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Abstract. We study infinitesimal conformal deformations of a triangulated surface in Eu-

clidean space and investigate the change in its extrinsic geometry. A deformation of vertices

is conformal if it preserves length cross-ratios. On one hand, conformal deformations gen-
eralize deformations preserving edge lengths. On the other hand, there is a one-to-one

correspondence between infinitesimal conformal deformations in space and infinitesimal iso-
metric deformations of the stereographic image on the sphere. The space of infinitesimal

conformal deformations can be parametrized in terms of the change in dihedral angles, which

is closely related to the Schläfli formula.

1. Introduction

Realizing a triangulated surface in Euclidean space with prescribed edge lengths is a classical
problem in rigidity theory [3]. Fixing a combinatorial structure and a discrete metric, one is
interested in determining the existence and uniqueness of the realization, which is analogous
to the problem of isometric immersions of surfaces in differential geometry. It stimulates
various directions of research, such as infinitesimal rigidity. A triangulated surface in space
is infinitesimally rigid if all its first-order isometric deformations are induced by Euclidean
motions. Dehn’s rigidity theorem [5] states that all convex polyhedra are infinitesimally rigid.
Gluck [8] further showed that generic triangulated spheres are infinitesimally rigid.

Rather than insisting on edges lengths, we are interested in infinitesimal deformations preserv-
ing conformal structures.

The concept of discrete conformality arose from William Thurston’s idea to approximate con-
formal maps by circle packings in the plane [26]. Rodin and Sullivan [22] proved the convergence
of the analogue of Riemann maps for circle packings. There are further extensions where cir-
cles intersect each other [27, Chap. 13], such as Schramm’s orthogonal circle patterns [24].
The intersection angles of circles yield a discrete notion of conformal structure which is well
defined in Möbius geometry since Möbius transformations map circles to circles and preserve
their intersection angles.

For a given triangulated surface in space, one might be tempted to define its conformal struc-
ture in terms of the intersection angles of the circumscribed circles. However, deformations
preserving edge lengths generally do not preserve the intersection angles because of the change
in dihedral angles. This phenomenon is dissatisfying since it is inconsistent with the smooth
theory, where isometric deformations are special cases of conformal deformations. Instead,
Bobenko and Schröder [2] related the intersection angles to the Willmore energy . On the
other hand, in an effort to remedy the problem, one might measure the intersection angles
after flattening neighboring triangles into the plane so as to remove the dependence on dihe-
dral angles [12]. Nevertheless, the angles measured in this way are not invariant under Möbius
transformations.
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We consider another notion of discrete conformality that is invariant under Möbius transfor-
mations – length cross ratios. It was proposed first in terms of vertex scaling by Luo and later
written in the form of cross ratios [21, 17, 25].

Definition 1.1. The length cross ratio lcr : Eint → R of a triangulated surface equipped
with a discrete metric ` : E → R>0 is

lcrij :=
`il`jk
`lj`ki

= lcrji

where {ijk}, {ilj} are the left and the right triangles of the edge oriented from vertex i to j.
Two discrete metrics are conformally equivalent if their length cross ratios are identical.
Equivalently, two metrics `, ˜̀ are conformally equivalent if they differ by vertex scaling, i.e.
there exists a scale factor u : V → R such that

˜̀
ij = e

ui+uj
2 `ij .

Vertex scaling mimics the smooth theory that two Riemannian metrics g, g̃ are conformally
equivalent if there exists u such that g̃ = eug.

Length cross ratio theory is a counterpart of circle patterns in the plane. For a triangle mesh
in the plane, a complex number is associated to each interior edge by taking the cross-ratio
of the four vertices of the adjacent triangles. The magnitude of the cross-ratio is the length
cross-ratio. The other half of the cross-ratio, namely the argument, yields the intersection
angle of the circumscribed circles. In the plane, the infinitesimal deformations of the two types
are simply related by a π/2-rotation [15].

Previous study of length cross ratios is restricted to intrinsic geometry, i.e. only referring to
discrete metrics but not realizations in R3. Luo [17] introduced vertex scaling to study combi-
natorial Yamabe flow. Bobenko, Pinkall and Springborn [1] further established its relation to
ideal hyperbolic polyhedra.

Conformal deformations in space are interesting not only from the theoretical point of view but
also for applications. Numerical approximations for conformal deformations of smooth surfaces
have been obtained by directly discretizing equations from the smooth theory. Gu and Yau
[9] studied conformal parametrizations of triangulated surfaces. Conformal deformations with
respect to extrinsic geometry were also considered numerically [4].

In this paper, we focus on infinitesimal conformal deformations of triangulated surfaces in
space with respect to length cross ratio theory. It turns out in the context of the extrinsic
geometry, the length cross ratio is a better notion of discrete conformality. One evidence is
that the theory of length cross ratios is compatible with isometric deformations as expected in
the smooth theory.

Proposition 1.2. Given a non-degenerate realization f : V → Rn of a triangulated surface,
the space of infinitesimal conformal deformations of f in Rn is isomorphic to the space of
infinitesimal isometric deformations of ι◦Φ◦f in Rn+1. Here Φ : Rn → Sn is the stereographic
projection and ι : Sn → Rn+1 is the inclusion map.

We then study infinitesimal conformal deformations in R3. Infinitesimal conformal deforma-
tions in R3 can be parametrized by scale factor u. These parameters are intrinsic since they
describe the change in the discrete metrics.

Proposition 1.3. Given an infinitesimally rigid triangulated sphere in R3 and a function
u : V → R, there exists an infinitesimal conformal deformation unique up to Euclidean motions
with scale factor u.
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Infinitesimal conformal deformations can also be parametrized by dihedral angles between
face normals, analogous to the mean curvature in the smooth theory. These parameters are
extrinsic. Under an infinitesimal conformal deformation, we consider the change in mean
curvature half-density ρ : Vint → R defined on interior vertices,

ρi =
1

2

∑
j

α̇ij |fj − fi|.

where α̇ denotes the change in dihedral angles. Together with the discrete Dirac operator D
(Definition 8.1), we prove the following:

Theorem 1.4 (Conformal deformations with prescribed change in mean curvature half den-
sity). Suppose a closed triangulated sphere does not possess any non-trivial infinitesimal confor-
mal deformation with vanishing change in mean curvature half density, i.e. we have dim KerD =
4. Then, given any ρ : V → R with

∑
i ρi = 0, there exists an infinitesimal conformal defor-

mation with ρ as the change in mean curvature half density. The deformation is unique up to
a similarity transformation.

Here the condition
∑

i ρi = 0 is a consequence of the Schläfli formula (Proposition 7.1) and
the assumption dim KerD = 4 is analogous to infinitesimal rigidity in Proposition 1.3.

