), this contradicts Property (d) for (G, u, v).

We now prove the properties of the lemma. First, if G had no H ′-bridge, then it would
not be connected, while it is 2-connected. Hence, G contains ` distinct H ′-bridges B1, . . . , B`
with ` ≥ 1. Each H ′-bridge Bi has at most one attachment yi ∈ V (H), as if Bi had at least
two attachments in V (H) then it would contain a path (not passing through v) between two
vertices of H; however, such a path would be in H, and not in Bi, given that H is a maximal
2-connected subgraph of G−{v}. It follows that ` ≥ 2, as if ` = 1 then y1 would be a 1-cut
of G, whereas G is 2-connected. Further, for i = 1, 2, . . . , `, the vertex v is an attachment
of Bi, as otherwise yi would be a 1-cut of G, whereas G is 2-connected. Analogously, for
i = 1, 2, . . . , `, the vertex yi is an attachment of Bi, as otherwise v would be a 1-cut of G,
whereas G is 2-connected. This proves Property 6a.

Suppose, for a contradiction, that yi = u, for some i ∈ {1, 2, . . . , `}. If Bi is a trivial H ′-
bridge, then it coincides with the edge uv; however, this contradicts the fact that we are in
Case B. If Bi is a non-trivial H ′-bridge, then {u, v} is a 2-cut of G; namely, the removal of u
and v from G disconnects the vertices in V (H)−{u} from the vertices in V (Bi)−{u, v} – the
latter set is non-empty given that Bi is non-trivial. However, this contradicts Property (d)
for (G, u, v), given that neither u nor v is an internal vertex of βuv(G). It follows that yi 6= u,
for i = 1, 2, . . . , `.
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We now prove Properties 6b–6f. Since v is incident to the outer face of G, it lies in the
outer face of H. It follows that all the H ′-bridges B1, . . . , B` lie in the outer face of H,
except at the vertices y1, . . . , y`, respectively. By the planarity of G, there are at most two
H ′-bridges among B1, . . . , B` that contain edges incident to the outer face of G. If there
were only one H ′-bridge Bi containing edges incident to the outer face of G, as in Fig. 7a,
then {yi} would be a 1-cut of G, whereas G is 2-connected. Hence, there are exactly two
H ′-bridges among B1, . . . , B` containing edges incident to the outer face of G. Denote them
by B1 and B`, as in Fig. 7b, so that u, y1, and y` appear in this clockwise order along the
outer face of H. Then y1 6= y`, as otherwise {y1} would be a 1-cut of G, whereas G is
2-connected; in particular, y1 6= y2 if ` = 2. It also follows that y1 is an internal vertex of
τuv(G), that y` is an internal vertex of βuv(G) and βuy1(H), that B1 contains τy1v(G), that
B` contains βy`v(G), and that every vertex yi 6= y1, y` is not incident to the outer face of
G. Now consider any H ′-bridge Bi of G with yi 6= y`. The graph Bi is a {yi, v}-component
of G, however {yi, v} is a pair of vertices none of which is internal to βuv(G), hence if Bi
were non-trivial, then Property (d) of (G, u, v) would be violated. It follows that the only
H ′-bridges which might be non-trivial are those whose attachment in H is y`; in particular,
since y1 6= y`, we have that B1 is trivial and coincides with the edge y1v = τy1v(G). If there
were at least two non-trivial H ′-bridges whose attachment in H is y`, then at least one of
them (in fact all the ones different from B`) would not contain any vertex incident to the
outer face of G other than y` and v; however, this would violate Property (d) of (G, u, v).
It follows that B` is the only H ′-bridge of G that is possibly non-trivial. By the planarity
of G and the connectivity of B` − {y`, v}, all the trivial H ′-bridges of G lie in the outer
face of B`; denote them by B1, . . . , B`−1 in their counter-clockwise order around v. Since
B1, . . . , B`−1 are trivial and incident to v, then y1, . . . , y`−1 are all distinct. By planarity
and since y1 6= y`, it follows that B`−1 and B` are the only H ′-bridges which might share
their attachment in H. This concludes the proof of Properties 6b–6f.

u yi Bi vH

a

vu

y`

y1

H
B1

B`

b

Figure 7 (a) If there were exactly one H ′-bridge Bi containing edges incident to the outer face
of G, then yi would be a 1-cut of G. (b) The H ′-bridges B1 and B` of G.

We now prove that the triple (H,u, y1) is a strong circuit graph.
(a) Graph H is 2-connected by assumption and it is associated with a plane embedding,

given that it is a subgraph of the plane graph G.
(b) The vertex u is incident to the outer face of H since (G, u, v) satisfies Property (b).

The vertex y1 is a vertex of τuv(G), as argued above, and hence it is incident to the outer
face of G and to the one of H. Finally, u and y1 are distinct, as otherwise τuv(G) would
coincide with the edge uv, contradicting the fact that we are in Case B.

(c) Suppose, for a contradiction, that the edge uy1 exists and does not coincide with
τuy1(H). Then {u, y1} is a 2-cut of G, since the removal of u and y1 disconnects the internal
vertices of τuy1(H) (which exist since τuy1(H) is not the edge uy1) from v. However, none
of u and y1 is an internal vertex of βuv(G); this contradicts Property (d) for (G, u, v).

(d) The proof that (H,u, y1) satisfies Property (d) is very similar to the proof that
(Gi, ui−1, ui) satisfies Property (d) in Lemma 5, hence it is only sketched here.
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Consider any 2-cut {a, b} of H. If one of a and b is an internal vertex of H, then one
non-trivial {a, b}-component L′ of H lies inside an internal face of another non-trivial {a, b}-
component L ofH. This implies that {a, b} is a 2-cut of G and that L′ is an {a, b}-component
of G that does not contain any external vertices of G other than a or b; this contradicts
Property (d) for (G, u, v). It follows that a and b are external vertices of H.

If a and b are both in τuy1(H), then assume that u, a, b, and y1 appear in this order
in τuy1(H), where possibly u = a and/or b = y1. Let L be the {a, b}-component of H
containing τab(H) and let L′ be any non-trivial {a, b}-component of H different from L. If
L contains an internal vertex of βab(H), then it contains the entire cycle delimiting the outer
face of H. It follows that L′ lies inside an internal face of L, except at a and b, and hence
that L′ is an {a, b}-component of G that does not contain any external vertices of G other
than a or b. This contradicts Property (d) for (G, u, v). If L contains no internal vertex of
βab(H), then no edge in E(G)−E(H) is incident to a vertex of L different from a and b. It
follows that L is a non-trivial {a, b}-component of G; further, neither a nor b is an internal
vertex of βuv(G), given that V (τab(H)) ⊆ V (τuv(G)). This contradicts Property (d) for
(G, u, v). It follows that at least one of a and b is an internal vertex of βuy1(H).

Finally, assume that a non-trivial {a, b}-component L of H contains no external vertex
of H other than a and b. Then {a, b} is a 2-cut of G and L is a non-trivial {a, b}-component
of G that contains no external vertex of G other than, possibly, a and b. This contradicts
Property (d) for (G, u, v). Hence, every non-trivial {a, b}-component of H contains an
external vertex of H other than a and b. This proves Property 6g for (H,u, y1).

In order to prove Property 6h, assume that B` does not coincide with the edge y`v, as
otherwise there is nothing to prove. Let B′` be the plane graph obtained by adding the edge
y`v to B`, so that y` immediately precedes v in the clockwise order of the vertices along
the outer face of B′` (both y` and v are indeed incident to the outer face of B`); see Fig. 8.
We prove that (B′`, y`, v) is a strong circuit graph; then Property 6h follows by applying
Lemma 5 to (B′`, y`, v).

uk=v

G1 G2

Gku1 u2y`=u0

Figure 8 The graph B′`.

(a) The graph B` is associated with a plane embedding, given that it is a subgraph of the
plane graph G. Further, y` and v are both incident to the outer face of B`, hence the plane
graph B′` is well-defined. We prove that B′` is 2-connected. Since y` and v are adjacent in
B′`, they belong to the same 2-connected component of B′`. However, the only vertices of
B` that are incident to edges in E(G)−E(B`) are y` and v. It follows that any 1-cut of B′`
is also a 1-cut of G. Then B′` is 2-connected since G is.

(b) The vertices y` and v are distinct since the first one belongs to H, while the second
one does not. Further, both y` and v are incident to the outer face of B`, as argued above,
and hence are external vertices of B′`.

(c) The edge y`v exists and coincides with τy`v(B′`), by construction.
(d) Consider any 2-cut {a, b} of B′` (possibly {a, b} ∩ {y`, v} 6= ∅).
Since y`v ∈ E(B′`), we have that y` and v are in the same {a, b}-component L of B′`.

Since y` and v are the only vertices of B` incident to edges in E(G)−E(B`), it follows that
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{a, b} is also a 2-cut of G. Then a and b are external vertices of B′` since they are external
vertices of G.

Next suppose, for a contradiction, that neither a nor b is an internal vertex of βy`v(B′`).
Since a and b are external vertices of B′` and since τy`v(B′`) coincides with the edge y`v,
it follows that a = y` and b = v (or vice versa). However, B` is a {y`, v}-component of
G, hence the removal of y` and v from B` (or B′`) does not disconnect B` (or B′`); this
contradicts the assumption that {a, b} is a 2-cut of B′`, and implies that one of a and b is
an internal vertex of βy`v(B′`).

Finally, consider any non-trivial {a, b}-component L of B′`. As proved above {a, b} is a
2-cut of G and at least one of a and b is not in {y`, v}. If L contains the edge y`v, then it
contains an external vertex of B′` other than a and b, namely whichever vertex of {y`, v} that
is not in {a, b}. Otherwise, L is also an {a, b}-component of G and it contains an external
vertex of B′` other than a and b since it contains an external vertex of G other than a and b.

This concludes the proof that (B′`, y`, v) is a strong circuit graph, hence it implies Prop-
erty 6h via Lemma 5. The lemma follows. J

We prove that any strong circuit graph (G, u, v) has a planar greedy drawing by exploiting
Lemmata 5 and 6 in a natural way. Indeed, if we are in Case A (in Case B) then Lemma 5
(resp. Lemma 6) is applied in order to construct strong circuit graphs (Gi, ui−1, ui) with
i = 1, . . . , k (resp. strong circuit graphs (H,u, y1) and (Gi, ui−1, ui) with i = 1, . . . , k) for
which planar greedy drawings are inductively constructed and then combined together in
order to get a planar greedy drawing of (G, u, v). The base cases of the induction are the
ones in which G is an edge or a simple cycle. Then a planar greedy drawing of G is directly
constructed.

In order to be able to combine planar greedy drawings for the strong circuit graphs
(Gi, ui−1, ui) (and (H,u, y1) if we are in Case B) to construct a planar greedy drawing of
(G, u, v), we need the inductively constructed drawings to satisfy some restrictive geometric
requirements, which are expressed in the following theorem, which is the core of the proof
of Theorem 1.

I Theorem 7. Let (G, u, v) be a strong circuit graph with at least three vertices and let
0 < α < π

4 be an arbitrary parameter. Let βuv(G) = (u = b1, b2, . . . , bm = v). There exists
a straight-line drawing Γ of G in the Cartesian plane such that the following holds. For any
value δ ≥ 0, denote by Γδ the straight-line drawing obtained from Γ by moving the position
of vertex u by δ units to the left. Then Γδ satisfies the following properties (refer to Fig. 9).

bm−1

b2
b3

bm=v`u δ

u=b1α

PxxQx

Figure 9 Illustration for the statement of Theorem 7.

1. Γδ is planar;
2. τuv(G) lies entirely on a horizontal line `u with u to the left of v;
3. the edge b1b2 has slope in the interval (−α; 0) and the edge bibi+1 has slope in the interval

(0;α), for each i = 2, 3, . . . ,m− 1;
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4. for every vertex x ∈ V (G) there is a path Px = (x = v1, v2, . . . , vp = v) from x to v

in G such that the edge vivi+1 has slope in the interval (−α;α) in Γδ, for each i =
1, 2, . . . , p− 1; further, if x 6= u, then u /∈ V (Px);

5. for every vertex x ∈ V (G) there is a path Qx = (x = w1, w2, . . . , wq = u) from x to u
in G such that the edge wiwi+1 has slope in the interval (π − α;π + α) in Γδ, for each
i = 1, 2, . . . , q − 1; and

6. for every ordered pair of vertices (x, y) in V (G) there is a path Pxy from x to y in G

such that Pxy is distance-decreasing in Γδ; further, if x, y 6= u, then u /∈ V (Pxy).

