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Abstract

Characterizing the dynamics of time-evolving data within the framework of topological
data analysis (TDA) has been attracting increasingly more attention. Popular instances of
time-evolving data include flocking/swarming behaviors in animals and social networks in
the human sphere. A natural mathematical model for such collective behaviors is a dynamic
point cloud, or more generally a dynamic metric space (DMS).

In this paper we extend the Rips filtration stability result for (static) metric spaces to
the setting of DMSs. We do this by devising a certain three-parameter "spatiotemporal"
filtration of a DMS. Applying the homology functor to this filtration gives rise to multidi-
mensional persistence module derived from the DMS. We show that this multidimensional
module enjoys stability under a suitable generalization of the Gromov-Hausdorff distance
which permits metrizing the collection of all DMSs.

On the other hand, it is recognized that, in general, comparing two multidimensional
persistence modules leads to intractable computational problems. For the purpose of prac-
tical comparison of DMSs, we focus on both the rank invariant or the dimension function
of the multidimensional persistence module that is derived from a DMS. We specifically
propose to utilize a certain metric d for comparing these invariants: In our work this d is
either (1) a certain generalization of the erosion distance by Patel, or (2) a specialized ver-
sion of the well known interleaving distance. In either case, the metric d can be computed
in polynomial time.
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1 Introduction

Stability and tractability of TDA for studying metric spaces. Finite point clouds or finite met-
ric spaces are amongst the most common data representations considered in topological data
analysis (TDA) [13, 29, 33]. In particular, the stability of the Single Linkage Hierarchical Clus-
tering (SLHC) method [16] or the stability of the persistent homology of filtered Rips complexes
built on metric spaces [22, 23] motivates adopting these constructions when studying metric
spaces arising in applications.

Whereas there has been extensive applications of TDA to static metric data (thanks to the
aforementioned theoretical underpinnings), there is not much study of dynamic metric data
from the TDA perspective. Our motivation for considering dynamic metric data stems from the
study and characterization of flocking/swarming behaviors of animals [5, 36, 37, 39, 53, 57, 63,
69], convoys [41], moving clusters [43], or mobile groups [40, 70]. In this paper, by extending
ideas from [16, 22, 23, 47, 46], we aim at establishing a TDA framework for the study of dynamic
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Figure 1: Fix r > 0. The two figures above stand for two dynamic point clouds Xr (·) and Yr (·) in
the real line each consisting of 3 points x1, x2, x3 and y1, y2, y3, respectively. Each of Xr (·) and
Yr (·) contains (1) two static points located at −r and r respectively (x1, x3 and y1, y3), and (2)
one dynamic point with the time-dependent coordinate either r sin t or r |sin t |, t ∈ R (x2 and
y2). Observe that in Xr (·) the unique dynamic point x2 meets both of x1 and x2 periodically. On
the contrary, in Yr (·), the unique dynamic point y2 meets only y3 periodically.

metric spaces (DMSs) which comes together with stability theorems. We begin by describing
and comparing relevant work with ours.

Lack of an adequate metric for DMSs. In [55], Munch considers vineyards — a certain notion
of time-varying persistence diagrams introduced by Cohen-Steiner et al. [25] — as signatures
for dynamic point clouds. Munch, in particular, shows that vineyards are stable1 [24] under per-
turbations of the input dynamic point cloud [55, Theorem 17]. However, we will observe below
that, for the purpose of comparing two DMSs (which we regard as models of flocking behav-
iors), the metrics that directly arise as the integration of the Hausdorff or Gromov-Haussdorff
distance can sometimes fail to be discriminative enough (see Example 2.4 and Remark 4.6).

In [64], Halverson, Topaz and Ziegelmeier study aggregation models for biological systems
by adopting ideas from TDA. They show that topological analysis of aggregation reveals dynam-
ical events which are not captured by classical analysis methods. Specifically, in order to extract
insights about the global behavior of dynamic point clouds obtained by simulating aggregation
models, they employ the so-called CROCKER2 plot. This plot represents the evolution of Betti
numbers of Rips complexes over the plane of time and scale parameters. In [65], Topaz, Ulmer
and Ziegelmeier discretize CROCKER plots as matrices and make use of Frobenius norm for
comparing any two such matrices. In [64, 65], the authors do not provide stability results for
CROCKER plots derived from biological aggregation models.

Motivation for introducing a new metric for DMSs. Consider the two dynamic point clouds
Xr (·) and Yr (·) illustrated as in Figure 1. Let us regard them as instances of DMS with the time-
dependent metrics obtained by restricting the Euclidean metric on R2 at each time t ∈ R.

Observe that for each time t ∈ R, the metric spaces Xr (t ) and Yr (t ) are isometric and hence
the Gromov-Hausdorff distance [12, Ch.7] dGH (Xr (t ),Yr (t )) is zero. This in turn implies that the
integral

∫
t∈R dGH (Xr (t ),Yr (t )) d t is also zero, implying that Xr (·) and Yr (·) are not distinguished

from each other by the integrated Gromov-Hausdorff distance. 3 See Remark 2.16.

1Under a certain notion of distance arising from in the integration over time of the bottleneck distance between
the instantaneous persistence diagrams.

2Contour Realization Of Computed k-dimensional hole Evolution in the Rips complex
3In [55], in order to compare two dynamic point clouds, Munch considered the integrated Hausdorff distance∫

dH over time. Since the metric
∫

dH takes account of relative position of two dynamic point clouds inside an
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However, regarding Xr (·) and Yr (·) as models of collective behaviors of animals,vehicles or
people, Xr (·) and Yr (·) are clearly distinct from each other. This motivates us to seek an ad-
equate metric that measures the difference between the dynamics underlying any two given
DMSs. In particular, this metric should not be a mere sum of instantaneous differences of the
given DMSs over time.

In this paper, we adopt ddyn, called the λ-slack interleaving distance with λ = 2 (Definition
2.10, originally introduced in [47]), as a measure of the behavioral difference between DMSs. In
Section 4, we specifically show that the metric ddyn returns a positive value for the pair of DMSs
Xr (·) and Yr (·) in Figure 1, demonstrating its sensitivity.

About stability and tractability of ddyn. Even though the metric ddyn is able to differentiate
subtly different DMSs (Theorem 2.11), computing ddyn is not tractable in general (Remark 2.13).
This hinders us from utilizing ddyn in practice. Therefore, as a pragmatic approach, we adopt
the comparison of invariants of DMSs, rather than directly comparing DMSs . To this end,

(a) the invariants must be stable under perturbations of the input DMS, and

(b) the metric for comparing two invariants extracted from two DMSs must be efficiently
computable.

Contributions. In this work, we achieve both items (a) and (b) above, described as follows.
With regard to (a), we first extract invariants from a given DMS, where these invariants are

in the form of 3-dimensional persistence modules of sets or vector spaces. These are obtained
from a blend of ideas related to the Rips filtration [24, 22, 30], the single linkage hierarchical
clustering (SLHC) method [16], and the interlevel set persistence/categorified Reeb graphs [4, 9,
15, 26].

We are able to prove the stability of these invariants (Theorems 4.1 and 6.17) by adapting
ideas from [16, 22, 23]. We specifically emphasize that our stability results are a generalization
of the well known stability theorems for the SLHC method [16] and the Rips filtration of a metric
space [22, 23]: Indeed, we show that by restricting ourselves to the class of constant DMSs, our
results reduce to the standard stability theorems for static metric spaces in [16, 22, 23].

Next, in regard to item (b) above, we address the issue of computability of the metric be-
tween invariants of DMSs. In [7, 8], Bjerkevik and Botnan show that computing the interleaving
distance dI [52] between multidimensional persistence modules can in general be NP-hard.
Also, since we are not guaranteed to have interval decomposability [9, 17] of the 3-dimensional
modules considered in this paper, we are not in a position to utilize the bottleneck distance and
relevant algorithms developed by Dey and Xin [28] instead of dI.

This motivates us to further simplify our invariant MX associated to a DMS (X ,dX (·)), which
is in the form of 3-dimensional persistence module. We focus on both the dimension func-
tion and the rank function. The dimension function dm(MX ) of a persistence module MX has

ambient metric space, we do not consider utilizing
∫

dH for the purpose of comparing intrinsic behaviors of two
dynamic metric data. Also, Munch considered the integrated bottleneck distance

∫
dB by computing the Rips fil-

trations of dynamic point clouds at each time. However, by [22, Theorem 3.1], the metric
∫

dB is upper-bounded
by (twice) the integrated Gromov-Hausdorff distance, which in this case vanishes. Therefore,

∫
dB does not dis-

criminate the two dynamic point clouds given as in Figure 1.
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been studied in various contexts and with various names such as Betti curve, feature counting
function, etc, [2, 28, 34, 35, 42, 62]. The rank function rk(MX ) of MX has also been extensively
considered [17, 19, 51, 58, 59]. We observe that both of these functions (1) can themselves be
computed in polynomial time, (2) can be compared to each other via the interleaving distance
d Z

I for integer-valued functions (see Section 3.2) and (3) are stable to perturbations of (X ,dX (·))
under ddyn (Theorems 4.4 and 4.5). We also propose a simple algorithm for computing d Z

I in
poly-time (Section 5). Therefore, we can bound the distance ddyn in poly-time by computing d Z

I
and either dm(·) or rk(·).

We in particular emphasize that our method for computing d Z
I provides a poly-time algo-

rithm for bounding from below the interleaving distance between
d-dimensional persistence modules M of vector spaces without any restriction on d or on the
structure of M (even if M is not derived from a DMS).

Other related work. Aiming at analyzing/summarizing trajectory data such as the movement
of animals, vehicles, and people, Buchin and et al. introduce the notion of trajectory grouping
structure [11]. This is a summarization, in the form of a labeled Reeb graph, of a set of points
having piecewise linear trajectories with time-stamped vertices in Euclidean space Rd . This
work was subsequently enriched in [50, 66, 67, 68].

In [46, 47], the thread of ideas in [11] is blended with ideas in zigzag persistence theory [14].
Specifically, particular cases of trajectory grouping structure in [11], are named formigrams. By
clarifying the zigzag persistence structure of formigrams, formigrams are further summarized
into barcodes. Regarding the barcode as a signature of a set of trajectory data, the authors of
[46, 47] utilize these barcodes for carrying out the classification task of a family of synthetic
flocking behaviors [48].

The central results in [46, 47] show that barcodes or formigrams from a trajectory data are
stable to perturbations of the input data [46, Theorem 5],[47, Theorem 9.21]. This work is a se-
quel to [46, 47]. Namely, by considering Rips-like filtrations parametrized both by time intervals
and spatial scale, we obtain novel stability results in every homological dimension.

Other work utilizing TDA-like ideas in the analysis of dynamic data includes: a study of time-
varying merge trees or time-varying Reeb graphs [31, 56]. Also, ideas of persistent homology are
utilized in the study of time-varying graphs [38], discretely sampled dynamical systems [3, 32]
or in the study of combinatorial dynamical systems [27].

Organization. In Section 2 we review the notion of DMSs and the metric ddyn on DMSs. In
Section 3 we review the interleaving distance. In Section 4 we provide an overview of our new
stability results about persistent homology features of DMSs. In Section 5 we propose and study
an algorithm for computing the interleaving distance between integer-valued functions. Sec-
tion 6 contains proofs of statements (theorems, etc.) from Section 4.

In Section A we describe how to analyze and compare discrete time series of metric data. In
Section B we clarify the relationship between the rank invariants of DMSs and the CROCKER-
plots of DMSs. In Section C we compare the interleaving distance between integer-valued func-
tions with other relevant metrics. In Section D we review the stability of the single linkage hi-
erarchical clustering (SLHC) method for static metric spaces; results in this section are general-
ized to those in Section 6.4.
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2 Dynamic metric spaces (DMSs)

Throughout this paper, we fix a certain field F and only consider vector spaces over F whenever
they arise. Any simplicial homology has coefficients in F. By Z+ and R+, we denote the set of
non-negative integers and the set of non-negative reals, respectively.

2.1 Definition of DMSs

DMSs. A DMS γX = (X ,dX (·)) stands for a pair of finite set X with R-parametrized metric
dX (·) : R×X ×X → R+: for each t ∈ R, a certain (pseudo-)metric dX (t ) : X ×X → R+ is obtained:

Definition 2.1 (Dynamic metric spaces [47]). A dynamic metric space is a pair γX = (X ,dX (·))
where X is a non-empty finite set and dX (·) : R×X ×X → R+ satisfies:

(i) For every t ∈ R, γX (t ) = (X ,dX (t )) is a pseudo-metric space.

(ii) There exists t0 ∈ R such that γX (t0) is a metric space.4

(iii) For fixed x, x ′ ∈ X , dX (·)(x, x ′) : R → R+ is continuous.

We refer to t as the time parameter.

Let (M ,dGH) be the collection of all finite (pseudo-)metric spaces equipped with the Gromov-
Hausdorff distance (Definition D.1). Any DMS γX = (X ,dX (·)) can be seen as a continuous curve
from R to (M ,dGH).

Example 2.2 ([47]). Examples of DMSs include:

(i) (Constant DMSs) Given a finite metric space (X ,dX ), define the DMS γX = (X ,d ′
X (·)) by

declaring that for all t ∈ R, d ′
X (t ) = dX as a function X × X → R+. We refer to such γX as a

constant DMS and simply write γX ≡ (X ,dX ).

(ii) (Dynamic point clouds) A family of examples is given by n points moving continuously
inside an ambient metric space (Z ,dZ ) where particles are allowed to coalesce. If the
n trajectories are x1(t ), . . . , xn(t ) ∈ Z , then let X := {1, . . . ,n} and define the DMS γX :=
(X ,dX (·)) as follows: for t ∈ R and i , j ∈ {1, . . . ,n}, let dX (t )(i , j ) := dZ (xi (t ), x j (t )). We call
γX a dynamic point cloud in Z and simply write X (·) = {xi (·)}n

i=1 or X (·).
4This condition is assumed since otherwise one could substitute the DMSs γX by another DMSs γX ′ over a set

X ′ which satisfies |X ′| < |X |, and such that γX ′ is point-wisely equivalent to γX .
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Weak and strong isomorphism between DMSs. We introduce two different notions of isomor-
phism between DMSs.

