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TILINGS OF CONVEX POLYHEDRAL CONES AND TOPOLOGICAL

PROPERTIES OF SELF-AFFINE TILES

YA-MIN YANG AND YUAN ZHANG†

Abstract. Let a1, . . . ,ar be vectors in a half-space of Rn. We call

C = a1R
+ + · · ·+ arR

+

a convex polyhedral cone, and call {a1, . . . ,ar} a generator set of C. A generator set

with the minimal cardinality is called a frame. We investigate the translation tilings of

convex polyhedral cones.

Let T ⊂ R
n be a compact set such that T is the closure of its interior, and J ⊂ R

n

be a discrete set. We say (T,J ) is a translation tiling of C if T + J = C and any two

translations of T in T + J are disjoint in Lebesgue measure.

We show that if the cardinality of a frame of C is larger than dimC, the dimension

of C, then C does not admit any translation tiling; if the cardinality of a frame of C

equals dimC, then the translation tilings of C can be reduced to the translation tilings

of (Z+)n. As an application, we characterize all the self-affine tiles possessing polyhedral

corners, which generalizes a result of Odlyzko [A. M. Odlyzko, Non-negative digit sets in

positional number systems, Proc. London Math. Soc., 37(1978), 213-229.].

1. Introduction

Let a1,a2, · · · ,am be m non-zero vectors in a half space of Rn, that is, there is a non-

zero vecter β ∈ R
n such that the inner product 〈aj , β〉 > 0 for all j = 1, . . . ,m. We call

the set of all non-negative combinations of these vectors

C = a1R
+ + · · · + amR

+ = {λ1a1 + · · · + λmam : all λi ≥ 0}

a convex polyhedral cone. In this case, we also say C is spanned by {a1, . . . ,am}.
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The convex polyhedral cone is an important object in convex analysis, see for instance,

Rockafellar [18]. The main purpose of the present paper is to characterize the translation

tilings of convex polyhedral cones.

Definition 1.1. Let X ⊂ R
n, T ⊂ R

n be a compact set, and J ⊂ R
n be a (finite or

infinite) discrete set.

We say that (T,J ) is a packing of X if T +J ⊂ X, and T + t1 and T + t2 are disjoint

in Lebesgue measure for any t1 6= t2 ∈ J .

(T,J ) is called a covering of X if X ⊂ T + J .

(T,J ) is called a translation tiling of X if it is a packing as well as a covering of X. In

this case, we call T a X-tile and (T,J ) a X-tiling. (In literature, usually it is assumed in

addition that T is the closure of the interior of T .)

(T,J ) is called a local tiling of convex polyhedral cone C, if it is a packing of C and it

covers a neighborhood of 0 in C.

Remark 1.1. Let (T,J ) be a local tiling of a convex polyhedral cone C. Let T + t1 be

the tile containing 0. Set T ′ = T + t1 and J ′ = J − t1, then T ′ +J ′ is a local tiling of C.

It follows that 0 ∈ T ′,0 ∈ J ′ and consequently T ′ ⊂ C, J ′ ⊂ C. Therefore, from now on,

without loss of generality, we always assume that

(1.1) 0 ∈ T, 0 ∈ J , T ⊂ C, and J ⊂ C.

1.1. Translation tilings of convex polyhedral cones. Let C be a convex polyhedral

cone. The dimension of C, denoted by dimC, is the minimum of the dimensions of

subspaces of Rn containing C. We call A = {a1, . . . ,am} a frame of C, if A spans C, and

any proper subset of A does not. It is seen that the frame A of a convex polyhedral cone

C is unique if we require all members of A to be unit vectors.

Definition 1.2. We say C is regular, if the cardinality of a frame of C equals dimC, and

irregular otherwise.

Denote R
+ = {x ∈ R; x ≥ 0} and Z

+ = {x ∈ Z; x ≥ 0}. Clearly, an n-dimensional

convex polyhedral cone C is regular if and only if C is the image of (R+)n under an

invertible linear transformation.