Before proceeding with the proof of Theorem 7, we comment on its statement. First, let
us set δ = 0 and argue about Γ0 = Γ. Properties 1 and 6 are those that one would expect,
as they state that Γ is planar and greedy, respectively. Properties 2 and 3 state that all the
edges incident to the outer face of Γ are “close” to horizontal; indeed, the edges of τuv(G)
are horizontal, the edge b1b2 has a slightly negative slope, and all the other edges of βuv(G)
have a slightly positive slope. Since Γ is planar, this implies that Γ is contained in a wedge
delimited by two half-lines with slopes 0 and −α starting at u. Properties 4 and 5 argue
about the existence of certain paths from any vertex to u and v; these two vertices play
an important role in the structural decomposition we employ, since distinct subgraphs are
joined on those vertices, and the paths incident to them are inductively combined together
in order to construct distance-decreasing paths. Finally, all these properties still hold true if
u is moved by an arbitrary non-negative amount δ to the left. This is an important feature
we exploit in one of our inductive cases.

We now present an inductive proof of Theorem 7. In the base cases G is a single edge
(we call this the Trivial Case) or a simple cycle (we call this the Cycle Case).

We start with the Trivial Case, in which G is a single edge. Although Theorem 7
assumes that |V (G)| ≥ 3, for its proof we need to inductively draw certain subgraphs of G
which might be single edges. Whenever we need to draw a strong circuit graph (G, u, v) such
that G is a single edge uv, we draw it as a horizontal straight-line segment with positive
length, with u to the left of v. We remark that, since Theorem 7 assumes that |V (G)| ≥ 3,
we do not need the constructed drawing to satisfy Properties 1–6.

We next deal with the Cycle Case, in which G is a simple cycle with at least 3 vertices.
Refer to Fig. 10. By Property (d) of (G, u, v), the set {u, v} is not a 2-cut of G, hence u
and v appear consecutively along the cycle G. By Property (c) of (G, u, v), the edge uv
coincides with the path τuv(G). Drawing Γ is constructed as follows. Place b1, b2, and bm
at the vertices of an isosceles triangle ∆b1b2bm in which the edge b1bm lies on a horizontal
line `u, with b1 to the left of bm, and in which the angles ]b2b1bm and ]b1bmb2 are α

2 , with
b2 below `u. Place the vertices b3, . . . , bm−1 on the straight-line segment b2bm in this order
from b2 to bm. This completes the construction of Γ. We have the following.

bm−1

b2 b3

bm=v`u

u=b1

δ dH(Γ, b1b2)

dV (Γ, b1b2)

Figure 10 The Cycle Case of the algorithm for the proof of Theorem 7. The gray angles are α
2 .

I Lemma 8. For any δ ≥ 0, the drawing Γδ constructed in the Cycle Case satisfies Proper-
ties 1–6 of Theorem 7.
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Proof. Properties 1 and 2 are trivially satisfied.
Concerning Property 3, by construction the edge bibi+1 has slope α

2 ∈ (0;α) for i =
2, . . . ,m − 1. Further, the edge b1b2 has slope − arctan dV (Γ,b1b2)

δ+dH(Γ,b1b2) , which is smaller
than 0, given that dV (Γ, b1b2), dH(Γ, b1b2) > 0 and δ ≥ 0, and larger than or equal to
− arctan dV (Γ,b1b2)

dH(Γ,b1b2) = −α2 , hence it is in (−α; 0). This implies that Γδ satisfies Property 3.
Concerning Property 4, let x = bi with i < m. Then a path Px satisfying the requirements

can be defined as Px = (b1, bm) if i = 1 or as Px = (bi, bi+1, . . . , bm) if i > 1. In the former
case, the only edge of Px has slope 0 ∈ (−α;α); in the latter case, all the edges of Px have
slope α

2 ∈ (−α;α) and Px does not pass through u. Hence Γδ satisfies Property 4.
Concerning Property 5, let x = bi with i > 1. Then a path Qx satisfying the requirements

can be defined as Qx = (bi, bi−1, . . . , b1). Any edge bjbj−1 with j ≥ 3 has slope π+ α
2 ∈ (π−

α;π+α) and edge b2b1 has slope π−arctan dV (Γ,b1b2)
δ+dH(Γ,b1b2) , which is smaller than π, given that

dV (Γ, b1b2), dH(Γ, b1b2) > 0 and δ ≥ 0, and larger than or equal to π − arctan dV (Γ,b1b2)
dH(Γ,b1b2) =

π − α
2 , hence it is in (π − α;π + α). This implies that Γδ satisfies Property 5.

Finally we deal with Property 6. Let x = bi and y = bj , for some 1 ≤ i, j ≤ m.

If 2 ≤ i, j ≤ m and i < j (and j < i), then the path Pxy = (bi, bi+1, . . . , bj) (resp. Pxy =
(bi, bi−1, . . . , bj)) is distance-decreasing in Γδ. Namely, it suffices to observe that the
vertex bh+1 (resp. bh−1) lies on the open straight-line segment bhbj for h = i, i+1, . . . , j−2
(resp. for h = i, i− 1, . . . , j + 2). Further, Pxy does not pass through u.
If i = 1 and j ≥ 3, then the path Pxy = (b1, b2, . . . , bj) is distance-decreasing in
Γδ. Namely, since the angles ]b2b1bm and ]b1bmb2 are α

2 by construction, the angle
]bmb2b1 = ]bjb2b1 is equal to π−α in Γ, and to at least π−α in Γδ. Since by assump-
tion α < π

4 , it follows that ]bjb2b1 is the largest angle of the triangle ∆b1b2bj in Γδ,
hence d(Γδ, b1bj) > d(Γδ, b2bj). That (b2, b3, . . . , bj) is distance-decreasing can be proved
as in the previous point.
If j = 1 and i ≥ 3, then the path Pxy = (bi, bi−1, . . . , b1) is distance-decreasing in
Γδ. In order to prove that, it suffices to argue that d(Γδ, b1bh) > d(Γδ, b1bh−1) for any
h = 3, 4, . . . , i. Since]bhb2b1 is at least π−α in Γδ (as from the previous point), the angle
]bhbh−1b1 is also at least π − α. Since by assumption α < π

4 , it follows that ]bhbh−1b1
is the largest angle of the triangle ∆b1bh−1bh in Γδ, hence d(Γδ, b1bh) > d(Γδ, b1bh−1).

This concludes the proof of the lemma. J

We now discuss the inductive cases. In Case A the path τuv(G) coincides with the edge
uv, while in Case B it does not. We discuss Case A first. Let G′ = G − uv, where G′
consists of a sequence of graphs G1, . . . , Gk, with k ≥ 1, satisfying the properties described
in Lemma 5. Our construction is different if k = 1 and k ≥ 2.

Suppose first that k = 1; by Lemma 5 the triple (G′ = G1, u, v) is a strong circuit
graph (and G1 is not a single edge, as otherwise we would be in the Trivial Case). Apply
induction in order to construct a straight-line drawing Γ′ of G′ with α

2 as a parameter. Let
τuv(G′) = (u = a1, a2, . . . , at = v). By Property 2 the path τuv(G′) lies on a horizontal line
`u in Γ′ with u to the left of v. Let Y > 0 be the minimum distance in Γ′ of any vertex
strictly below `u from `u. Let

ε = 1
2 min{ε∗Γ′ , Y, tan(α) · d(Γ′, a1a2), tan(α) · d(Γ′, a2at)}.

We construct a straight-line drawing Γ of G from Γ′ as follows; refer to Fig. 11. Decrease
the y-coordinate of the vertex a2 by ε. Further, decrease the y-coordinate of the vertex ai,
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with i = 3, 4, . . . , t − 1, so that it ends up on the straight-line segment a2at. Draw uv as a
straight-line segment. We have the following.

bm−1

b2
b3

at=bm=v`u δ

a2 a3
ε

u=a1=b1

d(Γ′, a1a2) d(Γ′, a2at)

Figure 11 The straight-line drawing Γ of G in Case A if k = 1.

I Lemma 9. For any δ ≥ 0, the drawing Γδ constructed in Case A if k = 1 satisfies
Properties 1–6 of Theorem 7.

Proof. Concerning Property 1, note first that Γ is planar, given that ε < ε∗Γ′ . Since Γδ
and Γ coincide, except for the position of the vertex u, we only need to prove that no edge
incident to u crosses any other edge in Γδ. Then consider any two edges uu′ and ww′ with
u′, w, w′ ∈ V (G) (possibly w = u or w = u′) and suppose, for a contradiction, that they
cross or overlap in Γδ.

u′

`u uδu

w`u′
εu′

εw

Figure 12 Illustration for the proof that the edges uu′ and ww′ do not cross in Γδ.

Refer to Fig. 12. If u′ = v, then uu′ and ww′ do not cross in Γδ, given that no vertex
other than u and v lies on or above `u in Γδ. We can hence assume that u′ 6= v and that
y(u′) < y(u). By Properties 1–3, we have that Γ′ lies in the closed wedge that is delimited
by the half-lines starting at u with slopes 0 and −π4 . It follows that x(u′) > x(u) in Γ′,
Γ, and Γδ (given that every vertex has the same x-coordinate in Γ′, Γ, and Γδ, except for
u, whose x-coordinate might be smaller in Γδ than in Γ′ and Γ). Consider the unbounded
region R of the plane that is delimited by `u from above, by the horizontal line `u′ through
u′ from below, and by the representation of the edge uu′ in Γ from the right. For any value
δ > 0, we have that uu′ lies in the interior of R (except at points u and u′) in Γδ, hence if
uu′ and ww′ cross in Γδ then at least one end-vertex of ww′, say w, lies in the interior of
R, given that y(w), y(w′) ≤ y(u) and that ww′ does not cross uu′ in Γ. This implies that
x(u) < x(w) < x(u′) in Γ′, Γ, and Γδ. We now distinguish four cases, based on whether u′
and/or w belong to V (τuv(G′)).

If u′, w ∈ V (τuv(G′)), then by Property 2 we have that u′ and w lie on `u in Γ′. However,
since x(u) < x(w) < x(u′), it follows that the edge uu′ overlaps the vertex w in Γ′, a
contradiction to Property 1 of Γ′.
If u′ ∈ V (τuv(G′)) and w /∈ V (τuv(G′)), then when transforming Γ′ into Γ the y-
coordinate of u′ has been decreased by a value εu′ ≤ ε which is larger than the distance
εw ≥ Y between w and `u. This contradicts ε ≤ Y

2 < Y .
If u′ /∈ V (τuv(G′)) and w ∈ V (τuv(G′)), then when transforming Γ′ into Γ the y-
coordinate of w has been decreased by a value εw ≤ ε. The point p on the edge uu′
with x-coordinate equal to x(w) has y-coordinate larger than y(w), hence the distance
from p to `u is a value εp < εw. This implies that the drawing obtained from Γ′ by
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decreasing the y-coordinate of w by εp, while every other vertex stays put, is not planar,
given that the edge uu′ overlaps the vertex w. However, since εp < εw, this contradicts
εw ≤ ε < ε∗Γ′ .
Finally, if u′, w /∈ V (τuv(G′)), then u, u′ and w have the same positions in Γ′ and Γ.
Consider the line through u′ and w; let q be its intersection point with `u and let δq be
the Euclidean distance between q and u in Γ′. Then the drawing Γ′δq is not planar as
the edge uu′ overlaps the vertex w. This contradicts Property 1 of Γ′.

Concerning Property 2, note that u and v lie on the same horizontal line `u (with u to
the left of v) in Γ since they do in Γ′ and since they have not been moved when transforming
Γ′ into Γ. Since τuv(G) coincides with the edge uv, it follows that Γδ satisfies Property 2.

Property 3 is satisfied by Γδ since it is satisfied by Γ′δ and since no vertex of βuv(G′) =
βuv(G) moves when transforming Γ′ into Γ (indeed, τuv(G′) and βuv(G′) do not share any
vertex other than u and v, given that G′ is 2-connected).

We now discuss Property 4. Let x ∈ V (G). If x = u, let Px = (u, v); then the only edge
of Px has slope 0 ∈ (−α;α). If x 6= u, then let P ′x = (x = v1, v2, . . . , vp = v) be a path in G′
such that the slope of vivi+1 in Γ′ is in the interval (−α2 ; α2 ), for i = 1, . . . , p − 1, and such
that u /∈ V (P ′x). This path exists since Γ′ satisfies Property 4, by induction. We distinguish
two cases.

If no vertex of P ′x−{v} belongs to τuv(G′), then Px = P ′x satisfies the required properties.
Indeed, no vertex other than those internal to τuv(G′) moves when transforming Γ′ into
Γ and no vertex other than u moves when transforming Γ into Γδ; thus, Px has the same
representation (and in particular each edge of Px has the same slope) in Γ′ and Γδ.

at=v
a2

vh=aj
ε

`u

x=v1
vh−1

d(Γ′, a2at)

Figure 13 Illustration for the proof that the slope in Γδ of every edge in the path Px = (x =
v1, v2, . . . , vh = aj , aj+1, . . . , at = v) is in (−α;α). The path Px is thick.

