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Abstract. We study the limit shape of successive coronas of a tiling,
which models the growth of crystals. We define basic terminologies and
discuss the existence and uniqueness of corona limits, and then prove
that corona limits are completely characterized by directional speeds. As
an application, we give another proof that the corona limit of a periodic
tiling is a centrally symmetric convex polyhedron (see [25, 15]).

1. introduction

Motivated by a simple crystal growth model, we study the growth of
coronas of a tiling of Rl. The corona of a patch (a finite set of tiles) is
defined as the set of tiles sharing a boundary with the patch. Starting from
a tile as a 0-th corona, we can recursively define a sequence of k-th coronas
(k = 0, 1, 2, . . . ). In this article, we study the corona limit, a limit shape
of the k-th corona as k tends to ∞.

After submission, we are informed that corona limits were extensively
researched by a Russian group of mathematicians including V. G. Zhuravlev,
A. V. Shutov and A. V. Maleev, whose research work we are unaware of.
They mainly studied the adjacency graph structure of tilings and described
the step-by-step growth of the boundary of the coronas. Many of the related
papers are published in crystallography journals and some are currently only
available in Russian.

Comparing with the existing literature, we find that our approach is a
little more axiomatic. Indeed, we set up axioms for a general tiling and an
adjacency relation defined on it that we can deal with. Then we introduce
a key concept, directional speeds, and show that the corona limit, if it
exists, is completely described by these speeds as a star shape (Theorem 3.8).
Under this setting, the convexity of a corona limit is deduced naturally from
a certain uniformity of directional speeds (Theorem 4.2). We hope that this
description gives a new insight into this study of corona limits and justify
the raison d’être of this paper.

In the case of periodic tilings, we reproduce the result of [25, 15] that the
corona limit is a centrally symmetric convex polygon (Theorem 5.1). The
shape of the corona limit depends on the shape of the (3M − 2)-th corona
where M is the number of translationally inequivalent tiles. This fact leads
to an effective algorithm to compute the corona limit of a periodic tiling.
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We examine our algorithm and compute the corona limits of all 1-uniform
and 2-uniform tilings classified in [11, Chapter 2.1-2.2] for both the point
adjacency and edge adjacency. The corona limits are centrally symmetric
convex polygons having 4, 6, 8, 10, 12 or 16 vertices. We observe sensitivity
to the adjacency, that is, the corona limit with respect to point adjacency
may have a different shape from that of the limit obtained under the edge
adjacency. We also found a great variety of polygons: we are surprised that
a decagon and a hexadecagon emerged from a periodic tiling, see Section 6.
We do not know whether the number of vertices in a corona limit is bounded
for general periodic tilings.

It is of great interest to generalize these results to non-periodic uniformly
repetitive tilings1. In a previous paper [2], the first and third authors showed
that the corona limit of the Penrose tiling exists and it is a regular decagon.
The proof depends on a special property of the Penrose tiling. Shutov and
Maleev [19] gave another proof for this result. Growth shapes correspond
to the boundaries of corona limits (for instance, see [18]). The corona limit
of a two dimensional Rauzy tiling, which is conjectured to be an octagon,
was partially determined by Zhuravlev, Maleev [26] and Maleev, Shutov,
Zhuravlev [16]. The results in this direction are more or less example-driven
and we are yet to reach comprehensive understanding.

2. Basic definitions

We study tilings in the Euclidean space Rl. For a subset X of Rl, we
denote its interior (resp. boundary) with respect to the Euclidean topology
by Inn(X) (resp. ∂(X)). Let X be the closure of X. Moreover, let ‖ · ‖
denote the Euclidean norm on Rl. A tile is a nonempty compact set which is
the closure of its interior. A tiling T is a covering of Rl by (countably many)
tiles without interior overlaps. More precisely, a tiling T is a collection of
tiles

{Ti | i = 1, 2, . . . }
having the properties

Rl =

∞⋃
i=1

Ti

and

Inn(Ti) ∩ Inn(Tj) 6= ∅
implies i = j. Denote by B(x, r) the open ball centered at x of radius r.
A tiling is uniformly locally finite if for any r ∈ R>0 there exists a positive
integer M0 such that for any x ∈ Rl, B(x, r) is covered by at most M0 tiles.
If T satisfies the axiom

1Uniformity is necessary for the existence of corona limit. In fact, we give an example
of a repetitive tiling witout a corona limit in Section 7.
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(N) There exist two positive real constants s and S such that for any tile
T in T , there exists a ball of radius s lying within T and there exists
a ball of radius S which contains T .

in Grünbaum-Shephard [11], then T is uniformly locally finite. Indeed, let
B(x, r) be a ball such that there exist M0 tiles Ti with Ti ∩ B(x, r) 6= ∅.
Since every tile Ti contains a ball of radius s, B(x, r+ 2S) must contain M0

disjoint balls of radius s. Comparing the volumes, we obtain(
r + 2S

s

)l
≥M0.

When T consists of finitely many tiles up to translation, the axiom (N) is
obviously satisfied.

A subset X of Rl is relatively dense if there exists a real constant R > 0
such that for any x ∈ Rl, B(x,R)∩X 6= ∅, and it is uniformly discrete if there
exists a real constant r > 0 such that for any x ∈ Rl, the set B(x, r) ∩X is
empty or a singleton. A Delone set is a subset of Rl which is both relatively
dense and uniformly discrete. Delone sets model atomic configuration of real
materials. Choosing a suitable inner point in each tile of a tiling satisfying
the axiom (N), we obtain a Delone set. Conversely taking Voronöı partition
(each point of Rl belongs to cells containing its closest points of X) of a
Delone set X, we obtain a tiling satisfying the axiom (N). We say a tiling is
of Delone type, or is a Delone tiling, if it satisfies the axiom (N). Throughout
this paper, we assume that tilings are of Delone type.

It is well known that the family of nonempty compact sets of Rl forms a
complete metric space by the Hausdorff metric:

dH(A,B) = inf{ε ≥ 0 | B ⊂ A[ε] and A ⊂ B[ε]}

for compact subsets A and B of Rl with K[ε] = {x ∈ Rl | there exists k ∈
K that ‖x− k‖ ≤ ε} where K ⊂ Rl.