We show that if T can tile a ‘large’ ball of C at the origin, then not only C must be

regular, but also T must be a union of translations of unit cubes up to a linear trans-

formation. Denote by Bn(x, r), or simply B(x, r), the ball in R
n with center x and with

radius r.



TILINGS OF CONVEX POLYHEDRAL CONES 3

Theorem 1.1. Let C be a convex polyhedral cone. If (T,J ) is a local tiling of C which

covers C ∩B(0, R) for some R > diam(T ), then

(i) C is regular.

(ii) if in addition T = T ◦, then there exist a finite set E ⊂ (Z+)n, and a linear

transformation ϕ of Rn such that T = ϕ(E + [0, 1]n).

Sometimes we call (T,J ) in the above theorem a ‘large’ local tiling. As a consequence

of Theorem 1.1, we have

Corollary 1.1. An irregular convex polyhedral cone admits no translation tiling.

Corollary 1.2. If (T,J ) is a tiling of (R+)n and T = T ◦, then there exists E,J ′ ⊂ (Z+)n,

and a positive diagonal matrix U = diag (u1, . . . , un) such that

UT = E + [0, 1]n, UJ = J ′,

and (E,J ′) is a translation tiling of (Z+)n.

Therefore, to characterize the translation tilings of regular convex polyhedral cones, we

need only characterize the translation tilings of the special cone (R+)n, and this can be

further reduced to the problem of characterization of (Z+)n-tilings.

We call A + B the direct sum of A and B, and denoted by A ⊕ B, if every element

x ∈ A+B has a unique decomposition as x = a+ b with a ∈ A, b ∈ B. For A,B ⊂ (Z+)n,

we say (A,B) is a (Z+)n-complementing pair if A⊕B = (Z+)n, furthermore, we say (A,B)

is a (Z+)n-tiling if #A < ∞. (We remark that it is possible that both A,B are infinite

sets.)

Remark 1.2. Rao, Yang and Zhang [19] characterizes all the (Z+)n-complementing pairs,

which generalizes the results of de Bruijn [3] and Niven [16], which settled the case n = 1

and n = 2, respectively.

1.2. Self-affine tiles possessing polyhedral corners. LetA ∈ Mn(R) be an expanding

matrix (i.e., all its eigenvalues have moduli larger than 1) such that m = |det(A)| is an

integer larger than 1. Let D = {d0,d1, · · · ,dm−1} be a subset of Rn, which we call the

digit set. It is well known ([7, 13]) that there exists a unique non-empty compact set

T := T (A,D) satisfying the set equation

(1.2) T =
⋃

d∈D

A−1(T + d).
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We call T (A,D) a self-affine tile and D a tile digit set, if T (A,D) has non-void interior.

A self-affine tile can tile R
n by translation ([13]). Self-affine tiles have been studied exten-

sively in literature ([1, 8, 5, 13, 14, 15, 10, 11, 12, 20]), since it is related to many fields of

mathematics, such as number theory, dynamical system, spectral theory and wavelet, etc.

As an application of Theorem 1.1 and 1.2, we study the topological properties of T (A,D).

Definition 1.3. Let T (A,D) be a self-affine tile of Rn. We say T (A,D) has a polyhedral

corner, if there exists a point x0 ∈ T (A,D), a real r > 0, and a convex polyhedral cone

C, such that

B(x0, r) ∩ T (A,D) = x0 +B(0, r) ∩ C.

The following result generalizes a one-dimensional result of Odlyzko [17].

Theorem 1.2. If a self-affine tile T (A,D) of Rn has a polyhedral corner, then there exists

an affine transformation ϕ such that ϕ(T (A,D)) is a (R+)n-tile. Consequently, T (A,D)

is a finite union of translations of n-dimensional unit cubes up to an affine transformation.

We close this section with some notations. We use {e1, . . . , en} to denote the canonical

basis of Rn. Let ∂A denote the boundary of A, A◦ denote the interior of A, and G denote

the closure of G.