Otherwise, a vertex of P ′x − {v} belongs to τuv(G′); let h be the smallest index such
that vh = aj , for some aj ∈ V (τuv(G′)) − {v} and define Px = (x = v1, v2, . . . , vh =
aj , aj+1, . . . , at = v). Refer to Fig. 13. Note that u /∈ V (Px), given that u /∈ V (P ′x).
Hence, it suffices to argue about the slopes of the edges of Px in Γ (rather than in Γδ).
For i = 1, . . . , h−2, the slope of the edge vivi+1 is in (−α;α) in Γ since it is in (−α2 ; α2 ) ⊂
(−α;α) in Γ′ and since neither vi nor vi+1 moves when transforming Γ′ into Γ. Further,
for i = j, . . . , t−1, the slope of the edge aiai+1 in Γ is arctan

(
ε

d(Γ′,a2at)

)
, which is in the

interval (0;α) ⊂ (−α;α), given that ε, d(Γ′, a2at) > 0 and that ε < tan(α) · d(Γ′, a2at).
Finally, let s′ and s be the slopes of the edge vh−1vh in Γ′ and Γ, respectively. Since
vh−1vh ∈ E(P ′x), we have s′ ∈ (−α2 ; α2 ); since α ≤ π

4 , this implies that x(vh−1) < x(vh) in
Γ′ and Γ (note that the x-coordinates of the vertices do not change when transforming
Γ′ into Γ). Further, by Properties 1–4 of Γ′, we have that vh−1 lies below `u, which
contains vh; hence, y(vh−1) < y(vh) in Γ′. Since the vertex vh moves down (while vh−1
stays put) when transforming Γ′ into Γ, and since ε ≤ Y

2 < dV (Γ′, vh−1vh), it follows
that 0 < s < s′; hence s ∈ (0; α2 ) ⊂ (−α;α).

We next deal with Property 5. Let x ∈ V (G) and let Q′x = (x = w1, w2, . . . , wq = u)
be a path in Γ′δ such that the slope of wiwi+1 is in (π − α

2 ;π + α
2 ), for i = 1, 2, . . . , q − 1.
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This path exists since Γ′δ satisfies Property 5, by induction. Similarly to the proof that
Γδ satisfies Property 4, we distinguish two cases. If no vertex of Q′x − {u} belongs to
τuv(G′), then let Qx = Q′x and observe that Qx satisfies the required properties in Γδ
since Q′x does in Γ′δ. Otherwise, let h be the smallest index such that wh = aj , for some
aj ∈ V (τuv(G′)) − {u} and define Qx = (x = w1, w2, . . . , wh = aj , aj−1, . . . , a1 = u). Refer
to Fig. 14. For i = 1, . . . , h − 2, the slope of the edge wiwi+1 is in (π − α;π + α) in Γδ
since it is in (π − α

2 ;π + α
2 ) ⊂ (π − α;π + α) in Γ′δ. Further, similarly to the proof that the

edge vh−1vh has slope in (−α;α) and hence Γδ satisfies Property 4, we have that the edge
wh−1wh has slope s ∈ (π − α;π + α) in Γδ. Indeed, the slope s′ of the edge wh−1wh in Γ′
is in the interval (π − α

2 ;π + α
2 ) ⊂ (π − α;π + α) in Γ′δ, given that wh−1wh belongs to Q′x.

Further, since x(wh−1) > x(wh) and y(wh−1) < y(wh), we have that s′ ∈ (π − α;π). Since
the vertex wh moves down while wh−1 stays put when transforming Γ′ into Γ, and since
ε ≤ Y

2 < dV (Γ′, wh−1wh), we have that s′ < s < π, hence s ∈ (π − α;π) ⊂ (π − α;π + α).
For i = j, j − 1 . . . , 3, the edge aiai−1 has slope π+ arctan

(
ε

d(Γ′,a2at)

)
, which is larger than

π, given that ε, d(Γ′, a2at) > 0, and smaller than π + α, given that ε < tan(α) · d(Γ′, a2at).
Finally, the edge a2a1 has slope π − arctan

(
ε

δ+d(Γ′,a1a2)

)
, which is smaller than π, given

that ε, d(Γ′, a1a2) > 0 and δ ≥ 0, and larger than π − α, given that ε
δ+d(Γ′,a1a2) ≤

ε
d(Γ′,a1a2)

and that ε < tan(α) · d(Γ′, a1a2).

`u δ
ε
a2

x=w1wh=aj wh−1
u=a1

d(Γ′, a1a2) d(Γ′, a2at)

Figure 14 Illustration for the proof that the slope in Γδ of every edge in the path Qx = (x =
w1, w2, . . . , wh = aj , aj−1, . . . , a1 = u) is in (π − α;π + α). The path Qx is thick.

Finally, we deal with Property 6. Consider any two vertices x, y ∈ V (G).

First, assume that x, y 6= u. By induction, there exists a path Pxy from x to y in G′

that is distance-decreasing in Γ′ with u /∈ V (Pxy). By Lemma 2 and since, for every
vertex z ∈ V (G), the Euclidean distance between the positions of z in Γ′ and Γ is at
most ε < ε∗Γ′ , we have that Pxy is also distance-decreasing in Γ. Further, since all
the vertices other than u have the same position in Γ and Γδ, it follows that Pxy is a
distance-decreasing path from x to y not passing through u in Γδ.
Second, suppose that y = u. Consider the path Qx in G from Property 5, whose every
edge has slope in (π − α;π + α) in Γδ. Since α ≤ π

4 , it follows that Qx is a π-path
(according to the definition in [11]) or is π-monotone (according to the definition in [7]),
where for some angle β a path (q1, q2, . . . , qr) is a β-path or equivalently is β-monotone if
every edge qiqi+1 has slope in the interval (β − π

4 ;β + π
4 ). In [11, Lemma 3] it is proved

that a β-path is distance-decreasing (in fact, it satisfies a much stronger property, namely
it is increasing-chord); hence, Qx is distance-decreasing in Γδ.
Finally, suppose that x = u and consider a path Pxy from x to y in G′ that is distance-
decreasing in Γ′. We prove that Pxy is distance-decreasing in Γδ, as well. Let xx′ be
the edge of Pxy incident to x. Differently from the case in which x, y 6= u, we cannot
directly apply Lemma 2, given that it is not guaranteed that ε < ε∗Γ′

δ
. However, since

for every vertex z ∈ V (Pxy) the Euclidean distance between the positions of z in Γ′
and Γ is at most ε < ε∗Γ′ , by Lemma 2 we have that Pxy is distance-decreasing in Γ.
Further, the path obtained from Pxy by removing the vertex x = u and the edge xx′
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has the same representation in Γδ and Γ, given that it does not contain u, hence it is
distance-decreasing in Γδ. Thus, it only remains to show that d(Γδ, xy) > d(Γδ, x′y).
First, since x = u, we have that x′, y 6= u. Hence, d(Γδ, x′y) = d(Γ, x′y). Second, denote
by uΓ and uΓδ the positions of u in Γ and Γδ, respectively. By Properties 1–3, the entire
drawing Γ, and in particular vertex y, lies in the closed wedge that is delimited by the
half-lines starting at uΓ and with slopes 0 and −α. Then the angle incident to uΓ in
the triangle ∆yuΓuΓδ is at least π−α > π

2 , hence the straight-line segment between uΓδ
and y is the longest side of that triangle. It follows that d(Γδ, xy) ≥ d(Γ, xy). Thus,
d(Γδ, xy) ≥ d(Γ, xy) > d(Γ, x′y) = d(Γδ, x′y), where the second inequality holds true
since Pxy is distance-decreasing in Γ. Hence, Pxy is distance-decreasing in Γδ.

This concludes the proof of the lemma. J

We now discuss the case in which k ≥ 2. Refer to Fig. 15. By Lemma 5, for i = 1, . . . , k,
the triple (Gi, ui−1, ui) is a strong circuit graph, where u0 = u, uk = v, and ui is the only
vertex shared by Gi and Gi+1, for i = 1, . . . , k − 1.

b2

`u δ

u1

ε

u=u0=b1

d(Γ1, u0u1)

Γ1
u2

Γ2

Γ3
Γ4

u3
pv=v=u4=bm

h

Figure 15 The straight-line drawing Γ of G in Case A if k ≥ 2. In this example k = 4. The gray
angle in the drawing is α

2 .

If G1 is a single edge, then apply induction in order to construct a straight-line drawing
Γ1 of G1 and define ε = 1

2 min{ε∗Γ1
, tan(α) · d(Γ1, u0u1)}.

If G1 is not a single edge, then apply induction in order to construct a straight-line
drawing Γ1 of G1 with α

2 as a parameter. By Property 2 of Γ1, the path τu0u1(G1) lies on
a horizontal line `u. Let Y > 0 be the minimum distance in Γ1 of any vertex strictly below
`u from `u. Let ε = 1

2 min{ε∗Γ1
, Y, tan(α) · d(Γ1, u0u1)}.

In both cases, decrease the y-coordinate of u1 by ε. Further, decrease the y-coordinate
of every internal vertex of the path τu0u1(G1), if any, so that it ends up on the straight-line
segment u0u1.

Now consider a half-line h with slope s = α
2 starting at u1. Denote by pv the point at

which h intersects the horizontal line `u through u. For i = 2, . . . , k, apply induction in
order to construct a straight-line drawing Γi of Gi with α

3 as a parameter (if Gi is a single
edge, then the parameter does not matter). Uniformly scale the drawings Γ2, . . . ,Γk so that
the Euclidean distance between ui−1 and ui is equal to d(Γ1,u1pv)

k−1 . For i = 2, . . . , k, rotate
the scaled drawing Γi around ui−1 counter-clockwise by s radians. Translate the scaled and
rotated drawings Γ2, . . . ,Γk so that the representations of ui in Γi and Γi+1 coincide, for
i = 1, . . . , k − 1. Finally, draw the edge uv as a straight-line segment. This completes the
construction of a drawing Γ of G. We have the following.

I Lemma 10. For any δ ≥ 0, the drawing Γδ constructed in Case A if k ≥ 2 satisfies
Properties 1–6 of Theorem 7.

Proof. Throughout the proof, we denote by Γ1,δ the drawing obtained from Γ1 by moving
the position of the vertex u0 = u by δ units to the left (where Γ1 is understood as the
drawing of G1 in which the vertices of τu0u1(G1) all lie on `u).
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We first prove Property 2. Because of the uniform scaling which has been applied
to Γ2, . . . ,Γk, we have that d(Γ, ui−1ui) = d(Γ,u1pv)

k−1 for i = 2, . . . , k. Since the vertices
u1, . . . , uk all lie on h, we have that dV (Γ, ui−1ui) = dV (Γ,u1pv)

k−1 for i = 2, . . . , k. Hence, the
y-coordinate of v = uk is equal to y(u1) + dV (Γ, u1pv) = y(u), which implies that u and v
lie on `u in Γ and Γδ. Further, u is to the left of v in Γ, given that Γ1 satisfies Property 2
and that 0 < s < π

2 . Since τuv(G) coincides with the edge uv, it follows that Γδ satisfies
Property 2.

We next prove that Γδ satisfies Property 3. Observe that βuv(G) = βu0u1(G1) ∪
βu1u2(G2) ∪ . . . βuk−1uk(Gk). We first argue about the slope of the edge b1b2.

If G1 is a single edge u0u1, then we have u0 = b1 and u1 = b2. Then the slope of the edge
b1b2 in Γδ is − arctan

(
ε

δ+d(Γ1,u0u1)

)
, which is smaller than 0, given that ε, d(Γ1, u0u1) >

0 and δ ≥ 0, and larger than −α, given that δ ≥ 0 and that ε < tanα ·d(Γ1, u0u1), hence
it is in (−α; 0).
IfG1 has more than two vertices, then βu0u1(G1) is not a single edge u0u1, by Property (c)
of (G1, u0, u1); hence, u0 = b1 and b2 6= u1. Since Γ1,δ satisfies Property 3 and since
u1 is the only vertex of βu0u1(G1) whose positions in Γ1,δ and Γδ do not coincide, it
follows that the slope of b1b2 in Γδ is in the interval (−α; 0) since it is in the interval
(−α2 ; 0) ⊂ (−α; 0) in Γ1,δ.

We now argue about the slope sj of the edge bjbj+1 in Γδ, for any j = 2, . . . ,m− 1.

If bjbj+1 coincides with a graph Gi, then sj = s = α
2 ∈ (0;α).