It has been shown [15] that infinitesimal conformal deformations of triangulated disks in the
plane are closely related to discrete complex analysis. Each infinitesimal conformal deformation
corresponds to a discrete harmonic function with respect to the cotangent Laplacian (Corollary
6.2). The study of the planar case has led to a unified theory of discrete minimal surfaces
[13, 14].

Combining with previous results [16], we obtain an analogy between isometric deformations and
conformal deformations (Table 1). Euclidean motions induce trivial isometric deformations.
The class of infinitesimally flexible surfaces is preserved under projective transformations. In
contrast, Möbius transformations induce trivial conformal deformations. Earlier, we have
studied “conformally flexible” surfaces and called them isothermic triangulated surfaces [16].
More precisely, a closed triangulated surface in space is isothermic if its space of infinitesimal
conformal deformations has dimension strictly larger than V + 6− 6g. The class of isothermic
triangulated surfaces is preserved under Möbius transformations.

Table 1. Comparison between infinitesimal isometric and conformal deformations

Types of Isometric Conformal
infinitesimal deformations:

Constraints: Edge lengths Length cross-ratios
Trivial deformations: Euclidean transformations Möbius transformations

Singularity: Infinitesimally flexible surfaces Isothermic surfaces
Bijective under: Projective transformations Möbius transformations

Our approach is motivated by the method of quaternionic analysis in the smooth theory, which
relates conformal deformations to mean curvature [19]. In the smooth theory, a pair of non-
congruent surfaces is a Bonnet pair if they are isometric with identical mean curvature. Using
quaternionic analysis, there is an elegant way to obtain Bonnet pairs from an isothermic surface
[11].

In Section 3 we review the theory of length cross-ratios. We then prove Proposition 1.2 in
Section 4 and Proposition 1.3 in Section 3. In section 5, we develop the main theorem 5.1 that
describes infinitesimal conformal deformations. An immediate corollary is the angular velocity
equation in Section 6. In order to relate infinitesimal conformal deformations to the change
in mean curvature half-density as in Theorem 1.4, a discrete Dirac operator is introduced in
Section 8. Examples are given in Section 9. In Section 10, we extend the results to surfaces
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of high genus. Finally, the relation to isothermic surfaces and open problems are discussed in
Section 11.

2. Notation

Definition 2.1. A triangulated surface M = (V,E, F ) is a finite simplicial complex whose
underlying topological space is an oriented 2-manifold with or without boundary. The set of
vertices (0-cells), edges (1-cells) and triangles (2-cells) are denoted as V , E and F .

Definition 2.2. A realization of a triangulated surface in Rn is a map f : V → Rn which can
be extended linearly to each face. We say f is non-degenerate if every face of f spans an affine
2-plane. In particular it implies fi 6= fj for every edge {ij} ∈ E.

Definition 2.3. A discrete metric on a triangulated surface is a function ` : E → R>0

satisfying the triangle inequality. Two discrete metrics on a triangulated surface are isometric
if they are identical.

We are interested in discrete metrics induced from realizations into Rn.

Definition 2.4. Every realization f : V → Rn of a triangulated surface induces a discrete
metric ` : E → R>0

`ij = |fj − fi| ∀ {ij} ∈ E.
where | · | is the Euclidean norm. Two realizations are conformally equivalent if their induced
edge lengths are conformally equivalent.

Without further notice all triangulated surfaces under consideration are assumed to be oriented
and the realizations are non-degenerate. Each triangular face is represented by its vertices in
an order that is compatible with the orientation of the surface. For example, in Fig. 1, the
left face is represented as {ijk} = {jki} = {kij}. A vector field Z : F → R3 on faces obeys
the same rule: Zijk = Zjki = Zkij . The opposite orientation on faces will not be considered in
this paper.

An interior edge is a common edge of two faces. We denote Vint and Eint the set of interior
vertices and the set of interior edges respectively. We write eij as the oriented edge from the

vertex i to the vertex j. Note that eij 6= eji. The set of oriented edges is denoted by
#»

E. The

set of interior oriented edges is indicated by
#»

Eint.

We write M∗ as the dual mesh of M constructed as follows: A vertex of M∗ is associated to
every face of M . Two vertices of M∗ are connected by an edge if the corresponding faces of M
share a common edge. Edges of M∗ bound a face if the corresponding edges are exactly the
neighbors of some vertex of M .

We make use of discrete differential forms from Discrete Exterior Calculus [6]. A function

ω :
#»

E → R is called a (primal) discrete 1-form if

ω(eij) = −ω(eji) ∀eij ∈
#»

E.

It is closed if for every face {ijk}
ω(eij) + ω(ejk) + ω(eki) = 0.

It is exact if there exists a function f : V → R such that for eij ∈
#»

E

ω(eij) = fj − fi =: df(eij).

In particular, every exact 1-form is closed.

Similarly, we consider discrete 1-forms on the dual mesh M∗ and these are called dual 1-forms
on M . For every oriented edge e, we write e∗ as its dual edge oriented from the right face of e
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Figure 1. Two neighboring triangles contain the oriented edge eij

to its left face. A function η :
#»

E∗int → R defined on oriented dual edges is called a dual 1-form
if

η(e∗ij) = −η(e∗ji) ∀e∗ij ∈
#»

E∗int.

A dual 1-form η is closed if for ever interior vertex i ∈ Vint∑
j

η(e∗ij) = 0.

It is exact if there exists h : F → R such that

dh(e∗ij) := hijk − hilj = η(e∗ij)

where {ijk} denotes the left face of eij and {ilj} denotes the right face (Figure 1).

Given a realization f : V → R3 of a triangulated surface, we measure its dihedral angles
α : Eint → R between face normals. We denote N : F → S2 the face normal compatible with
the orientation of the surface

Nijk :=
(fj − fi)× (fk − fi)
|(fj − fi)× (fk − fi)|

= Njki = Nkij

where ijk is in the order consistent with the orientation. In principle Nikj = −Nijk since ikl
has the opposite orientation, but this case will not appear in the paper.

The sign of the dihedral angle αij ∈ (−π, π) is determined by

sinαij = 〈Nijk ×Nilj ,
fj − fi
|fj − fi|

〉,

cosαij = 〈Nijk, Nilj〉
where {ijk}, {ilj} ∈ F denote the left and the right face of eij .

3. Conformal equivalence

This section reviews the definition of the conformal equivalence of triangulated surfaces based
on length cross ratios [17, 25], which possesses properties as in the smooth theory. Every
immersion of a triangulated surface into Euclidean space induces a conformal structure. The
conformal structure is preserved under Möbius transformations.

Proposition 3.1. Suppose f : V → Rn is a realization of a triangulated surface. Then for
any Möbius transformation Φ, the realizations f and Φ ◦ f are conformally equivalent.