Definition 2.3 (Isomorphism between DMSs). Let γX = (X ,dX (·)),γY = (Y ,dY (·)) be any two
DMSs.

(i) γX and γY are strongly isomorphic if there exists a bijection ϕ : X → Y such that ϕ is an
isometry between γX (t ) = (X ,dX (t )) and γY (t ) = (Y ,dY (t )) for all t ∈ R.

(ii) γX andγY are weakly isomorphic if for each t ∈ R, γX (t ) = (X ,dX (t )) is isometric toγY (t ) =
(Y ,dY (t )).

Any two strongly isomorphic DMSs are weakly isomorphic, but the converse is not true:

Example 2.4 (Weakly isomorphic DMSs). The dynamic point clouds Xr (·) and Yr (·) described
in Figure 1 are weakly isomorphic, but not strongly isormorphic: Indeed, there is no bijection
between {x1, x2, x3} and {y1, y2, y3} which serves as an isometry for all t ∈ R.

2.2 The λ-slack interleaving distance between DMSs

We review the extended metric ddyn for DMSs, which was introduced in [47, Definition 9.13]
under the name of λ-slack interleaving distance, for each λ ∈ [0,∞).

Definition 2.5. Let ε≥ 0. Given any map d : X ×X → R, by d +ε we denote the map X ×X → R
defined as (d +ε)(x, x ′) = d(x, x ′)+ε for all (x, x ′) ∈ X ×X .

In order to compare any two DMSs, we will utilize the notion of tripod:

Definition 2.6 (Tripod). Let X and Y be any two non-empty sets. For another set Z , any pair of

surjective maps R : X
ϕX

�−−−− Z
ϕY−−−−� Y is called a tripod between X and Y .

Given any map d : X ×X → R, let Z be any set and letϕ : Z → X be any map. Then, we define(
ϕ∗d

)
: Z ×Z → R as (

ϕ∗d
)

(z, z ′) := d
(
ϕ(z),ϕ(z ′)

)
, (z, z ′) ∈ Z ×Z .

Definition 2.7 (Comparison of metrics via tripods). Consider any two maps d1 : X ×X → R and

d2 : Y ×Y → R. Given a tripod R : X
ϕX

�−−−− Z
ϕY−−−−� Y between X and Y , by

d1 ≤R d2,

we mean
(
ϕ∗

X d1
)

(z, z ′) ≤ (
ϕ∗

Y d2
)

(z, z ′) for all (z, z ′) ∈ Z ×Z .

Let Int be the collection of all finite closed intervals of R. See Figure 2.

Definition 2.8 (Time-interlevel analysis of a DMS). Given a DMS γX = (X ,dX (·)), define the
function

∨
dX : Int×X ×X → R+ as(

I , x, x ′) 7→∨
I

dX (x, x ′) := min
s∈I

dX (s)(x, x ′).

7



Figure 2: The collection Int can be graphically represented as the upper-half plane {(t1, t2) ∈ R2 :
t1 ≤ t2}: Any closed interval [t1, t2] of R is identified with the point (t1, t2) on R2. Observe that if
[t1, t2] ⊂ [t ′1, t ′2], then the point (t ′1, t ′2) is located at upper-left of the point (t1, t2) in the plane.

In words,
∨

I dX (x, x ′) stands for the minimum distance between x and x ′ within the time
interval I . Observe that if I ⊂ I ′ are both in Int, then

∨
I ′ dX (x, x ′) ≤∨

I dX (x, x ′) for all x, x ′ ∈ X .
For any t ∈ R, let [t ]ε := [t −ε, t +ε] ∈ Int.

Definition 2.9 (Distortion of a tripod). Let γX = (X ,dX (·)) and γY = (Y ,dY (·)) be any two DMSs.

Let R : X
ϕX

�−−−− Z
ϕY−−−−� Y be a tripod between X and Y such that

for all t ∈ R,
∨
[t ]ε

dX ≤R dY (t )+2ε and
∨
[t ]ε

dY ≤R dX (t )+2ε. (1)

We call any such R an ε-tripod between γX and γY . Define the distortion disdyn(R) of R to be
the infimum of ε≥ 0 for which R is an ε-tripod.

In Definition 2.9, if R is a ε-tripod, then R is also a ε′-tripod for any ε′ ≥ ε.

Definition 2.10 (The distance ddyn between DMSs). Given any two DMSs
γX = (X ,dX (·)) and γY = (Y ,dY (·)), we define

ddyn(γX ,γY ) := min
R

disdyn(R),

where the minimum ranges over all tripods between X and Y .

We remark that ddyn is a hybrid between the Gromov-Hausdorff distance (Definition D.1)
and the interleaving distance [10, 21] for Reeb graphs [26]. We also remark that, in [47], ddyn

is introduced under the name of λ-slack interleaving distance for λ = 2. We use λ = 2 in this
paper for ease of notation. This choice is not significant because different choices of λ> 0 yield
bilipschitz equivalent metrics for DMSs [47, Proposition 11.29].

Any DMS γX = (X ,dX (·)) is said to be bounded if there exists r ∈ [0,∞) such that for all
x, x ′ ∈ X and all t ∈ R, dX (t )(x, x ′) ≤ r. For example, both DMSs given in Figure 1 are bounded.

Theorem 2.11 ([47, Theorem 9.14]). ddyn is an extended metric between DMSs modulo strong
isomorphism (Definition 2.3 (i)). In particular, ddyn is a metric between bounded DMSs modulo
strong isomorphism.
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Remark 2.12 (ddyn generalizes the Gromov-Hausdorff distance [47, Remark 11.28]). Given any
two constant DMSsγX ≡ (X ,dX ) andγY ≡ (Y ,dY ), the metric ddyn recovers the Gromov-Hausdorff
distance between (X ,dX ) and (Y ,dY ). Indeed, for any tripod R between X and Y , condition (1)
reduces to ∣∣dX (x, x ′)−dY (y, y ′)

∣∣≤ 2ε for all (x, y), (x ′, y ′) ∈ R.

Therefore,
dGH((X ,dX ), (Y ,dY )) = ddyn(γX ,γY ).

Remark 2.13. From Remark 2.12, we conclude that the computation of ddyn is in general not
tractable: On the class of constant DMSs the metric ddyn reduces to the Gromov-Hausdorff
distance, which leads to NP-hard problems [1, 60, 61].

2.3 Variants of ddyn

Recall that ddyn is the λ-slack interleaving distance for λ = 2. Here we discuss a variant of the
λ-slack interleaving distance which arises from a slightly different way of incorporating the λ
parameter:

Definition 2.14 (Multiplicative λ-slack interleaving distance). For λ ∈ (0,∞), we define the
multiplicative λ-slack interleaving distance d•

λ
(γX ,γY ) between two DMSs γX = (X ,dX (·)) and

γY = (Y ,dY (·)) as the infimum ε for which there exists a tripod R between X and Y such that5

for all t ∈ R,
∨

[t ]
ε
λ

dX ≤R dY (t )+ε and
∨

[t ]
ε
λ

dY ≤R dX (t )+ε. (2)

Definition 2.15 (dyn-Gromov-Hausdorff distance between DMSs and its relation to d•
λ

). Let γX

and γY be any two DMSs and fix a tripod R between X and Y . For each t ∈ R, let

dis(R)(t ) := inf{ε ∈ R+ : dX (t ) ≤R dY (t )+ε and dY (t ) ≤R dX (t )+ε}.

Define
d dyn

GH (γX ,γY ) := min
R

sup
t∈R

dis(R)(t ),

where the minimum is taken over all tripods R between X and Y . We call this distance the
dyn-Gromov-Hausdorff distance between γX and γY .

Note that, for the multiplicative interleaving distance d•
λ

in Definition 2.14, we have

lim
λ→∞

d•
λ(γX ,γY ) = d dyn

GH (γX ,γY ).

5In [47], the original λ-slack interleaving distance dλ(γX ,γY ), λ ∈ [0,∞) is defined as the infimum amount of
time ε for which there exists a tripod R between X and Y such that

for all t ∈ R,
∨
[t ]ε

dX ≤R dY (t )+λε and
∨
[t ]ε

dY ≤R dX (t )+λε.

In this original definition, the units of λ is (distance units)/(time unit), whereas the units of λ for d•
λ

is (time
units)/(distance units).
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Also, note that d dyn
GH between constant DMSs γX ≡ (X ,dX ) and γY ≡ (Y ,dY ) reduces to twice

the Gromov-Hausdorff distance between (X ,dX ) and (Y ,dY ). We remark that d dyn
GH is in general

not the supremum of the Gromov-Hausdorff distances dGH(γX (t ),γY (t )) over all times t ∈ R.
Specifically, we have the following inequality:

L(∞)
GH (γX ,γY ) := sup

t∈R
dGH(γX (t ),γY (t )) = 1

2
·sup

t∈R
min

R
dis(R)(t )

(∗)≤ 1

2
·min

R
sup
t∈R

dis(R)(t ) = 1

2
·d dyn

GH (γX ,γY ).

The inequality denoted by (∗) above is often strict, as it is to be expected as a result of swapping

the supmin implicit in L(∞)
GH for the minsup in the definition of d dyn

GH .6 For instance, for any pair
γX ,γY of weakly isomorphic but not strongly isomorphic DMSs (cf. Example 2.4), one has that
(1) dGH(γX (t ),γY (t )) = 0 for every t ∈ R and in turn supt∈R dGH(γX (t ),γY (t )) = 0; but in contrast

(2) d dyn
GH (γX ,γY ) is strictly positive.

It is possible to give rise to a whole family of pseudo-distances of which L(∞)
GH is a particular

example.
This construction is analogous to the integrated Hausdorff distance between dynamic point

clouds considered in [55].

Remark 2.16 (Weak-Lp -Gromov-Hausdorff distance). Fix any two DMSs γX and γY . For any
fully supportted probability measure ζon R and p ∈ [1,∞), define

L(p)
GH,ζ(γX ,γY ) :=

(∫
t∈R

(
dGH(γX (t ),γY (t ))

)p dζ

) 1
p

.

It is clear that L(p)
GH,ζ(γX ,γY ) vanishes whenever γX and γY are weakly isomorphic.

2.4 Persistent homology features of a DMS

We extend ideas from persistent homology/single linkage hierarchical clustering method for
metric spaces (Section D) to the setting of dynamic metric spaces (DMSs).

Posets and their opposite. Given any poset P = (P,≤), we regard P as the category: Objects are
the elements of P. Also, for any p, q ∈ P, there exists the unique morphism p → q if and only if
p ≤ q . Since there exists at most one morphism between any two elements of P, the category P
is called thin and, any closed diagram in P must commute. We sometimes consider the opposite
category of P, which will be denoted by Pop. In the category Pop, for p, q ∈ P, there exists the
unique morphism p → q if and only if p ≥ q .

Example 2.17 (Int). Recall the collection Int of all finite closed intervals of R. We regard Int
as poset, where the order ≤ is the inclusion ⊆. Hence, Int can be seen as the category of finite
closed real intervals whose morphisms are inclusions.

6The quantity in the LHS is allows for picking a different correspondence for each time t whereas the RHS
demands that a single correspondence is adequate for all times.

10



Product of posets. Given any two posets P and Q, we assume by default that their product
P×Q is equipped with the partial order ≤ defined as (p, q) ≤ (p ′.q ′) if and only if p ≤ p ′ in P and
q ≤ q ′ in Q.

Remark 2.18. In the poset Int×R+, we have (I ,δ) ≤ (I ′,δ′) if and only if I ⊂ I ′ and δ ≤ δ′. See
Figure 3. We will regard Int×R+ as a subposet of the product poset R3× := Rop ×R×R via the
identification ([t1, t2],δ) ↔ (t1, t2,δ). Indeed,

([t1, t2],δ) ≤ ([t ′1, t ′2],δ′) in Int×R+ if and only if (t1, t2,δ) ≤ (t ′1, t ′2,δ′) in R3×.

Spatiotemporal Rips filtration of a DMS. Let Simp be the cateogry of abstract simplicial com-
plexes with simplicial maps. By a (simplicial) filtration we mean a functor from a poset to Simp.
In order to encode multiscale topological features of DMSs into a single filtration, we define the
spatiotemporal Rips filtration of a DMS. Let us begin by recalling the Rips complex:

Definition 2.19 (The Rips complex). Let (X ,dX ) be a metric space. For each δ ∈ R, by Rδ(X ,dX )
we mean the abstract simplicial complex on the set X where a subsetσ⊂ X belongs to Rδ(X ,dX )
if and only if dX (x, x ′) ≤ δ for all x, x ′ ∈σ. Note that if δ< 0, then Rδ(X ,dX ) is empty.

Definition 2.20 (The Rips filtration). Let (X ,dX ) be a metric space. The Rips filtration of a finite
metric space (X ,dX ) is the functor R•(X ,dX ) : R → Simp described as follows: To each δ ∈ R,
the simplicial complex Rδ(X ,dX ) is assigned. Also, to any pair δ ≤ δ′ in R, the inclusion map
Rδ(X ,dX ) ,→Rδ′(X ,dX ) is assigned.

Definition 2.21 (The spatiotemporal Rips filtration of a DMS). Given any DMS γX = (X ,dX (·)),
the simplicial filtration Rlev(γX ) : Int×R+ → Simp defined as in Figure 3 is called the (spatiotem-
poral) Rips filtration of γX .

Definition 2.21 is based on a blend of ideas related to the Rips filtration [24, 22, 30] and
the interlevel set persistence/categorified Reeb graphs [4, 9, 15, 26]. The super-index “lev" in
Rlev(γX ) is meant to emphasize the connection to “interlevelset persistence".

Remark 2.22 (Comprehensiveness of Definition 2.21). We remark the following:

(i) Consider the constant DMS γX ≡ (X ,dX ) as in Example 2.2 (i). Then, the spatiotemporal
Rips filtration of γX amounts to the Rips filtration of (X ,dX ): for all I ∈ Int and δ ∈ R+,

Rlev(γX )(I ,δ) =Rδ(X ,dX ).

(ii) Let γX = (X ,dX (·)) be a DMS. For each t ∈ R, we have the Rips filtration
R•(X ,dX (t )) : R+ → Simp of the metric space (X ,dX (t )). All those filtrations are incorpo-
rated by Rlev(γX ) in the following sense:

Rlev(γX )([t ,t ],δ) =Rδ(X ,dX (t )), t ∈ R, δ ∈ R+.

