
PLUS MINUS ANALOGUES FOR AFFINE TVERBERG TYPE RESULTS

PAVLE V. M. BLAGOJEVIĆ AND GÜNTER M. ZIEGLER

Dedicated to the memory of Branko Grünbaum

Abstract. The classical 1966 theorem of Tverberg with its numerous variations was and still is a
motivating force behind many important developments in convex and computational geometry as well
as a testing ground for methods from equivariant algebraic topology. In 2018, Bárány and Soberón
presented a new variation, the “Tverberg plus minus theorem.” In this paper, we give a new proof of the
Tverberg plus minus theorem, by using a projective transformation. The same tool allows us to derive
plus minus analogues of all known affine Tverberg type results. In particular, we prove a plus minus
analogue of the optimal colored Tverberg theorem.

1. Introduction and the statement of main result

A seminal 1966 result of Helge Tverberg [10] states that for any integers d ≥ 1 and r ≥ 2, with
N = (r − 1)(d + 1), every affine map of the N -dimensional simplex ∆N into the Euclidean space IRd

identifies points from r vertex-disjoint faces of ∆N . Over the years, along with numerous applications,
Tverberg’s original theorem was extended in many different directions. For details on the history, relevance
and connections to equivariant topology consult [9] [11] [1] and [4]; or for complete proofs of all relevant
results see for example [7].

We now consider a recent variation of the classical Tverberg’s theorem, the “Tverberg plus minus
theorem” of Imre Bárány and Pablo Soberón [3]. In the following, for a face µ of the simplex ∆N we set
µ′ to be the complementary face of the face µ in ∆N , that is,

vert(µ) ∪ vert(µ′) = vert(∆N ) and vert(µ) ∩ vert(µ′) = ∅.

Here vert(µ) denotes the set of vertices of the face µ of the simplex ∆N .

Theorem 1.1 (The Tverberg plus minus theorem of Bárány and Soberón [3, Thm. 1.3]). Let d ≥ 1 and
r ≥ 2 be integers with N = (r − 1)(d + 1), and let a : ∆N −→ IRd be an affine map. Furthermore,
let µ be a face of the simplex ∆N of dimension at most r − 2 with a(µ) ∩ a(µ′) = ∅. Then there exist
r pairwise disjoint proper faces σ1, . . . , σr of ∆N and there exists a point b ∈ IRd in the intersection
aff(a(σ1)) ∩ · · · ∩ aff(a(σr)) having a representation by r affine combinations

b =
∑

v∈vert(σ1)

αva(v) = · · · =
∑

v∈vert(σr)

αva(v), 1 =
∑

v∈vert(σ1)

αv = · · · =
∑

v∈vert(σr)

αv,

such that
(v ∈ vert(µ) =⇒ αv ≤ 0) and (v ∈ vert(µ′) =⇒ αv ≥ 0).

Our statement of the Tverberg plus minus theorem differs from the original version in [3, Thm. 1.3]
because we have dropped a general position assumption on the affine map a : ∆N −→ IRd, that all
(N + 1)d coordinates of the point set {a(v) : v ∈ vert(∆N )} are algebraically independent. With this
extra condition the point b becomes unique [3, Prop. 1.1], and the condition on the signs of the coefficients
in the representations of b becomes: (v ∈ vert(µ) ⇔ αv < 0) and (v ∈ vert(µ′) ⇔ αv > 0). All the results
of this paper will be stated and proven without any extra assumptions on the affine map a : ∆N −→ IRd,
but, as in the work of Bárány and Soberón, all the results can be sharpened in the same way if the
algebraic independence of the coordinates of the set {a(v) : v ∈ vert(∆N )} is assumed.
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Using an appropriate projective transformation, we show that the Tverberg plus minus theorem is a
corollary of the classical Tverberg theorem. The new proof of Theorem 1.1, given in Section 2, allows us
to directly derive plus minus analogues of literally all known affine Tverberg type results. On the other
hand, it is not clear whether our proof of Theorem 1.1 implies plus minus analogues of integer Tverberg
type results [8]. Briefly, in our approach we begin by fixing parameters and assumptions depending on
the Tverberg type result for which we want to derive a plus minus analogue. For example,