Proof. Möbius transformations are generated by translations, dilations and the inversion under
the unit sphere. Conformal equivalence is preserved obviously under dilations and translations.
Thus, it suffices to consider φ as the inversion under the unit sphere. Since

| fi
|fi|2

− fj
|fj |2

|2 =
1

|fi|2
+

1

|fj |2
− 2

|fi|2|fj |2
〈fi, fj〉

=
1

|fi|2|fj |2
|fi − fj |2
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where | · | denotes the Euclidean norm, we conclude f and φ◦f are conformally equivalent. �

We consider infinitesimal conformal deformations, as a linearization of Definition 1.1.

Definition 3.2. Suppose f : V → Rn is a realization of a triangulated surface. An infinitesimal
deformation ḟ : V → Rn is conformal if it preserves the length cross ratios. Equivalently, ḟ
is conformal if there exists u : V → R satisfying

〈ḟj − ḟi, fj − fi〉 =
uj + ui

2
|fj − fi|2.

We call u the scale factor of ḟ . In particular, ḟ is isometric if u ≡ 0.

As a remark, the scale factor u is a good intrinsic parameter to describe conformal deformations
for triangulated spheres in R3.

Proof of Proposition 1.3. It is known that as a result of Definition 1.1 the space of conformal
equivalence class is of dimension |E|−|V | intrinsically, i.e. independent of the immersion [1] [16,
Lemma 18]. It implies that for a triangulated sphere in R3, the space of infinitesimal conformal
deformations C, including Euclidean motions, is of dimension at least 3|V |−(|E|−|V |) = |V |+6.
The inequality is strict if the constraints become linearly dependent and this property depends
on the immersion. In the following, we argue that it is indeed an equality if we assume f is
infinitesimally rigid.

The map from the space of infinitesimal conformal deformations in R3 to the space of scale
factors u is a linear map T : C → R|V |.

If the surface is infinitesimally rigid, then Ker(T ) consists of Euclidean motions only and is
of dimension 6. It implies rankT = |V | and dimC = |V | + 6. In particular, T is surjective.
Thus, given any u : V → R, there exists an infinitesimal conformal deformation in R3 with
scale factor u and it is unique up to Euclidean motions. �

Proposition 3.3 (Gluck [8]). Almost all simply connected closed triangulated surfaces in R3

are infinitesimally rigid.

Corollary 3.4. For almost all simply connected closed surfaces in R3, there exists an infini-
tesimal conformal deformation unique up to Euclidean motions for any function u : V → R as
the scale factor.

Proof. It follows from Proposition 1.3 and 3.3. �

As a remark, all triangulated surfaces except tetrahedra admit non-trivial infinitesimal con-
formal deformations regardless of their infinitesimal rigidity and genus. This can be observed
simply by counting: A closed triangulated surface in R3 of genus g with V vertices has 3V
degrees of freedom. Notice that the length cross-ratios satisfy Πj lcrij = 1 for every ver-
tex i. In order to preserve the conformal structure lcr : E → R infinitesimally, there are
E − V = 2V − 6 + 6g linear constraints. Hence generally the space of infinitesimal conformal
deformations in space is at least 3V − (E − V ) = V + 6 − 6g. If the surface is a tetrahedra,
then this number is equal to 10 which coincides with the dimension of the space of Möbius
transformations.

4. Infinitesimal isometric deformations of Sn in Rn+1

We show that every infinitesimal conformal deformation corresponds to an infinitesimal iso-
metric deformation via stereographic projection. Therefore one can apply techniques from the
theory of infinitesimal rigidity to that of infinitesimal conformal deformations, such as rigidity
matrices.
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For an inscribed triangulated surface, i.e. whose vertices lie on the unit sphere Sn, we establish
a correspondence between its infinitesimal conformal deformations tangent to the sphere and
infinitesimal isometric deformations in Rn+1.

Proposition 4.1. Given an inscribed triangulated surface f : V → Sn ⊂ Rn+1, its space
of infinitesimal isometric deformations in Rn+1 is isomorphic to the space of infinitesimal
conformal deformations tangent to the sphere Sn.

Proof. Suppose v : V → Rn+1 is an infinitesimal isometric deformation of f . Then its projec-
tion vT to the tangent space of the sphere is

vT := v − 〈v, f〉f.

Since v is isometric, i.e. 〈vj − vi, fj − fi〉 = 0, we have

〈vTj − vTi , fj − fi〉
=− 〈〈vj , fj〉fj − 〈vi, fi〉fi, fj − fi〉

=− 1

2
〈(〈vj , fj〉+ 〈vi, fi〉)(fj − fi) + (〈vj , fj〉 − 〈vi, fi〉)(fj + fi), fj − fi〉

=− 1

2
〈(〈vj , fj〉+ 〈vi, fi〉)|fj − fi|2.

Hence vT is an infinitesimal conformal deformation with scale factor −〈v, f〉.

We are going to show that such a projection from infinitesimal isometric deformations to
infinitesimal conformal deformations is bijective. Assume vT ≡ 0. Then, we have

vi = aifi

for some a : V → R. Because v is an infinitesimal isometric deformation, we have

ai = 〈vi, fi〉 = −〈vj , fj〉 = −aj ∀eij ∈ E.

Consider the three vertices of any triangle, such condition is satisfied if and only if a ≡ 0.
Hence, v ≡ 0 and the projection is injective.

On the other hand, suppose w is an infinitesimal conformal deformation tangent to Sn with
scale factor u. We define an infinitesimal deformation by

v := w − uf.

Then,

〈vj − vi, fj − fi〉
=〈wj − wi, fj − fi〉 − 〈ujfj − uifi, fj − fi〉

=
ui + uj

2
|fj − fi|2 −

1

2
〈(uj − ui)(fj + fi) + (uj + ui)(fj − fi), fj − fi〉

=0

which implies v is an infinitesimal isometric deformation and vT = w. Hence the projection is
bijective. �

The following is the infinitesimal version of the Möbius invariance of conformal equivalence.

Lemma 4.2. Let ḟ be an infinitesimal conformal deformation of f : V → Rn. Then for every
Möbius transformations Φ, the infinitesimal deformation dΦ(ḟ) of Φ ◦ f is conformal.
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Proof. Since Möbius transformations are generated by Euclidean transformations and inver-
sions, it suffices to consider the inversion under the unit sphere, Φ(f) = −f/|f |2. Suppose ḟ
is an infinitesimal conformal deformation of f with scale factor u : V → R. We have

dΦ(ḟ) = − ḟ

|f |2
+

2〈ḟ , f〉
|f |4

f.