The paper is organized as follows. In Sections 2–4, we show that an irregular convex

polyhedral cone C has 2-dimensional slices which are corner-cut regions. In Sections 5-6,

we show that if C has a ‘large’ local tiling, then a 2-dimensional corner-cut slice of C also

has a ‘large’ local tiling; however, we show in Section 7 that this is impossible. Theorem

1.1(i) is proved in Section 6. Section 8 is devoted to the translation tilings of (R+)n;

Theorem 1.1(ii) and Corollary 1.2 are proved there. Section 9, the last section, studies the

topological properties of self-affine tiles and Theorem 1.2 is proved there.

2. Preliminaries on convex polyhedral cones

First, we recall some notions about convex set, see [18, 4]. Let F be a convex subset of

the convex set C. We say F is a face of C, if any closed line segment in C with a relative

interior in F has both endpoints in F . An extreme point of a convex set is one which is

not a proper convex linear combination of any two points of the set.

Let a1,a2, · · · ,am be non-zero vectors in R
n located in a half space. Recall that

C = a1R
+ + · · ·+ amR

+

is called a convex polyhedral cone. Clearly C is a closed set.
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For a set F ⊂ R
n, we use span (F ) to denote the smallest subspace containing F .

Then the dimension of F , denoted by dimF , is the dimension of the subspace span(F ).

Moreover, we call F a r-face of C, if F is a face of C with dimension r.

A convex polyhedral cone C has exactly one extreme point, or 0-face, the origin. 1-

faces of C are the half-lines ajR
+ with aj in the frame of C, and we call ajR

+ an extreme

direction.

We list some facts about faces of convex polyhedral cones.

Lemma 2.1. Let C be a convex polyhedral cone with dimension n. Then

(i) (Theorem 21 in [4].) A convex cone in ∂C is contained in an (n − 1)-face Q.

Consequently, ∂C is the union of the (n− 1)-faces of C.

(ii) (Theorem 22 in [4]) Let Q be an (n− 1)-face of C, then

Q = C ∩ span(Q).

(iii) (Theorem 27 in [4].) If G and F are faces of C and F ⊂ G, then F is a face of G.

(iv) If G is a face of C, then any face of G is also a face of C.

We shall use the following easy facts.

Lemma 2.2. Let C ⊂ R
n be a convex polyhedral cone. Let a,b ∈ R

n.

(i) If a ray R = a+ bR+ belongs to C, then b ∈ C.

(ii) If aR+ is an extreme direction of C, and b is a vector in C but not in aR+, then

a− b 6∈ C.

Proof. (i) The sequence (a + kb)k≥1 belongs to C implies that a/k + b ∈ C, hence the

limit b belongs to C. (ii) follows from the fact that aR+ is a 1-face. �

Recall that a convex polyhedral cone C is regular if the cardinality of a frame of C

equals dimC, and irregular otherwise.

Lemma 2.3. Let C be a regular convex polyhedral cone and let A be its frame. Then the

convex polyhedral cone spanned by a subset of A is a face of C.

Proof. This follows from the definition of face. �

3. Slices of irregular convex polyhedral cones

In this section, we investigate the intersection of a convex polyhedral cone C and a

2-dimensional hyperplane H, where H parallel to a 2-face of C.
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Figure 1. The left side is a corner-cut slice, while the right side is not.

Definition 3.1. Let C be a convex polyhedral cone and F be a 2-face of C. We call F a

feasible 2-face of C, if there exists a point x0 ∈ C◦ such that the intersection

(3.1) (span (F ) + x0) ∩ C

is a convex set with at least two extreme points; in this case, we call the set in (3.1) a

corner-cut slice of C.

The following lemma is obvious, see Figure 1.

Lemma 3.1. Let X be the set in (3.1), then

(i) X is a corner-cut slice if and only if there exists a line L such that X ∩ L is a line

segment and X◦ ∩ L = ∅.
(ii) X is a corner-cut slice if and only if there exists a ray L emanating from an extreme

point of X such that X ∩ L is a line segment.

3.1. Lemmas. We start with several lemmas.

Lemma 3.2. Let C be a convex polyhedral cone, and H be a 2-dimensional hyperplane

intersecting the interior of C. Then

∂(H ∩ C) =
⋃

Q

(Q ∩H)

where Q runs over all the (n− 1)-faces of C.