A patch P of T is a nonempty finite subset of T , i.e., P = {Ti | i ∈ I}
with a nonempty finite subset I of N. The support of P is defined by
supp(P ) =

⋃
i∈I Ti. An adjacency is a reflexive symmetric binary relation ∼

defined on T satisfying the following three conditions:

a) For any tiles Ti and Tj , there exist n1, . . . , nk such that i = n1, j = nk
and Tnh

∼ Tnh+1
for h = 1, . . . , k − 1.

b) There exists a positive integer M1 such that if Ti ∩ Tj 6= ∅ then k in
a) can be chosen to be not greater than M1.

c) There exists a positive real R such that Ti ∼ Tj implies dH(Ti, Tj) ≤
R.

We say two tiles Ti and Tj in T are adjacent if Ti ∼ Tj . The relation ∼
induces an adjacency graph whose vertices are the elements of T .

Remark 2.1. There are many ways to define adjacency. The relation Ti ∩
Tj 6= ∅ defines the so-called point adjacency. If each Ti is a manifold, then
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dim(Ti ∩Tj) ≥ k defines k-dimensional adjacency. The case k = 1 for l = 2
is the edge adjacency used in [2].

A patch P is connected if its induced subgraph is connected. Note that
supp(P ) is not necessarily topologically connected. Given a patch P and
n ∈ N, the n-th corona of P is inductively defined as follows. The 0-th
corona is P (0) = P and the (n+1)-th corona P (n+1) is the patch of T whose

tiles are adjacent to some tile of P (n), i.e.,

P (n+1) = {Ti ∈ T | ∃Tj ∈ P (n) Ti ∼ Tj}.
In the following lemma, we consider the n-th corona of a patch P = {Ti}
consisting of a single tile Ti.

Lemma 2.2. Let T be a Delone tiling and ∼ an adjacency on T . Then
there exist a real constant c > 0 and a positive integer n0 depending only on
T and ∼ such that for all i ∈ N and x ∈ Ti, we have

(1) B(x, n/c) ⊂ supp({Ti}(n)) ⊂ B(x, cn)

for any integer n with n ≥ n0.

Proof. For simplicity, put T
(n)
k := supp({Tk}(n)). Moreover, let T := Ti and

P = {T}. The right-hand side of (1) follows from T (n) ⊂ B(x, n(R + 2S))
for all 2 ≤ n ∈ N by axiom (N) and condition c) of ∼. On the other hand, by

compactness, there exists a covering of ∂(T (n))[1/2] by a finite set of balls

B(xk, 1) with xk ∈ T (n):

∂(T (n))[1/2] ⊂
τ⋃
k=1

B(xk, 1).

By uniform local finiteness of T , each B(xk, 1) is covered by at most M0

tiles of T . For any 1 ≤ k ≤ τ , let Tk ∈ P (n) such that xk ∈ Tk. Then

condition b) of ∼ implies that B(xk, 1) ⊂ T (M0M1)
k ⊂ T (n+M0M1), and so

T (n)[1/2] ⊂ T (n+M0M1).

Let x ∈ T and set n = b0M0M1 + b1 for integers b0, b1 with 1 ≤ b1 ≤M0M1.
Using this inclusion relation successively, we obtain

B(x, cn) ⊃ T (n) ⊃ T (b1)[b0/2] ⊃ B(x, b0/2) ⊃ B(x, n/c)

with c = max{4M0M1, R+ 2S} for n ≥ max{2,M0M1 + 1}. �
As a consequence, for any patch P and point x ∈ supp(P ), there is a

constant c such that

B(x, n/c) ⊂ supp(P (n)) ⊂ B(x, cn),

but clearly c depends not only on T and ∼ but also on P . This suggests the
study of the limit of the sequence of compact sets:

1

n
supp(P (n)) n = 1, 2, . . . .
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Let us recall some basic facts on the convergence of compact sets. For
nonempty compact setsXk (k = 1, 2, . . . ), the topological upper limit LimkXk

is the set of all points x such that every neighborhood of x intersects in-
finitely many Xk’s, and the topological lower limit LimkXk is the set of all
points x such that every neighborhood of x intersects Xk for all but finite k.
Both the topological upper limit and topological lower limit are closed and
we may rewrite the topological upper limit LimkXk =

⋂
n

⋃
k≥nXk. It is not

empty if there exists a compact set K that Xk ⊂ K. If LimkXk = LimkXk,
the common value is called the topological limit LimkXk. If the topological
limit LimkXk exists, then Xk converges to LimkXk by the Hausdorff metric.
Conversely, if there exists a compact set K such that Xk ⊂ K and Xk → X
by the Hausdorff metric, then X = LimkXk (see [13, 1]).

Since there exists a positive constant c such that supp(P (n))/n ⊂ B(0, c),
the Hausdorff limit and the topological limit coincide in our framework,
when one of them exists. We also see that Limksupp(P (n))/n 6= ∅ from

supp(P (n))/n ⊃ B(0, 1/c). We therefore define the corona limit:

lim
n→∞

1

n
supp(P (n))

by the Hausdorff metric, when the limit exists. Further we show that if the
corona limit exists, then it does not depend on the initial patch P .

Lemma 2.3. For two patches P and Q of a Delone tiling T , we have

lim
n→∞

1

n
supp(P (n)) = lim

n→∞

1

n
supp(Q(n))

if one of the limits exists.

Proof. Within this proof, we omit writing supp. By Lemma 2.2, there exists
M2 ∈ N such that Q ⊂ P (M2) and P ⊂ Q(M2). Assume that limn→∞

1
nP

(n)

exists. Then

Limn
1

n
Q(n) ⊂ Limn

n+M2

n

1

n+M2
P (n+M2) = Limn

1

n
P (n) = lim

n

1

n
P (n)

and

Limn

1

n
Q(n) = Limn

1

n+M2
Q(n+M2) ⊃ Limn

n

n+M2

1

n
P (n) = lim

n

1

n
P (n).

�

Remark 2.4. Shutov, Maleev, and Zhuravlev [20] proposed similar axioms
on adjacency. Comparing with their axioms, we do not assume by our ax-
ioms that a transformation group acts on a tiling. Lemma 2.3 is not new,
see Theorem 1 in [18]).