By functoriality of the simplicial homology functor, we can define, for each k ∈ Z+, the per-
sistence module Hk

(
Rlev(γX )

)
:= Int×R+ → Vec.

11



Figure 3: To each (I ,δ) ∈ Int×R+, we associate the Rips complex Rδ(X ,
∨

I dX ) on the metric
space* (X ,

∨
I dX ). Provided another interval I ′ ∈ Int and scale δ′ ∈ R+ with I ⊂ I ′ and δ ≤ δ′,

we obtain the inclusion Rδ(X ,
∨

I dX ) ,→ Rδ′(X ,
∨

I ′ dX ). This construction gives rise to a 3-
dimensional simplicial filtration Rlev(γX ) indexed by Int×R+.
* In fact,

∨
I dX : X × X → R+ does not necessarily satisfy the triangle inequality. However, it does not

prevent us from defining the Rips complex on the semi-metric space (X ,
∨

I dX ).

The rank invariant and the Betti-0 function of a DMS. We consider the rank invariant [17] of
this multidimensional persistence module Hk (Rlev(γX )). Let

R6 := {(t1, t2,δ, t ′1, t ′2,δ′) ∈ R6 : [t1, t2] ⊂ [t ′1, t ′2] and δ≤ δ′}. (3)

Definition 2.23 (The rank invariant of a DMS). Let γX be any DMS. For each non-negative
integer k, the k-th rank invariant of γX is a function rkk (γX ) : R6 → Z+ defined as

rkk (γX )
(
t1, t2,δ, t ′1, t ′2,δ′

)
:= rank

Hk

Rδ

(
X ,

∨
[t1,t2]

dX

)
,→Rδ′

X ,
∨

[t ′1,t ′2]

dX

 .

See Figure 3.

In Section B we compare the rank invariant of a DMS with the CROCKER-plots introduced
in [64].

Definition 2.24 (The Betti-0 function of a DMS). Let γX = (X ,dX (·)) be a DMS. We define the
Betti-0 function β

γX
0 : Int×R+ → Z+ of γX by sending each (I ,δ) ∈ Int×R+ to the dimension of

H0 (Rδ (X ,
∨

I dX )).

Example 2.25. Consider the DMSs γX and γY given as the dynamic point clouds Xr (·) and Yr (·)
in Figure 1 respectively. The Betti 0-functions of γX and γY are illustrated in Figure 4.

It is not difficult to check that if I ⊂ I ′ in Int and δ ≤ δ′ in R+, then β
γX
0 (I ,δ) ≥ β

γX
0 (I ′,δ′).

This monotonicity is a special feature of Betti-0 functions, which is not shared by other Betti-k
functions for k ≥ 1. We will exploit this monotonicity property to metrize the collection of Betti-
0 functions and in turn to obtain a tight lower bound for ddyn or dGH. Also, we remark that when
γX is a constant DMS (Example 2.2 (i)), βγX

0 is constant with respect to the first factor.

12



Figure 4: (The Betti-0 functions βγX
0 ,βγY

0 of the DMSs in Figure 1) The middle figure represents
the domain Int×R+ (Figure 3) of βγX

0 and β
γY
0 . (A) and (B) illustrate the value of βγX

0 and β
γY
0

respectively on the horizontal half-planes Int× {0} (bottom) and Int× {2r } (top). In particular, if
δ ∈ [2r,∞), βγX

0 (I ,δ) = 1 for all I ∈ Int. The same properties hold for βγY
0 .
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3 Interleaving distance

In this section we review the interleaving distance for Rd -indexed functors [9, 21, 52]. In partic-
ular, the interleaving distance between integer-valued functions (Section 3.2) will be utilized for
obtaining a computationally tractable lower bound for ddyn.

3.1 Interleaving distance

Natural transformations. We recall the notion of natural transformations from category the-
ory [54]: Let C and D be any categories and let F,G : C → D be any two functors. A natural
transformation ϕ : F ⇒ G is a collection of morphisms ϕc : Fc → Gc in D for all objects c ∈ C

such that for any morphism f : c → c ′ in C , the following diagram commutes:

Fc Fc ′

Gc Gc ′ .

F ( f )

ϕc ϕc′
G( f )

Natural transformations ϕ : F →G are considered as morphisms in the category DC of all func-
tors from C to D.

The interleaving distance between Rd -indexed functors. In what follows, for any ε ∈ [0,∞),
we will denote the vector ε(1, . . . ,1) ∈ Rd by~ε. The dimension d will be clearly specified in con-
text.

Definition 3.1 (v-shift functor). Let C be any category. For each v ∈ [0,∞)n , the v-shift functor

(−)(v) : C Rd →C Rd
is defined as follows:

(i) (On objects) Let F : Rd → C be any functor. Then the functor F (v) : Rd → C is defined as
follows: For any a ∈ Rd ,

F (v)a := Fa+v.

Also, for another a′ ∈ Rd such that a ≤ a′ we define

F (v)(a ≤ a′) := F
(
a+v ≤ a′+v

)
.

In particular, if v =~ε ∈ [0,∞)d , then we simply write F (ε) in lieu of F (~ε).

(ii) (On morphisms) Given any natural transformation ϕ : F ⇒G , the natural transformation
ϕ(v) : F (v) ⇒G(v) is defined as ϕ(v)a =ϕa+v : F (v)a →G(v)a for each a ∈ Rd .

For any v ∈ [0,∞)d , letϕv
F : F ⇒ F (v) be the natural transformation whose restriction to each

Fa is the morphism F (a ≤ a+v) in C . When v =~ε, we denote ϕv
F simply by ϕεF .

Definition 3.2 (v-interleaving between Rd -indexed functors). Let C be any category. Given any
two functors F,G : Rd → C , we say that they are v-interleaved if there are natural transforma-
tions f : F ⇒G(v) and g : G ⇒ F (v) such that

14



(i) g (v)◦ f =ϕ2v
F ,

(ii) f (v)◦ g =ϕ2v
G .

In this case, we call ( f , g ) a v-interleaving pair. When v = ε(1, . . . ,1), we simply call ( f , g )
ε-interleaving pair. The interleaving distance between F and G is defined as

dC
I,d (F,G) := inf{ε ∈ [0,∞) : F,G are~ε-interleaved}, (4)

where we set dC
I,d (F,G) =∞ if there is no ε-interleaving pair between F and G for any ε ∈ [0,∞).

Then dC
I,d is an extended pseudo-metric for C -valued Rd -indexed functors. We drop the sub-

script d from dC
I,d when confusion is unlikely.

Remark 3.3. (i) Let R♦ denote the poset either of R or Rop. The interleaving distance dC
I is

also defined in the similar way for Rd -indexed modules, where the poset Rd is equipped
with the product partial order R♦×R♦× . . .×R♦.

(ii) Let P be any non-empty upper set of Rd : For every p ∈ P, U (p) := {q ∈ Rd : q ≥ p} is con-
tained in P. Then, we can define the interleaving distance between P-indexed modules in
the manner described by Definition 3.2.

Full interleaving. By Sets, we mean the category of sets with set maps as morphisms. Also, by
Vec, we mean the category of vector spaces over a fixed field F, with linear maps as morphisms.

Let C be either Sets or Vec. Given any F,G : Rd →C , suppose that ( f , g ) is an ε-interleaving
pair between F and G . For each a ∈ Rd , if fa : Fa → Ga+~ε and ga : Ga → Fa+~ε are surjective, then
we call ( f , g ) a surjective ε-interleaving pair. If there exists a surjective ε-interleaving between
F and G , we say that F and G are fully ε-interleaved. We define

dC
I,d (F,G) := inf

{
ε ∈ [0,∞) : F,G are fully~ε-interleaved

}
.

We drop the subscript d from dC
I,d when confusion is unlikely. By definition, for any F,G :

Rd → C , it is clear that dC
I,d (F,G) ≤ dC

I,d (F,G). Also, it is not difficult to check that dC
I,d is an

extended pseudometric on ob(C Rd
).

By utilizing the full interleaving distance dC
I , we obtain a lower bound for ddyn as well as a

new lower bound for the Gromov-Hausdorff distance (Theorem 4.5, Remark 4.13 and Theorem
4.14).

3.2 Interleaving distance between integer-valued functions

In this section we consider the interleaving distance between monotonic integer-valued func-
tions by regarding them as functors.

Poset-valued maps. Let P and Q be any two posets. Suppose that f : P → Q is any (monotoni-
cally) increasing map, i.e. for any p ≤ q in P, f (p) ≤ f (q). Then, by regarding P,Q as categories,
f can be regarded as a functor. On the other hand, suppose that g : P → Q is any (monotoni-
cally) decreasing map, i.e. for any p ≤ q in P, f (p) ≥ f (q). Then, g : P → Qop can also be called a
functor.

15



The interleaving distance between integer-valued functions. Let d be a positive integer. Let
Rd be the poset, where a = (a1, . . . , ad ) ≤ b = (b1, . . . ,bd ) in Rd if and only if ai ≤ bi for each
i = 1, . . . ,d . For any ε > 0, let~ε := ε(1, . . . ,1) ∈ Rd . Consider any non-increasing integer-valued
function F : Rd → Z+. Note that F can be regarded as a functor from the poset cateogory Rd to
the other poset category Zop

+ . Since Zop
+ is a thin category, given another functor G : Rd → Zop

+ ,
the interleaving distance (Definition 3.2) between F and G can be written as

d
Zop
+

I,d (F,G) = inf{ε ∈ [0,∞) : ∀a ∈ Rd ,Fa ≥Ga+~ε, and Ga ≥ Fa+~ε}.

The computational complexity for d
Zop
+

I,d is provided in Theorem 5.4. We will use dI,d , or even

more simply dI in place of d
Zop
+

I,d when confusion is unlikely.

Remark 3.4. The metric dI is closely related to the erosion distance [58]. See Remark 6.3.

4 Stability theorems for persistent homology features of DMSs

In this section we establish the main results of this paper: namely, stability of the rank invariant
and Betti-0 function of DMSs (Section 4.1). We interpret these stability theorems as a general-
ization of the standard stability results for (static) metric spaces (Section 4.2).

4.1 Stability theorems

Recall the spatiotemporal Rips filtration Int×R+ → Simp of a DMS (Definition 2.21). The poset
Int×R+ can be regarded as an upper set of R3× (Remarks 2.18 and 3.3 (ii)) and thus we can utilize
d Vec

I for comparing (Int×R+)-indexed persistence modules.

Theorem 4.1 (Stability of spatiotemporal persistence modules induced by DMSs). Let γX =
(X ,dX (·)) and γY = (Y ,dY (·)) be any two DMSs. Then for any k ∈ Z+,

d Vec
I

(
Hk (Rlev(γX )),Hk (Rlev(γY ))

)
≤ 2 ·ddyn(γX ,γY ). (5)

In particular, when k = 0, the d Vec
I in the LHS of the above inequality can be promoted to the

full interleaving dVec
I .

We remark that the promotion of d Vec
I to dVec

I for k = 0 is crucial for proving Theorem 4.5
below. See Section 6.2 for the proof of Theorem 4.1. This stability implies that d Vec

I between
3-dimensional persistence modules serves as a lower bound for ddyn. Since computing d Vec

I be-
tween 3-dimensional persistence modules is prohibitive [9], we make use of the rank invariants/Betti-
0 functions of DMSs (Definitions 2.23 and 2.24) and the interleaving distance dI between integer-
valued functions (Section 3.2) to obtain a lower bound for ddyn as below.

Adapted rank invariant of a DMS. The set R6 in (3) is not an upper set (Remark 3.3 (ii)) of the
poset

R6
× := R×Rop ×Rop ×Rop ×R×R, (6)
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into which (Int×R+)op×(Int×R+) can be embedded. In order to ensure that we are in a position
to utilize the metric dI for comparing rank invariants of DMSs, we extend the domain of the rank
invariant of a DMS to the poset R6×. Given any (v1, v2, v3) ∈ R3, we write (v1, v2, v3) ∈ Int×R+ if
v1 ≤ v2 and v3 ∈ R+.

Any element a = (a1, a2, a3, a4, a5, a6) ∈ R6, is called admissible, if a is obtained by concate-
nating a comparable pair of elements in Int×R+, i.e. both (a1, a2, a3) and (a4, a5, a6) belong to
Int×R+ and (a1, a2, a3) ≤ (a4, a5, a6) in Int×R+. Otherwise, a is called non-admissible. In par-
ticular, a is called trivially non-admissible, if there is no admissible b ∈ R6 such that b < a in the
poset R6×.

Definition 4.2 (Adapted rank invariant of a DMS). LetγX = (X ,dX (·)) be any DMS and let k ∈ Z+.
We define the map rkk (γX ) : R6 → Z+∪ {∞}, called the k-th rank invariant of γX , as follows: For
a = (a1, . . . , a6) ∈ R6,

rkk (γX )(a) :=


rank(Hk (Rδ(

∨
I dX ) ,→Rδ′(

∨
I ′ dX ))) , a is admissible,

∞, a is trivially non-admissible,

0, otherwise.

where I = [a1, a2], I ′ = [a4, a5], δ= a3 , and δ′ = a6.

Note that when a ∈ R6 is a concatenation of a repeated pair ([t0, t0],δ0), ([t0, t0],δ0) ∈ Int×R+,
i.e. a = (t0, t0,δ0, t0, t0,δ0), then

rk0(γX )(a) = dim
(
H0

(
Rδ0 (X ,dX (t0))

))=βγX
0 (t0, t0,δ0) (Definition 2.24).

We can regard rkk (γX ) as a functor R6× → (Z+∪ {∞})op:

Proposition 4.3. Let γX be any DMS. For any a,b ∈ R6× with a ≤ b,

rkk (γX )(a) ≥ rkk (γX )(b) in Z+∪ {∞}.

See Section 6.3 for the proof. By virtue of Proposition 4.3, dI can serve as a metric on the
collection of all (adapted) rank invariants of DMSs.