Proof. Recall that ∂C is the union of all (n− 1)-faces, so we need only show that

(3.2) ∂(H ∩ C) = H ∩ ∂C.

Let x ∈ H ∩ C. If x ∈ ∂C, then (at least) a half open ball of Bn(x, r) does not belong to

C, and hence a half open ball of B2(x, r) does not belong to H ∩ C, so x ∈ ∂(H ∩ C). If

x ∈ C◦, then clearly x ∈ (H ∩C)◦. Hence (3.2) holds and the lemma follows. �
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We use [a,b]+ to denote the convex polyhedral cone spanned by {a,b}.

Lemma 3.3. Let C be a convex polyhedral cone, Q be an (n − 1)-face of C, [a,b]+ be a

2-face of C, and y ∈ C◦. Denote Σ = span({a,b}). Then

(i) If {a,b} ⊂ Q, then Q ∩ (Σ + y) = ∅.
(ii) If {a,b} ∩Q = {a} or {b}, then Q ∩ (Σ + y) is either ∅, or a ray.

(iii) If {a,b} ∩Q = ∅, then Q ∩ (Σ + y) is ∅, or a singleton, or a line segment.

(iv) Xy := C ∩ (Σ+ y) is a corner-cut slice if and only if there exists an (n− 1)-face Q

of C such that Q ∩ (Σ + y) is a line segment.

Proof. First, by linear algebra, Q ∩ (Σ + y) is a (connected) subset of a line since y ∈ C◦.

(i) The first assertion holds since (Σ + y) ∩ span(Q) = ∅.
(ii) Suppose a ∈ Q and x ∈ Q ∩ (Σ + y). Then clearly x + R

+a also belongs to this

intersection. The second assertion is proved.

(iii) To prove the third assertion, we need only show that

I = Q ∩ (Σ + y)

is not a ray. Let L′ be the intersection of Σ and span(Q), then L′ is a subspace of dimension

1 or 2. Since a,b 6∈ Q, we have dimL′ = 1. Moveover, we have L′ = R(a− cb) for some

c ∈ R \ {0}.
We claim that c > 0, or in other words, L′ locates outside of the cone C (except the

origin). Suppose on the contrary c < 0, then

a− cb ∈ C ∩ span(Q) = Q,

where the last equality is due to Lemma 2.1(ii). It follows that a,−cb ∈ Q since Q is a

face, a contradiction. Our claim is proved.

Assume on the contrary that I is a ray, and let L be the line containing I, then the

direction of L is ±(a − cb). By Lemma 2.2(ii), ±(a − cb) 6∈ C; furthermore, by Lemma

2.2(i), the intersection L∩C cannot be a ray. It follows that the interval I, as a subset of

L ∩ C is not a ray. This contradiction proves (iii).

(iv) Suppose Xy is a corner-cut slice, then there is a line L such that Xy ∩ L is a line

segment and X◦
y ∩ L = ∅ (Lemma 3.1). Clearly,

(Xy ∩ L) ⊂
⋃

Q

Q ∩ (Σ + y).
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Let Q be an (n − 1)-face such that Q ∩ (Σ + y) contains a sub-interval of Xy ∩ L. By

Lemma 3.3, Q ∩ (Σ + y) is a subset of a line, hence Q∩ (Σ + y) is a subset of L, and thus

a subset of Xy ∩ L, and finally must be a line segment.

On the other hand, if I = Q ∩ (Σ + y) is a line segment, let L be the line containing

this segment, then, by (iii), we have a,b 6∈ Q, and the direction of L is of the form a− cb

for some c > 0. Hence L ∩Xy must be a line segment since it cannot be a ray; moreover,

since the sub-interval I of L ∩Xy is a subset of ∂Xy, L ∩Xy itself must be contained in

∂Xy, since Xy is a planar convex set. Therefore Xy is a corner-cut slice. The lemma is

proved. �

3.2. Existence of corner-cut slices.

Definition 3.2. We say a convex polyhedral cone C has regular boundary, if all its (n−1)-

faces are regular cones.