By direct computation, we get

〈dΦ(ḟj)− dΦ(ḟi),Φ(fj)− Φ(fi)〉

=(ui −
2〈ḟi, fi〉
|fi|2

+ uj −
2〈ḟj , fj〉
|fj |2

)|Φ(fj)− Φ(fi)|2

which implies dΦ(ḟ) is an infinitesimal conformal deformation of Φ ◦ f . �

Proof of Proposition 1.2. With the fact that the stereographic projection is a Möbius trans-
formation, Proposition 1.2 follows from Lemma 4.1 and Lemma 4.2. �

5. Infinitesimal conformal deformations in R3

We represent infinitesimal conformal deformations in terms of scale factor u : V → R describing
the change in edge lengths and vector field Z : F → R3 that determines the rotation of faces.
The scale factor u alone induces a change in the Gaussian curvature [7]. To realize such a
change in R3, e.g. from a flat plane to a cone, one has to rotate the faces in a certain way
such that the surface is not teared apart. This section is to establish the relation between scale
factor u and rotation vector field Z as in the following theorem, which will be a cornerstone
for Theorem 1.4.

Theorem 5.1. Let f : V → R3 be a triangulated surface with face normal N : F → S2 and
ḟ : V → R3 be an infinitesimal conformal deformation with scale factor u : V → R. Then there
exists a unique vector field defined on faces Z : F → R3 satisfying

ḟj − ḟi =
ui + uj

2
(fj − fi) + (fj − fi)× (Zijk +

cot∠jki
2

(uj − ui)Nijk)

=
ui + uj

2
(fj − fi) + (fj − fi)× (Zilj +

cot∠ilj
2

(ui − uj)Nilj)

(1)

where {ijk}, {ilj} are the left and the right faces of the oriented edge eij. In particular, eq. (1)
implies that the functions u, Z satisfy

(fj − fi)× ((Zijk − Zilj) + (uj − ui)(
cot∠jki

2
Nijk +

cot∠ilj
2

Nilj)) = 0(2)

and the change in dihedral angles α̇ is given by

〈fj − fi, Zijk − Zilj〉 = α̇ij |fj − fi|.(3)

Conversely, if the triangulated surface is simply connected and functions u : V → R, Z : F →
R3 satisfy (2), then there exists an infinitesimal conformal deformation ḟ satisfying (1) unique
up to translations.

The rest of this section is to prove the theorem above.

Generally, every infinitesimal deformation ḟ can be written as

ḟj − ḟi = σij(fj − fi) +Wij × (fj − fi)

where σij = σji ∈ R and Wij = Wji ∈ R3. Note that W is unique up an additive multiple
of fj − fi. This additive constant will be normalized within each of its neighboring faces
separately. The difference of the additive constants from neighboring faces will yield the
change in the dihedral angle between the face normals.
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Suppose ḟ is conformal with scale factor u, we have

σij = 〈ḟj − ḟi, fj − fi〉/|fj − fi|2 =
ui + uj

2
.

It remains to investigate the dependence of W on u. We focus on a triangle {ijk} and its edges
first. We denote Nijk the face normal. As mentioned, Wij is unique up an additive multiple
of fj − fi. We will normalize Wij with respect to {ijk} and write the normalization as Wij,k.
For the moment we decompose Wij into two components

Wij = ωij,kNijk + Yij,k

for some ωij,k ∈ R and Yij,k ⊥ Nijk. We define

Yijk := Nijk × Ṅijk

where Ṅ is the change in the face normal. Since 〈Ṅ ,N〉 = 0, we have

Ṅijk = Yijk ×Nijk.

Note that Yijk and Yij,k are perpendicular to Nijk and

〈Yijk ×Nijk, fj − fi〉 = 〈Ṅijk, fj − fi〉 = −〈Nijk, ḟj − ḟi〉 = 〈Yij,k ×Nijk, fj − fi〉
which implies Yijk − Yij,k is a multiple of fj − fi. Similarly, we can deduce Yijk − Yjk,i is a
multiple of fk − fj and Yijk − Yki,j is a multiple of fi − fk. We then define

Wij,k := ωij,kNijk + Yijk

to be a normalization of Wij with respect to {ijk} since Wij,k −Wij differ by a multiple of
fj−fi. Similarly we have Wjk,i and Wki,j . The geometric meaning of Yijk is clear. It describes
the rotation of the face normal. The next step is to derive a relation between ω and scale factor
u.

The closeness condition

0 =(ḟj − ḟi) + (ḟk − ḟj) + (ḟi − ḟk)

implies

0 = σij(fj − fi) + σjk(fk − fj) + σki(fi − fk) + ωij,kNijk × (fj − fi)
+ ωjk,iNijk × (fk − fj) + ωki,jNijk × (fi − fk).

(4)

Note that fj − fi ∈ span{Nijk × (fk − fj), Nijk × (fi − fk)}. In fact

fj − fi = cot(∠ijk)Nijk × (fi − fk)− cot(∠kij)Nijk × (fk − fj).

Substituting it into (4) implies

0 =
∑(

ωij,k + (σjk − σki) cot∠jki
)
Nijk × (fj − fi).

Since Nijk × (fj − fi),Nijk × (fk − fj) and Nijk × (fi − fk) span an affine plane and

Nijk × (fj − fi) +Nijk × (fk − fj) +Nijk × (fi − fk) = 0,

there exists a unique number ωijk such that

ωijk =ωij,k + (σjk − σki) cot∠jki

=ωjk,i + (σki − σij) cot∠kij

=ωki,j + (σij − σjk) cot∠ijk.

Because σij =
ui+uj

2 we have

ωij,k = ωijk −
cot∠jki

2
(uj − ui).

Thus,

Wij,k = (ωijk −
cot∠jki

2
(uj − ui))Nijk + Yijk = −Zijk −

cot∠jki
2

(uj − ui)Nijk.
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Here Zijk := −(ωijkNijk + Yijk) is associated to the face and describes the its infinitesimal
rotation.

Similarly consider the other neighboring face {ilj} that contains {ij}, the normalization of
Wji = Wij is

Wji,l = −Zijk −
cot∠jki

2
(uj − ui)Nijk.

Lemma 5.2. The dihedral angle α between the normal is defined by

sinαij = 〈Nijk ×Nilj ,
fj − fi
|fj − fi|

〉.

Its change under an infinitesimal conformal deformation satisfies

α̇ij = 〈Zijk − Zilj ,
fj − fi
|fj − fi|

〉 = 〈Wji,l −Wij,k,
fj − fi
|fj − fi|

〉

where {ijk}, {ilj} are the left and the right face of the oriented edge from i to j. Since Wji,l−
Wij,k differ only by a multiple of fj − fi, we indeed have

Wji,l −Wij,k = α̇ij
fj − fi
|fj − fi|

Proof. Differentiating sinα yields

α̇ij cosαij =〈Ṅijk ×Nilj +Nijk × Ṅilj ,
fj − fi
|fj − fi|

〉

=〈
(
Nijk × Zijk

)
×Nilj +Nijk ×

(
Nilj × Zilj

)
,
fj − fi
|fj − fi|

〉

= cosαij〈Zijk − Zilj ,
fj − fi
|fj − fi|

〉.