Note that the origin has no particular geometric meaning in the definition
of corona limits. Indeed, limn

1
nP

(n) = limn
1
n(P (n) − x) for any x ∈ Rl, one

may think that any point in Rl is a center of growth of successive coronas.
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3. Directional speed

Let T = {Ti | i = 1, 2, . . .} be a tiling. Let S = {Si | i = 1, 2, . . .} be a
partition of Rl. We say that S is supported by T if Si = Ti for any i ≥ 1.
Note that if T is given, then there exists a partition S supported by T by
the axiom of choice. By abuse of notation, we call Si a tile in S. We say
that P = {Si1 , . . . , Sih} ⊂ S is a connected patch in S if the corresponding
patch {Ti1 , . . . , Tih} is connected. Moreover, the support of P is defined by
supp(P ) = ∪hj=1Sij .

For x, y ∈ Rl, we define a nonnegative integer n(x, y) such that 1+n(x, y)
is the minimum cardinality of connected patches in S whose support contains
both x and y. Note that n(x, y) = 0 if and only if x, y belong to the same
tile. Since S is a partition of Rl, we have the inequalities:

(2) n(x, z) ≤ n(x, y) + n(y, z), |n(x, y)− n(x, z)| ≤ n(y, z).

We use the quantity n(x, y) with a suitable partition S of Rl in order to

investigate the asymptotic shape of P (n). The properties in Sections 3 and
4 do not depend on the choice of S.

For a nonzero v ∈ Rl, we define the following four quantities to measure
the speed of growth along the direction v:

d1(v) = lim sup
t→∞

sup
x∈Rl

‖tv‖
n(x, x+ tv)

,

d2(v) = sup
x∈Rl

lim sup
t→∞

‖tv‖
n(x, x+ tv)

,

d2(v) = inf
x∈Rl

lim inf
t→∞

‖tv‖
n(x, x+ tv)

,

d1(v) = lim inf
t→∞

inf
x∈Rl

‖tv‖
n(x, x+ tv)

.

Let d be one of di, di (i=1,2). By definition we have d(rv) = d(v) for all
r > 0 and d(v) is determined by the values on the l − 1 unit sphere.

Lemma 3.1. For a Delone tiling T , the four quantities di, di for i = 1, 2
are continuous on v ∈ Rl, taking finite and positive values.

Proof. We prove the finiteness, positivity, and continuity as a function of the
variable v with ‖v‖ = 1. Take a partition S = {Si | i = 1, 2, . . .} supported
by T . Choose i such that x ∈ Si. For a sufficiently large t, we have

x+ tv ∈ T (n)
i \ T (n−1)

i

with n = n(x, x + tv) ≥ 2. Using Lemma 2.2, there are positive constants
C0, C1 depending on T , ∼ such that for all x ∈ Rl, ‖v‖ = 1 and sufficiently
large t,

(3) C0t ≤ n(x, x+ tv) ≤ C1t.
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This implies that the four quantities in Lemma 3.1 are positive and finite.
Therefore for all x ∈ Rl, v ∈ Rl there exists t0 > 0 that if t > t0, then

C0t‖v‖ ≤ n(x, x+ tv) ≤ C1t‖v‖.

Let t be sufficiently large. Using (2), for any v,v′ with ‖v‖ = ‖v′‖ = 1, we
have ∣∣∣∣ ‖tv′‖

n(x, x+ tv′)
− ‖tv‖
n(x, x+ tv)

∣∣∣∣
≤ 1

C2
0 t

∣∣n(x, x+ tv)− n(x, x+ tv′)
∣∣

≤ 1

C2
0 t

(
n(x+ tv, x+ tv + t(v′ − v))

)
≤ C1

C2
0

‖v − v′‖,

which gives the required continuity. �

Remark 3.2. Lemma 2.2 immediately implies the right inequality of (3) for
all t ≥ 1, i.e., there exists a positive constant C1 that for any x ∈ Rl, ‖v‖ = 1
and t ≥ 1, we have n(x, x+ tv) ≤ C1t.

By Lemma 3.1, d(v) is uniformly continuous in Rl \ {0}. We prove the
following inequalities.

Lemma 3.3. For all 0 6= v ∈ Rl, we have

d1(v) ≥ d2(v) ≥ d2(v) ≥ d1(v).

Proof. The middle inequality is obvious. Put g(x, t) = t‖v‖/n(x, x + tv).
Assume that d1(v) < d2(v). Then for any ε > 0, there exists t0 ∈ R
such that for any t ≥ t0 and any x ∈ Rl, g(x, t) < d1(v) + ε. On the
other hand, for any ε > 0 there exist x0 ∈ Rl and infinitely many t’s such
that g(x0, t) > d2(v) − ε. Choosing ε = (d2(v) − d1(v))/3, we have an
impossibility

g(x0, t) ≥ d2(v)− ε > d1(v) + ε ≥ g(x0, t)

for some x0 ∈ Rl and some t ≥ t0. The proof of the last inequality is
similar2. �

Example 3.4. Consider the tiling of R by T1 = [0, 1] and T2 = [0, 2] where
the positive part of R, i.e. [0,∞), is tiled by translates of T2 and the negative
part of R, i.e. (−∞, 0], is tiled by translates of T1 in an obvious manner.
Then we see 1 = d1(1) < d2(1) = d2(1) = d1(1) = 2. For the negative
direction, we have 1 = d1(−1) = d2(−1) = d2(−1) < d1(−1) = 2.

2F. Nakano suggested us an easier proof of Lemma 3.3, which works for any real valued
function g(x, t) in two variables.
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Example 3.5. Using the same notation as in Example 3.4, we tile the nega-
tive part of R by translates of T1. Decompose R≥0 into [a0, a1]∪ [a1, a2]∪ . . .
by an increasing even integer sequence (an) with a0 = 0. We tile [a2n, a2n+1]
by translates of T2 and [a2n−1, a2n] by translates of T1. Choosing the sequence
(an) of rapid growth, we can construct an example such that d2(1) < d2(1),
e.g., taking an = 22

n − 2, we have d2(1) = 1 < d2(1) = 2.