By combining Theorem 4.1 with standard stability results for the rank invariant (Theorem
6.2) we arrive at:

Theorem 4.4 (Stability of the rank invariant of DMSs). Let γX = (X ,dX (·)) and γY = (Y ,dY (·)) be
any two DMSs. For any k ∈ Z+,

dI
(
rkk (γX ), rkk (γY )

)≤ 2 ·ddyn(γX ,γY ). (7)

Improvement for k = 0. By restricting ourselves to clustering information (i.e. 0-th homology)
of DMSs, we obtain a stronger lower bound for the metric ddyn. Namely, by regarding the Betti-0
function of a DMS (Definition 2.24) as a functor Int×R+ → Zop

+ , we can compare any two Betti-0
functions of DMSs via the interleaving distance dI and we have:
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Figure 5: The geometric realization of R0(X ,
∨[

π
2 , 3π

2

] dX ) and

R0(Y ,
∨[

π
2 , 3π

2

] dY ) for the DMSs γX and γY in Example 2.25.

Theorem 4.5 (Stability of the Betti-0 function). Let γX and γY be any two DMSs. Then,

dI
(
β
γX
0 ,βγY

0

)≤ 2 ·ddyn(γX ,γY ). (8)

We prove Theorem 4.5 in Section 6.4. Also, we remark that the LHSs of inequalities in (7) and
(8) are computable in poly-time (Theorem 5.4) using the well-known binary search algorithm.

Remark 4.6 (Sensitivity of the LHS in (8)). Consider the DMSs γX and γY given as in Example
2.25. The value dI

(
β
γX
0 ,βγY

0

)
is at least r , as we will see below. This in turn implies that the

metric dI is sensitive enough to discriminate (the Betti-0 functions of) γX and γY .

Details about Remark 4.6. Observe that

∨
[
π
2 , 3π

2

]dX (xi , x j ) =
{

2, i = 1, j = 3

0, otherwise,

∨
[
π
2 , 3π

2

]dY (yi , y j ) =


1, i = 1, j = 2

2, i = 1, j = 3

0, otherwise.

Hence, the geometric realization of Rips complexes R0(X ,
∨[

π
2 , 3π

2

] dX ) and

R0(Y ,
∨[

π
2 , 3π

2

] dY ) are illustrated in Figure 5. By counting the number of connected components

of these complexes, we have βγX
0

([
π
2 , 3π

2

]
,0

)= 1 and βγY
0

([
π
2 , 3π

2

]
,0

)= 2. Also, it is not difficult to
check that for any ε ∈ [0,r ), Rε(Y ,

∨[
π
2 −ε, 3π

2 +ε] dY ) =R0(Y ,
∨[

π
2 , 3π

2

] dY ), so that

β
γX
0

([
π

2
,

3π

2

]
,0

)
= 1 < 2 =βγY

0

([
π

2
−ε,

3π

2
+ε

]
,ε

)
.

By the definition of dI, this inequality implies that dI
(
β
γX
0 ,βγY

0

)
is at least r .

Next, we show that dI
(
β
γX
0 ,βγY

0

)≤ 2r . For any ε ∈ [2r,∞) and any I ∈ Int,

β
γX
0 (I ,ε) =βγY

0 (I ,ε) = 1,

which is illustrated in Figure 4. Therefore, for any ([t1, t2],δ) ∈ Int×R+,

β
γX
0 ([t1, t2],δ) ≥βγY

0 ([t1 −2r, t2 +2r ],δ+2r ) = 1,

β
γY
0 ([t1, t2],δ) ≥βγX

0 ([t1 −2r, t2 +2r ],δ+2r ) = 1.

Therefore, we have dI
(
β
γX
0 ,βγY

0

)≤ 2r .
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In order to obtain a lower bound for ddyn between two DMSs, computing the distance be-
tween the Betti-0 functions of the DMSs (the LHS of the inequaliy in (8)) is better than comput-
ing the distance between their 0-th rank invariants (the LHS of the inequaliy in (7)) :

Proposition 4.7. For any two DMSs γX = (X ,dX (·)) and γY = (Y ,dY (·)),

dI,6
(
rk0(γX ), rk0(γY )

)≤ dI,3(βγX
0 ,βγY

0 ). (9)

Proposition 4.7 is a corollary of Proposition 6.10. The proof relies on the fact that all in-
ner morphisms of the persistence modules H0

(
Rlev(γX )

)
and H0

(
Rlev(γY )

)
are surjective. In

Example 4.16, we consider a concrete example of the bound provided in Proposition 4.7.

4.2 Relationship with standard stability theorems

The main goal of this section is to explain, when restricting ourselves to the class of constant
DMSs (Example 2.2 (i)), how Theorems 4.1, 4.4 and 4.5 boil down to the well-known stability
theorems for (static) metric spaces. Along the way, we also identify a new lower bound for the
Gromov-Hausdorff distance, which is tighter than the bottleneck distance between the 0-th
persistence diagrams of Rips filtrations (Remark 4.13 and Theorem 4.14).

For k ∈ Z+, by post-composing the simplicial homology functor Hk : Simp → Vec (with co-
efficients in the field F) to the Rips filtration R•(X ,dX ) of a metric space (X ,dX ), we obtain the
persistence module

Hk ◦R•(X ,dX ) : R → Vec.

Let dgmk (R•(X ,dX )) be the k-th persistence diagram of the Rips filtration
R•(X ,dX ). Also, let dB be the bottleneck distance (Definition C.1). Recall that ddyn coincides
with dGH on the class of constant DMSs (Remark 2.12).

Remark 4.8. Consider any two constant DMSs γX ≡ (X ,dX ) and γY ≡ (Y ,dY ). Then, for any
k ∈ Z+, inequality (5) reduces to:

d Vec
I (Hk ◦R•(X ,dX ),Hk ◦R•(Y ,dY )) ≤ 2 dGH((X ,dX ), (Y ,dY )), (10)

or equivalently to

dB
(
dgmk (R•(X ,dX )) ,dgmk (R•(Y ,dY ))

)≤ 2 ·dGH ((X ,dX ), (Y ,dY )) , (11)

which are known in [22, 23]. In other words, the LHS and the RHS of inequality (5) are respec-
tively identical to the LHS and the RHS of inequalities (10) or (11).

We define the rank invariant of a finite metric space as follows:

Definition 4.9 (The rank invariant of a metric space). Let (X ,dX ) be any finite metric space
and let k ∈ Z+. We define the map rkk (X ,dX ) : R2 → Z+∪ {∞}, called the k-th rank invariant of
(X ,dX ), as follows: For a = (δ,δ′) ∈ R2,

rkk (X ,dX )(a) =
{

rank(Hk (Rδ(X ,dX ) ,→Rδ′(X ,dX ))) , δ≤ δ′,
∞, otherwise.

(cf. Definition 4.2)
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In Definition 4.9, note that we can regard rkk (X ,dX ) as a functor
Rop ×R → (Z+∪ {∞})op. Therefore, we can compare the rank invariants of any two finite metric
metric spaces via the interleaving distance dI.

Remark 4.10. Consider any two constant DMSs γX ≡ (X ,dX ) and γY ≡ (Y ,dY ). Then, for any
k ∈ Z+, inequality (7) reduces to:

dI(rkk (X ,dX ), rkk (Y ,dY )) ≤ 2 dGH((X ,dX ), (Y ,dY )). (12)

Remark 4.11. We also remark that the LHS of (11) is greater than equal to that of (12) by Corol-
lary 6.4:

dI(rkk (X ,dX ), rkk (Y ,dY )) ≤ dB
(
dgmk (R•(X ,dX )) ,dgmk (R•(Y ,dY ))

)
≤ 2 ·dGH((X ,dX ), (Y ,dY )).

.

Definition 4.12 (The Betti-0 function of a finite metric space). Let (X ,dX ) be any finite metric
space. We define the Betti-0 function β

(X ,dX )
0 : R+ → Z+ of (X ,dX ) by sending each δ ∈ R+ to the

dimension of H0(Rδ(X ,dX )) (cf. Definition 2.24).

Since β(X ,dX )
0 is non-increasing function and R+ is an upper set of R, we can compare any

two Betti-0 functions via dI.

Remark 4.13 (Stability of the Betti-0 function). Consider any two constant DMSs γX ≡ (X ,dX )
and γY ≡ (Y ,dY ). Then, the inequality in (8) reduces to:

dI

(
β

(X ,dX )
0 ,β(Y ,dY )

0

)
≤ 2 dGH ((X ,dX ), (X ,dY )) . (13)

In particular, as a lower bound for 2 ·dGH, the LHS of inequality (13) is always as effective as
the LHS of inequality (11) for k = 0:

Theorem 4.14. For any finite metric spaces (X ,dX ) and (Y ,dY ),

dB
(
dgm0 (R•(X ,dX )) ,dgm0 (R•(Y ,dY ))

)≤ dI

(
β

(X ,dX )
0 ,β(Y ,dY )

0

)
.

The proof is provided in Section 6.5. Example 4.15 below illustrates Theorem 4.14.

Example 4.15. Let X = {x1, x2}. For any ε ∈ [0,∞), we define the two metrics dX and dε
X on X as

dX (x1, x2) = 1, and dε
X (x1, x2) = 1+ε.

By definition of dGH (Definitions D.1) and dI(Section 3.2), one can check the following:

(i) 2 dGH
(
(X ,dX ), (X ,dε

X )
)= ε.

(ii) β
(X ,dX )
0 (δ) =

{
2, δ< [0,1)

1, δ ∈ [1,+∞)
and β

(X ,dε
X )

0 (δ) =
{

2, δ< [0,1+ε)

1, δ ∈ [1+ε,+∞)
. Also,

dI

(
β

(X ,dX )
0 ,β(Y ,dY )

0

)
= ε.
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(iii) dgm0 (R•(X ,dX )) = {(0,+∞), (0,1)}, and dgm0

(
R•(X ,dε

X )
)= {(0,+∞), (0,1+ε)}. Also,

dB
(
dgm0 (R•(X ,dX )) ,dgm0

(
R•(X ,dε

X )
))= min

(
ε,

1+ε
2

)
.

(iv) For k ≥ 1, both dgmk (R•(X ,dX )) and dgmk (R•(Y ,dY )) are the empty set, and thus

dB
(
dgmk (R•(X ,dX )) ,dgmk

(
R•(X ,dε

X )
))= 0.

Items (iii) and (iv) indicate that the best lower bound for 2 dGH
(
(X ,dX ), (X ,dε

X )
)

obtained by
invoking inequality (11) is min

(
ε, 1+ε

2

)
. On the other hand, from items (i) and (ii), we have

ε= 2 dGH
(
(X ,dX ), (X ,dε

X )
)= dI

(
β

(X ,dX )
0 ,β(Y ,dY )

0

)
,

which is, when ε> 1, strictly larger than min
(
ε, 1+ε

2

)
. This example demonstrates inequality (13)

is a complement to the bottleneck stablility of Rips filtration, inequality (11). Also, items (i) and
(ii) show the tightness of inequality (13).

Example 4.16. Define two DMSs γX and γ′X to be the constant DMSs which are, for every time
t ∈ R, isometric respectively to the metric spaces (X ,dX ) and (X ,dε

X ) in Example 4.15. Then,
invoking Remarks 4.10 and 4.13, one can compute:

dI,6
(
rk0(γX ), rk0(γ′X )

)= dI,2
(
rk0(X ,dX ), rk0(X ,dε

X )
)= min

(
1+ε

2
,ε

)
,

dI,3

(
β
γX
0 ,β

γ′X
0

)
= dI,1

(
β

(X ,dX )
0 ,β

(X ,dε
X )

0

)
= ε.

See below for computational details. When ε > 1, this example demonstrates that the RHS of
inequality (9) can be strictly larger.

Details about Example 4.16. One can compute rk0(X ,dX ), rk0(X ,dε
X ) : R2 → (Z+∪ {∞})op (Defi-

nition 4.9) as illustrated in Figure 6.
From this plot, one can check that

dI,2
(
rk0(X ,dX ), rk0(X ,dε

X )
)={

ε, ε≤ [0,1]
1+ε

2 , ε ∈ (1,∞),

which amounts to

dI,2
(
rk0(X ,dX ), rk0(X ,dε

X )
)= min

(
1+ε

2
,ε

)
.

We already computed β(X ,dX )
0 and β

(X ,dε
X )

0 in Example 4.15. Observe that the value

min
{
α ∈ [0,∞) : ∀δ ∈ [0,∞), β(X ,dX )

0 (δ+α) ≤β(X ,dε
X )

0 (δ), β
(X ,dε

X )
0 (δ+α) ≤β(X ,dε

X )
0 (δ)

}
is equal to ε. This implies that dI,1

(
β

(X ,dX )
0 ,β

(X ,dε
X )

0

)
= ε.
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Figure 6: The 0-th rank invariants of (X ,dX ) and (X ,dε
X ) in Example 4.15.

5 Computing the interleaving distance between integer-valued
functions

In this section we propose an algorithm for computing the interleaving distance between integer-
valued functors based on ordinary binary search.

For n ∈ N, let [n] := {1, . . . ,n}. Also, for each d ∈ N, let [n]d ⊂ Zd be the subposet of Zd . Assume
that a = (a1, . . . , ad ) ∈ [n]d . If there exists i ∈ {1, . . . ,d} such that ai = n, we refer to a as an upper
boundary point of [n]d .

Let F : [n]d → Z+ be any function. Then, F can be regarded as a array of non-negative inte-
gers. For each k ∈ {0, . . . ,n −1}, the restriction F |[n−k]d of F is the lower-left block of F . Symmet-

rically, we define the upper-right block F |[n−k]d
: [n −k]d → Z+ of F as follows:(

F |[n−k]d
)

a
= Fa+k(1,...,1) for a ∈ [n −k]d .

In words, F |[n−k]d
is the restriction of the array F to its upper-right corner of size (n−k)d with a

re-indexing (in the obvious way).
Given F,G : [n]d → Z+, we write F ≥ G if Fa ≥ Ga for all a ∈ [n]d . Let F,G : [n]d → Z+ be any

two order-reversing functions with 0 = Fa = Ga for each upper boundary point a ∈ [n]d . For
each k ∈ {0, . . . ,n −1}, we define the k-test for the pair (F,G):

Algorithm 1 k-test for F,G : [n]d → Z+.

if F |[n−k]d ≥G|[n−k]d
and G|[n−k]d ≥ F |[n−k]d

then return Yes.
else return No.