If bjbj+1 belongs to a graph Gi with |V (Gi)| ≥ 3, with i ≥ 2, and with bj 6= ui−1, then
sj is given by the slope bjbj+1 has in Γi, which is in (0; α3 ) by Property 3 of Γi, plus s,
which results from the rotation of Γi. Hence sj ∈ (α2 ; 5α

6 ) ⊂ (0;α).
If bjbj+1 belongs to a graph Gi with |V (Gi)| ≥ 3, with i ≥ 2, and with bj = ui−1, then
sj is given by the slope bjbj+1 has in Γi, which is in (−α3 ; 0) by Property 3 of Γi, plus s,
which results from the rotation of Γi. Hence sj ∈ (α6 ; α2 ) ⊂ (0;α).
If bjbj+1 belongs to G1, if |V (G1)| ≥ 3, and if bj+1 6= u1, then since Γ1,δ satisfies
Property 3 and since u1 is the only vertex of βu0u1(G1) whose positions in Γ1,δ and Γδ
do not coincide, it follows that sj ∈ (0;α) since the slope of bjbj+1 in Γ1,δ is in (0;α).
Finally, assume that bjbj+1 belongs to G1, that |V (G1)| ≥ 3, and that bj+1 = u1. Note
that bj 6= u, given that j ≥ 2, hence by Property 3 of Γ1 we have that x(bj) < x(bj+1)
and that y(bj) < y(bj+1) in Γ1. Note that the positions of bj in Γ1 and Γδ coincide,
given that bj /∈ V (τu0u1(G1)); further, bj+1 moves down by ε when transforming Γ1 into
Γδ, however its x-coordinate stays unchanged; this implies that sj is smaller than the
slope of bjbj+1 in Γ1, hence smaller than α. Since ε ≤ Y

2 < dV (Γ1, bjbj+1) – given that
u1 lies on `u in Γ1 – it follows that y(bj) < y(bj+1) holds true in Γδ, hence sj > 0. Thus,
sj ∈ (0;α).

We now prove Property 1. First, the edge uv does not cross or overlap any other edge
of G, since no vertex other than u and v lies on or above `u in Γ and Γδ. Hence, we only
need to argue about crossings among edges in the graphs G1, . . . , Gk.

We first deal with Γ. For i = 1, . . . , k, the inductively constructed drawing Γi of Gi is
planar, by Property 1. Further, for i = 2, . . . , k, the drawing of Gi in Γ is congruent to
Γi, up to affine transformations (a uniform scaling, a rotation, and a translation), which
preserve planarity. Moreover, since ε < ε∗Γ1

, by Lemma 2 we have that the drawing of G1
in Γ is planar, as well. It follows that no two edges in the same graph Gi cross each other
in Γ, for each i = 1, . . . , k. Since Γ satisfies Property 3, the path βuv(G) is represented in
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Γ by a curve monotonically increasing in the x-direction from u to v. Further, the path
τ =

⋃k
i=1 τui−1ui(Gi) is also represented in Γ by a curve monotonically increasing in the

x-direction from u to v, since it is composed of the straight-line segment u0u1, which has
slope − arctan

(
ε

d(Γ1,u0u1)

)
∈ (−π2 ; 0), and of the straight-line segment u1uk, which has slope

s = α
2 ∈ (0; π2 ). Hence, for i = 1, 2, . . . , k − 1, the vertical line through ui has the drawings

of G1, . . . , Gi to its left and the drawings of Gi+1, . . . , Gk to its right in Γ. It follows that
no two edges in distinct graphs Gi and Gj cross in Γ. This proves the planarity of Γ.

Since Γδ and Γ coincide, except for the position of u, it remains to prove that no edge
uu′ incident to u with u′ 6= v crosses or overlaps any other edge in Γδ. Since the vertical line
through u1 has the drawing of G1 to its left and the drawings of G2, . . . , Gk to its right in
Γδ, such a crossing might only occur between uu′ and another edge ww′ of G1. The proof
that uu′ and ww′ do not cross or overlap is the same as in the proof of Lemma 9, with G1
playing the role of G′ and Γ1 playing the role of Γ′.

We now deal with Property 4. Let x ∈ V (G). If x = u, let Px = (u, v); then the only
edge of Px has slope 0 ∈ (−α;α) in Γδ. If x = ui, for some i ∈ {1, . . . , k − 1}, then let
Px =

⋃k
j=i+1 τuj−1uj (Gj) and observe that all the edges of Px have slope s = α

2 ∈ (−α;α);
further Px does not pass through u. If x 6= ui, for every i ∈ {0, 1, . . . , k}, then x belongs to
a unique graph Gi, for some i ∈ {1, 2, . . . , k}. We distinguish two cases.

Assume first that i ≥ 2. Since Γi satisfies Property 4, there exists a path P ix from x to ui
in Gi whose every edge has slope in (−α3 ; α3 ) in Γi; then Px consists of P ix and of the path⋃k
j=i+1 τuj−1uj (Gj). Since the drawing of Gi in Γδ is congruent to Γi up to a uniform

scaling, a counter-clockwise rotation by s = α
2 radians, and a translation, it follows that

every edge of P ix has slope in (s− α
3 ; s+ α

3 ) = (α6 ; 5α
6 ) ⊂ (−α;α) in Γδ; further, as noted

above, all the edges of
⋃k
j=i+1 τuj−1uj (Gj) have slope s = α

2 ∈ (−α;α). Hence, all the
edges of Px have slope in (−α;α); further, Px does not pass through u.

v=u4

cr=u1

ε

d(Γ1, u0u1)

u2

u3

u=u0=c1

x=v1

vh=cj

`u

c2

Figure 16 Illustration for the proof that the slope in Γδ of every edge in the path Px is in
(−α;α), in the case in which x belongs to G1. The path Px is thick.

Assume next that i = 1. Refer to Fig. 16. Let τu0u1(G1) = (u0 = c1, c2, . . . , cr = u1).
Since Γ1 satisfies Property 4, there exists a path P 1

x = (x = v1, v2, . . . , vp = u1) from
x to u1 in G1, not passing through u, whose every edge has slope in (−α2 ; α2 ) in Γ1; let
h be the smallest index such that vh = cj , for some j ∈ {2, 3, . . . , r}. Such an index h
exists (possibly h = p and j = r). Then let Px consist of the paths (x = v1, v2, . . . , vh),
(vh = cj , cj+1, . . . , cr), and

⋃k
j=2 τuj−1uj (Gj). Since u /∈ V (P 1

x ), we have that u /∈ V (Px),
hence it suffices to argue about the slopes of the edges of Px in Γ rather than in Γδ.
For l = 1, . . . , h − 2, the slope of vlvl+1 in Γ is in the interval (−α;α) since it is
in the interval (−α2 ; α2 ) ⊂ (−α;α) in Γ1 and since neither vl nor vl+1 moves when
transforming Γ1 into Γ. Further, for l = j, . . . , r − 1, the slope of the edge clcl+1

in Γ is − arctan
(

ε
d(Γ1,u0u1)

)
, which is in the interval (−α; 0) ⊂ (−α;α), given that
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ε, d(Γ1, u0u1) > 0 and that ε < tan(α) ·d(Γ1, u0u1). Moreover, as noted above, the edges
of
⋃k
j=2 τuj−1uj (Gj) have slope s = α

2 ∈ (−α;α). Finally, let σ1 and σ be the slopes of
the edge vh−1vh in Γ1 and Γ, respectively. Since vh−1vh ∈ E(P 1

x ), we have σ1 ∈ (−α2 ; α2 );
since α ≤ π

4 , we have x(vh−1) < x(vh) in Γ1 and Γ (note that the x-coordinates of the
vertices do not change when transforming Γ1 into Γ). Further, by Properties 1–4 of Γ1,
we have that vh−1 lies below `u, which contains vh; hence, y(vh−1) < y(vh) in Γ1. Since
the vertex vh moves down (while vh−1 stays put) when transforming Γ1 into Γ, and since
ε ≤ Y

2 < dV (Γ1, vh−1vh), it follows that 0 < σ < σ1; hence σ ∈ (0; α2 ) ⊂ (−α;α).

We now argue about Property 5. Let x ∈ V (G). If x = v, let Qx = (v, u); then the only
edge of Qx has slope π ∈ (π − α;π + α) in Γδ. If x = ui, for some i ∈ {1, . . . , k − 1}, then
let Qx =

⋃i
j=1 βujuj−1(Gj); recall that βujuj−1(Gj) has the same vertices as τuj−1uj (Gj),

however in the reverse linear order. Denote the vertices of Qx by (x = w1, w2, . . . , wq = u).
Consider the edge wlwl+1, for any 1 ≤ l ≤ q − 1.

If wlwl+1 is in Gj , for some j ≥ 2, then its slope in Γδ is π+ s = π+ α
2 ∈ (π−α;π+α).

If wlwl+1 is in G1 and l ≤ q − 2, then its slope in Γδ is π − arctan
(

ε
d(Γ1,u0u1)

)
, which

is in the interval (π − α;π) ⊂ (π − α;π + α), given that ε, d(Γ1, u0u1) > 0 and that
ε < tan(α) · d(Γ1, u0u1).
Finally, the slope of wq−1wq in Γδ is π − arctan

(
ε

δ+d(Γ1,u0u1)

)
, which is in the interval

(π − α;π) ⊂ (π − α;π + α), given that ε, d(Γ1, u0u1) > 0, that δ ≥ 0, and that ε <
tan(α) · d(Γ1, u0u1).

If x 6= ui, for every i ∈ {0, 1, . . . , k}, then x belongs to a unique graph Gi, for some
i ∈ {1, 2, . . . , k}. We distinguish two cases.

Assume first that i ≥ 2. Since Γi satisfies Property 5, there exists a path Qix from x to
ui−1 in Gi whose every edge has slope in (π− α

3 ;π+ α
3 ) in Γi; then Qx consists of Qix and

of the path
⋃i−1
j=1 βujuj−1(Gj); denote the vertices of Qx by (x = w1, w2, . . . , wq = u).

Consider the edge wlwl+1, for any 1 ≤ l ≤ q − 1.

If wlwl+1 is in Gi, then it belongs to the path Qix. Then wlwl+1 has slope in (π− α
3 ;π+

α
3 ) in Γi, hence it has slope (π+ s− α

3 ;π+ s+ α
3 ) = (π+ α

6 ;π+ 5α
6 ) ⊂ (π− α;π+ α)

in Γδ.
If wlwl+1 is in Gj , for some 2 ≤ j ≤ i − 1, then its slope in Γδ is π + s = π + α

2 ∈
(π − α;π + α).
If wlwl+1 is in G1 and l ≤ q− 2, then its slope in Γδ is π− arctan

(
ε

d(Γ1,u0u1)

)
, which

is in the interval (π − α;π + α), as proved in the case x = ui.
Finally, the slope of wq−1wq in Γδ is π−arctan

(
ε

δ+d(Γ1,u0u1)

)
, which is in the interval

(π − α;π + α), as proved in the case x = ui.

Assume next that i = 1. Let τu0u1(G1) = (u0 = c1, c2, . . . , cr = u1). Since Γ1 satisfies
Property 5, there exists a path Q1

x = (x = w1, w2, . . . , wq = u) from x to u in G1, whose
every edge has slope in (π − α

2 ;π + α
2 ) in Γ1. Similarly to the proof that Γδ satisfies

Property 5 in Lemma 9, we distinguish two cases. If no vertex of Q1
x − {u} belongs to

τu0u1(G1), then let Qx = Q1
x and observe that Qx satisfies the required properties in Γδ

since Q1
x does in Γ1,δ. Otherwise, let h be the smallest index such that wh = cj , for

some j ∈ {2, 3, . . . , r} and define Qx = (x = w1, w2, . . . , wh = cj , cj−1, . . . , c1 = u). For
l = 1, . . . , h − 2, the slope of the edge wlwl+1 is in (π − α;π + α) in Γδ since it is in
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(π−α;π+α) in Γ1,δ. Further, the edge wh−1wh has slope in (π−α;π+α) in Γδ since it
has slope in that range in Γ1 (given that it belongs to Q1

x), since x(wh−1) > x(wh) and
y(wh−1) < y(wh), since u 6= wh−1, wh, and since ε ≤ Y

2 < dV (Γ1, wh−1wh). Moreover,
for l = j, j − 1 . . . , 3, the slope of the edge clcl−1 in Γδ is π − arctan

(
ε

d(Γ1,u0u1)

)
, which

is in the interval (π − α;π + α), as proved in the case x = ui. Finally, the slope of the
edge c2c1 in Γδ is π − arctan

(
ε

δ+d(Γ1,u0u1)

)
, which is in the interval (π − α;π + α), as

proved in the case x = ui.