Hence

α̇ij = 〈Zijk − Zilj ,
fj − fi
|fj − fi|

〉.

�

The above lemma implies the function Z : F → R3 satisfy a compatibility condition that

(5) Zijk − Zilj = −(uj − ui)(
cot∠jki

2
Nijk +

cot∠ilj
2

Nilj) + α̇ij
fj − fi
|fj − fi|

.

We decompose this equation into two components. One is parallel to fj − fi
〈fj − fi, Zijk − Zilj〉 = α̇ij |fj − fi|

and the other is perpendicular to fj − fi

(fj − fi)× ((Zijk − Zilj) + (uj − ui)(
cot∠jki

2
Nijk +

cot∠ilj
2

Nilj)) = 0

as stated in Theorem 5.1.

Conversely, given Z : F → R3 satisfying Equation (5) for some u : V → R, one could
immediately check that the 1-form

η(eij) =
ui + uj

2
(fj − fi) + (fj − fi)× (Zijk +

cot∠jki
2

(uj − ui)Nijk)

=
ui + uj

2
(fj − fi) + (fj − fi)× (Zilj +

cot∠ilj
2

(ui − uj)Nilj)

is well defined and is closed. If the triangulated surface is simply connected, then there exists
an infinitesimal conformal deformation ḟ : V → R3 unique up to translations such that

ḟj − ḟi = η(eij).
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6. Angular velocity equation

The derivation in the previous section yields an interesting equation.

Proposition 6.1 (Angular velocity equation). Under an infinitesimal conformal deformation
with scale factor u : V → R, the change in dihedral angles α̇ satisfy for every interior vertex i∑

j

α̇ij
fj − fi
|fj − fi|

=
∑
j

(uj − ui)(
cot∠jki

2
Nijk +

cot∠ilj
2

Nilj) =
∑
jk

β̇ijkNijk

where {jk} is an edge of a face {ijk} and β̇ijk denotes the change in ∠ijk.

Proof. It follows from Equation (5) that for every interior vertex i∑
j

(
α̇ij

fj − fi
|fj − fi|

− (uj − ui)(
cot∠jki

2
Nijk +

cot∠ilj
2

Nilj)
)

=
∑
j

(Zijk − Zilj) = 0

Furthermore

cosβkij =
〈fj − fi, fk − fi〉
|fj − fi||fk − fi|

.

Differentiating both sides yields

−β̇kij sinβkij =− sinβkij((uj − ui)
cot∠jki

2
+ (uk − ui)

cot∠ijk
2

)

and thus

β̇kij = (uj − ui)
cot∠jki

2
+ (uk − ui)

cot∠ijk
2

.

�

For every infinitesimal isometric deformation, we have u ≡ 0 and hence obtain the standard
identity [18, Lemma 28.2] ∑

j

α̇ij
fj − fi
|fj − fi|

= 0 ∀i ∈ Vint

which is related to infinitesimal deformations of spherical polygons with fixed edge lengths
[23].

Corollary 6.2 ([25, 15]). Suppose an infinitesimal conformal deformation of an immersed
triangulated surface in the plane has scale factor u : V → R. Then the function u is a discrete
harmonic function with respect to the cotangent Laplacian, i.e. for every interior vertex i∑

j

(cot∠jki+ cot∠ilj)(uj − ui) = 0

and the change in dihedral angle α̇ satisfies∑
j

α̇ij
fj − fi
|fj − fi|

= 0.

Proof. It follows immediately from Proposition 6.1 by considering the component in plane and
the normal component separately. �
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7. Mean curvature half density

We are interested in parameterizing the space of infinitesimal conformal deformations in terms
of the extrinsic geometry. Under an infinitesimal conformal deformation, we consider the
change in mean curvature half-density ρ : Vint → R

ρi :=
1

2

∑
j

α̇ij |fj − fi|.

This formula is closely related to the mean curvature arisen from Steiner’s tube formula:

(6) i ∈ V 7→ 1

2

∑
j

αij |fj − fi|

Notice that ρ is not exactly the derivative of equation (6) unless the deformation is isometric.
In fact, equation (6) is a discrete analogue of H|df |2 while ρ is analogous to the change in mean
curvature half density ( d

dt H|df |)|df |. Here one might heuristically think of α as H|df |. In the
smooth theory, mean curvature half density is used to parametrize conformal deformations of
surfaces in space [20, 4].

As a corollary of Theorem 5.1, we obtain the famous Schläfli formula. It is a necessary condition
for ρ and later it turns out to be sufficient in non-degenerate cases.

Corollary 7.1. (Scalar Schläfli Formula) For every infinitesimal conformal deformation of a
closed triangulated surface f : V → R3, we have∑

i

ρi =
∑
ij

α̇ij |fj − fi| = 0

where α̇ is the change in the dihedral angles.

Proof. Given an infinitesimal conformal deformation, Theorem 5.1 shows that there exists
(u, Z) ∈ Rv × R3F such that

ρi =
1

2

∑
j

α̇ij |fj − fi| =
1

2

∑
j

〈fj − fi, Zijk − Zjki〉.

Hence we have∑
i

ρi =
∑
ij∈E

α̇ij |(fj − fi)| =
∑
ijk

〈fj − fi + fk − fj + fi − fk, Zijk〉 = 0.

�

Remark 7.2. Scalar Schläfli Formula holds for general infinitesimal deformations of closed
triangulated surfaces [18].

8. Discrete Dirac operator

A heuristic counting of the degrees of freedom indicate that the change in mean curvature half-
density is a good candidate to parametrize infinitesimal conformal deformations extrinsically.
Notice that:

(1) The space of infinitesimal conformal deformations of a triangulated sphere is at least
3|V | − (|E| − |V |) = |V |+ 6.

(2) Similarity transformations are trivial conformal deformations that preserve dihedral
angles. The space of similarity transformations has dimension 7.

(3) The space of functions ρ : V → R with
∑

i ρi = 0 is of dimension |V |−1 = (|V |+6)−7



INFINITESIMAL CONFORMAL DEFORMATIONS OF TRIANGULATED SURFACES IN SPACE 13

Hence it is reasonable to ask if, given a function ρ : V → R with
∑

i ρi = 0, does there exist
an infinitesimal conformal deformation unique up to a similarity transformation with ρ as the
change in mean curvature half-density? The answer is positive as stated in Theorem 1.4. We
follow the proof in the smooth theory [20] by developing a discrete Dirac operator D for closed
triangulated surfaces.