Remark 5.1. Let F,G : [n]d → Z+ be any two order-reversing functions with 0 = Fa =Ga for each
upper boundary point a ∈ [n]d . Fix k ∈ {0, . . . ,n −1}. Then,
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(i) suppose that the k-test for (F,G) returns "Yes". Then, for any k ′ ∈ {k, . . . ,n −1} the k ′-test
for (F,G) returns also "Yes",

(ii) the (n −1)-test for (F,G) always returns "Yes".

Example 5.2. We consider two examples.

(A) (d = 1) Consider F,G : [4] → Z+ defined as follows:

F := (F1,F2,F3,F4) = (5,3,1,0), G := (G1,G2,G3,G4) = (4,3,2,0).

Since F 6≥G nor G 6≥ F , the 0-test for (F,G) returns "No". However, since

F |[3] = (5,3,1) ≥ (3,2,0) =G|[3], and G|[3] = (4,3,2) ≥ (3,1,0) = F |[3],

the 1-test for (F,G) returns "Yes". Also, one can check that for any k ∈ {2,3}, the k-test
returns "Yes" (cf. Remark 5.1 (i)).

(B) (d = 2) Consider F,G : [3]2 → Z+ defined as follows:

F :=
F(1,3) F(2,3) F(3,3)

F(1,2) F(2,2) F(3,2)

F(1,1) F(1,2) F(1,3)

=
0 0 0
3 3 0
4 3 0

, G :=
G(1,3) G(2,3) G(3,3)

G(1,2) G(2,2) G(3,2)

G(1,1) G(1,2) G(1,3)

=
0 0 0
2 1 0
2 2 0

.

Since G 6≥ F , the 0-test for (F,G) returns "No". Also, since

G|[2]2 = 2 1
2 2

6≥ 0 0
3 0

= F |[2]2
,

the 1-test returns "No". Since 4 ≥ 0 and 2 ≥ 0, one can see that the 2-test returns "Yes".

Recall the poset category Zop
+ : for any p, q ∈ Z+, there exists the unique arrow p → q if and

only if p ≥ q . A function F : Nd → Z+ can be regarded as a functor F : Nd → Zop
+ if and only if

F : Nd → Z+ is order-reversing.
By the definition of interleaving distance, we straightforwardly have:

Proposition 5.3. For n,d ∈ N, let F ,G : Nd → Zop
+ be any two functors with 0 = Fa =Ga for each

upper boundary point a ∈ [n]d . Consider the restrictions F := F |[n]d and G :=G|[n]d . Then,

dI

(
F ,G

)
= min{k ∈ {0,1, . . . ,n −1} : the k-test for (F,G) returns "Yes"} .

Computational complexity of computing the rank invariant. Let Vec be the category of vec-
tor spaces over a fixed field Fwith linear maps. Let M : [n]d → Vec be a (finite) multidimensional
module. Let total(M) :=∑

a∈[n]d dim(Ma). In order to compute the rank invariant rk(M) : [n]d →
Z+, one needs O(total(M)ω) operations [8, Appendix C], where ω is the matrix multiplication
exponent.
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Proposed algorithm for computing dI and its computational complexity. Let F,G : [n]d → Z+
be any two order-reversing functions. Based on Proposition 5.3, in order to find the mimimal
k ∈ {0, . . . ,n −1} for which the k-test for (F,G) (Algorithm 1) returns "Yes", we carry out binary
search.

Let us fix k ∈ {0, . . . ,n −1}. For carrying out the k-test for (F,G), we compare pairs of integers
from the arrays of F and G . Assume that pairs of integers are compared one by one. Then, notice
that, depending on F and G , the number of comparisons which are necessary to complete the
k-test can vary from 1 to 2(n −k)d . Under the assumption that the number of required com-
parisons is a random variable uniformly distributed in {1, . . . ,2(n −d)k } one can conclude that
1+2(n−d)k

2 ≈ (n −d)k comparisons are needed on average. Under the preceeding assumptions,
by results from [49, Section 4], we directly have:

Theorem 5.4. The expected cost of computing dI,d (F,G) is at least O(nd logn). Furthermore,
the algorithm based on ordinary binary search has this expected cost.

By Theorem 5.4, the expected costs of computing the LHSs of inequalities in Theorems 4.4
and 4.5, and Remarks 4.10 and 4.13 are O(nd logn) where d = 6,3,2 and 1, respectively in order.

In Section C we compare dI,d with the matching distance [19, 20, 51], and with the dimension
distance [28, Section 4].

6 Details about stability theorems

The goal of this section is to prove all theorems in Section 4 whose proof was not given therein.

6.1 Interleaving stability of rank invariants and dimension functions

The rank invariant and its stability. For any persistence module M : Rd → Vec, the rank in-
variant of M is defined as follows [17]:

Definition 6.1 (The rank invariant). For any M : Rd → Vec, the map rk(M) : R2d → Z+ ∪ {∞}
defined as

rk(M)(a,b) :=
{

rk(ϕM (a,b)), a ≤ b ∈ Rd

∞, otherwise.

is called the rank invariant of M .

Given any M : Rd → Vec, note that for any a′ ≤ a ≤ b ≤ b′ in Rd ,

ϕM (a′,b′) =ϕM (b,b′)◦ϕM (a,b)◦ϕM (a′,a).

Hence, we have that rk(M)(a′,b′) ≤ rk(M)(a,b). This means that rk(M) is a functor between its
domain and codomain when regarded

(i) the domain R2d as the product poset (Rd )op ×Rd and,

(ii) the codomain Z+∪ {∞} as the poset (Z+∪ {∞})op.

We have stability of the rank invariant:
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Theorem 6.2 (Stability of the rank invariant [58, Theorem 8.2],[59, Theorem 22]). For any M , N :
Rd → Vec,

dI,2d (rk(M), rk(N )) ≤ d Vec
I (M , N ). (14)

Note that Theorem 6.2 together with Theorem 4.1 result in Theorem 4.4. Even though the
proof of Theorem 6.2 is given in [58, Theorem 8.2],[59, Theorem 22] in more general setting, we
provide a brief version of the proof here.

Proof. Since we regard rk(M) as a functor from (Rd ,≥)×(Rd ,≤) to (Z+∪{∞})op, for any ε ∈ [0,∞),
the ε-shift rk(M)(ε) : (Rd ,≥)× (Rd ,≤) → (Z+∪ {∞})op of rk(M) is defined as

rk(M)(ε)(a,b) = rk(M)(a−~ε,b+~ε).

Similarly, the ε-shift of rk(N ) is defined.
Suppose that for some ε ∈ [0,∞), the pair ( f , g ) is an ε-interleaving pair for M , N : Rd →

Vec (Definition 3.2). We show rk(N )(ε) ≤ rk(M). Pick any (a,b) ∈ Rd ×Rd . If a 6≤ b in Rd , then
rk(M)(a,b) =∞, and thus we trivially have rk(N )(a−~ε,b+~ε) ≤ rk(M)(a,b). If a ≤ b in Rd , then a−~ε≤
b+~ε, and since

ϕN (a−~ε,b+~ε) = fb ◦ϕM (a,b)◦ ga,

we have rk(N )(a−~ε,b+~ε) ≤ rk(M)(a,b). By symmetry, we also have rk(M)(ε) ≤ rk(N ), completing the
proof.

Remark 6.3. In order to compare the rank invariants, the author of [59] makes use of a general-
ization of the erosion distance in [58], which is denoted by dE (see Section C). It can be deduced
that for the LHS of inequality (14) coincides with dE(rk(M), rk(N )).

Given δ> 0, deciding whether d Vec
I (M , N ) ≤ δ is in general NP-hard [7, 8].

In Theorem 6.2, substituting the comparison of M and N with that of rk(M) and rk(N ) re-
sults in doubling of the underlying dimension of the interleaving distance. This increase of
dimension is a price one must pay for substituting the target category Vec with the poset cate-
gory (Z+∪ {∞})op. Despite the increase in the underlying dimension, as we show in Section 5, it
turns out that computing dI is easier than computing d Vec

I .
For any interval decomposable modules M , N : Rd → Vec, let B(M) and B(N ) be the barcode

of M and N , respectively. Then, by [9, Proposition 2.13],

d Vec
I (M , N ) ≤ dB (B(M),B(N )) .

Hence, together with Theorem 6.2 ,we straightforwardly have:

Corollary 6.4. For any interval decomposable M , N : Rd → Vec, let B(M) and B(N ) be the
barcode of M and N , respectively. Then,

dI,2d (rk(M), rk(N )) ≤ dB (B(M),B(N )) .
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Monotonicity and stability of dimension functions for surjective modules.

Definition 6.5 (Surjective persistence modules). Let C be either Sets or Vec and let M : Rd →C

be any persistence module. We call M surjective if ϕM (a,b) : Ma → Mb is surjective for all a ≤ b
in Rd .

Example 6.6 (The 0-th homology of the Rips filtration). Let (X ,dX ) be a metric space. By apply-
ing the 0-th (simplicial) homology functor to the Rips filtration of (X ,dX ), we obtain surjective
persistence module R → Vec.

Definition 6.7 (Dimension function). Let C be either Sets or Vec and let M : Rd → C be any
persistence module. The dimension function dm(M) : Rd → Z+ of M is defined by sending each
a ∈ Rd to the cardinality of Ma (when C = Sets) or the dimension of the vector spaces Ma (when
C = Vec).

Remark 6.8. In Definition 6.7, if M is a surjective persistence module, then we can regard
dm(M) as a functor Rd → Zop

+ .

Proposition 6.9 (Interleaving stability of the dimension function). Let C be either Sets or Vec
and let M , N : Rd →C be any two surjective persistence modules. Then,

(i) dI,d (dm(M),dm(N )) ≤ 2 ·dC
I,d (M , N ).

(ii) dI,d (dm(M),dm(N )) ≤ dC
I,d (M , N ),

Proof. Let us assume that C = Sets. The proof for the case C = Vec is similar. We show (i).
Suppose that ( f , g ) is an ε-interleaving pair between M and N . Pick any a ∈ Rd . We have
ϕN (a,a+ 2~ε) = ga+~ε ◦ fa. Since ϕN (a,a+ 2~ε) is surjective, we also have that ga+~ε is surjective.
SinceϕM (a,a+ε) is also surjective, the composition ga+~ε◦ϕM (a,a+~ε) : Ma → Na+~ε is surjective.
This implies that dm(M)a ≥ dm(N )a+2~ε. By symmetry, we also have that dm(N )a ≥ dm(M)a+2~ε

for each a ∈ Rd . Therefore, dI (dm(M),dm(N )) ≤ 2ε, as desired.
We prove Item (ii). Suppose that there exists a full ε-interleaving pair between M and N .

Then, this directly implies that for all a ∈ Rd , dm(M)a ≥ dm(N )a+~ε and dm(N )a ≥ dm(M)a+~ε.

Proposition 6.10. Let C be either Sets or Vec and let M , N : Rd →C be any two surjective per-
sistence modules. Then,

dI,2d (rk(M), rk(N )) ≤ dI,d (dm(M),dm(N )) .

Proof. Suppose that for some ε ∈ [0,∞), dI (dm(M),dm(N )) < ε. It suffices to prove that for all
a,b ∈ Rd with a ≤ b, and for all ε′ > ε in [0,∞),

rk(N )(a−~ε′,b+~ε′) ≤ rk(M)(a,b).

Invoking that M and N are surjective, notice that rk(N )(a−~ε′,b+~ε′) = dm(N )(b+~ε′) and rk(M)(a,b) =
dm(M)(b). By assumption, we readily have that dm(N )(b +~ε′) ≤ dm(M)(b), completing the
proof.

Proposition 4.7 is a corollary of Proposition 6.10.
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6.2 Proof of Theorem 4.1

Before showing Theorem 4.1, we begin with the remarks below.

Remark 6.11 (Simplicial maps between Rips complexes). For any (semi-)metric spaces7 (X ,dX )
and (Y ,dY ), and for someδ,δ′ ≥ 0, consider the Rips complexes K =Rδ(X ,dX ) and L =Rδ′(Y ,dY )
. By the definition of Rips complex, in order to claim that any map f : X → Y is a simplicial map,
it suffices to show that whenever x, x ′ ∈ X with dX (x, x ′) ≤ δ, it holds that dY ( f (x), f (x ′)) ≤ δ′.

For I = [u,u′] ∈ Int and ε ∈ [0,∞), let I ε := [u −ε,u′+ε].

Remark 6.12. Let γX = (X ,dX (·)) and γY = (Y ,dY (·)) be any two DMSs and let R : X
ϕX

�−−−−
Z

ϕY−−−−� Y be a ε-tripod between γX and γY . Then it is not difficult to check that for any closed
interval I of R, ∨

I ε
dX ≤R

∨
I

dY +2ε and
∨
I ε

dY ≤R
∨

I
dX +2ε, (15)

which is slightly more general than the condition in (1).

Proof of Theorem 4.1. If ddyn(γX ,γY ) =∞, there is nothing to prove. Suppose that ddyn(γX ,γY ) <
ε for some ε ∈ (0,∞). Let S :=Rlev(γX ) and T :=Rlev(γY ) (Definition 2.21). We regard Int×R+
as the subposet of Rop×R×R (Figure 3). Let v := ε(−1,1,2) ∈ R3. It suffices to show that there are
natural transformations Φ : S ⇒ T (v) and Ψ : T ⇒ S (v) (between the two Int×R+-indexed,
Simp-valued functors) such that for each (I ,δ) ∈ Int×R+, the following diagrams commute up
to contiguity:

S(I ,δ) S(I 2ε,δ+4ε)

T(I ε,δ+2ε)

ϕ(I ,δ)

S ((I ,δ)≤(I 2ε,δ+4ε))

ψ(Iε,δ+2ε)

S(I ε,δ+2ε)

T(I ,δ) T(I 2ε,δ+4ε).

ϕ(Iε,δ+2ε)ψ(I ,δ)

T ((I ,δ)≤(I 2ε,δ+4ε))

Indeed, by functoriality of homology, the existence of such pair (Φ,Ψ) of natural transforma-
tions guarantees the v-interleaving between two (Int×R+)-indexed modules Hk◦S and Hk◦T .