We finally deal with Property 6. Consider any two distinct vertices x, y ∈ V (G).
If x and y belong to the same graph Gi, for some i ∈ {1, . . . , k}, then there exists

a distance-decreasing path Pxy from x to y in Γi, given that Γi satisfies Property 6. If
i ∈ {2, . . . , k}, the drawing of Gi in Γδ is congruent to Γi, up to three affine transformations
(a uniform scaling, a rotation, and a translation) that preserve the property of a path to be
distance-decreasing; hence Pxy is distance-decreasing in Γδ as well. If i = 1, then the proof
that Pxy is distance-decreasing in Γδ is the same as the proof that Γδ satisfies Property 6 in
Lemma 9, with Γ1 playing the role of Γ′.

We can hence assume that x and y belong to two distinct graphs Gi and Gj , respectively.

Suppose first that 2 ≤ i < j ≤ k. Then let Pxy be the path composed of:
a path P ix in Gi from x to ui whose every edge has slope in (−α3 ; α3 ) in Γi;
the path

⋃j−1
l=i+1 τul−1ul(Gl); and

a path Puj−1y in Gj that is distance-decreasing in Γj .
By induction, the paths P ix and Puj−1y exist since Γi satisfies Property 4 and Γj satisfies
Property 6, respectively. We prove that Pxy is distance-decreasing in Γδ; note that
u /∈ V (Pxy). Let Pxy = (z1, z2, . . . , zs); then we need to prove that d(Γδ, zhzs) >

d(Γδ, zh+1zs), for h = 1, 2, . . . , s− 2. We distinguish three cases.
If zhzh+1 is in Gj , then (zh, zh+1, . . . , zs) is a sub-path of Puj−1y, hence it is distance-
decreasing in Γδ since it is distance-decreasing in Γj and since the drawing of Gj in Γδ
is congruent to Γj , up to three affine transformations (a uniform scaling, a rotation,
and a translation) that preserve the property of a path to be distance-decreasing.
If zhzh+1 is in τul−1ul(Gl), for some l ∈ {i+1, i+2, . . . , j−1}, as in Fig. 17, then it has
slope s = α

2 . Consider the line `h with slope π+α
2 through ul, oriented towards increas-

ing y-coordinates. By Lemma 3, this line has the drawings of Gl+1, Gl+2, . . . , Gk to its
right; this is because by Property 3 of Γδ every edge in βulv(G) has slope in the inter-
val (0;α), where −π+α

2 < 0 < α < π+α
2 , and because the path

⋃k
m=l+1 τum−1um(Gm)

has slope s = α
2 , where

−π+α
2 < α

2 < π+α
2 . Further, by Lemma 3, the line `h has the

drawing of the path βulul−1(Gl) to its left; this is because every edge in βulul−1(Gl)
has slope s = π + α

2 , where
π+α

2 < π + α
2 < 3π+α

2 . Then the line `′h parallel to `h,
passing through the midpoint of the edge zhzh+1, and oriented towards increasing
y-coordinates has `h to its right, given that the path βulul−1(Gl) (and in particular
the midpoint of the edge zhzh+1) is to the left of `h, hence `′h has the drawings of
Gl+1, Gl+2, . . . , Gk (and in particular the vertex zs) to its right. Since the half-plane
to the right of `′h represents the locus of the points of the plane that are closer to zh+1
than to zh, it follows that d(Γδ, zhzs) > d(Γδ, zh+1zs).
If zhzh+1 is in P ix, as in Fig. 18, then by Property 4 it has slope in (−α3 ; α3 ) in Γi.
Since Γi is counter-clockwise rotated by s radians in Γδ, it follows that zhzh+1 has
slope in (s − α

3 ; s + α
3 ) = (α6 ; 5α

6 ) in Γδ. Consider the line `h that passes through ui,
that is directed towards increasing y-coordinates and that is orthogonal to the line
through zh and zh+1. Denote by sh the slope of `h. Then sh ∈ (π2 + α

6 ; π2 + 5α
6 ). By
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π
2 ul
Gl

Gl+1

ul+1
zh zh+1

`h`′h
zs

π
2

Figure 17 Illustration for the proof that d(Γδ, zhzs) > d(Γδ, zh+1zs) if zhzh+1 is in τul−1ul(Gl).

Lemma 3, the line `h has the drawings of Gi+1, . . . , Gk to its right; this is because by
Property 3 of Γδ every edge in βuiv(G) has slope in (0;α) with sh−π < −π2 + 5α

6 < 0 <
α < π

2 + α
6 < sh and because the path

⋃k
m=i+1 τum−1um(Gm) has slope s = α

2 , where
sh−π < −π2 + 5α

6 < α
2 <

π
2 +α

6 < sh. Further, by Lemma 3, the line `h has the drawings
of G2, . . . , Gi to its left; this is because by Property 3 of Γδ every edge in τuiu1(G) has
slope in (π;π+α) with sh < π

2 + 5α
6 < π < π+α < 3π

2 +α
6 < π+sh and because the path⋃i

m=2 βumum−1(Gm) has slope s = π+α
2 , where sh <

π
2 + 5α

6 < π+α
2 <

3π
2 +α

6 < π+sh.
Now consider the line `′h parallel to `h, passing through the midpoint of the edge
zhzh+1, and oriented towards increasing y-coordinates. This line has `h to its right,
given that the drawing of Gi (and in particular the midpoint of zhzh+1) is to the
left of `h in Γδ. Thus, `′h has the drawings of Gi+1, Gi+2, . . . , Gk (and in particular
the vertex zs) to its right. Since the half-plane to the right of `′h represents the
locus of the points of the plane that are closer to zh+1 than to zh, it follows that
d(Γδ, zhzs) > d(Γδ, zh+1zs).

ui
Gi

Gi+1

ui+1zh

zh+1

`h

`′h

zs

ui−1

slope π
2 +

α
6

slope π
2 +

5α
6

Figure 18 Illustration for the proof that d(Γδ, zhzs) > d(Γδ, zh+1zs) if zhzh+1 is in P ix.

The case in which 2 ≤ j < i ≤ k is symmetric to the case in which 2 ≤ i < j ≤ k.
Suppose next that i = 1 and j > 1. Then let Pxy be the path composed of:

a path P 1
x in G1 from x to u1 whose every edge has slope in (−α;α) in Γδ, where P 1

x

does not pass through u, unless x = u;
the path

⋃j−1
l=2 τul−1ul(Gl); and

a path Puj−1y in Gj that is distance-decreasing in Γj .
The path Puj−1y exists by induction since Γj satisfies Property 6.
We prove that a path P 1

x satisfying the above properties exists in Γδ. Let τu0u1(G1) =
(u0 = c1, c2, . . . , cr = u1). If x = u, then let P 1

x = τu0u1(G1). Every edge of P 1
x other than

c1c2 has slope − arctan
(

ε
d(Γ1,u0u1)

)
in Γδ, while c1c2 has slope − arctan

(
ε

δ+d(Γ1,u0u1)

)
.

These slopes are smaller than 0, given that ε, d(Γ1, u0u1) > 0 and δ ≥ 0, and larger
than −α, given that δ ≥ 0 and ε < tanα · d(Γ1, u0u1). Thus, every edge of P 1

x has
slope in (−α;α) in Γδ. If x 6= u, then P 1

x can be shown to exist as in the proof that
Γδ satisfies Property 4, by considering a path (x = v1, v2, . . . , vp = u1) in G1 that does
not pass through u and whose every edge has slope in (−α2 ; α2 ) in Γ1 and by defining
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P 1
x = (v1, v2, . . . , vh = cj , cj+1, . . . , cr), where h is the smallest index such that vh ∈
V (τu0u1(G1)). This concludes the proof that a path P 1

x satisfying the required properties
exists in Γδ.
Note that u /∈ V (Pxy), unless x = u, given that u /∈ V (P 1

x ), unless x = u. Let Pxy =
(z1, z2, . . . , zs); we prove that, for any h = 1, 2, . . . , s− 2, it holds true that d(Γδ, zhzs) >
d(Γδ, zh+1zs). This can be proved exactly as in the case 2 ≤ i < j ≤ k if zhzh+1 is
in Puj−1y or if zhzh+1 is in

⋃j−1
l=2 τul−1ul(Gl). Assume hence that zhzh+1 is in P 1

x and
recall that the slope of every edge of P 1

x in Γδ is in (−α;α). Similarly to the case
2 ≤ i < j ≤ k, consider the line `h that passes through u1, that is directed towards
increasing y-coordinates and that is orthogonal to the line through zh and zh+1. Denote
by sh the slope of `h. Then sh ∈ (π2 − α; π2 + α). By Lemma 3, the line `h has the
drawings of G2, . . . , Gk to its right; this is because by Property 3 of Γδ every edge in
βu1v(G) has slope in (0;α) with sh−π < −π2 +α < 0 < α < π

2 −α < sh and because the
path

⋃k
m=2 τum−1um(Gm) has slope s = α

2 , where sh − π < −
π
2 + α < α

2 < π
2 − α < sh.

Further, by Lemma 3, the line `h has the drawing of G1 to its left; this is because by
Property 3 of Γ1 every edge in τu1u0(G) has slope in (π− α

2 ;π+ α
2 ), where sh < π

2 +α <

π − α
2 < π + α

2 < 3π
2 − α < π + sh and because every edge of the path βu1u0(G1) has

slope either π − arctan
(

ε
d(Γ1,u0u1)

)
or π − arctan

(
ε

δ+d(Γ1,u0u1)

)
, where sh < π

2 + α <

π − α < π − arctan
(

ε
d(Γ1,u0u1)

)
≤ π − arctan

(
ε

δ+d(Γ1,u0u1)

)
< π < 3π

2 − α < π + sh

– these inequalities exploit ε, d(Γ1, u0u1) > 0, δ ≥ 0, and ε < tanα · d(Γ1, u0u1). Now
consider the line `′h parallel to `h, passing through the midpoint of the edge zhzh+1, and
oriented towards increasing y-coordinates. This line has `h to its right, given that the
drawing of G1 (and in particular the midpoint of zhzh+1) is to the left of `h in Γδ. Thus,
`′h has the drawings of G2, G3, . . . , Gk (and in particular the vertex zs) to its right. Since
the half-plane to the right of `′h represents the locus of the points of the plane that are
closer to zh+1 than to zh, it follows that d(Γδ, zhzs) > d(Γδ, zh+1zs).
Suppose finally that i > 1 and j = 1. Then Pxy consists of three paths, one contained
in Gi, one coinciding with

⋃i−1
l=2 βulul−1(Gl), and one contained in G1.

The first path in Pxy is a path Qix in Gi from x to ui−1 whose every slope in Γi is
in (π − α

3 ;π + α
3 ); this path exists since Γi satisfies Property 5. Since Γi is counter-

clockwise rotated by s radians in Γδ, it follows that every edge of Qix has slope in
(π + s − α

3 ;π + s + α
3 ) = (π + α

6 ;π + 5α
6 ) in Γδ. We prove that, for every edge

zhzh+1 of Qix, it holds true that d(Γδ, zhy) > d(Γδ, zh+1y). Consider the line `h that
passes through ui−1, that is directed towards increasing y-coordinates and that is
orthogonal to the line through zh and zh+1. Denote by sh the slope of `h. Then
sh ∈ (π2 + α

6 ; π2 + 5α
6 ). By Lemma 3, the line `h has the drawing of Gi to its right;

this is because by Property 3 of Γδ every edge in βui−1ui(G) has slope in (−α;α) with
sh − π < −π2 + 5α

6 < −α < α < π
2 + α

6 < sh and because the path τui−1ui(Gi) has
slope s = α

2 , where sh − π < −
π
2 + 5α

6 < α
2 < π

2 + α
6 < sh. Further, by Lemma 3,

the line `h has the drawings of G1, . . . , Gi−1 (and in particular y) to its left; this is
because by Property 3 of Γδ every edge in τui−1u0(G) has slope in (π−α;π+α) where
sh <

π
2 + 5α

6 < π − α < π + α < 3π
2 + α

6 < π + sh and because every edge of the
path

⋃i−1
m=1 βumum−1(Gm) has slope either s = π + α

2 , or π − arctan
(

ε
d(Γ1,u0u1)

)
, or

π − arctan
(

ε
δ+d(Γ1,u0u1)

)
, where sh < π

2 + 5α
6 < π − α < π − arctan

(
ε

d(Γ1,u0u1)

)
≤

π − arctan
(

ε
δ+d(Γ1,u0u1)

)
< π < π + α

2 <
3π
2 + α

6 < π + sh. Now consider the line `′h
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parallel to `h, passing through the midpoint of the edge zhzh+1, and oriented towards
increasing y-coordinates. This line has `h to its left, given that the drawing of Gi
(and in particular the midpoint of zhzh+1) is to the right of `h in Γδ. Thus, `′h has
the drawings of Gi−1, Gi−2, . . . , G1 (and in particular the vertex y) to its left. Since
the half-plane to the left of `′h represents the locus of the points of the plane that are
closer to zh+1 than to zh, it follows that d(Γδ, zhy) > d(Γδ, zh+1y).
The second path in Pxy is

⋃i−1
l=2 βulul−1(Gl). Consider an edge zhzh+1 of this path

in a graph Gl, for some l ∈ {2, . . . , i − 1}. Then zhzh+1 has slope π + s = π + α
2 .