Definition 8.1. Given a realization of a triangulated surface f : V → R3, we associate each
interior edge the two dimensional subspace in R3 that is perpendicular to fj − fi. It forms
a normal bundle Nf over the edges. A section of Nf is a function W : E → Nf such that
Wij = Wji is perpendicular to fj − fi. The space of sections are denoted by Γ(Nf ), which is
of dimension 2|E| as a vector space. We write fijk to represent the circumcenter of the face
{ijk} and have

fijk − filj = (
cot∠jki

2
Nijk +

cot∠ilj
2

Nilj)× (fj − fi)

We define the discrete Dirac operator

D : RV × R3F → RVint × Γ(Nf )

(u, Z) 7→ (ρ, U)

where

ρi =
1

2

∑
j

〈fj − fi, Zijk − Zilj〉,

Uij = −(fj − fi)× (Zijk − Zilj) + (fijk − filj)(uj − ui) = Uji.

and {ijk},{jil} are the left and the right triangles of the oriented edge from i to j.

This definition follows from Theorem 5.1. Its name is motivated from the smooth theory [4].
In the following we derive the adjoint of the discrete Dirac operator on closed triangulated
surfaces.

Definition 8.2. We denote 〈·, ·〉 the Euclidean product in R3. On a closed triangulated
surface, we further define inner products on RV × Γ(Nf ) and RV × R3F respectively. For

(α,W ), (α̃, W̃ ) ∈ RV × Γ(Nf ) where Wij = Wji is a vector perpendicular to fj − fi, then(
(α,W ), (α̃, W̃ )

)
:=
∑
i∈V

αiα̃i +
∑
ij∈E
〈Wij , W̃ij〉.

The sums are respectively over all vertices and over all unoriented edges. For (β, Y ), (β̃, Ỹ ) ∈
RV × R3F where Y, Ỹ : F → R3,(

(β, Y ), (β̃, Ỹ )
)

:=
∑
i∈V

βiβ̃i +
∑

ijk∈F

〈Yijk, Ỹijk〉.

With the inner products, the adjoint discrete Dirac operator D∗ : RV × Γ(Nf )→ RV ×R3F is
defined as the map satisfying(

(u, Z),D∗(α,W )
)

=
(

D(u, Z), (α,W )
)

for (u, Z) ∈ RV × R3F and (α,W ) ∈ RV × Γ(Nf ).

Proposition 8.3. The adjoint discrete Dirac operator has an explicit form:

D∗ : RV × Γ(Nf )→ RV × R3F

(α,W ) 7→ (ρ̃, Y )

where ρ̃ : V → R and Y : F → R3 are defined by

ρ̃i =−
∑
j

〈fijk − filj ,Wij〉
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Yijk =(fj − fi)×Wij + (fk − fj)×Wjk + (fi − fk)×Wki

+
αi + αj

2
(fj − fi) +

αj + αk

2
(fk − fj) +

αk + αi

2
(fk − fj)

and fijk, filj are the circumcenters of the left and the right faces of the oriented edge from i
to j.

Proof. Direct computations yield

((u, Z),D∗(α, 0)) =
∑
i∈V

αi

2

∑
j

〈fj − fi, Zijk − Zilj〉

=
∑
ijk

〈Zijk,
αi+αj

2
(fj − fi)+

αj+αk

2
(fk − fj)+

αk+ αi

2
(fi − fk)

((u, 0),D∗(0,W )) =
∑
ij∈E
〈(fijk − filj)(uj − ui),Wij〉

=−
∑
i∈V

ui
∑
j

〈fijk − filj ,Wij〉,

((0, Z),D∗(0,W )) =
∑
ij∈E
〈−(fj − fi)× Zijk − Zilj ,Wij〉

=
∑
ijk

−〈Zijk,Wij × (fj − fi) +Wjk × (fk − fj) +Wki × (fi − fk)〉

By linearity, we obtain the formula as stated. �

Lemma 8.4. On a closed triangulated surface, we have 3|E| = 2|F | and

dim(Im D) = dim(Im D∗),

dim(Ker D) = dim(Ker D∗),

(KerD∗)⊥ = ImD.

Lemma 8.5. The kernel of D∗ contains constant functions

{(α,W †) ∈ RV × Γ(Nf )|α ∈ R,W ∈ R3} ⊂ Ker D∗

where W †ij is the component of Wij orthogonal to fj − fi. In particular

dim(Ker D∗) ≥ 4.

Proof. Let α be a constant function on vertices and W be a constant vector in R3. We write
(ρ̃, Y ) := D∗(α,W †) and have

ρ̃i =−
∑
j

〈fijk − filj ,W 〉 = 0,

Yijk =(fj − fi)×W + (fk − fj)×W + (fi − fk))×W

+
α+ α

2
(fj − fi) +

α+ α

2
(fk − fj) +

α+ α

2
(fi − fk))

=0.

If W † ≡ 0 for a constant vector W , it implies W is parallel to all edges of f . Since f is
non-degenerate, we have W ≡ 0. Hence, the nullity of D∗ is at least 4. �

Lemma 8.6. If dim(Ker D) = 4, then for all (ρ, U) ∈ RV × Γ(Nf ),∑
i∈V

ρi = 0 and
∑
ij∈E

Uij = 0⇔ (ρ, U) ∈ Im D .
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Proof. Suppose there exists (u, Z) ∈ RV+3F such that D(u, Z) = (ρ, U). Then Proposition 7.1
implies

∑
i∈V ρi = 0 while

∑
ij∈E Uij = 0 follows from direct computation.

Conversely, the assumption implies dim(Ker D∗) = dim(Ker D) = 4 and thus Ker D∗ contains
constant functions only. Therefore,∑

i∈V
ρ = 0 and

∑
ij∈E

Uij = 0

yields (ρ, U) ∈ (Ker D∗)⊥ = Im D. �

We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. Notice that infinitesimal translations correspond to u ≡ 0, Z ≡ 0 in
Theorem 5.1. Furthermore infinitesimal rotations are given by u ≡ 0, Z ≡ const. while uniform
scaling by u ≡ const., Z ≡ 0.

Given a function ρ : V → R with
∑

i ρi = 0, then (ρ, 0) ∈ Im D and hence there exists
(u, Z) ∈ RV ×R3F such that D(u, Z) = (ρ, 0). The assumption dim KerD = 4 implies u, Z are
unique up to a constant. Thus with Theorem 5.1, we conclude that there exists an infinitesimal
conformal deformation satisfying

ρi =
1

2

∑
j

α̇ij |fj − fi|.

The deformation is unique up to a similarity transformation. �

We finish the discussion on the adjoint discrete Dirac operator with three corollaries. The
first is a dual of Theorem 5.1 in the sense that infinitesimal conformal deformations can be
described in terms of D∗ in the same way as that of D. This result should be expected in the
smooth theory because the Dirac operator is self-adjoint [11].