— if we want to prove a plus minus analogue of a basic Tverberg type result, the parameters we fix
are d ≥ 1 and r ≥ 2 integers, N := (r − 1)(d+ 1), and a : ∆N −→ IRd an affine map;

— if we want to prove a plus minus analogue of a optimal colored Tverberg type result, the parameters
we fix are d ≥ 1 an integer, r ≥ 2 a prime, N := (r − 1)(d+ 1), a : ∆N −→ IRd an affine map, and
a coloring of the set of vertices of the simplex ∆N by m ≥ 1 colors such that each color class does
no contain more that r − 1 vertices;

— if we want to prove a plus minus analogue of a generalized Van Kampen–Flores type result, the
parameters we fix are d ≥ 1 an integer, r ≥ 2 a prime power, N := (r−1)(d+2), and a : ∆N −→ IRd

an affine map.

Then, using the assumption about the existence of the face µ of the simplex ∆N with the properties that
a(µ) ∩ a(µ′) = ∅ and dim(µ) ≤ r − 2, we

— transform the affine map a : ∆N −→ IRd ↪−→ IRd+1, via a permissible projective transformation of
IRd+1, into an affine map â : ∆N −→ E′ ↪−→ IRd+1 from the same simplex into a different Euclidean
space of the same dimension,

— to which we apply our chosen Tverberg type theorem. This yields the corresponding, always affine,
plus minus analogue result.

In this way we get plus minus analogues of the optimal colored Tverberg theorem, the weak colored Tver-
berg theorem, the generalized Van Kampen–Flores theorem, the equal barycentric coordinates Tverberg
theorem of Soberón, and the admissible-prescribable balanced theorem.

In particular, we get a plus minus analogue of the optimal colored Tverberg theorem of Blagojević,
Matschke, and Ziegler [6, Thm. 2.1] [5, Thm. 2.1]. The original result was obtained in the process of
proving the Bárány-Larman colored Tverberg conjecture [2] for the case when r + 1 is a prime.

Theorem 1.2 (Plus minus optimal colored Tverberg theorem). Let d ≥ 1 be an integer, r ≥ 2 be a prime
with N = (r − 1)(d + 1), and let a : ∆N −→ IRd be an affine map. Furthermore, let µ be a face of the
simplex ∆N of dimension at most r − 2 with a(µ) ∩ a(µ′) = ∅, and let the vertex set of the simplex ∆N

be partitioned into m+ 1 parts, called “color classes,”

vert(∆N ) = C0 t · · · t Cm
such that the cardinality of each color class does not exceed r−1, that is card(Ci) ≤ r−1 for all 0 ≤ i ≤ m.
Then there exist r pairwise disjoint proper faces σ1, . . . , σr of ∆N , and there exists a point b ∈ IRd in the
intersection aff(a(σ1)) ∩ · · · ∩ aff(a(σr)) having a representation by r affine combinations

b =
∑

v∈vert(σ1)

αva(v) = · · · =
∑

v∈vert(σr)

αva(v), 1 =
∑

v∈vert(σ1)

αv = · · · =
∑

v∈vert(σr)

αv,

such that
(v ∈ vert(µ) =⇒ αv ≤ 0) and (v ∈ vert(µ′) =⇒ αv ≥ 0),

and in addition
card(Ci ∩ vert(σj)) ≤ 1

for every 0 ≤ i ≤ m and every 1 ≤ j ≤ r. That is, all the faces σ1, . . . , σr are “rainbow faces” – no two
vertices of each σi are colored with the same color.

Identifying one color class with the set of vertices of the distinguished face µ of the simplex ∆N yields
the following strengthening of the original Tverberg plus minus theorem.