Example 3.6. Consider a right triangle ∆ whose edges have length 3,4 and
5, which has the inscribed circle of radius 1. Assume that its incenter is lo-
cated at the origin and the edge of length 3 is parallel to the x-axis, and the
edge of length 4 is parallel to the y-axis. Then (n+ 1)∆− n∆ is subdivided
using unit squares placed along the edges of n∆ and two quadrangles appear
at two non-right interior angles of ∆. This gives a tiling of R2 by 4 transla-
tionally inequivalent tiles (Figure 1). By construction, we immediately see
that the corona limit by point adjacency is ∆ itself. For v = (4, 3), we see

5/4 = d1(v) > d2(v) = d2(v) = d1(v) = 1,

and for v = (−1,−1),
√

2 = d1(v) = d2(v) = d2(v) > d1(v) = 1.

These examples suggest that a strict inequality in Lemma 3.3 came from
a certain lack of uniformity of the corresponding tiling. See Section 7 and
the third problem in Section 8.

Figure 1. The tiling of R2 described in Example 3.6.

Lemma 3.7 (Directional Speed). Let v ∈ Rl with ‖v‖ = 1. The following
conditions are equivalent:

a) for any ε > 0 there exists a relatively dense set S = S(v, ε) ⊂ Rl such
that for any x ∈ S we have

lim inf
t→∞

t‖v‖
n(x, x+ tv)

> d2(v)− ε,
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b) t‖v‖
n(x,x+tv) converges to a value independent of x ∈ Rl as t tends to

infinity.
c) d2(v) = d2(v).

If one of the conditions holds, we say that T admits a directional speed in
the direction v, or d(v) exists, where d(v) = d2(v).

Proof. We show that a) implies c). Let ε > 0. There exists a constant R > 0
such that for any y ∈ Rl we find x ∈ S with ‖x − y‖ ≤ R. By assumption,
we find t0 = t0(x) > 0 such that if t ≥ t0, then

(4)
t‖v‖

n(x, x+ tv)
> d2(v)− ε.

Remark 3.2 shows |n(y, y + tv)− n(x, x+ tv)| < 2C1R. Thus we also have

t‖v‖
n(y, y + tv)

> d2(v)− 2ε.

From the definition of d2, for any y ∈ Rl, there exists t1 = t1(y) > 0 such
that

(5)
t‖v‖

n(y, y + tv)
< d2(v) + ε.

for t ≥ t1. Combining (4) and (5), we see c). The equivalence of b) and c)
is clear, and b) implies a) by taking S = Rl. �

Theorem 3.8. Let T be a Delone tiling and ∼ an adjacency on T . Then
the corona limit K = limn supp(P (n))/n exists if and only if T admits a
directional speed in every direction v ∈ Rl with ‖v‖ = 1. Further we have

(6) K = {td(v)v | t ∈ [0, 1], ‖v‖ = 1} .

Proof. By Lemma 2.3 and the remark after it, we may assume that P = {T}
and 0 ∈ Inn(T ). Let v ∈ Rl with ‖v‖ = 1. By the compactness of T (m),

we can define σ(m) = max{t | tv ∈ T (m)} . From Lemma 2.2, we have
m/c < σ(m) < cm for some positive constant c ∈ R.

Assume that limm T
(m)/m exists. Then we see limm→∞

σ(m)
m exists and

is equal to limm
σ(m)

n(0,σ(m)v) . By a similar argument as in the proof of Lemma

3.7, we get for all x ∈ Rl that t‖v‖
n(x,x+tv) converges to limm

σ(m)
n(0,σ(m)v) .

On the other hand, suppose that d(v) exists for every v ∈ Rl with ‖v‖ =
1. Then for sufficiently large m ∈ N, we have

σ(m) < (d(v) + ε)n(0, σ(m)v) = (d(v) + ε)m,

and so

(7) {tv | t ≥ 0} ∩ Limm
1

m
T (m) ⊂ {td(v)v | t ∈ [0, 1]}.
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Moreover, let 0 < t < 1. For any ε > 0, we get that n(0,mtd(v)v) < (t+ε)m
for any sufficiently large m, and so

(8) td(v)v ∈ {tv | t ≥ 0} ∩ Limm

1

m
T (m).

Since (7) and (8) hold for any v and 0 < t < 1, we obtain that limm T
(m)/m

exists and (6) is satisfied. �
By Lemma 3.1, we know that if the directional speed d(v) exists then it is

finite, positive and continuous with respect to the variable v. This implies
∂(K) = {d(v)v | ‖v‖ = 1}. Conversely if K is a compact star convex set
written as

K = {tg(v)v | t ∈ [0, 1], ‖v‖ = 1}
with a continuous positive function g defined on the l-dimensional unit
sphere, then it is realized as the corona limit of a Delone tiling where the
adjacency is given by point adjacency. The construction of such tiling is
similar to that of Example 3.6, i.e., we dissect each annulus (n+ 1)K − nK
into small pieces by hyperplanes, chosen appropriately to satisfy axiom (N).

Therefore the corona limit is characterized as a star shape centered at
the origin, containing the origin in its interior having a continuous gauge
function.

4. Shapes of corona limits

Lemma 4.1 (Uniform Directional Speed). Let v ∈ Rl with ‖v‖ = 1. The
following conditions are equivalent.

a) t‖v‖
n(x,x+tv) converges uniformly with respect to x ∈ Rl to a value inde-

pendent of x ∈ Rl as t tends to infinity.
b) d1(v) = d1(v)(= d(v)).

If one of the conditions holds, we say that T admits a uniform directional
speed in direction v.

Proof. We see that b) is equivalent to the fact that for any ε > 0, there
exists t0 such that for any t ≥ t0,

d(v)− ε < t‖v‖
n(x, x+ tv)

< d(v) + ε

holds for any x ∈ Rl, i.e, the uniformity of the convergence. The converse
is also clear. �

Theorem 4.2. Let T be a Delone tiling and ∼ an adjacency on T . If T
admits a uniform directional speed in every direction, then the corona limit
is convex and symmetric with respect to the origin.