Let x, y ∈ R
n, we will use [x, y] to denote the line segment with endpoints x and y.

Theorem 3.1. An irregular convex polyhedral cone with regular boundary always has a

feasible 2-face.

Proof. We divide the proof into two cases.

Case 1. There exists b1,b2 in the frame of C such that [b1,b2]
+ is not a 2-face of C.

Denote G = [b1,b2]
+. We claim that G∩C◦ 6= ∅. Suppose on the contrary G∩C◦ = ∅,

then G is a subset of ∂C, so by Lemma 2.1(i), there exists an (n−1)-face Q of C containing

G . Since Q is a regular cone, G must be a face of Q. By Lemma 2.1 (iv), G is also a face

of C, which is a contradiction. Our claim is proved.

By Lemma 2.1(i), there exists a (n−1)-face Q of C containing b1. Using this argument

repeatedly, there exists a 2-face F of Q containing b1. Let a1 be the other element in the

frame of F . Clearly a1 is not a multiple of b2, since F = [b1,a1]
+ is a 2-face and [b1,b2]

+

is not.

Pick any x0 ∈ [b1,b2]
+∩C◦. Then x0 can be written as x0 = λb1+ρb2, where λ, ρ > 0.

Denote Σ = span({a1,b1}). We will show that

(3.3) X = (Σ + x0) ∩C

is a corner-cut slice.

Clearly ρb2 is a extreme point of X, since it is an extreme direction of C.
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Choose δ > 0 small so that z = x0 − δa1 is still an interior point of C. Clearly, both

ρb2 and z belong to X, so [ρb2, z] also belongs to X. Let

c = z − ρb2 = λb1 − δa1.

By Lemma 2.2, c 6∈ C and the intersection (ρb2 + cR+) ∩ C is not ray. Therefore, the

intersection of the ray ρb2 + cR+ and X is a line segment, and by Lemma 3.1 (ii), X is a

corner-cut slice. The theorem is proved in this case.

Case 2. For every pair b1,b2 in the frame of C, [b1,b2]
+ is a 2-face of C.

Pick any (n − 1)-face Q of C, then the frame of Q has cardinality n − 1. Since C is

irregular, we can find two elements b1 and b2 in the frame of C, but not in the frame of

Q. Let F = [b1,b2]
+, then F is a 2-face of C by our assumption. Denote Σ = span(F )

and let L be the intersection of Σ and span(Q), then L is a one-dimensional subspace since

b1,b2 6∈ Q,

Pick x0 ∈ Q◦. Then y = x0 + cb1 ∈ C◦ for small c > 0. Notice that

(Σ + y) ∩Q = (Σ + x0) ∩Q ⊃ (Σ + x0) ∩ (Q+ x0).

Since L + x0 ⊂ Σ + x0 and Q + x0 contain a small neighborhood of L + x0 near x0,

we deduce that (Σ + y) ∩ Q contains a line segment; moreover, by Lemma 3.3(iii), this

intersection is a line segment since b1,b2 6∈ Q. Finally, by Lemma 3.3 (iv), (Σ + y)∩C is

a corner-cut slice. The theorem is proved. �

The following example shows that Case 2 in the above proof does appear.

Example 3.1. Let e1, . . . , e6 be the canonical basis of R6. Let ξ = (1, 1, 1,−1,−1,−1).

Let C be the convex polyhedral cone with the frame {e1, . . . , e6, ξ}. Then any cone

spanned by two vectors in this frame is a 2-face.

4. Continuity of corner-cut slices

Let C be an irregular convex polyhedral cone with regular boundary. Now we fix a

feasible 2-face of C and denote it by F (The existence of such a face is guaranteed by

Theorem 3.1). We will use the notation Xy for the slice C ∩ (span(F ) + y) for simplicity.

The following lemma is a strengthen of Theorem 3.1.