Corollary 8.7. Let ḟ : V → R3 be an infinitesimal conformal deformation of a realization
f : V → R3 with scale factor u : V → R. Then there exists an element W ∈ Γ(Nf ), i.e.
Wij ∈ (fj − fi)⊥ ⊂ R3 such that

ḟj − ḟi =
ui + uj

2
(fj − fi) + (fj − fi)×Wij(7)

Furthermore, we have D∗(u,W ) = (ρ, 0) ∈ RV × R3F where

ρi =
1

2

∑
j

α̇ij |fj − fi|

and α̇ is the change in dihedral angles.

Conversely, if the triangulated surface is simply connected and functions u,W satisfy D∗(u,W ) =

(ρ, 0) for some ρ, then there exists an infinitesimal conformal deformation ḟ unique up to trans-
lation given via (7).

Proof. Given an infinitesimal conformal deformation, the existence and uniqueness of W is
immediate. For every face {ijk}, we have

0 =ḟj − ḟi + ḟj − ḟi + ḟj − ḟi

which implies D∗(u,W ) = (ρ, 0) for some ρ : Vint → R. On the other hand, as a result of
Section 5, there exists a vector field Z → R3 on faces such that

Wij =
(
Zijk +

cot∠jki
2

(uj − ui)Nijk

)†
=
(
Zilj +

cot∠ilj
2

(ui − uj)Nilj

)†
= Wji
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where † denotes the component orthogonal to (fj − fi). We denote the circumcenter of {ijk}
as fijk. We have

1

2

∑
j

α̇ij |fj − fi| =
∑
j

〈α̇ij
fj − fi
|fj − fi|

, fijk − fi〉

=
∑
j

(
〈Zijk +

cot∠jki
2

(uj − ui)Nijk, fijk − fi〉

− 〈Zilj +
cot∠ilj

2
(ui − uj)Nilj , fijk − fi〉

)
=−

∑
j

〈Zilj +
cot∠ilj

2
(ui − uj)Nilj , (fijk − fi)− (filj − fi)〉

=ρi

as claimed. �

In contrast to Proposition 1.3, not every function u can be realized as the scale factor of some
infinitesimal conformal deformation in space for infinitesimally flexible surfaces.

Corollary 8.8. Suppose f : V → R3 is a closed surface with a nontrivial infinitesimal isomet-
ric deformation f̄ having ρ̄ : V → R the change in mean curvature half density. Then for any
infinitesimal conformal deformation in space with scale factor u, we have∑

i

ρ̄iui = 0.

Proof. Using Corollary 8.7, there exists W̄ ∈ Γ(Nf ) such that

f̄j − f̄i = (fj − fi)× W̄ij

with D∗(0, W̄ ) = (ρ̄, 0). For any other infinitesimal conformal deformation in space, we repre-
sent it as (u, Z) as in Theorem 5.1 where u is the scale factor and Z is the rotation field on
faces. Its change in mean curvature half density ρ satisfies D(u, Z) = (ρ, 0). Then∑

i

ρ̄iui =
(
D∗(0,W ), (u, Z)

)
=
(
(0,W ), D(u, Z)

)
=
(
(0,W ), (ρ, 0)

)
= 0.

�

The third corollary reflects that the discrete Dirac operator is the “square root” of the cotangent
Laplacian. Its proof is straightforward by applying Definition 8.1 and Proposition 8.3.

Corollary 8.9. For any real-valued function α : V → R, we have D 1
A D∗(α, 0) = (ρ, U) where

ρi = −
∑
j

(cot∠jki+ cot∠ilj)(αj − αi),

Uij = (αj − αi)(Nijk −Nilj).

Here A : F → R is the signed area of the corresponding triangle under the realization and
{ijk}, {ilj} are the left and the right faces of the oriented edge from i to j.

9. Examples

We consider triangulated surfaces with vertices on the unit sphere. We investigate their infin-
itesimal conformal deformations and the change in mean curvature half density.
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Proposition 9.1 ([16]). Every infinitesimal isometric deformation of a triangulated surface
with vertices on the sphere satisfies for every interior vertex i∑

j

α̇ij |fj − fi| = 0.

Example 9.2. Jessen’s orthogonal icosahedron [10] is combinatorially a regular icosahedron
with some edges flipped (Figure 2). Its vertices lie on a sphere and all dihedral angles are
either π/2 or 3π/2. It is a well known example as a non-convex triangulated sphere that
is infinitesimally flexible [16]. Under the non-trivial infinitesimal isometric deformation, the
change in the mean curvature half density vanishes by Proposition 9.1. Hence dim(Ker D) > 4.

Figure 2. Jessen’s orthogonal icosahedron

Example 9.3. Figure 3 shows one of Bricard’s octahedra inscribed in a sphere. It is flexible
and therefore Proposition 9.1 implies dim(Ker D) > 4.

Figure 3. Bricard’s octahedron and its top view

Dehn’s theorem states that convex polyhedra are infinitesimally rigid, i.e. there is no infini-
tesimal isometric deformation other than Euclidean motion. However, one could still consider
conformal deformations. For inscribed polyhedra, their infinitesimal conformal deformations
are exactly given by normal deformations.

Proposition 9.4. Suppose f : V → S2 is an inscribed triangulated surface. For every u :
V → R, the infinitesimal deformation ḟ = uf is conformal with scale factor u and the change
in mean curvature half-density is∑

j

α̇ij |fj − fi| = −
∑
j

(uj − ui)(
cos dijk cot∠jki

2
+

cos dilj cot∠ilj
2

) ∀i ∈ Vint
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where dijk is the distance from the origin to the face {ijk}.

Proof. Let u : V → R and ḟ = uf . We have

〈ḟj − ḟi, fj − fi〉 = uj + ui − (uj + ui)〈fj , fi〉 =
uj + ui

2
|fj − fi|2.

and hence ḟ is an infinitesimal conformal deformation with scalec factor u. In terms of Theorem
5.1, such a deformation is given by Z : F → R3

Zijk = −cos dijk
4Aijk

(
ui(fk − fj) + uj(fi − fk) + uk(fj − fi)

)
where Aijk is the area of the triangle {ijk}. For every interior vertex i, the change in mean
curvature half-density is∑

j

α̇ij |fj − fi| =
∑
j

〈(fj − fi), Zijk − Zilj〉

=−
∑
j

(uj − ui)(
cos dijk cot∠jki

2
+

cos dilj cot∠ilj
2

)

�

Example 9.5. The regular octahedron has dim(Ker D) = 4, that means it does not possess
non-trivial infinitesimal conformal deformation with vanishing change in mean curvature half-
density. On one hand, all its infinitesimal isometric deformations are trivial since it is convex.
On the other hand, for each edge {ij}, the coefficient (cos dijk cot∠jki+ cos dilj cot∠ilj)/2 is
strictly positive. If there is an infinitesimal conformal deformation such that

∑
j α̇ij |fj−fi| = 0

for all vertices, then the scale factor u must be constant and the deformation is induced by a
similarity transformation since the octahedron is infinitesimally rigid.