Suppose that R : X
ϕX

�−−−− Z
ϕY−−−−� Y is an ε-tripod between γX and γY (Definition 2.9),

which exists by the assumption ddyn(γX ,γY ) < ε. Since ϕX and ϕY are surjective, we can take
two maps φ : X → Y and ψ : Y → X such that

{(x,φ(x)) : x ∈ X }∪ {(ψ(y), y) : y ∈ Y } ⊂ {(x, y) ∈ X ×Y : ∃z ∈ Z , x =ϕX (z), and y =ϕY (z)}. (16)

First, let us check that for any (I ,δ) ∈ Int×R+,φ is a simplicial map from S (I ,δ) to T (I ε,δ+2ε).
Fix any (I ,δ) ∈ Int×R+, and assume that an 1-simplex {x, x ′} ⊂ X is contained in the simplicial
complex S (I ,δ). Denoting I = [u,u′], this means that

(∨
[u,u′] dX

)
(x, x ′) ≤ δ. By Remark 6.11, it

suffices to show that
(∨

[u,u′]ε dY
)

(φ(x),φ(x ′)) ≤ δ+2ε. This is immediate from the fact that R is
an ε-tripod, and the assumption {(x,φ(x)) : x ∈ X } ⊂ϕY ◦ϕ−1

X .

7 We call (X ,dX ) a semi-metric space if the function dX : X ×X → R+ satisfies: (1) for all x ∈ X , dX (x, x) = 0, and
(2) for all x, x ′ ∈ X , dX (x, x ′) = dX (x ′, x).
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Furthermore, φ serves as an v-morphism S ⇒ T (v). Indeed, for any (I ,δ) ≤ (J ,δ′) in Int×
R+,

T
(
(I ε,δ+2ε) ≤ (Jε,δ′+2ε)

)◦φ= idY ◦φ=φ=φ◦ idX =φ◦S
(
(I ,δ) ≤ (J ,δ′)

)
.

By symmetry, ψ : Y ⇒ X also serves as an v-morphism T ⇒S (v).
Next, we show that (φ,ψ) is an ε-interleaving pair. By symmetry we only prove that for any

(I ,δ) ∈ Int×R+, ψ(I ε,δ+ε) ◦φ(I ,δ) is contiguous to S
(
(I ,δ) ≤ (I 2ε,δ+2ε)

)
, which is the identity

map on the vertex set X . Let σ ⊂ X be a simplex in S (I ,δ). We wish to show that there is a
simplex in S (I 2ε,δ+2ε) that contains both σ and the image im(σ) of σ by ψ(I ε,δ+ε) ◦φ(I ,δ). To
this end, we prove that the unionσ∪im(σ) has the diameter that is less than or equal to δ+2ε in
the (semi-)metric space (X ,

∨
[u,u′]2ε dX ). Invoking Remark 6.12, we consider the following three

different cases of choosing any two elements in σ∪ im(σ):

(i) Take any x, x ′ ∈σ. Since σ is a simplex in the Rips complex S (I ,δ) =
Rδ(X ,

∨
[u,u′] dX ), we have( ∨

[u,u′]2ε

dX

)
(x, x ′) ≤

( ∨
[u,u′]

dX

)
(x, x ′) ≤ δ< δ+2ε.

Let R̃ := {(x,φ(x)) : x ∈ X }∪ {(ψ(y), y) : y ∈ Y } (see the inclusion in (16)).

(ii) Take x ∈σ and x ′ ∈ im(σ). Then x ′ =ψ◦φ(x ′′) for some x ′′ ∈σ. Since (x,φ(x)), (x ′,φ(x ′′)), (x ′′,φ(x ′′)) ∈
R̃, ( ∨

[u,u′]2ε

dX

)
(x, x ′) ≤

( ∨
[u,u′]ε

dY

)
(φ(x),φ(x ′′))+ε≤

( ∨
[u,u′]

dX

)
(x, x ′′)+2ε≤ δ+2ε.

(iii) Take any x, x ′ ∈ im(σ). Then there are x ′′, x ′′′ ∈ σ which are sent to x, x ′ via ψ◦φ, respec-
tively. Since (x,φ(x ′′)), (x ′,φ(x ′′′)), (x ′′,φ(x ′′)), (x ′′′,φ(x ′′′)) ∈ R̃,( ∨

[u,u′]2ε

dX

)
(x, x ′) ≤

( ∨
[u,u′]ε

dY

)
(φ(x ′′),φ(x ′′′))+ε≤

( ∨
[u,u′]

dX

)
(x ′′, x ′′′)+2ε≤ δ+2ε.

6.3 Proof of Proposition 4.3

Lemma 6.13 (Convexity of admissible vectors). Suppose that a,b ∈ R6× are admissible with a ≤ b.
Then, any c ∈ R6× such that a ≤ c ≤ b is also admissible.

Proof. Let a := (ai )6
i=1 and b := (bi )6

i=1 and c = (ci )6
i=1. From the assumptions that a ≤ c ≤ b and

that a,b are admissible, one can see that

b4 ≤ c4 ≤ a4 ≤ a1 ≤ c1 ≤ b1 ≤ b2 ≤ c2 ≤ a2 ≤ a5 ≤ c5 ≤ b5, and

0 ≤ b3 ≤ c3 ≤ a3 ≤ a6 ≤ c6 ≤ b6.

Therefore, c is admissible.
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Proof of Proposition 4.3. Pick a,b ∈ R6× such that a ≤ b. We consider the following cases:

(i) Both a and b are admissible.

(ii) a is admissible and b is non-admissible.

(iii) a is non-admissible and b is admissible.

(iv) Both a and b are non-admissible.

In case (i), let a = (a1, a2, a3, a4, a5, a6) and b = (b1.b2,b3,b4,b5,b6). Then we have the inclusions

Rb3

(
X ,

∨
[b1,b2]

dX

)
i1
,→Ra3

(
X ,

∨
[a1,a2]

dX

)
i2
,→Ra6

(
X ,

∨
[a4,a5]

dX

)
i3
,→Rb6

(
X ,

∨
[b4,b5]

dX

)
.

By applying Hk to the above inclusions, we obtain the diagram of vector spaces and linear maps

V1
Hk (i1)−→ V2

Hk (i2)−→ V3
Hk (i3)−→ V4.

Notice that rkk (a) is the rank of Hk (i2), whereas rkk (b) is the rank of Hk (i3) ◦Hk (i2) ◦Hk (i1).
This implies that rkk (a) ≥ rkk (b). In case (ii), b cannot be trivially non-admissible by definition.
Therefore, rkk (γX )(b) = 0. In case (iii), by Lemma 6.13, a must be trivially non-admissible and
hence rkk (γX )(a) =∞. In case (iv), by the definition of trivially non-admissible, it is not possi-
ble that a is non-trivially non-admissible with b being trivially non-admissible. Therefore, we
always have
rkk (γX )(a) ≥ rkk (γX )(b).

6.4 Spatiotemporal Dendrogram of a DMS and Proof of Theorem 4.5

Overview of the proof. The Betti-0 function of a DMS γX can be obtained by the two steps:
First, adapting the ideas of the SLHC method (Section D.2) , we induce the spatiotemporal SLHC
dendrogram θ(γX ) of γX . Then, the dimension function dm

(
θ(γX )

)
(Definition 6.7) of θ(γX )

coincides with the Betti-0 function of γX given in Definition 2.24. Therefore, by proving that
each of the successive associations γX 7→ θ(γX ) 7→ dm

(
θ(γX )

)
is stable, we can show Theorem

4.5.

Partition category and dendrograms. Let X be a non-empty finite set. Given any two parti-
tions P,Q of X , we write P ≤Q if P refines Q, i.e. for all B ∈ P , there exists a (unique) C ∈Q such
that B ⊂C . In this case, the surjective map P �Q sending each B ∈ P to the unique block C ∈Q
such that B ⊂C is called the natural map from P to Q.

Definition 6.14 (Part(X ) and its structure). Let X be a non-empty finite set.
By Part(X ), we mean the subcategory of Sets described as follows:

(i) Objects: All partitions of X .

(ii) Morphisms: For any two partitions P,Q of X with P ≤Q, the unique morphism P �Q is
the natural map.
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We remark that any partition P of X has the corresponding equivalence relation ∼ on X .
Namely, P = X / ∼, where x ∼ x ′ if and only if x, x ′ belong to the same block of P .

Definition 6.15 (Dendrogram). Let X be a non-empty finite set and let P be any poset. We will
call any functor P → Part(X ) a P-indexed dendrogram over X or simply a dendrogram.

The spatiotemporal SLHC dendrogram of a DMS. We aim at encoding multiscale cluster-
ing features of a DMS into a single dendrogram (Definition 6.16). Since we take into account
both temporal and spatial parameters, this dendrogram will have a multidimensional indexing
poset, in contrast to its counterpart for a static metric space (Definition D.2). We prove that this
dendrogram is stable under perturbation of the input DMS (Theorem 6.17).

Let γX = (X ,dX (·)) be a DMS. For I ∈ Int and δ ∈ R+, we define the equivalence relation ∼I
X ,δ

on X as follows:

x ∼I
X ,δ x ′ ⇔ ∃x = x0, x1, . . . , xn = x ′ in X s.t.

(∨
I

dX

)
(xi , xi+1) ≤ δ.

Observe that, for any pair (I ,δ) ≤ (J ,δ′) in Int×R+, the relation ∼I
X ,δ is contained in ∼J

X ,δ′ and
hence (

X / ∼I
X ,δ

)
≤

(
X / ∼J

X ,δ′

)
. (17)

By this monotonicity in (17), we can extend the notion of SLHC dendrogram for static metric
spaces (Definition D.2) to the spatiotemporal SLHC dendrogram of a DMS:

Definition 6.16 (The spatiotemporal SLHC dendrogram of a DMS). Given any DMSγX = (X ,dX (·)),
we define the spatiotemporal SLHC dendrogram θ(γX ) : Int×R+ → Part(X ) of γX as follows:

(i) To each (I ,δ) ∈ Int×R+, assign the partition X / ∼I
X ,δ of X .

(ii) To each pair (I ,δ) ≤ (J ,δ′) in Int×R+, assign the natural map (Definition 6.14)

X / ∼I
X ,δ� X / ∼J

X ,δ′ .

In order to prove Theorem 4.5, we need:

Theorem 6.17 (Stability of the spatiotemporal SLHC dendrogram). Then,

dSets
I (θ(γX ),θY (γY )) ≤ 2 ·ddyn(γX ,γY ).

The proof of Theorem 4.5 will be straightforward by re-interpreting Definition 2.24:

Definition 6.18 (Another interpretation of Definition 2.24). Let γX = (X ,dX (·)) be a DMS. We
define the Betti-0 function β

γX
0 : Int × R+ → Z+ of γX as the dimension function of the spa-

tiotemporal dendrogram θ(γX ) : Int × R+ → Part(X ) of γX . In other words, βγX
0 sends each

(I ,δ) ∈ Int×R+ to the number of blocks in the partition θ(γX )(I ,δ).

Proof of Theorem 4.5. Invoking thatβγX
0 andβγY

0 are the dimension functions of θ(γX ) and θ(γY ),
respectively, the proof straightforwardly follows from Proposition 6.9 and Theorem 6.17.
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Proof of Theorem 6.17. Let M := θ(γX ) : Int×R+ → Part(X )(,→ Sets) and N := θ(γY ) : Int×R+ →
Part(Y )(,→ Sets). For each (I ,δ) ∈ Int×R+, consider the equivalence relation ∼X

I ,δ on X defined,

for any x, x ′ ∈ X , as x ∼X
I ,δ x ′ if and only if there is a sequence x = x0, x1, . . . , xl = x ′ in X such that∨

I dX (xi , xi+1) ≤ δ for each i = 0, . . . , l −1. Similarly, define the equivalence relation ∼Y
I ,δ on Y .

Note that, by definition of M and N ,

M(I ,δ) = X
/∼X

I ,δ and N(I ,δ) = Y
/∼Y

I ,δ .

For x ∈ X , let [x]X
(I ,δ) be the block containing x in the partition M(I ,δ). Then, for any (I ,δ), (J ,δ′) ∈

Int×R+ with (I ,δ) ≤ (J ,δ′), the internal morphismϕM ((I ,δ), (J ,δ′)) of M sends [x]X
(I ,δ) to [x]X

(J ,δ′)
for each x ∈ X . We can describe the internal morphisms of N in the same way.

Suppose that 2 ddyn

(
γX ,γY

) < ε for some ε ∈ (0,∞). Then, there exists an (ε/2)-tripod R :

X
ϕX

�−−−− Z
ϕY−−−−� Y between γX and γY (Definitions 2.9 and 2.10).

Since two maps ϕX : Z → X and ϕY : Z → Y are surjective, we can take two maps f : X → Y
and g : Y → X such that

{(x, f (x)) : x ∈ X }∪ {(g (y), y) : y ∈ Y } ⊂ {(x, y) ∈ X ×Y : ∃z ∈ Z , x =ϕX (z), and y =ϕY (z)}. (18)

We will show that f , g induce a full ε-interleaving pair between M and N . For any I = [u,u′] ∈ Int
and any α ∈ [0,∞), let Iα := [u −α,u′+α]. For each (I ,δ) ∈ Int×R+, we define f̄(I ,δ) : M(I ,δ) →
N(I ε,δ+ε) as

[x]X
(I ,δ) 7→

[
f (x)

]Y
(I ε,δ+ε) , x ∈ X .

Similarly, we define ḡ(I ,δ) : N(I ,δ) → M(I ε,δ+ε). It suffices to show that for each (I ,δ) ∈ Int×R+,

(i) f̄(I ,δ) (resp. ḡ(I ,δ)) is a well-defined set map from M(I ,δ) to N(I ε,δ+ε) (resp. from N(I ,δ) to
M(I ε,δ+ε)),

(ii) f̄(I ,δ) : M(I ,δ) → N(I ε,δ+ε) and ḡ(I ,δ) : N(I ,δ) → M(I ε,δ+ε) are surjective.