Corollary 1.3. Let d ≥ 1 be an integer, r ≥ 2 be a prime with N = (r−1)(d+1), and let a : ∆N −→ IRd

be an affine map. Furthermore, let µ be a face of the simplex ∆N of dimension at most r − 2 with
a(µ)∩a(µ′) = ∅. Then there exist r pairwise disjoint proper faces σ1, . . . , σr of ∆N , and there exists a point
b ∈ IRd in the intersection aff(a(σ1)) ∩ · · · ∩ aff(a(σr)) having a representation by r affine combinations

b =
∑

v∈vert(σ1)

αva(v) = · · · =
∑

v∈vert(σr)

αva(v), 1 =
∑

v∈vert(σ1)

αv = · · · =
∑

v∈vert(σr)

αv,
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Figure 1. An illustration of Theorem 1.2 for the collection of colored points in the plane where
d = 2, r = 3, N = 6, C0 = {v1, v5}, C1 = {v2, v7}, C2 = {v3, v6}, C3 = {v4}, vert(µ) = {v1, v2},
vert(µ′) = {v3, v4, v5, v6, v7}, σ1 = {v2, v4, v6}, σ2 = {v1, v3, v7}, and σ3 = {v5}.

such that
(v ∈ vert(µ) =⇒ αv ≤ 0) and (v ∈ vert(µ′) =⇒ αv ≥ 0),

and in addition
card(vert(µ) ∩ vert(σj)) ≤ 1

for every 1 ≤ j ≤ r. That is, in each affine presentation
∑
v∈vert(σi)

αva(v) of b there exists at most one
vertex v ∈ vert(σi) with the corresponding coefficient αv being non-positive.

In the next section we give in parallel proofs of Theorem 1.1 and Theorem 1.2. The plus minus
analogues of the weak colored Tverberg theorem, the generalized Van Kampen–Flores theorem, the equal
barycentric coordinates Tverberg theorem of Soberón, and the admissible-prescribable balanced Tverberg
theorem, can be proved in the exact same way.

Acknowledgement. We are grateful to Imre Bárány, Florian Frick, and Pablo Soberón for useful dis-
cussions and comments. Furthermore, we thank the referees, Peter Landweber and Pablo Soberón for
careful reading of the manuscript, valuable suggestions and corrections.

2. Proofs of Theorem 1.1 and Theorem 1.2

In this section we simultaneously prove Theorem 1.1 and Theorem 1.2. All the remaining analogues
can be obtained in exactly the same way by modifying initial parameters and assumptions accordingly.

Let d ≥ 1 be an integer, let r ≥ 2 be either an arbitrary integer or just a prime, and set N =
(r − 1)(d + 1). Let a : ∆N −→ IRd be an affine map. Denote by V := vert(∆N ) = {v0, . . . , vN} the set
of vertices of the simplex ∆N , and by I := {0, . . . , N} the corresponding index set. In addition, when
considering Theorem 1.2, we assume that the vertex set V of the simplex ∆N is partitioned into m + 1
color classes V = C0 t · · · t Cm such that the cardinality of each color class does not exceed r − 1.

Let µ be a face of ∆N with the property that dim(µ) ≤ r − 2 and a(µ) ∩ a(µ′) = ∅. Consequently,
there exists an affine hyperplane H in IRd that strictly separates a(µ) and a(µ′). Let H be given by

H := {x ∈ IRd : 〈x,w〉 = α}

where the vector w ∈ IRd\{0} and the scalar α ∈ IR are chosen in such a way that

a(µ) ⊆ int(H−) = {x ∈ IRd : 〈x,w〉 < α} and a(µ′) ⊆ int(H+) = {x ∈ IRd : 〈x,w〉 > α}. (1)

Let E be the d-dimensional affine hyperplane in IRd+1 defined by E := {(x, 1) ∈ IRd+1 : x ∈ IRd}.
Denote by e : IRd −→ IRd+1 the embedding of IRd into IRd+1 given by x 7−→ (x, 1) for x ∈ IRd. Now the
affine map a : ∆N −→ IRd induces an affine map e ◦ a : ∆N −→ IRd+1. The e ◦ a images of the vertices
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of ∆N induce 1-dimensional linear subspaces Lvi := span{(a(vi), 1)} of IRd+1 that pierce E at the points
(e ◦ a)(vi) = (a(vi), 1), that is Lvi ∩ E = {(a(vi), 1)}, where 0 ≤ i ≤ N .