Applying Gluck’s argument [8, Theorem 6.1] to the discrete Dirac operator, the set of non-
degenerate triangulated spheres in R3 with dim Ker D = 4 is the complement of a real algebraic
variety in R3V . Hence the set is open and dense as long as the algebraic variety is proper.

Corollary 9.6. For almost all octahedra in R3, given any ρ : V → R with
∑

i ρi = 0, there
exists an infinitesimal conformal deformation unique up to a similarity transformation with ρ
as the change in mean curvature half density.

10. Triangulated surfaces of high genus

Lemma 10.1. For a closed triangulated surface of genus g, there exists 2g closed dual 1-forms
ω1, ω2, . . . , ω2g :

#»

E∗ → R such that a closed primal 1-form η :
#»

E → R is exact if and only if
for k = 1, 2, . . . , 2g ∑

ij∈E
ωk(e∗ij)η(eij) = 0.

The dual 1-forms ωi are called harmonic 1-forms and the lemma follows from the Hodge
decomposition of discrete differential forms [6].

Theorem 10.2. Suppose f : M → R3 is a realization of a closed triangulated surface of genus g
with dim(Ker D) = 4. Let ω1, . . . , ω2g form a basis of harmonic 1-forms and e1 := (1, 0, 0), e2 =
(0, 1, 0),e3 = (0, 0, 1) be the standard basis for R3. Then for every k = 1, 2, . . . , 2g and l =
1, 2, 3, there exists (ukl, Zkl) ∈ RV × R3F unique up to a constant such that D(ukl, Zkl) =
(αkl,Wkl) ∈ RV × Γ(Nf ) where

αkl,i =
∑
j

ωk(e∗ij)〈el, fj − fi〉,
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Wkl,ij = ωk(e∗ij)el × (fj − fi).

Furthermore, given (u, Z) ∈ RV+3F with D(u, Z) = (ρ, 0), the R3-valued primal 1-form

η(eij) :=
ui + uj

2
(fj − fi) + (fj − fi)× (Zijk +

cot∠jki
2

(uj − ui)Nijk)

=
ui + uj

2
(fj − fi) + (fj − fi)× (Zilj +

cot∠ilj
2

(ui − uj)Nilj)

is exact if and only if for every k = 1, 2, . . . , 2g and l = 1, 2, 3,∑
i

ρiukl,i = 0.

Proof. We first show that (αkl,Wkl) ∈ ImD. Since ωk is a closed dual 1-form, it satisfies for
every vertex i ∑

j

ωk(e∗ij) = 0

and hence ∑
i∈V

∑
j

ωk(e∗ij)〈el, fj − fi〉 = −2
∑
i∈V

(
〈el, fi〉

∑
j

ωk(e∗ij)
)

= 0.

On the other hand,∑
ij∈E

ωk(e∗ij)el × (fj − fi) = −
∑
i∈V

(
el × fi

∑
ij∈E:i

ωk(e∗ij)
)

= 0.

By Lemma 8.6, the sums being zero imply the existence of (ukl, Zkl) as claimed.

Given (u, Z) ∈ RV × R3F with D(u, Z) = (ρ, 0), the 1-form η is closed by Theorem 5.1. We

write η(eij) =
ui+uj

2 (fj − fi) + (fj − fi) ×Wij where Wij ⊥ (fj − fi). Lemma 10.1 implies
that η is exact if and only if for every k = 1, 2, . . . , 2g and l = 1, 2, 3,

0 =
∑
ij∈E

ω(e∗ij)〈η(eij), el〉

=
∑
i∈V

∑
ij∈E:i

〈el, ωk(e∗ij)(fj − fi)〉ui +
∑
ij∈E
〈ωk(e∗ij)el × (fj − fi),Wij〉

= (D(ukl, Zkl), (u,W ))

= ((ukl, Zkl),D
∗(u,W ))

= ((ukl, Zkl), (ρ, 0))

=
∑
i∈V

ρiukl,i.

�

11. Discussion

Proposition 1.3 and Theorem 1.4 provide two ways to parametrize infinitesimal conformal
deformations of a triangulated surface in R3. For infinitesimally rigid triangulated spheres,
one can use scale factors u as intrinsic parameters. For triangulated spheres with dim Ker D =
4, one can use the change in mean curvature half-density as extrinsic parameters instead.
One might be tempting to think that both variables together are sufficient to describe the
infinitesimal conformal deformations of a general triangulated surface. However, this is not
true.
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Definition 11.1. [16] A realization f : V → R3 of a triangulated surface is called isothermic
if there exists k : E → R such that for each interior vertex i∑

j

kij |fj − fi|2 = 0,

∑
j

kij(fj − fi) = 0.

Proposition 11.2. [16] A simply connected surface is isothermic if and only if it admits a non-
trivial infinitesimal isometric deformation such that the change in mean curvature half-density
vanishes.

As a remark, isothermic surfaces are singularities of the space of conformal realizations. They
are analogues to infinitesimally flexible surfaces in the case of isometric realizations.

Proposition 11.3. [16] The space of infinitesimal conformal deformations of a closed trian-
gulated surface of genus g in R3 has dimension greater or equal to |V |+ 6− 6g. The inequality
is strict if and only if the surface is isothermic.

Proposition 11.4. [16] The class of isothermic surfaces is Möbius invariant.

Jessen’s orthogonal icosahedron in Example 9.2 and Bricard’s octahedron in Example 9.3 are
isothermic surfaces.

For a simply connected surface in the smooth theory, dim(Ker D) is Möbius invariant [20,
Lemma 26]. We conjecture that the discrete analogue of this statement holds as well:

Conjecture 11.5. For a simply connected triangulated surface in space, the nullity of the
discrete Dirac operator dim(Ker D) is invariant under Möbius transformations.

It is interesting to know if we can extend Corollary 9.6 to triangulated spheres of general
combinatorics as like as Gluck’s theorem [8]. There are two important ingredients to Gluck’s
theorem. One is Steinitz’ theorem that every triangulated sphere admits a strictly convex
realization into R3. The other is Dehn’s theorem that all convex realizations are infinitesimally
rigid.

Conjecture 11.6. Every abstract triangulated sphere admits a realization in R3 with dim Ker D =
4, which means it does not possess a non-trivial infinitesimal conformal deformation with van-
ishing change in mean curvature half-density. Hence for almost all triangulated spheres in R3,
their infinitesimal conformal deformations are exactly parametrized by functions ρ : V → R
with

∑
i ρi = 0 as the change in mean curvature half density.
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