Lemma 4.1. Let C be an irregular convex polyhedral cone with regular boundary, and F

be a feasible 2-face of C. Then there exists a ball B(x0, r) ⊂ C◦ such that for any y in the

ball, Xy is a corner-cut slice.
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Proof. Let x1 be a point in C◦ such that Xx1
is a corner-cut slice. Let u be the intersection

of the two rays in the boundary of Xx1
; clearly, u 6∈ C. Choose r1 > 0 small so that

B(u, r1) ∩ C = ∅ and B(x1, r1) ⊂ C◦.

We claim that for any y belongs to B(x1, r1) ∩ (C + x1), a section of B(x1, r1), Xy is a

corner-cut slice. Since y − x1 ∈ C, we have

(4.1) Xx1
+ (y − x1) = (span (F ) + y) ∩ (C + (y − x1)) ⊂ Xy.

Suppose on the contrary that Xy has only one extreme point, then the relation (4.1)

implies that u+ (y − x1) ∈ Xy ⊂ C, which contradicts B(u, r1) ∩ C = ∅. So our claim is

proved. Therefore, any ball B(x0, r) ⊂ B(x1, r1) ∩ (C + x1) meets the requirement of the

lemma. �

By applying a linear transformation, we may assume that a and b, the generators of

F , are orthogonal.

For two sets A,B ⊂ R
n, let dH(A,B) be the Hausdorff metric between A and B.

We define a mapping

πa : C◦ → ∂C

as follows: For x ∈ C◦, by Lemma 2.2 (i), the ray x−R
+a intersects ∂C at a single point,

and we denote this point by πa(x). Similarly, we define πb : C◦ → ∂C.

We note that, if A is a subset of C◦, Q is an (n − 1)-face of C, and πa(A) ⊂ Q, then

πa|A is the projection to Q along the direction −a. Therefore, πa is the pasting of several

projections.

Theorem 4.1. Let C be an irregular convex polyhedral cone with regular boundary, and

let F be a feasible 2-face of C. Then there exists a ball B∗ ⊂ C◦, such that for any y ∈ B∗,

Xy is a corner-cut slice, and

dH(Xy, F ), |a1(y)|, |b1(y)|

are uniformly bounded, where a1(y) and b1(y) are the origins of the rays on ∂Xy with

direction a and b respectively.

Proof. Denote Σ = span({a,b}), where {a,b} is the frame of F . Let B(x0, r) be the ball

such that Σy ∩C are corner-cut slices for all y ∈ B(x0, r) (see Lemma 4.1). From now on,

we call a ball with this property a nice ball.

Notice that if y′ = y+ c1a+ c2b withc1, c2 ∈ R, then Xy = Xy′ . Consequently, If B is a

nice ball, then B+ c1a+ c2b is also a nice ball. Also, a sub-ball of a nice ball is also nice.
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y + F

πa(y)

πb(y)

b1(y)

a1(y)
a

b

Figure 2.

Let Q1 be the (n−1)-face of C such that Q1∩ (Σ+x0) is the ray in ∂Xx0
with direction

a. Clearly πb maps Xx0
to ∂Xx0

; indeed, πb(x) is the canonical projection of x if πb(x)

belongs to the ray in ∂Xx0
with direction a, or equivalently, belongs to Q1.

We choose c > 0 large so that πb(x0 + ca) ∈ Q1, and denote x1 = x0 + ca.

Let Q◦
1 be the set of relative interior points of Q1. We choose x2 ∈ B(x1, r) so that

πb(x2) ∈ Q◦
1. (Indeed, every point in the intersection Q◦

1 +(x1 −πb(x1))∩B(x1, r) fulfills

this requirement.) Let r2 > 0 be a real number such that

πb(B(x2, r2)) ⊂ Q1 and B(x2, r2) ⊂ B(x1, r).

Let Q2 be the (n − 1)-face of C such that Q2 ∩ (Σ + x2) is the ray on ∂Xx2
with

direction b. Similarly as above, we choose c′ large so that πa(x2 + c′b) ∈ Q2, and denote

x3 = x2 + c′b. By the same argument as bove, there exists a ball B(x4, r4) such that

πa(B(x4, r4)) ⊂ Q2 and B(x4, r4) ⊂ B(x3, r2).