Consider the line `h that has slope sh = π+α
2 , that passes through ul−1, and that is

oriented towards increasing y-coordinates. By Lemma 3, the line `h has the drawing
of Gl to its right; this is because by Property 3 of Γδ every edge in βul−1ul(G) has
slope in (0;α) with sh − π = −π+α

2 < 0 < α < π+α
2 = sh and because the path

τul−1ul(Gl) has slope s = α
2 , where sh − π = −π+α

2 < α
2 < π+α

2 = sh. Further,
by Lemma 3, the line `h has the drawings of Gl−1, Gl−2, . . . , G1 to its left; this is
because by Property 3 of Γδ every edge in τul−1u0(G) has slope in (π − α;π + α),
where sh = π+α

2 < π − α < π + α < 3π+α
2 = sh + π and because every edge of

the path
⋃i−1
m=1 βumum−1(Gm) has slope either π + α

2 , or π − arctan
(

ε
d(Γ1,u0u1)

)
, or

π − arctan
(

ε
δ+d(Γ1,u0u1)

)
, where sh = π+α

2 < π − α < π − arctan
(

ε
d(Γ1,u0u1)

)
≤

π − arctan
(

ε
δ+d(Γ1,u0u1)

)
< π < π + α

2 < 3π+α
2 = sh + π. Now consider the line `′h

parallel to `h, passing through the midpoint of the edge zhzh+1, and oriented towards
increasing y-coordinates. This line has `h to its left, given that the drawing of Gl
(and in particular the midpoint of zhzh+1) is to the right of `h in Γδ. Thus, `′h has
the drawings of Gl−1, Gl−2, . . . , G1 (and in particular vertex y) to its left. Since the
half-plane to the left of `′h represents the locus of the points of the plane that are
closer to zh+1 than to zh, it follows that d(Γδ, zhy) > d(Γδ, zh+1y).
The third path Pu1y in Pxy is defined as follows. If y = u, let Pu1y = βu1u0(G1). Then
every edge of Pu1y has slope either π−arctan

(
ε

d(Γ1,u0u1)

)
or π−arctan

(
ε

δ+d(Γ1,u0u1)

)
.

Both these slopes are smaller than π, given that ε, d(Γ1, u0u1) > 0 and δ ≥ 0, and
larger than π − α, given that δ ≥ 0 and ε < tan(α) · d(Γ1, u0u1). Thus, Pu1y is a
π-path, and hence it is distance-decreasing (see [11] and the proof of Property 6 in
Lemma 9). If y 6= u, then let Pu1y be a distance-decreasing path in Γ1 not passing
through u. This path exists by induction, given that Γ1 satisfies Property 6. Since
Pu1y does not pass through u, it has the same representation in Γδ and Γ. Since the
Euclidean distance between the positions of any vertex of G1 in Γ1 and Γ is at most
ε < ε∗Γ1

, by Lemma 2 we have that Pu1y is distance-decreasing in Γ and hence in Γδ.

Hence Γδ satisfies Property 6. This concludes the proof of the lemma. J

We now discuss Case B, in which (G, u, v) is decomposed according to Lemma 6. Refer
to Figs. 19 and 20. First, the triple (H,u, y1) is a strong circuit graph; further, |V (H)| ≥ 3,
hence H is not a single edge. Apply induction in order to construct a straight-line drawing
ΓH of H with α

2 as a parameter.
Let βuy1(H) = (u = b1, b2, . . . , bm = y1). Let φi be the slope of the edge bibi+1 in ΓH

and let φ = mini=2,...,m−1{φi}. By Property (c) of (H,u, y1) if edge uy1 belongs to H then
it coincides with the path τuy1(H). Hence, m ≥ 3 and φ is well-defined. Further, φ is in the
interval (0; α2 ) by Property 3 of ΓH .
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y1=bm
v Dρ

pρ,u

ρ

ΓHu=b1

b2

`u δ

y`

dV (Γδ, y`y1)

dH(Γδ, y`y1) dy1v
pρ,β

d∗

φ2

Figure 19 The straight-line drawing Γ of G in Case B. For the sake of readability, φ and ρ are
larger than they should be. The dark gray angle is equal to β.

Let β = 1
2 min

{
φ, arctan

(
dV (ΓH ,y`y1)

3dV (ΓH ,y`y1)+3dH(ΓH ,y`y1)

)}
. Note that β > 0, given that

φ, dV (ΓH , y`y1) > 0 and dH(ΓH , y`y1) ≥ 0. In particular, dV (ΓH , y`y1) > 0 because y1 is an
internal vertex of τuy1(H) and y` is an internal vertex of βuy1(H) by Lemma 6, and because
of Properties 1–3 of ΓH . Also note that β < α

4 , given that φ < α
2 .

Consider a half-line hβ with slope β starting at y`. Place the vertex v at the intersection
point between hβ and the horizontal line `u through u. Draw all the trivial (H∪{v})-bridges
of G as straight-line segments. This concludes the construction if every (H ∪ {v})-bridge of
G is trivial. Otherwise, B` is the only non-trivial (H ∪ {v})-bridge of G. Then B` consists
of k strong circuit graphs (Gi, ui−1, ui), where u0 = y` and uk = v. With a slight change
of notation, in the remainder of the section we assume that, if the edge y`v exists, then
it is an edge of B` (rather than an individual trivial (H ∪ {v})-bridge B`−1 of G); in this
case (B`, u0, uk) is a strong circuit graph (this comes from the proof of Lemma 6, where the
graph B` together with the edge y`v was denoted by B′`).

We claim that v lies to the right of y1. The polygonal line representing βy`y1(H) in ΓH
and the straight-line segment y`v are both incident to y`. By definition of φ and since ΓH
satisfies Property 3, βy`y1(H) is composed of straight-line segments with slopes in the range
[φ; α2 ), while y`v has slope β. The claim then follows from 0 < β < φ < π

2 .
Denote by dy1v the distance between y1 and v. Let Y > 0 be the minimum distance in

ΓH of any vertex strictly below `u from `u.
Let ρ = min{dy1v

3 , Y2 }. Let Dρ be the disk with radius ρ centered at v. Let pρ,β (pρ,u)
be the intersection point closer to y` (resp. to y1) of the boundary of Dρ with hβ (resp. with
`u). Let d∗ be the Euclidean distance between y` and pρ,β .

Dρ

pρ,u pρ,β

Γ1

Γ2
Γ3

u1 u2 v=uk

u0

a

v=uk

Dρ

Γ1,d∗

Γ2
Γ3

u1 u2

b

Figure 20 A closer look at Dρ. Figure (a) represents the drawings Γ1, . . . ,Γk, once they have
been uniformly scaled, rotated, and translated, while (b) also has the vertex u0 moved by d∗ units
(this movement actually happens before the rotation and translation of Γ1).
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Let α′ = β
2 . Since β > 0, we have α′ > 0; further, α′ < α

8 , given that β < α
4 . For

i = 1, . . . , k, apply induction in order to construct a straight-line drawing Γi of Gi with
α′ as a parameter (if Gi is a single edge, then the parameter does not matter). Uniformly
scale the drawings Γ1, . . . ,Γk so that the Euclidean distance between ui−1 and ui is equal
to ρ

k . Move the vertex u0 in Γ1 by d∗ units to the left, obtaining a drawing Γ1,d∗ . Rotate
the drawings Γ1,d∗ ,Γ2, . . . ,Γk counter-clockwise by β radians. Translate Γ1,d∗ ,Γ2, . . . ,Γk
so that, for i = 1, . . . , k − 1, the representations of ui in Γi and Γi+1 (in Γ1,d∗ and Γ2
if i = 1) coincide and so that the representation of u0 in the scaled and rotated drawing
Γ1,d∗ coincides with the one of y` in ΓH . This completes the construction of a straight-line
drawing Γ of G. We have the following.

I Lemma 11. For any δ ≥ 0, the drawing Γδ constructed in Case B satisfies Properties 1–6
of Theorem 7.

Proof. Let ΓH,δ be the drawing obtained from ΓH by moving u by δ units to the left.
We prove Property 2. By Lemma 6, we have that τuv(G) = τuy1(H)∪y1v. By Property 2

of ΓH,δ, we have that τuy1(H) lies entirely on `u with y1 to the right of u. By construction
v also lies on `u. As proved before the lemma’s statement, v lies to the right of y1. This
implies Property 2 for Γδ.

We next prove that Γδ satisfies Property 3. By Lemma 6, we have that βuv(G) =
βuy`(H)∪βu0u1(G1)∪βu1u2(G2)∪· · ·∪βuk−1uk(Gk). Denote βuv(G) = (u = b′1, b

′
2, . . . , b

′
m =

v). The slope of the edge b′1b′2 in Γδ is equal to its slope in ΓH,δ; this is because the drawing
of H in Γδ coincides with ΓH,δ and because b′2 is a vertex of H, given that y` 6= u since y`
is an internal vertex of βuv(G) . Hence the slope of b′1b′2 is in (−α2 ; 0) ⊂ (−α; 0) in Γδ since
ΓH,δ satisfies Property 3. We now argue about the slope sj of the edge b′jb′j+1 in Γδ, for any
j = 2, . . . ,m− 1.

If b′jb′j+1 is an edge of βuy`(H), then its slope in Γδ is equal to its slope in ΓH,δ, since the
drawing of H in Γδ coincides with ΓH,δ. Thus, sj ∈ (0; α2 ) ⊂ (0;α), since ΓH,δ satisfies
Property 3.
If b′jb′j+1 coincides with a graph Gi, then sj = β. Since 0 < β ≤ α

4 , we have sj ∈ (0;α).
If b′jb′j+1 belongs to a graph Gi, for some i ∈ {1, . . . , k}, with |V (Gi)| ≥ 3, and with
b′j 6= ui−1, then sj is given by the slope b′jb′j+1 has in Γi, which is in (0;α′) by Property 3
of Γi, plus β, which results from the rotation of Γi. Hence sj ∈ (β;β + α′); since β > 0,
β < α

4 , and α
′ < α

8 , we have that sj ∈ (0;α).
If b′jb′j+1 belongs to a graph Gi, for some i ∈ {2, . . . , k}, with |V (Gi)| ≥ 3, and with
b′j = ui−1, then sj is given by the slope b′jb′j+1 has in Γi, which is in (−α′; 0) by Property 3
of Γi, plus β, which results from the rotation of Γi. Hence sj ∈ (β − α′;β). Since
α′ ≤ β

2 < β < α
4 < α, we have that sj ∈ (0;α).

Finally, assume that b′jb′j+1 belongs to G1, that |V (G1)| ≥ 3, and that b′j = u0. Then sj
is given by the slope b′jb′j+1 has in Γ1,d∗ , which is in (−α′; 0) by Property 3 of Γ1,d∗ , plus
β, which results from the rotation of Γ1,d∗ . Hence sj ∈ (β − α′;β) ⊂ (0;α).

We now prove Property 1. Before doing so, we prove the following useful statement:
Every vertex z 6= u0 that belongs to a graph Gi, for any i ∈ {1, . . . , k}, lies inside the disk
Dρ in Γδ. Note that this statement shows a sharp geometric separation between the vertices
that are in H and those that are not. Refer to Fig. 21. Consider the drawing Γj , for any
j ∈ {1, . . . , k} (note that Γ1 is considered before moving u0 by d∗ units to the left) and
consider the disk Dj centered at uj with radius d(Γj , uj−1uj). By Properties 1 and 2 of
Γj , the path τuj−1uj (Gj) lies on the straight-line segment uj−1uj in Γj , hence it lies inside
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ujuj−1

Dj

π
3

Γj
π
3

π
3

Figure 21 The drawing Γj and the disk Dj centered at uj with radius d(Γj , uj−1uj).