Proof. By Lemma 4.1, for any ε > 0 there exists t0 such that if t ≥ t0 then
for any x ∈ Rl, ∣∣∣∣ t‖v‖

n(x, x+ tv)
− d(v)

∣∣∣∣ < ε.
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Let y ∈ Rl and put x = y − tv. We have∣∣∣∣ t‖v‖
n(y, y − tv)

− d(v)

∣∣∣∣ < ε,

for any t ≥ t0 because n(a, b) = n(b, a). Thus the corona limit is symmetric
with respect to v↔ −v, and we have

(9) d(v) = lim
t→∞

‖tv‖
η(tv)

with

(10) η(v) = min{n(x, y) | x, y ∈ Rl, x− y = v}.
We have η(v) = η(−v) and d(v) = d(−v). Therefore the corona limit is
symmetric with respect to the origin.

Since K is a star shape by Theorem 3.8, it is enough to show that for all
v1,v2 ∈ ∂(K) and u ∈ (0, 1) with uv1 + (1− u)v2 6= 0, we have

d(uv1 + (1− u)v2) ≥ ‖uv1 + (1− u)v2‖
to prove the convexity of K. Let v = uv1 + (1 − u)v2. For x ∈ Rl,
put A(t) = n(x, x + tuv1) and B(t) = n(x + tuv1, x + tuv1 + t(1 − u)v2).
Hereafter we write f(t) = o(g(t)) to mean that limt→∞ ‖f(t)‖/g(t) = 0,
which is the Landau symbol on the vector valued function f(t). Observe
that the following three equations hold:

n(x, x+ tv)d(v)v = t‖v‖v + o(t),

A(t)d(v1)v1 = tu‖v1‖v1 + o(t),

B(t)d(v2)v2 = t(1− u)‖v2‖v2 + o(t).

Recall for i = 1, 2 that d(vi) = ‖vi‖ because vi ∈ ∂(K). Setting v′ =
(1/‖v‖)v, we obtain

n(x, x+ tv)

A(t) +B(t)
d(v′)v′ =

(
A(t)

A(t) +B(t)
v1 +

B(t)

A(t) +B(t)
v2

)
+ o(1).

From A(t) +B(t) ≥ n(x, x+ tv), letting t tend to infinity, we have

κd(v′)v′ = uv1 + (1− u)v2 = v

with 0 < κ ≤ 1. This implies d(v) ≥ ‖v‖. �

5. Periodic tilings

In applications, we often consider the case where a tiling T consists of
finitely many tiles up to translations, or up to more general rigid motions.
We denote by G such a transformation group acting on T and by g(T ) ∈ T
the image of a tile T by g ∈ G. Shutov, Maleev, and Zhuravlev [20] proposed
an assumption that for any Ti, Tj ∈ T and any g ∈ G, we have Ti ∼ Tj if
and only if g(Ti) ∼ g(Tj). Hereafter we consider the case where G acts as

translations. A translation of T by x ∈ Rl is defined by T +x = {Ti+x | i ∈
N}. We say that x ∈ Rl is a period of T if T = T + x. Let L be the set
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of periods of T . A tiling is lattice periodic if there exist l periods which
are linearly independent over R, i.e., L forms a lattice in Rl. Clearly there
are only finitely many tiles up to translations in T , and G = L acts on the
tiling. In what follows, we assume that for any p ∈ L, we have Ti ∼ Tj if
and only if Ti+p ∼ Tj +p. In other words, we only care about translational
symmetry of the tiling.

We now need an additional technical assumption. Let S = {Si | i =
1, 2, . . .} be a partition of Rl supported by a lattice periodic tiling T with
set L of periods. By the axiom of choice, we may assume that S satisfies
the following: For any p ∈ L and Si ∈ S, we have p + Si ∈ S. Under this
assumption, we get for any p ∈ L \ {0} that η(p) > 0, where η(v) is defined
by (10). In fact, for any Si ∈ S and y ∈ Si, we see that n(p + y, y) > 0
because p+ y 6∈ Si by p+ y ∈ p+ Si ∈ S.

Theorem 5.1. Let T be a lattice periodic tiling. Then the corona limit of
T is a convex polyhedron which is symmetric with respect to the origin.

Proof. Fix a fundamental domain F of Rl/L whose closure is compact. Take

v ∈ Rl. The supremum of the function f(x) := lim supt→∞
‖tv‖

n(x,x+tv) is

attained at a point x0 ∈ F because f(x) is continuous. Denote by bxc the
unique element of L such that {x} := x− bxc ∈ F . Put am = n(x, x+mv)
for m ∈ N. Then there exists a positive constant c such that

am+m′ ≤ am + am′ + c.

In fact, we have

n(x, x+ (m+m′)v) ≤ n(x, x+mv) + n(x+mv, x+ (m+m′)v)

= n(x, x+mv) + n(x+ {mv}, x+ {mv}+m′v)

≤ n(x, x+mv) + n(x, x+m′v) + c

where c = 2 maxa,b∈2F n(a, b). Since am + c is subadditive, a well-known
principle (c.f. [23, Theorem 4.9]) implies

lim
m

am
m

= lim
m

am + c

m
= inf

m

am + c

m
= inf

m

am
m
.

Switching to positive real variable t is plain, and we see that limt→∞
t‖v‖

n(x,x+tv)

exists for each v ∈ Rl \ {0}. Theorem 3.8 implies that the corona limit K
exists because S = x0 +L satisfies the condition a) of Lemma 3.7. Moreover
the convergence is uniform with respect to x ∈ Rl because there exists a
constant c′ > 0 such that, for any x ∈ F and v ∈ Rl,

|n(x, x+ tv)− n(0, tv)| ≤ n(0, x) + n(tv, x+ tv) ≤ c′

by the uniform local finiteness of T . The inequality above also holds for any
x ∈ Rl by the periodicity of T . Theorem 4.2 implies that K is compact,
convex, and symmetric with respect to the origin.

In what follows, we show that K is a polyhedron. We say that x, y ∈ Rl
are L-equivalent if x− y ∈ L. Similarly, we define the L-equivalence of two
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tiles. We say that x ∈ L is decomposable if there exists a decomposition
x = x1 + x2 with x1, x2 ∈ L \ {0} satisfying η(x) ≥ η(x1) + η(x2). Let M be
the number of inequivalent tiles under L-equivalence.