(iii) when (I ,δ) ≤ (J ,δ′) in Int×R+,

ϕN ((I ε,δ+ε), (Jε,δ′+ε))◦ f̄(I ,δ) = f̄(J ,δ′) ◦ϕM ((I ,δ), (J ,δ′)),

ϕM ((I ε,δ+ε), (Jε,δ′+ε))◦ ḡ(I ,δ) = ḡ(J ,δ′) ◦ϕN ((I ,δ), (J ,δ′)).

(iv) ḡ(I ε,δ+ε) ◦ f̄(I ,δ) =ϕM ((I ,δ), (I 2ε,δ+2ε)), and
f̄(I ε,δ+ε) ◦ ḡ(I ,δ) =ϕN ((I ,δ), (I 2ε,δ+2ε)).

We prove (i). Fix (I ,δ) ∈ Int×R+. Suppose that x ′ ∈ [x]X
(I ,δ). It suffices to show that f (x ′) ∈

[ f (x)]Y
(I ε,δ+ε). By assumption, there exist x = x0, . . . , xl = x ′ in X such that

∨
I dX (xi , xi+1) ≤ δ,

i = 1, . . . , l −1. Then, invoking R is an (ε/2)-tripod between γX and γY (see (1)), together with
assumption (18) and Remark 6.12,∨

I ε
dY ( f (xi ), f (xi+1)) ≤ ∨

I (ε/2)

dY ( f (xi ), f (xi+1)) ≤ δ+ε, for i = 1, . . . , l −1.
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This directly implies that f (x ′) ∈ [ f (x)]Y
(I ε,δ+ε). In a similar way, it can be proved that ḡ(I ,δ) is

well-defined.
Now we show (ii). Fix (I ,δ) ∈ Int×R+. We only prove that f̄(I ,δ) : M(I ,δ) → N(I ε,δ+ε) is surejc-

tive. Pick any [y]Y
(I ε,δ+ε) ∈ N(I ε,δ+ε). Since ϕY : Z → Y is surjective, there exists z ∈ Z such that

ϕY (z) = y. Let x :=ϕX (z). Then, invoking R is an (ε/2)-tripod between γX and γY , together with
assumption (18) and Remark 6.12,∨

I ε
dY (y, f (x)) ≤ ∨

I ε/2

dY (y, f (x)) ≤∨
I

dX (x, x)+ε= 0+ε≤ δ+ε.

This implies that [ f (x)]Y
(I ε,δ+ε) = [y]Y

(I ε,δ+ε). Also, by definition of f̄(I ,δ), [x]X
(I ,δ) is sent to [y]Y

(I ε,δ+ε)

via f̄(I ,δ). Since [y]Y
(I ε,δ+ε) ∈ N(I ε,δ+ε) was arbitrary chosen, we have shown the surjectivity of f̄(I ,δ).

Next we prove (iii). Fix (I ,δ) ≤ (J ,δ′) in Int×R+. We only show

ϕN ((I ε,δ+ε), (Jε,δ′+ε))◦ f̄(I ,δ) = f̄(J ,δ′) ◦ϕM ((I ,δ), (J ,δ′)).

By the definition of maps ϕM (·, ·),ϕN (·, ·), f̄(·,·) and ḡ(·,·), for any [x]X
(I ,δ) ∈ M(I ,δ),

ϕN ((I ε,δ+ε), (Jε,δ′+ε))◦ f̄(I ,δ)

(
[x]X

(I ,δ)

)
=ϕN ((I ε,δ+ε), (Jε,δ′+ε))

([
f (x)

]Y
(I ε,δ+ε)

)
= [

f (x)
]Y

(Jε,δ′+ε) ,

f̄(J ,δ′) ◦ϕM ((I ,δ), (J ,δ′))
(
[x]X

(I ,δ)

)
= f̄(J ,δ′)

(
[x]X

(J ,δ′)

)
= [

f (x)
]Y

(Jε,δ′+ε) .

Finally, we prove (iv). Fix (I ,δ) ∈ Int×R+. We only show

ḡ(I ε,δ+ε) ◦ f̄(I ,δ) =ϕM ((I ,δ), (I 2ε,δ+2ε)).

Take any [x]X
(I ,δ) ∈ M(I ,δ). Then, by ḡ(I ε,δ+ε)◦ f̄(I ,δ), the block [x]X

(I ,δ) is sent to [g ◦ f (x)]X
(I 2ε,δ+2ε)

. By
invoking that R is an (ε/2)-tripod between γX and γY and (18) and Remark 6.12, we also have∨

I 2ε

dX
(
x, g ◦ f (x)

)≤ ∨
I (ε/2)

dX
(
x, g ◦ f (x)

)≤∨
I

dY ( f (x), f (x))+ε= 0+ε≤ δ+2ε.

This implies that [x]X
δ+2ε = [g ◦ f (x)]X

δ+2ε, completing the proof.

For t ∈ R, consider [t , t ] ∈ Int.

Remark 6.19 (Comprehensiveness of Definition 6.16). We remark the following (see Figure 7):

(i) Consider the constant DMS γX ≡ (X ,dX ) as in Example 2.2. Then, the spatiotemporal
SLHC dendrogram of γX is amount to the SLHC dendrogram (Definition D.2) of (X ,dX ):
for all I ∈ Int and δ ∈ R+,

θ(γX )(I ,δ) = θ(X ,dX )δ.
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Figure 7: Consider a DMS γX = (X ,dX (·)). (1) If γX ≡ (X ,dX ), then the SLHC dendrogram
θ(X ,dX ) is encoded along any vertical ray, such as blue or red rays in the figure (Remark 6.19 (i)).
(2) For each t ∈ R, the SLHC dendrogram θ(X ,dX (t )) of (X ,dX (t )) is recorded along the red ray
(Remark 6.19(ii)) (3) Along the greed horizontal line at height δ0 over the diagonal plane y = x,
the formigram induced from γX with respect to the connectivity parameter δ0 is encoded.

(ii) Let γX = (X ,dX (·)) be a DMS. For each t ∈ R, we have the SLHC dendrogram θ(X ,dX (t )) :
R+ → Part(X ) of the metric space (X ,dX (t )) (Definition D.2). All those dendrograms are
incorporated by θ(γX ) in the following sense:

θX (γX )([t ,t ],δ) = θ(X ,dX (t ))δ, t ∈ R, δ ∈ R+.

Remark 6.20 (Connection to [47]). Let γX = (X ,dX (·)) be a DMS and fix δ0 ∈ R+. The map
θδX : R → Part(X ) defined as

θ
δ0
X (t ) = X / ∼[t ,t ]

X ,δ0
for all t ∈ R

is the formigram induced from γX with respect to the connectivity parameter δ [47].

6.5 Proof of Theorem 4.14

Proof of Theorem 4.14. We utilize {{·}} instead of {·} to denote multisets. Let m := |X |, n := |Y |, and
without loss of generality assume that m ≤ n. Then, for some a1 ≤ . . . ≤ am−1, and b1 ≤ . . . ≤ bn−1

in R+, we have
A := dgm0 (R•(X ,dX )) \ {{(0,+∞)}} = {{(0, ai )}}m−1

i=1 ,

B := dgm0 (R•(Y ,dY )) \ {{(0,+∞)}} = {{(0,b j )}}n−1
j=1 .

Then,
dB

(
dgm0 (R•(X ,dX )) ,dgm0 (R•(Y ,dY ))

)= dB(A ,B).

Let A = {{a′
1, . . . , a′

n−1}} and B = {{b1, . . . ,bn−1}}, where A consists of n −m zeros at the beginning,
followed by the sequence a1, a2 . . . , am−1. Then, notice that

dB(A ,B) ≤ n−1
max
i=1

∣∣a′
i −bi

∣∣ .
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Therefore, it suffices to show that

n−1
max
i=1

∣∣a′
i −bi

∣∣≤ dI

(
β

(X ,dX )
0 ,β(Y ,dY )

0

)
. (19)

Let ε := dI

(
β

(X ,dX )
0 ,β(Y ,dY )

0

)
, i.e.

for all δ ∈ R+, β(X ,dX )
0 (δ+ε) ≤β(Y ,dY )

0 (δ),and β
(Y ,dY )
0 (δ+ε) ≤β(X ,dX )

0 (δ). (20)

Observe the following:

(i) β
(X ,dX )
0 ,β(Y ,dY )

0 are monotonically decreasing as maps from R+ to Z+,

(ii) For 0 ≤ δ< a1 = a′
n−m+1, we have β(X ,dX )

0 (δ) = m,

(iii) For integers k = 1, . . . ,m −1, we have a′
n−k = min

{
δ ∈ R+ :β(X ,dX )

0 (δ) = k
}

,

(iv) For integers k = 1, . . . ,n −1, we have bn−k = min
{
δ ∈ R+ :β(Y ,dY )

0 (δ) = k
}

.

In order to show inequality (19), first we show that
∣∣a′

i −bi
∣∣≤ ε for 1 ≤ i ≤ n−m. By construction

we have a′
1 = a′

2 = . . . = a′
n−m = 0, and thus it suffices to show that bi ≤ ε for 1 ≤ i ≤ n−m. By the

assumption in (20) and item (ii), we have

β
(Y ,dY )
0 (ε) ≤β(X ,dX )

0 (0) = m.

Also, by items (i) and (iv), we have bn−m ≤ ε. Since b1 ≤ b2 ≤ . . . ≤ bn−m−1 ≤ bn−m , we have
shown that bi ≤ ε for 1 ≤ i ≤ n −m, as desired.

Now we show that
∣∣a′

i −bi
∣∣ ≤ ε for i = n −m + 1,n −m + 2, . . . ,n − 1. By re-indexing it suf-

fices to prove that
∣∣a′

n−k −bn−k
∣∣ ≤ ε for k = 1, . . . ,m −1. Notice that, for k = 1, . . . ,m −1, by the

assumption in (20) and item (iv), we have

β
(X ,dX )
0 (bn−k +ε) ≤β(Y ,dY )

0 (bn−k ) = k.

Then by items (i) and (iii), we have that a′
n−k ≤ bn−k +ε. Similarly, one can prove that for k =

1, . . . ,m−1, it holds that bn−k ≤ a′
n−k+ε. Therefore, we have

∣∣a′
n−k −bn−k

∣∣≤ ε for k = 1, . . . ,m−1,
as desired.

7 Discussion

The primary contribution of this paper is to construct multiparameter persistent homology
groups from dynamic metric data. Not only are these persistent homology groups stable to
perturbations of the input, but also this stability result turns out to be a generalization of a fun-
damental stability theorem in topological data analysis. A second practical contribution of our
paper is to propose a polynomial time algorithm that can be carried out for quantifying the
behavioral difference between two dynamic metric data sets.
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A Discretization of DMSs

In order to compute the lower bound for the distance ddyn given in Theorems 4.4 and 4.5 in
practice, we need to discretize DMSs, i.e. turn DMSs into a locally constant DMSs. This dis-
cretization depends on the resolution parameter α ∈ (0,∞), described as below. We will show
that, if α is small and DMSs γX and γY satisfy a mild assumption, then the lower bounds for
ddyn(γX ,γY ) given in Theorems 4.4 and 4.5 can be well-approximated using the α-discretized
DMSs associated to γX and γY .

We call any map i : Zd → Rd grid-like if i is an strictly injective poset morphism, i.e.

(i) for any pair a = (a1, . . . , ad ) < b = (b1, . . . ,bd ) with ai < bi , i = 1, . . . ,d in Zd , for i (a) =
(a′

1, . . . , a′
d ) and i (b) = (b′

1, . . . ,b′
d ), we have a′

i < b′
i , i = 1, . . . ,d .

(ii) For all c = (c1, . . . ,cd ) ∈ Rd , there are a,b ∈ Zd such that i (a) ≤ c ≤ i (b).

Given a grid-like i : Zd → Rd , for any a ∈ Rd , define baci to be the maximum element in the
image of Zd by i which does not exceed a.

Definition A.1 (Discrete persistence modules). We call a persistence module M : Rd → C dis-
crete if there exists a grid-like map i : Zd → Rd such that for each a ∈ Rd , the morphismϕM (baci ,a) :
Mbaci → Ma is an isomorphism.

Let α ∈ (0,∞). For any t ∈ R, let btcα ∈ αZ be the greatest element in αZ which does not
exceed t . Given any DMS γX = (X ,dX (·)), we define the α-discretization of γX :

Definition A.2 (Discretization of a DMS). Let γX = (X ,dX (·)) be any DMS and let α ∈ (0,∞).
The α-discretization of γX is the R-parametrized family of finite (pseudo-)metric spaces γαX :={(

X ,dαZ
X (t )

)
: t ∈ R

}
, where

dαZ
X (t ) := dX (btcα) : X ×X → R+.

Notice that the discretization γαX of γX does not necessarily satisfy Definition 2.1 (ii) and (iii)
and hence γαX does not deserve to be called a DMS. However, for convenience, we will call γαX
the α-discretized DMS of γX or simply the discretized DMS.

We can regard ddyn as an extended pseudometric on a collection containing both all DMSs
and all discretized DMSs: Indeed, items (ii) and (iii) in Definition 2.1 are not necessary to claim
that ddyn satisfies the triangle inequality (see the proof of [47, Theorem 9.14] in [47, Section
11.4.2]).

A DMS γX = (X ,dX (·)) is said to be l -Lipschitz if dX (·)(x, x ′) : R → R+ is l -Lipschitz for every
x, x ′ ∈ X . Assuming that γX is l -Lipschitz, the smaller the resolution parameter α is, the closer
the discretized DMS γαX to γX is:

Proposition A.3. Let γX = (X ,dX (·)) be any l -Lipschitz DMS. Then,

ddyn

(
γX ,γαX

)≤ lα.

Note that for the discretized DMS γαX , we can define the rank invariant and the Betti-0 func-
tion of γαX in the same way as in Definitions 2.23 and 2.24, respectively. Furthermore, in a

bounded time interval I ⊂ R, it is not difficult to check that both the Betti-0 functionβ
γαX
0 and the

rank invariant rkk (γαX ), k ∈ Z+ are discrete (Definition A.1). Therefore, one can straightforwardly
utilize the results in Section 5 for computing dI.
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Proposition A.4 (Approximating ddyn from below with discretized DMSs). Let γX = (X ,dX (·))
and γY = (Y ,dY (·)) be any two l -Lipschitz DMSs.

dI

(
β
γαX
0 ,β

γαY
0

)
−4lα ≤ 2 ·ddyn(γX ,γY ) and,

dI
(
rkk (γαX ), rkk (γαY )

)−4lα ≤ 2 ·ddyn(γX ,γY ), k ∈ Z+.