Dj . Further, all the edges of βuj−1uj (Gj) have slope in (−α′;α′) ⊂ (−α8 ; α8 ) ⊂ (− π
32 ; π32 ) ⊂

(−π3 ; π3 ); hence βuj−1uj (Gj) also lies inside Dj . By Property 1 of Γj , the entire drawing Γj
lies inside Dj . Hence, uj−1 is the farthest vertex of Gj from uj in Γj . This property holds
true also after the drawings Γ1, . . . ,Γk are uniformly scaled; further, after the scaling, the
distance between uj−1 and uj is ρ

k , by construction. By the triangular inequality, we have
that d(Γδ, vz) ≤

∑k
j=i+1 d(Γδ, uj−1uj) + d(Γδ, uiz). Since d(Γδ, uj−1uj) = ρ

k for any j ∈
{2, . . . , k}, and since d(Γδ, uiz) ≤ ρ

k (this exploits z 6= u0 and hence d(Γδ, uiz) = d(Γi, uiz),
where Γi is understood as already scaled), we have that d(Γδ, vz) ≤ (k−i+1)ρ

k ≤ ρ. Thus z
lies inside Dρ.

We now discuss the possible crossings that might occur in Γδ.

The drawing of H in Γδ coincides with ΓH,δ, hence it is planar since ΓH,δ satisfies
Property 1 by induction.
Analogously, the drawings of G1, G2, . . . , Gk in Γδ are planar since they coincide with
Γ1,d∗ ,Γ2, . . . ,Γk, which satisfy Property 1 by induction.
Since Γδ satisfies Property 3, the path βy`v(G) is represented in Γδ by a curve monoton-
ically increasing in the x-direction from y` to v. Further, the path τ =

⋃k
i=1 τui−1ui(Gi)

is represented in Γδ by a straight-line segment with slope β ∈ (0; α4 ) ⊂ (0; π16 ). Hence,
for i = 1, . . . , k − 1, the vertical line through ui has the drawings of G1, . . . , Gi to its
left and those of Gi+1, . . . , Gk to its right in Γδ. It follows that no two edges in distinct
graphs Gi and Gj cross in Γδ.
Recall that βuy1(H) = (u = b1, b2, . . . , bm = y1). Let y` = bj , for some j ∈ {2, 3, . . . ,m−
1}. We prove that the straight-line segments bjv, bj+1v, . . . , bmv appear in this clockwise
order around v and have slopes in [0;β] in Γδ (note that these straight-line segments do
not necessarily correspond to edges of G). Refer to Fig. 22. Note that the slope of bjv

v

b2
y`=bj

y1

=β

bi
bi+1

≤β ≥φ ≤β

Figure 22 illustration for the proof that the straight-line segments bjv, bj+1v, . . . , bmv appear in
this clockwise order around v and have slopes in [0;β] in Γδ.

is β, by construction; now assume that bjv, bj+1v, . . . , biv appear in this clockwise order
around v and have slopes in [0;β] in Γδ, for some i ∈ {j, j + 1, . . . ,m − 1}. The edge



30 On Planar Greedy Drawings of 3-Connected Planar Graphs

bibi+1 has slope in [φ; α2 ), by definition of φ and since ΓH,δ satisfies Property 3. Since
β < φ, the edge bibi+1 lies above the line through bi and v. Hence, bi+1v immediately
follows biv in the clockwise order of the edges incident to v and it has slope smaller than
the one of biv, hence smaller than β. The repetition of this argument concludes the proof
that bjv, bj+1v, . . . , bmv appear in this clockwise order around v and have slopes in [0;β]
in Γδ.
Since the straight-line segments bjv, bj+1v, . . . , bmv appear in this clockwise order around
v, then no two (H ∪{v})-bridges of G cross one another. Further, since the straight-line
segments bjv, bj+1v, . . . , bmv have slopes in [0;β] and since β < φ, they all lie to the right
of the path βb2bm(H), whose edges have slopes in [φ; α2 ). Then no trivial (H∪{v})-bridge
of G crosses H in Γδ.
Consider the vertical line `1 through y1. By Properties 1–3 of ΓH,δ, the line `1 has ΓH,δ
to its left. Further, since ρ < dy1v, the disk Dρ lies to the right of `1. Since all the
vertices different from u0 of the graphs G1, . . . , Gk lie inside Dρ, it follows that no edge
in a graph G1, . . . , Gk crosses an edge of H, unless the former is incident to u0. However,
all the edges in G1, . . . , Gk that are incident to u0 (in fact only G1 contains such edges)
have slope at most β, as they lie on or below hβ . Hence they all lie to the right of the
path βb2bm(H) and do not cross edges of H in Γδ.

We now discuss Property 4. Let x ∈ V (G). Assume first that x ∈ V (H). Since the
drawing of H in Γδ coincides with ΓH,δ, there exists a path P ′x in H from x to y1, not
passing through u unless x = u, and whose every edge has slope in (−α2 ; α2 ) ⊂ (−α;α) in
Γδ. Further, the edge y1v has slope 0. Hence, the path Px = P ′x ∪ y1v satisfies the required
properties. If x /∈ V (H), then x ∈ V (Gi), for some i ∈ {1, . . . , k}. Assume that i ≥ 2
(that i = 1, resp.). Then the path Px consists of a path P ′x from x to ui in Gi whose every
edge has slope in (−α′;α′) in Γi (in Γ1,d∗ , resp.) – this path exists since Γi (Γ1,d∗ , resp.)
satisfies Property 4 – and of the path

⋃k
j=i+1 τuj−1uj (Gj). Since Γi (Γ1,d∗ , resp.) is rotated

by β radians in Γδ, its edges have slope in the range (β − α′;β + α′). Since α′ = β
2 and

0 < β < α
4 , we have that (β − α′;β + α′) ⊂ (0; 3α

8 ) ⊂ (−α;α). Further, every edge in
τuj−1uj (Gj) has slope 0 in Γj and hence β in Γδ. Since 0 < β < α

4 , we have that every edge
in
⋃k
j=i+1 τuj−1uj (Gj) has slope in (−α;α). Note that Px does not pass through u, since u

does not belong to any graph among G1, . . . , Gk. Thus, Px satisfies the required properties.
We now deal with Property 5. Let x ∈ V (G). Assume first that x ∈ V (H). Since the

drawing of H in Γδ coincides with ΓH,δ and since ΓH,δ satisfies Property 5, there exists a
path Q′x from x to u whose every edge has slope in (π − α

2 ;π + α
2 ) ⊂ (π − α;π + α). Thus,

the path Qx = Q′x satisfies the required properties. If x /∈ V (H), then x ∈ V (Gi), for some
i ∈ {1, . . . , k}. Then the path Qx consists of three paths. First, Qx contains a path Q′x from
x to ui−1 in Gi whose every edge has slope in (π−α′;π+α′) in Γi (in Γ1,d∗ , if x ∈ V (G1)).
This path exists since Γi (Γ1,d∗ , resp.) satisfies Property 5. Since Γi (Γ1,d∗ , resp.) is rotated
by β radians in Γδ, its edges have slopes in the range (π+ β −α′;π+ β +α′). Since α′ = β

2
and 0 < β < α

4 , we have that (π+β−α′;π+β+α′) ⊂ (π;π+ 3α
8 ) ⊂ (π−α;π+α). Second,

Qx contains the path
⋃i−1
j=1 βujuj−1(Gj); by Properties 1 and 2, every edge in βujuj−1(Gj)

has slope π in Γi (in Γ1,d∗ if j = 1), hence it has slope π+β in Γδ. Since 0 < β < α
4 , we have

that every edge in the path
⋃i−1
j=1 βujuj−1(Gj) has slope in (π−α;π+α). Third, Qx contains

a path Q′y` from y` to u in H whose every edge has slope in (π− α
2 ;π+ α

2 ) ⊂ (π−α;π+α);
this path exists since the drawing of H in Γδ coincides with ΓH,δ and since ΓH,δ satisfies
Property 5. Thus, the path Qx satisfies the required properties.

Finally, we deal with Property 6. Consider any two vertices x, y ∈ V (G). We prove the
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existence of a path Pxy from x to y in G which does not pass through u, unless x = u or
y = u, and which is distance-decreasing in Γδ. We distinguish several cases, based on which
graphs among H,G1, . . . , Gk the vertices x and y belong to.

Suppose first that x and y belong to H. Since ΓH,δ satisfies Property 6, there exists a
path Pxy from x to y in H which does not pass through u, unless x = u or y = u, and
which is distance-decreasing in ΓH,δ. Since the drawing of H in Γδ coincides with ΓH,δ,
it follows that Pxy is distance-decreasing in Γδ.
Suppose next that x and y belong to the same graph Gi, for some i ∈ {1, 2, . . . , k}. Since
the drawing Γi (or Γ1,d∗ if i = 1) satisfies Property 6, there exists a path Pxy from x

to y in Gi that is distance-decreasing in Γi (in Γ1,d∗ if i = 1). Since the drawing of Gi
in Γδ is congruent to Γi (to Γ1,d∗ if i = 1) up to three affine transformations, namely
a uniform scaling, a rotation, and a translation, that preserve the property of a path
to be distance-decreasing, it follows that Pxy is distance-decreasing in Γδ. Note that
u /∈ V (Pxy).
Suppose now that x belongs to a graph Gi and y belongs to a graph Gj for some
1 ≤ i < j ≤ k. Then let Pxy be the path composed of a path Px in Gi from x to ui
whose every slope in Γi is in (−α′;α′), of the path

⋃j−1
l=i+1 τul−1ul(Gl), and of a path

Puj−1y in Gj that is distance-decreasing in Γj . The path Px exists since Γi (Γ1,d∗ if
i = 1) satisfies Property 4; the path Puj−1y exists since Γj satisfies Property 6.
The proof that Pxy is distance-decreasing in Γδ is the same as the one that Pxy is distance-
decreasing in Γδ when x ∈ V (Gi), y ∈ V (Gj), and 2 ≤ i < j ≤ k in Lemma 10, with β in
place of s and (−α′;α′) ⊂ (−α8 ; α8 ) in place of (−α3 ; α3 ) as the interval of possible slopes
for the edges of Px.
The case in which 1 ≤ j < i ≤ k is symmetric to the previous one.
Suppose now that x belongs to H and y belongs to Gi, for some i ∈ {1, . . . , k}. If i = 1
and y = u0, then y ∈ V (H) and Pxy is defined as above. Assume hence that y 6= u0.
Then the path Pxy consists of three sub-paths.

The first sub-path of Pxy is a path Px in H from x to y1.
Suppose first that x = u. Then let Px = τuy1(H). Let Px = (x = z1, z2, . . . , zs = y1);
we prove that d(Γδ, zhy) > d(Γδ, zh+1y) holds true for any h = 1, . . . , s− 1. Consider
the vertical line `1 through y1, oriented towards increasing y-coordinates; as argued
above, the disk Dρ is to the right of `1 and y lies inside Dρ. By Properties 1 and 2
of Γδ, the edge zhzh+1 is horizontal, with zh to the left of zh+1. Hence, the line `′h
orthogonal to zhzh+1 and passing through its midpoint is also vertical and has `1 to
its right. It follows that y is to the right of `′h. Since the half-plane to the right of `′h
represents the locus of the points of the plane that are closer to zh+1 than to zh, we
have d(Γδ, zhy) > d(Γδ, zh+1y).
Suppose next that x 6= u. By Property 4 of ΓH,δ, there exists a path Px = (x =
z1, z2, . . . , zs = y1) inH that connects x to y1, that does not pass through u, and whose
every edge has slope in (−α2 ; α2 ) in ΓH,δ. We prove that, for any h = 1, 2, . . . , s − 1,
d(Γδ, zhy) > d(Γδ, zh+1y); refer to Fig. 23. Since the drawing of H in Γδ coincides
with ΓH,δ, the edge zhzh+1 has slope in (−α2 ; α2 ) in Γδ. Consider the line `h that passes
through y1, that is directed towards increasing y-coordinates and that is orthogonal
to the line through zh and zh+1. Denote by sh the slope of `h. Then sh ∈ (π−α2 ; π+α

2 ).
We prove that `h has the diskDρ to its right. In order to do that, consider the point pT
on the half-line with slope π−α

2 starting at y1 and such that dV (Γδ, y1pT ) = ρ. Further,
consider the point pB on the half-line with slope −π+α

2 starting at y1 and such that
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Figure 23 Illustration for the proof that d(Γδ, zhy) > d(Γδ, zh+1y) if zhzh+1 is in Px. For the
sake of readability, Dρ is larger than it should be.

dV (Γδ, y1pB) = ρ. Note that pT pB is a vertical straight-line segment with length 2ρ.
Consider the infinite closed strip S with height 2ρ that is delimited by the horizontal
lines through pT and pB . Since Dρ has its center on `u and has radius ρ, it lies
inside S. The part of `h inside S is to the left of pT pB , given that sh ∈ (π−α2 ; π+α

2 ).
Hence, we only need to show that pρ,u, which is the point of Dρ with smallest x-
coordinate, lies to the right of pT pB . We have that d(Γδ, y1pρ,u) = dy1v − ρ. Further,
dH(Γδ, y1pT ) = ρ · tan(α2 ). Hence, it suffices to prove ρ · tan(α2 ) < dy1v − ρ, that is
ρ <

dy1v
1+tan(α2 ) ; this holds true since ρ < dy1v

3 and tan(α2 ) < 1, given that 0 < α < π
4 .