We now verify that if x ∈ L satisfies n(x, 0) > 3M − 2, then x is de-
composable. We claim that η(x) > M . We use this claim to ensure that
a connected patch Q defined later contains translationally equivalent tiles.
Suppose on the contrary that η(x) ≤M . Then there exist y1, y2 ∈ Rl satis-
fying y1− y2 = x and η(x) = n(y1, y2). We may assume that y1 satisfies the
minimality:

n(0, y1) = min{n(0, y′) | y′ − y1 ∈ L}.
Let P be a connected patch in S satisfying 0, y1 ∈ supp(P ) and |P | =
1 + n(0, y1), that is, P is a connected patch in S with minimum cardinality
satisfying 0, y1 ∈ supp(P ). Recall that L is also a period of S. Thus, the
minimality on y1 implies that any two tiles in P are not L-equivalent, and
so n(0, y1) ≤M − 1. Since y1 − y2 ∈ L, we see

n(y1 − y2, y1) = n(0, y2) ≤ n(0, y1) + n(y1, y2) ≤ 2M − 1,

and so n(x, 0) ≤ 3M − 2. This shows the claim.
There exists y ∈ Rl with η(x) = n(y + x, y). Let Q be a connected

patch in S satisfying y+x, y ∈ supp(Q) and |Q| = 1 +n(y+x, y)(≥M + 2).
Excluding the tile containing y, there are two translationally equivalent tiles
by |Q|−1 ≥M +1. Pick two L-equivalent points z1, z2 from the interiors of
these two tiles. By the minimality of Q, by switching indexes if necessary,
the adjacency graph induced by ∼ on Q is a linear graph and the patch
Q is divided into three patches A,B and C such that y + x, z1 ∈ supp(A),
z1, z2 ∈ supp(B) and z2, y ∈ supp(C). Note that y 6= z2 and the linear
structure and the minimality of Q imply x 6= z1 − z2. Using the minimality
again, we see

η(x) = n(y + x, y) = n(y + x, z1) + n(z1, z2) + n(z2, y).

Since z1, z2 are L-equivalent, C − (z2 − z1) is a patch in T which connects
z1 and y − (z2 − z1) and T = T − (z2 − z1). Thus, we obtain

η(x) = n(y + x, z1) + n(z1, z2) + n(z1, y − (z2 − z1))
≥ n(y + x, y − (z2 − z1)) + n(z1, z2)

≥ η(x− (z1 − z2)) + η(z1 − z2).

Hence, x is decomposable because x− (z1 − z2) and z1 − z2 are in L \ {0}.
Observe that

L′ := {x ∈ L \ {0} | n(x, 0) ≤ 3M − 2},
F := {(1/η(x))x | x ∈ L′}

are finite sets because ‖x‖ ≤ (3M − 2)R for any x ∈ L′. Thus, the convex
hull K ′ of F is a polyhedron. Our goal is to show that K = K ′. For the
proof of K ′ ⊂ K, it suffices to check for any x ∈ L′ that d(x)/‖x‖ ≥ 1/η(x).
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There exists y ∈ Rl with n(y + x, y) = η(x). Observing for any m ≥ 1 that
n(y +mx, y) ≤ mη(x) by the periodicity of T , we get

d(x)

‖x‖
= lim

m→∞

m

n(y +mx, y)
≥ 1

η(x)
.

For the proof of K ⊂ K ′, it suffices to verify for any v ∈ Rl with ‖v‖ = 1
that d(v)v ∈ K ′. We consider the sequence bmvc (m = 1, 2, . . .). For any
sufficiently large m, we see bmvc is decomposable by n(bmvc, 0) > 3M − 2.
Denote the corresponding decomposition of bmvc by bmvc = x1 + x2 with
x1, x2 ∈ L \ {0}. If n(x1, 0) > 3M − 2 (resp. n(x2, 0) > 3M − 2), then we
construct a successive decomposition of x1 (resp. x2). The decomposition
terminates in finite time because η(y) ≥ 1 for any y ∈ L \ {0}. Hence, we
get a decomposition

bmvc =
∑
x∈L′

c(x,m)x

with
η(bmvc) ≥

∑
x∈L′

c(x,m)η(x),

where c(x,m) is a nonnegative integer for any x ∈ L′. Putting

t :=

∑
y∈L′ c(y,m)η(y)

η(bmvc)
∈ [0, 1], u(x) :=

c(x,m)η(x)∑
y∈L′ c(y,m)η(y)

∈ [0, 1]

for x ∈ L′, we obtain

1

η(bmvc)
bmvc = t

∑
x∈L′

u(x) · 1

η(x)
x ∈ K ′

by
∑

x∈L′ u(x) = 1. Note that {mv} (m = 1, 2, . . .) is bounded and that
(9) holds because the assumption of Theorem 4.2 is satisfied. Therefore, we
deduce from Lemma 2.2 and ‖v‖ = 1 that

lim
m→∞

1

η(bmvc)
bmvc = lim

m→∞

m

η(mv)
v = d(v)v ∈ K ′

because K ′ is closed. �

For a compact convex set X, an element x ∈ X is an extreme point if
x = ua + (1 − u)b for a, b ∈ X and u ∈ [0, 1] implies x = a or x = b.
Minkowski-Carathéodory Theorem ([21])3 implies that X is the convex hull
of the set of extreme points, in particular, the set of extreme points is non
empty. The above proof shows that for any lattice periodic tiling, the corona
limit has finitely many extreme points, i.e., the vertices of K. Moreover
we have shown that some integer multiple of each extreme point becomes
a period of L. This implies that the set of extreme points lies in the l-
dimensional vector space over Q, that is, [18, (iii) Theorem 3]. This answers
the second question in Section 8.

3An infinite dimensional version is due to Krein-Milman (cf. [21, 9]).
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For actual computation, we have a simple way to compute corona limits.
Collect all connected linear patch consisting of k(≤M + 1) tiles whose two
tiles at the ends are L-equivalent by a period v ∈ L. Then the convex hull
of these v/k’s is the desired corona limit. We call these v/k’s velocities in
Section 6 and Appendix A and B.