Let w′ := (w,−α) ∈ IRd+1. Consider the d-dimensional affine hyperplane E′ in IRd+1 defined by

E′ := {y ∈ IRd+1 : 〈y, w′〉 = 1}.
Then the lines Lvi pierce E′ at the points

â(vi) :=
1

〈a(vi), w〉 − α
(e ◦ a)(vi) =

1

〈a(vi), w〉 − α
(a(vi), 1), (2)

for 0 ≤ i ≤ N . Hence, we define a new affine map â : ∆N −→ E′ by its values on the vertices on ∆N .
The choice we made in (1) implies that the scaling factor 1

〈a(vi),w〉−α in the definition of â(vi) is negative
if and only if vi ∈ vert(µ), and positive if and only if vi ∈ vert(µ′).

Now apply to the affine map â : ∆N −→ E′ either the classical Tverberg theorem [10, Thm. 1] or,
with an appropriate coloring of the vertices of ∆N and the assumption that r is a prime, the Optimal
colored Tverberg theorem [6, Thm. 2.1] [5, Thm. 2.1]. We obtain r pairwise disjoint non-empty faces,
or rainbow faces (depending on the theorem we have used) σ1, . . . , σr of the simplex ∆N such that
â(σ1) ∩ · · · ∩ â(σr) 6= ∅. More precisely, there exist

— pairwise disjoint non-empty subsets I1, . . . , Ir of the index set I such that σj := conv{vi : i ∈ Ij}
for all 1 ≤ j ≤ r, and

— non-negative scalars α0, . . . , αN such that
∑
i∈I1 αi = · · · =

∑
i∈Ir αi = 1,

with the property that∑
i∈I1

αiâ(vi) = · · · =
∑
i∈Ir

αiâ(vi) ∈ â(σ1) ∩ · · · ∩ â(σr) ⊆ E′.

Thus, using the definition of â given in (2), we have that∑
i∈I1

αi
〈a(vi), w〉 − α

(a(vi), 1) = · · · =
∑
i∈Ir

αi
〈a(vi), w〉 − α

(a(vi), 1).

Splitting the last equalities into the equalities of the first d coordinates, and the equalities of the last
(d+ 1)st coordinate we obtain that∑

i∈I1

αi
〈a(vi), w〉 − α

a(vi) = · · · =
∑
i∈Ir

αi
〈a(vi), w〉 − α

a(vi) =: u ∈ IRd,

and ∑
i∈I1

αi
〈a(vi), w〉 − α

= · · · =
∑
i∈Ir

αi
〈a(vi), w〉 − α

=: β ∈ IR. (3)

The assumption that dim(µ) ≤ r − 2 yields the existence at lease one index set I` with the property
vert(µ) ∩ {vi : i ∈ I`} = ∅. Therefore, the choice made in (1) implies that β =

∑
i∈I`

αi

〈a(vi),w〉−α > 0,
because all the summands are non-negative. Consequently, from (3) the point in aff(a(σ1))∩· · ·∩aff(a(σr))
we are looking for is

1

β
u =

∑
i∈I1

αi
β(〈a(vi), w〉 − α)

a(vi) = · · · =
∑
i∈Ir

αi
β(〈a(vi), w〉 − α)

a(vi).

Indeed, according to (1) and the fact that β > 0 holds we get that(
vi ∈ vert(µ) =⇒ αi

β(〈a(vi), w〉 − α)
≤ 0
)

and
(
vi ∈ vert(µ′) =⇒ αi

β(〈a(vi), w〉 − α)
≥ 0
)
.

This completes the proof of both theorems, and gives a blueprint for proving all the remaining plus minus
analogues directly from the corresponding Tverberg type theorems.
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