Proof of Proposition A.3. For ease of notation, we prove the statement assuming that α = 1,

without loss of generality. Consider the tripod R : X
idX

�−−−− X
idX−−−−� X (Definition 2.6). We prove

that R is a l -tripod between γX and γαZ
X (Definition 2.9). Fix t ∈ R. Since btc ∈ [t −1, t +1] = [t ]1,

it is clear that
∨

[t ]1 dX ≤R dα
X (t ) and hence

∨
[t ]1 dX ≤R dαZ

X (t ) + 2l . It remains to show that∨
[t ]1 dαZ

X ≤R dX (t )+2l . Observe that, for any x, x ′ ∈ X ,
(∨

[t ]1 dαZ
X

)
(x, x ′) is the minimum among

dX (btc−1)(x, x ′), dX (btc)(x, x ′) and dX (btc+1)(x, x ′). Also, observe that all of btc−1,btc,btc+1
belong to the closed interval [t ]2 = [t −2, t +2]. Therefore, invoking that γX is l -Lipschitz, for
any x, x ′ ∈ X , (∨

[t ]1

dαZ
X

)
(x, x ′) ≤ dX (t )(x, x ′)+2l .

This implies that
∨

[t ]1 d Z
X ≤R dX (t )+2l , as desired.

Proof of Proposition A.4. We have

ddyn(γαX ,γαY ) ≤ ddyn(γαX ,γX )+ddyn(γX ,γY )+ddyn(γY ,γαY ) by the triangle inequality,

≤ 2lα+ddyn(γX ,γY ) by Proposition A.3.

Also, by Theorem 4.5, we obtain dI

(
β
γαX
0 ,β

γαY
0

)
≤ 2 ·ddyn(γαX ,γαY ), and in turn the first inequality

in the statement. The second inequality can be proved in a similar way.

B Relationship between the rank invariant and CROCKER-plot

We relate the rank invariant of a DMS to the CROCKER plot of [64]:

Definition B.1 (The CROCKER plots of a DMS [64]). LetγX = (X ,dX (·)) be a DMS. For k ∈ Z+, the
k-th CROCKER plot Ck (γX ) of γX is a map R×R+ → Z+ sending (t ,δ) ∈ R×R+ to the dimension
of the vector space Hk (Rδ(X ,dX (t ))).

Let γX = (X ,dX (·)) be any DMS. Note that for any time t0 ∈ R and scale δ0 ∈ R+, the value
of rkk (γX ) associated to the repeated pair ([t0, t0],δ0), ([t0, t0],δ0) ∈ Int×R+ is identical to the
dimension of the vector space Hk

(
Rδ0 (X ,dX (t0))

)
, i.e. Ck (γX )(t0,δ0). This implies that rkk (γX )

is an enriched version of the k-th CROCKER plot Ck (γX ) of γX .8 Therefore, Theorem 4.4 can be
interpreted somehow as establishing the stability of the CROCKER plots of a DMS.

Recall Definition 2.24, the Betti-0 function of a DMS.

8To illustrate this, the 0-th CROCKER plot C0(γX ) is obtained by restricting βγX
0 to the front diagonal vertical

plane {[t , t ] : t ∈ R}×R+ ⊂ Int×R+, which is colored brown in the middle picture of Figure 4.
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Remark B.2 (Comparison between the Betti-0 function and the 0-th CROCKER plot). Consider
the DMSs γX and γY in Figure 1. Since the two metric spaces γX (t ) and γY (t ) are isometric at
each time t ∈ R, the two CROCKER plots C0(γX ) and C0(γY ) are identical. On the other hand,
the Betti-0 function β

γX
0 is distinct from β

γY
0 as illustrated in Figure 4. This implies that, in

comparison with the 0-th CROCKER plot, the Betti-0 function is more sensitive invariant of a
DMS.

C Other relevant metrics

Bottleneck distance Let us define:

• R := R∪ {+∞,−∞},

• U := {(u1,u2) ∈ R2 : u1 ≤ u2}, which is the upper-half plane above the line y = x in R2.

• U := {(u1,u2) ∈ R
2

: u1 ≤ u2}, which is the upper-half plane above the line y = x in the

extended plane R
2
.

For u = (u1,u2), v = (v1, v2) ∈ U, let

‖u−v‖∞ := max(|u1 − v1| , |u2 − v2|) .

Let X1 and X2 be multisets of points. Let α : X1 9 X2 be a matching, i.e. a partial injection.
By dom(α) and im(α), we denote the points in X1 and X2 respectively, which are matched by α.

Definition C.1 (The bottleneck distance [24]). Let X1, X2 be multisets of points in U. Let α :
X1 9 X2 be a matching. We call α an ε-matching if

(i) for all u ∈ dom(α), ‖u−α(u)‖∞ ≤ ε,

(ii) for all u = (u1,u2) ∈ X1 \ dom(α), u2 −u1 ≤ 2ε,

(iii) for all v = (v1, v2) ∈ X2 \ im(α), v2 − v1 ≤ 2ε.

Their bottleneck distance dB(X1, X2) is defined as the infimum of ε ∈ [0,∞) for which there exists
an ε-matching α : X1 9 X2.

Erosion distance. Recently, Patel generalized the notion of persistence diagrams and pro-
posed a new metric, the erosion distance, for comparing generalized persistence diagrams [58].
We review a particular case of the erosion distance. Let P and Q be any two posets. Given any
two maps f , g : P → Q, we write f ≤ g if f (p) ≤ g (p) for all p ∈ P.

Let U := {(x, y) ∈ R2 : x ≤ y} equipped with the partial order inherited from Rop ×R. For any
ε ∈ [0,∞), let~ε := (−ε,ε) ∈ U. Given any map Y : U → Z+ and ε ∈ [0,∞), define another map
∇εY : U → Z+ as ∇εY (I ) := Y (I +~ε). If Y is order-reversing, it is clear that ∇εY ≤ Y .
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Definition C.2 (Erosion distance [58]). Let Y1,Y2 : U → Z+ be any two order-reversing maps.
The erosion distance between Y1 and Y2 is defined as

dE(Y1,Y2) := inf
{
ε ∈ [0,∞) : ∇εYi ≤ Y j , for i , j ∈ {1,2}

}
,

with the convention that dE(Y1,Y2) =∞ when there is no ε ∈ [0,∞) satisfying the condition in
the above set.

Note that since U is a subposet of Rop ×R, we can regard dE is a particular case of dI,2 from
Section 3.2. The erosion distance is further generalized in [59].

Matching distance [19, 51]. In brief, the matching distance dmatch compares rank invariants
via one-dimensional reduction along lines. Namely, for any M , N : Rd → Vec, the matching
distance between rk(M) and rk(N ) is defined as

dmatch(rk(M), rk(N )) := sup
L:u=s~m+b

m∗dB(B(M |L),B(N |L)), (21)

where L varies in the set of all the lines parameterized by u = s~m +b, with m∗ := mini mi > 0,
maxi mi = 1,

∑n
i bi = 0. Specifically, dmatch is upper bounded by d Vec

I [51]. We briefly discuss
about the algorithms for dmatch and their computational cost:

• For d = 1, the RHS of equation (21) reduces to the bottleneck distance between the bar-
codes of M and N . The bottleneck distance can be computed in time O(n1.5 logn) where
n is the total cardinality of the two barcodes [45]. See also [18].

• For d = 2, dmatch can be computed exactly in time O(n11) where n is the size of finite
presentations of M and N [44].

• For d ≥ 2, algorithms for approximating dmatch within any threshold ε> 0 are proposed in
[6, 20]. In particular, for the case d ≥ 3 which is of our interest, the running time for the

proposed algorithm is proportional to
(

d
ε

)d
in the worst case [20, Section 3.1].

Dimension distance [28, Section 4]. Let M , N : Rd → Vec be any two persistence modules. If
M , N are nice9, then the dimension distance d0 between dm(M) and dm(N ) serves as a lower
bound for d Vec

I (M , N ) [28, Theorem 39]. A strength of d0 is the computational efficiency. Let
M ′, N ′ : [n]d → Vec be any two finite persistence modules. The entire computation for d0(dm(M ′),dm(N ′))
takes only O(n2 logn) [28, Section 4.2].

If a persistence module M is obtained by applying the 0-th homology functor to the spa-
tiotemporal Rips filtration of a DMS γX (Definition 2.21), then every internal morphim ϕM (·, ·)
is surjective, and hence M is nice. Specifically, dm(M) coincides with the Betti-0 function β

γX
0

(Definition 2.24). Therefore, one can utilize d0 for comparing Betti-0 functions of DMSs and for
obtaining a lower bound of ddyn (by virtue of Theorem 4.1).

On the other hand, for k ≥ 1, a persistence module M obtained by applying the k-th homol-
ogy functor to the spatiotemporal Rips filtration of a DMS does not necessarily satisfy the “nice"
condition. This prevents us from freely utilizing d0 in order to obtain a lower bound for ddyn.

9A persistence module M : Rd → Vec is nice if there exists a value ε0 ∈ R+ so that for every ε< ε0, each internal
morphism ϕM (a,a+~ε) is either injective or surjective (or both).
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D Stability of the single linkage hierarchical clustering method

We review the single linkage hierarchical clustering (SLHC) method and its stability under the
Gromov-Hausdorff distance. We begin by reviewing the Gromov-Hausdorff distance.

D.1 The Gromov-Hausdorff distance

The Gromov-Hausdorff distance dGH (Definition D.1) measures how far two metric spaces are
from being isometric.

Let (X ,dX ) and (Y ,dY ) be any two metric spaces and let R : X
ϕX

�−−−− Z
ϕY−−−−� Y be a tripod

between X and Y . Then, the distortion of R is defined as

dis(R) := sup
z,z ′∈Z

∣∣dX
(
ϕX (z),ϕX (z ′)

)−dY
(
ϕY (z),ϕY (z ′)

)∣∣ .

Definition D.1 (Gromov-Hausdorff distance [12, Section 7.3.3]). Let (X ,dX ) and (Y ,dY ) be any
two metric spaces. Then,

dGH ((X ,dX ), (Y ,dY )) = 1

2
inf

R
dis(R),

where the infimum is taken over all tripods R between X and Y . In particular, any tripod R
between X and Y with dis(R) ≤ ε is said to be an ε-tripod between (X ,dX ) and (Y ,dY ).

The computation cost of dGH leads to NP-hard problem, even for metric spaces of simple
structure [1, 61]. Therefore, one of practical approaches for estimating dGH is to search for
tractable lower bounds.

D.2 Single linkage hierarchical clustering (SLHC) method

Let (X ,dX ) be a finite metric space. For each δ ∈ R+, we define the equivalence relation ∼δ on
X as

x ∼δ x ′ if and only if ∃x = x0, . . . , xn in X , s.t. dX (xi , xi+1) ≤ δ.

Observe that for any δ≤ δ′ in R+, the inclusion ∼δ ⊂ ∼δ′ holds, leading to (X / ∼δ) ≤ (X / ∼δ′) in
Part(X ) (Definition 6.14).

Definition D.2 (The dendrogram from the SLHC). Let (X ,dX ) be a finite metric space. The
dendrogram θ(X ,dX ) : R+ → Part(X ) defined by sending δ ∈ R+ to X / ∼δ is called the SLHC
dendrogram of (X ,dX ).

The ultrametric induced by the single linkage hierarchical clustering method [16]. An ultra-
metric space (X ,uX ) is a metric space satisfying the strong triangle inequality: for all x, x ′, x ′′ ∈
X , uX (x, x ′) ≤ max

{
uX (x, x ′′),uX (x ′′, x ′)

}
.

Let (X ,dX ) be a finite metric space and consider its SLHC dendrogram θ(X ,dX ) : R+ →
Part(X ). For any x, x ′ ∈ X , define

uX (x, x ′) := min{δ ∈ [0,∞) : x, x ′ belong to the same block of X / ∼δ}.

It is not difficult to check that uX : X × X → R+ is a ultrametric and that uX (x, x ′) ≤ d(x, x ′), for
all x, x ′ ∈ X .
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Definition D.3 (The ultrametrics induced by the single linkage hierarchical clustering [16]).
Given any finite metric space (X ,dX ), the ultrametric space (X ,uX ) defined as above is said
to be the ultrametric space induced by the SLHC on (X ,dX ) and we write (X ,uX ) =H SL(X ,dX ).

The assignment (X ,dX ) 7→H SL(X ,dX ) is known to be 1-Lipschitz with respect to the Gromov-
Hausdorff distance:

Theorem D.4 (Stability of the SLHC [16]). For any two finite metric spaces (X ,dX ) and (Y ,dY ),
let (X ,uX ) and (Y ,uY ) be the ultrametric spaces induced from (X ,dX ) and (Y ,dY ) by the SLHC
method. Then,

dGH((X ,uX ), (Y ,uY )) ≤ dGH((X ,dX ), (Y ,dY )). (22)

Remark D.5. The term dGH((X ,uX ), (Y ,uY )) in (22) cannot be approximated within any factor
less than 3 in polynomial time, unless P = NP [46, Theorem 3]. Therefore, in a practical view-
point, it is desirable to find another lower bound for dGH.

The Gromov-Hausdorff distance can be bounded from below by the bottleneck distance
between persistence diagrams associated to Rips filtrations: see inequality (11). Computing the
LHS of inequality (11) can be carried out in polynomial time [45].

Remark D.6. Observe that both of the LHSs of the inequalities in (22) and (11) with k = 0 mea-
sure the difference between clustering features of (X ,dX ) and (Y ,dY ). In fact, for any two finite
metric spaces (X ,dX ) and (Y ,dY ), the persistence modules H0 (R•(X ,dX )) and H0 (R•(Y ,dY ))
are isomorphic to H0 (R•(X ,uX )) and H0 (R•(Y ,uY )), respectively. Therefore,

dB
(
dgm0 (R•(X ,dX )) ,dgm0 (R•(Y ,dY ))

)≤ dGH ((X ,uX ), (Y ,uY )) ≤ 2 ·dGH ((X ,dX ), (Y ,dY )) .
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