6. Corona limits of k-uniform tilings

From the proof of Theorem 5.1, we can devise an algorithm that com-
putes the velocities and all the extreme points of a corona limit. In this
section, the terms corona limit and edge corona limit refer to the limits
with respect to the point adjacency and edge adjacency, respectively. A
tiling is k-uniform if it is tiled by regular polygons and has k different ver-
tex configurations under the action of its symmetry group, see [11, Chapter
2.1-2.2]. The 1-uniform tilings are often called Archimedean tilings and are
individually named according to the vertex configurations. For example,
the Archimedean tiling 32.4.3.4 means that in the tiling the tiles of shape
triangle, triangle, square, triangle and square surround every vertex in this
cyclic order. Appendix A and B list the plots of the velocities of 1-uniform
and 2-uniform tilings, respectively. Here, the edge length of each regular
polygon is normalized to 1.

Sensitivity to the adjacency is already observed in the square tiling 44:
both corona limits are squares but the sizes and edge directions are different.
Moreover, corona limits of the same tiling may not be affine equivalent. For
the tiling 32.4.3.4 ((1-09) in Appendix A), the corona limit has four extreme
points:

±

(
3 +
√

3

4
,
1 +
√

3

4

)
,±

(
−1−

√
3

4
,
3 +
√

3

4

)
forming a square. Meanwhile, the edge corona limit has eight extreme points
as described below. It is not a regular octagon (see Section 8), nevertheless,

the edge lengths are all equal to
√

10(2 +
√

3)/12.

Most of the shapes are quadrilaterals or hexagons except the following 6
cases listed with their extreme points.

• Octagon: edge corona limit of 32.4.3.4 (1-09)

±

(
3 +
√

3

8
,
1 +
√

3

8

)
,±

(
1

6
,
2 +
√

3

6

)
,±

(
−1−

√
3

8
,
3 +
√

3

8

)
,±

(
−2−

√
3

6
,
1

6

)
• Octagon: corona limit of 33.42; 32.4.3.4 (2-15)

±

(
3 +
√

3

4
, 0

)
,±

(
3 +
√

3

6
,
3 +
√

3

6

)
,±

(
0,

3 +
√

3

4

)
,±

(
−3−

√
3

6
,
3 +
√

3

6

)
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• Octagon: corona limit of 33.42; 32.4.3.4 (2-16)

±

(
5 + 2

√
3

8
,

√
3

8

)
,±

(
7 + 2

√
3

12
,
4 + 3

√
3

12

)
,

±

(
−1− 2

√
3

12
,
8 + 3

√
3

12

)
,±

(
−3− 2

√
3

8
,
4 +
√

3

8

)
• Decagon: edge corona limit of 33.42; 32.4.3.4 (2-16)

±

(
5 + 2

√
3

12
,

√
3

12

)
,±

(
3 +
√

3

8
,
1 +
√

3

8

)
,±

(
1

6
,
2 +
√

3

6

)
,

±

(
−1−

√
3

8
,
3 +
√

3

8

)
,±

(
−3− 2

√
3

12
,
4 +
√

3

12

)
• Dodecagon: corona limit of 3.4.6.4; 32.4.3.4 (2-02)

±

(
2 +
√

3

3
, 0

)
,±

(
6 + 3

√
3

10
,
3 + 2

√
3

10

)
,±

(
2 +
√

3

6
,
3 + 2

√
3

6

)

±

(
0,

3 + 2
√

3

5

)
,±

(
−2−

√
3

6
,
3 + 2

√
3

6

)
,±

(
−6− 3

√
3

10
,
3 + 2

√
3

10

)
• Hexadecagon: edge corona limit of 33.42; 32.4.3.4 (2-15)

±

(
3 +
√

3

7
, 0

)
,±

(
9 + 3

√
3

22
,
3 +
√

3

22

)
,±

(
3 +
√

3

10
,
3 +
√

3

10

)
,

±

(
3 +
√

3

22
,
9 + 3

√
3

22

)
,±

(
0,

3 +
√

3

7

)
,±

(
−3−

√
3

22
,
9 + 3

√
3

22

)
,

±

(
−3−

√
3

10
,
3 +
√

3

10

)
,±

(
−9− 3

√
3

22
,
3 +
√

3

22

)
.

7. A repetitive tiling without a corona limit

A translate of a patch P = {Ti | i ∈ F (P )} by x ∈ Rl is defined by
P + x = {Ti + x | k ∈ F (P )}, where P + x may not be a patch in T . Two
patches P,Q are translationally equivalent if there exists x ∈ Rl such that
Q = P +x. A tiling T is repetitive if for any patch P , its translations appear
infinitely often in T . A tiling T has finite local complexity (FLC) if for any
R > 0, there are only finitely many patches in B(x,R) with x ∈ Rl up to
translation. Here is an example of a repetitive FLC Delone tiling which does
not have a corona limit.
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Example 7.1. Consider a word monoid over a countable alphabet A =
{Cn | n = 1, 2, . . . }, whose binary operation is the concatenation of words.
An empty word λ is the identity. Define a monoid homomorphism σ by:

σ(Cn) = Cn−1CnCn+1CnCn−1 n = 1, 2, . . . .

Here we put C0 = λ. The action of σ to a right infinite word w1w2 . . . is
defined by σ(w1)σ(w2) . . . , and the same for the left infinite word. There is
a fixed right infinite word

σ(w) = w = C1C2C1C1C2C3C2C1C1C2C1C1C2C1 . . .

and its mirror image is a left infinite word w′, which also satisfy σ(w′) = w′.
We obtain a bi-infinite word w′w ∈ AZ. Every finite subword in w′w is a
subword of σM (C1) for some M , because the word C1C1 at the conjunction
of w′ and w is a subword of σ2(C1). We can easily confirm by induction that
CiCj is a subword of w′w then i− j ∈ {−1, 0, 1}, and i− j = 0 happens only
when i = j = 1. The word C1C1C1 does not show. For each Ci we associate

an interval of length 22
i−1

. Prepare two intervals A = [0, 1] and B = [0, 2]
and tile Ci by A if i is odd, and by B if i is even. Tile the real line by

intervals of length 22
n−1

for n = 1, 2, . . . according to the order of the word
w′w, and then subdivide them by A, B by this rule. Then we obtain a tiling
of R by A and B. If we see the word BAsB or ABtA in the final tiling, one
can uniquely recover the word over A which produces As or Bt. For e.g.,
BB in ABBA is produced by C2, AAAA in BAAAAB is produced by C1C1.