By Lemma 3, the line `h has the drawing of H (and in particular the midpoint
of the edge zhzh+1) to its left; this is because by Property 2 of ΓH,δ every edge
in βy1u(H) has slope π, where sh < π+α

2 < π < 3π−α
2 < π + sh, and because

by Property 3 of ΓH,δ every edge in τy1u(H) has slope in (π − α
2 ;π + α

2 ), where
sh <

π+α
2 < π − α

2 < π + α
2 < 3π−α

2 < π + sh. Now consider the line `′h parallel to
`h, passing through the midpoint of the edge zhzh+1, and oriented towards increasing
y-coordinates; `′h has `h to its right, given that the midpoint of zhzh+1 is to the left
of `h in Γδ. Thus, `′h has Dρ, and in particular y, to its right. Since the half-plane to
the right of `′h represents the locus of the points of the plane that are closer to zh+1
than to zh, it follows that d(Γδ, zhy) > d(Γδ, zh+1y).
The second sub-path is the edge y1v. Since y lies in Dρ, we have that d(Γδ, vy) ≤ ρ ≤
dy1v

3 . By the triangular inequality, we have that d(Γδ, y1y) > d(Γδ, y1v)− d(Γδ, vy) ≥
dy1v − ρ ≥

2dy1v
3 . Hence, d(Γδ, y1y) > d(Γδ, vy).

The third sub-path is a path Pvy that connects v to y, that belongs to
⋃k
l=iGl, and

that is distance-decreasing in Γδ. This path exists, as from the case in which x and y
belong to the same graph Gi or from the case in which x belongs to a graph Gi and
y belongs to a graph Gj for some 1 ≤ j < i ≤ k.

Suppose finally that x belongs to Gi, for some i ∈ {1, . . . , k}, and y belongs to H. If
i = 1 and x = u0, then x ∈ V (H) and Pxy is defined as above. Assume hence that
x 6= u0. We now describe the path Pxy, which consists of three sub-paths.

The first sub-path of Pxy is a path Qx in Gi from x to ui−1 whose every edge has
slope in (π − α′;π + α′) in Γi (in Γ1,d∗ if i = 1). This path exists since Γi (Γ1,d∗ if
i = 1) satisfies Property 5. The second sub-path of Pxy is

⋃i−1
j=1 βujuj−1(Gj). Since

Γj (Γ1,d∗ when j = 1) satisfies Properties 1 and 2, every edge in
⋃i−1
j=1 βujuj−1(Gj)

has slope π in Γj (in Γ1,d∗ when j = 1). Let (x = z1, z2, . . . , zs−1, zs = y`) be the
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union of these two sub-paths of Pxy. We prove that d(Γδ, zhy) > d(Γδ, zh+1y), for any
h ∈ {1, 2, . . . , s−1}. Since the drawings Γ1,d∗ ,Γ2, . . . ,Γk are counter-clockwise rotated
by β radians in Γδ, it follows that zhzh+1 has slope in the interval (π+β−α′;π+β+α′)
in Γδ.
We first present a proof that d(Γδ, zhy) > d(Γδ, zh+1y) for any h ∈ {1, 2, . . . , s − 2};
we will later argue that d(Γδ, zs−1y) > d(Γδ, zsy). Recall that zh and zh+1 lie in Dρ

in Γδ, given that zh, zh+1 6= y`. Consider the line `h that passes through y1, that is
directed towards increasing y-coordinates and that is orthogonal to the line through
zh and zh+1. Denote by sh the slope of `h. Then sh ∈ (π2 + β − α′; π2 + β + α′).
Similarly to the case in which x ∈ V (H) and y ∈ V (Gi), we have that `h has the disk
Dρ to its right and the drawing of H to its left (the main difference is that the gray
angles in Fig. 23 are now β + α′ rather than α

2 ). We now present proofs for these
statements.
∗ We prove that `h has Dρ to its right. Let pT (pB) be the point on the half-line with

slope π
2 −β−α

′ (resp. −π2 +β+α′) starting at y1 and such that dV (Γδ, y1pT ) = ρ

(resp. dV (Γδ, y1pB) = ρ). Then pT pB is a vertical straight-line segment with length
2ρ and Dρ lies inside the infinite closed strip S with height 2ρ that is delimited by
the horizontal lines through pT and pB . The part of `h inside S is to the left of pT pB ,
since sh ∈ (π2 +β−α′; π2 +β+α′). Hence, we only need to show that pρ,u lies to the
right of pT pB . We have d(Γδ, y1pρ,u) = dy1v−ρ, while dH(Γδ, y1pT ) = ρ·tan(β+α′).
Hence, it suffices to prove that ρ < dy1v

1+tan(β+α′) ; this holds true since ρ < dy1v
3 and

tan(β + α′) < 1, given that 0 < β < α
4 <

π
16 and 0 < α′ < α

8 <
π
32 .

∗ By Lemma 3, the line `h has ΓH,δ (and in particular y) to its left; this is because by
Property 2 of ΓH,δ every edge in βy1u(H) has slope π, where sh < π

2 +β+α′ < π <
3π
2 +β−α′ < π+ sh, and because by Property 3 of ΓH,δ every edge in τy1u(H) has
slope in (π− α

2 ;π+ α
2 ), where sh < π

2 +β+α′ < π− α
2 < π+ α

2 <
3π
2 +β−α′ < π+sh.

Now consider the line `′h parallel to `h, passing through the midpoint of the edge
zhzh+1, and oriented towards increasing y-coordinates; `′h has `h to its left, given that
the midpoint of zhzh+1 is in Dρ, hence to the right of `h in Γδ. Thus, `′h has ΓH,δ
(and in particular y) to its left. Since the half-plane to the left of `′h represents the
locus of the points of the plane that are closer to zh+1 than to zh, it follows that
d(Γδ, zhy) > d(Γδ, zh+1y).
We now show that d(Γδ, zhy) > d(Γδ, zh+1y) if h = s − 1. Recall that zh+1 = zs =
u0 = y` and refer to Fig. 24. We exploit again the fact that the line `h through
y1 orthogonal to the line through zh and zh+1 has ΓH,δ (and in particular y) to its
left. Consider the line `′h parallel to `h, oriented towards increasing y-coordinates,
and passing through the midpoint mh of the edge zhzh+1. Differently from the case
in which h ∈ {1, 2, . . . , s − 2}, the midpoint mh of zhzh+1 is not guaranteed to be in
Dρ (in fact it is not in Dρ, although we do not prove this statement formally as we
do not need it in the remainder), given that zh+1 = y` is in H and hence not in Dρ.
Since the half-plane to the left of `′h represents the locus of the points of the plane
that are closer to zh+1 than to zh, we only need to show that the intersection point
ph of the lines `′h and `u lies to the right of y1 on `u; in fact, this implies that `′h has
`h (and hence y) to its left.
Since zh lies inside Dρ, we have that x(zh) ≥ x(pρ,u). Further, x(pρ,u) = x(y1) +
dy1v−ρ. Moreover, by Property 3 of ΓH,δ, we have that x(y1) = x(y`) +dH(Γδ, y`y1).
Thus, we have that x(mh) = x(y`)+x(zh)

2 ≥ x(y`)+x(y`)+dH(Γδ,y`y1)+dy1v−ρ
2 = x(y`) +

dH(Γδ,y`y1)+dy1v−ρ
2 . For the sake of the simplicity of the description, translate the
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`u y1 v Dρ

pρ,u

mh

`′h

ρzh

zh+1=y`

ph qh
β

`h

y

H
dV (Γδ, y`y1)

dH(Γδ, y`y1)

Figure 24 Illustration for the proof that d(Γδ, zhy) > d(Γδ, zh+1y) if h = s− 1.

Cartesian axes so that x(y`) = 0. Thus, x(mh) ≥ dH(Γδ,y`y1)+dy1v−ρ
2 .

By Lemma 6, y` is an internal vertex of βuv(G), hence y` lies below `u. Since ρ ≤ Y
2

and zh lies in Dρ, the y-coordinate of y` is smaller than the one of zh. It follows that
the slope of zhzh+1 is greater than π. Further, zh and hence mh lie on or below the
line hβ with slope β through y`. This implies that the slope of zhzh+1 is at most π+β.
Thus, the slope s′h of `′h is in the interval (π2 ; π2 + β).
We now derive a lower bound for the x-coordinate of ph. Let qh be the point such
that x(qh) = x(mh) and y(qh) = y(ph). Consider the triangle ∆mhphqh. Since the
y-coordinate of y` is smaller than the one of zh, it is also smaller than the one of
mh. Thus, d(Γδ,mhqh) ≤ dV (Γδ, y`y1). Since s′h ∈ (π2 ; π2 + β), the angle ]phmhqh
is at most β. Hence, d(Γδ, phqh) ≤ dV (Γδ, y`y1) · tan(β). It follows that x(ph) =
x(mh)− d(Γδ, phqh) ≥ dH(Γδ,y`y1)+dy1v−ρ

2 − dV (Γδ, y`y1) · tan(β). It remains to prove
that this quantity is larger than dH(Γδ, y`y1), which is the x-coordinate of y1.
Since β < α

4 < π
16 , we have that tan(β) ≤ 1. It follows that dH(Γδ,y`y1)+dy1v−ρ

2 −
dV (Γδ, y`y1) · tan(β) ≥ dH(Γδ,y`y1)+dy1v−ρ

2 − dV (Γδ, y`y1). Hence, we want to establish
that dH(Γδ,y`y1)+dy1v−ρ

2 − dV (Γδ, y`y1) > dH(Γδ, y`y1), that is, dy1v > 2dV (Γδ, y`y1) +
dH(Γδ, y`y1)+ρ. Since ρ ≤ dy1v

3 , we need to prove that dy1v >
6dV (Γδ,y`y1)+3dH(Γδ,y`y1)

2 .
We now express dy1v as a function of β. This is done by looking at the triangle whose
vertices are y`, v, and the point on `u with the same x-coordinate as y`. Since the
angle of this triangle at v is β, we get that dy1v = dV (Γδ,y`y1)

tan(β) − dH(Γδ, y`y1). Substi-
tuting this into the previous inequality, we need to have dV (Γδ,y`y1)

tan(β) − dH(Γδ, y`y1) >
6dV (Γδ,y`y1)+3dH(Γδ,y`y1)

2 , hence tan(β) < 2dV (Γδ,y`y1)
6dV (Γδ,y`y1)+5dH(Γδ,y`y1) . This inequality

holds true since β < arctan
(

dV (ΓH ,y`y1)
3dV (ΓH ,y`y1)+3dH(ΓH ,y`y1)

)
. This concludes the proof

that d(Γδ, zhy) > d(Γδ, zh+1y) if h = s− 1.
The third sub-path of Pxy is a path Py`y that connects y` to y, that belongs to H, and
that is distance-decreasing in ΓH,δ. This path exists since ΓH,δ satisfies Property 6.
Since the drawing of H in Γδ coincides with ΓH,δ, the path Py`y is also distance-
decreasing in Γδ.

This concludes the proof of the lemma. J

Given a strong circuit graph (G, u, v) such that G is not a single edge or a simple cycle,
we are in Case A or Case B depending on whether the edge uv exists or not, respectively.
Thus, Lemmata 8–11 prove Theorem 7. It remains to show how to use Theorem 7 in order
to prove Theorem 1. This is easily done as follows. Consider any 3-connected planar graph
G and associate any plane embedding to it; let u and v be two consecutive vertices in the
clockwise order of the vertices along the outer face of G. We have that (G, u, v) is a strong
circuit graph. Indeed: (a) by assumption G is 2-connected – in fact 3-connected – and
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associated with a plane embedding; (b) by construction u and v are two distinct external
vertices of G; (c) edge uv exists and coincides with τuv(G), given that v immediately follows
u in the clockwise order of the vertices along the outer face of G; and (d) G does not have
any 2-cut, given that it is 3-connected. Thus, Theorem 7 can be applied in order to construct
a planar greedy drawing of G. This concludes the proof of Theorem 1.

4 Conclusions

In this paper we have shown how to construct planar greedy drawings of 3-connected planar
graphs. It is tempting to try to use the graph decomposition we employed in this paper for
proving that 3-connected planar graphs admit convex greedy drawings. However, despite
some efforts in this direction, we have not been able to modify the statement of Theorem 7
in order to guarantee the desired convexities of the angles in the drawings. Thus, proving
or disproving the convex greedy embedding conjecture remains an elusive goal.
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