This tiling is repetitive from the above property of w′w. Since 22
n−1

is rapid
enough, it is easy to show that the directional speed does not exist.

8. Problems and future perspectives

There are many intriguing problems in corona limits. Here we list down
some of them:

• Is there a bound on the number of extreme points of corona limits for
planar lattice periodic tilings? Can we characterize the set of numbers
of the extreme points?
• For which n can we give a lattice periodic planar tiling whose corona

limit is a regular 2n-gon? After all, we know that it happens only
when n = 2, 3. See the paragraph after the proof of Theorem 5.1 and
[18].
• What can be said about corona limits of uniformly repetitive tilings?

How about non-periodic self-similar tilings, or tilings generated by
cut and projection? As we discussed in the introduction, there are no
universal method yet, but many partial results are known for concrete
tilings.
• Is there a uniformly repetitive tiling whose corona limit is a ball?

Here a tiling is uniformly repetitive if for any patch P , there exists a
positive r such that for any x, the ball B(x, r) contains a translate of P .
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We finish this article by relating corona limits with the chemical and
physical development of crystallization. Previous studies were devoted on
the structural forms of crystals, where researchers look at the shape of crys-
tals without regards to the external condition of the material. Bravais [7]
proposed a law which states that the faces most likely to be found on a
crystal are those parallel to lattice planes of highest reticular density. The
Bravais law relies only on the 32 point groups. Donnay and Harker [10]
extended the rule to the 230 space groups. Hartman and Perdok [12] fo-
cused on crystal zones and classified crystal faces according to the number
of periodic bond chains (PBCs). It is remarkable that the structural form
of a crystal is applicable also to the growth form, which we mention later.
For instance, faces with two or more PBCs govern the growing shape of the
crystal. However, since it is difficult to obtain bond chains in practice and
to solve the problem, Bennema and Eerden [5] proposed the connected net
model.

Taking external conditions into account, there are two stages according
to the macro-scale shapes of crystals. The first is about equilibrium forms
and the second is about growth forms of crystals. Crystal growth needs to
be regarded as the movement of a solid-liquid (gas) interface whose driving
force is defined by the difference between solid and liquid (gas) chemical
potentials at the interface per small distance.

The equilibrium form of a crystal is defined as the final shape assumed
by a growing crystal system as it arranges itself such that its surface Gibbs
free energy is minimized. If its surface free energy density α(θ) for each
direction θ is known, the equilibrium form can be computed (it is known
as the Wulff plot [24]). The growth form of a crystal is used to describe
the growth process towards the equilibrium form. If the size of a crystal is
small, its growth speed may depend on its surface tension. However, if its
size is large enough, then the surface tension can be ignored. Moreover, if
the transportation of atoms is fast enough, then the growth speed dg/dt is
proportional to its driving force, where the proportionality coefficient per
atom depends on the direction θ. We call this coefficient the kinetic growth
coefficient and denote this by K(θ). Under this assumption, Chernov [8]
showed that the asymptotic form of a crystal is similarly enlarged and the
form is independent of the shape of the initial nucleus. If the coefficient K(θ)
is known, the asymptotic growth form can be computed in the same way as
in the Wulff plot. The property of steady directional growth speed had been
known as a good estimation since early times. For example, Kolmogorov
[14] showed a mathematical explanation of the mechanism of geometrical
selections of crystals. But in the context of free energy minimization, the
analysis of directional growth speed is difficult in general. For more details
on the chemical aspects of crystals, see, for instance, [22].

Though shape study of aperiodic crystal seems not developed much, we
find a few theoretical references. An analogy of Wulff-shapes, which opti-
mizes the Gibbs-Curie surface energy, was defined and investigated in [6, 17].
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Shelling number and coordination number, meanwhile, are studied in [3, 4].
These numbers give a certain average rate of growth.

Corona limits in this paper are characterized using discrete patches (limit

of the n-th corona P (n)). It is remarkable that as an analogy of the result
by Chernov [8], the shape of the corona limit is independent of the initial
patch chosen (see Lemma 2.3). We introduced the notion of directional
speed d(v) in each direction v, which is an analogy of the growth speed
dg/dt. Therefore we expect that the corona limits K can be regarded as
models of crystal growth. We saw that the corona limit of a lattice periodic
tiling is a convex polyhedron which is symmetric with respect to the origin
(see Theorem 5.1). The shape of a corona limit depends on both the tiling
and the adjacency relation defined on it. It is an interesting problem to
reflect the growth condition of a crystal as its adjacency condition. The
representation of directional speeds might help to bridge the theory of PBC
and the traditional model based on growth coefficients. We hope that this
paper gives a new insight to the mathematical study of crystal shapes.
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Kristallflächen, Z. Kristallogr. 34 (1901), 449–530.
[25] V. G. Zhuravlev, Self-similar growth of periodic partitions and graphs, Algebra Analiz,

13 (2001), 69–92.
[26] V. G. Zhuravlev and A. V. Maleev, Layer-by-layer growth of quasi-periodic Rauzy

tiling, Kristallografiya 52 (2007), 204–210. [Crystallogr. Rep. 52 (2007), 180–186].



CORONA LIMITS OF TILINGS : PERIODIC CASE 21

Appendix A. 1-uniform tilings and velocities

Computation of corona limits of 1-uniform tilings using point adjacency
and edge adjacency, see Remark 2.1 and Section 6. Each row consists of
5 figures: tiling, (finite) coronas, their velocities, (finite) edge-coronas and
their velocities. The convex hull of velocities is the corona limit, see Theorem
5.1 and the description after it.
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Appendix B. 2-uniform tilings and velocities

The same computation of corona limits of 2-uniform tilings. Each tiling
is designated by two vertex configurations joined by semi-colon.
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