Notice that

(4.2) πb(B(x4, r4)) ⊂ πb(B(x3, r2)) = πb(B(x3 − c′b, r2)) = πb(B(x2, r
′)) ⊂ Q1.

Set B∗ = B(x4, r4). Clearly B∗ is a nice ball. For every y ∈ B∗, Xy is a corner-cut slice.

Moreover, by (4.2), πb(y) belongs to Q1 ∩Xy, which is the ray of ∂Xy with direction a ;

similarly, πa(y) ∈ Q2 and locates on the ray with direction b on ∂Xy.

Since dH(F,F + y) ≤ |y| and dH(Xy, F ) ≤ dH(Xy , y + F ) + dH(y + F,F ), to show

dH(F,Xy) is uniformly bounded, we need only show that

sup
y∈B∗

dH(Xy, F + y) < ∞.

Clearly

dH(Xy, F + y) ≤
√

|y − πa(y)|2 + |y − πb(y)|2
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(since we assume that a and b are orthogonal, see Figure 2,) so it is uniformly bounded

for y ∈ B∗, since the right hand side of the above formula is a continuous function of y.

Finally, it is seen that both |a1(y)| and |b1(y)| are less than

|y|+ |y − πa(y)|+ |y − πb(y)|.

The theorem is proved. �

5. Polyhedral bodies

Let C be a convex polyhedral cone, and let (T,J ) be a local tiling of C. By Remark

1.1, we may assume that 0 ∈ T, 0 ∈ J , T ⊂ C, and J ⊂ C.

Lemma 5.1. If (T,J ) is a local tiling of a convex polyhedral cone C, then the origin 0

belongs to only one tile.

Proof. Suppose on the contrary that two tiles T + a1 and T + a2 both contain 0. Then

−a1,−a2 ∈ T . So a1 − a2 ∈ T + a1 and a2 − a1 ∈ T + a2. Therefore, both a1 − a2 and

a2 − a1 belong to C, which is a contradiction. �

We call a set Ω a polyhedral corner, if there exist a point x, a number r > 0 and a

convex polyhedral cone D such that

Ω = x+B(0, r) ∩D,

and we call x the vertex of the polyhedral corner.

Definition 5.1. Let T ⊂ R
n be a compact set. For a point x ∈ ∂T , if there exists a real

r > 0, such that Bn(x, r)∩T is a non-overlapping union of several polyhedral corners with

the same vertex x, then we call x a ‘nice’ point of T ; otherwise, we call x a ‘bad’ point of

T . If all points in ∂T are ‘nice’, then we call T a polyhedral body.

If C is a convex polyhedral cone and x ∈ ∂C, then B(x, r)∩C is a finite non-overlapping

union of polyhedral corners for r small.

Lemma 5.2. Let D1, . . . ,Dk be convex polyhedral cones of dimension n such that their

interiors are disjoint, then

(i) B(0, r) \ (D1 ∪ · · · ∪Dk) is a finite non-overlapping union of polyhedral corners.

(ii) Let Ω = B(0, r) ∩ (D1 ∪ · · · ∪Dk) and let ν be the (n − 1)-dimensional Hausdorff

measure, then for ν-almost every point x ∈ ∂Ω with |x| < r, there exists a real number

δ > 0 such that Bn(x, δ) ∩ Ω is a closed half ball.
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Proof. Each Dj is bounded by a set of subspaces. Let S1, . . . , Sm be the collection of such

spaces for j = 1, . . . , k.

(i) Let Sm+1, . . . , Sm+n be the subspaces {(x1, . . . , xn) ∈ R
n; xj = 0}, j = 1, . . . , n.

Then S1, . . . , Sm+n decompose R
n into at most 2m+n non-overlapping convex polyhedral

cones, which we denote by C1, . . . , Ch. Then

B(0, r) \ (D1 ∪ · · · ∪Dk) =
⋃

{B(0, r) ∩ Cj; Cj is not a subset of D1 ∪ · · · ∪Dk} .

(ii) Let x ∈ ∂Ω. Then x ∈ S1 ∪ · · · ∪ Sm.

Suppose x belongs to only one element in {S1, . . . , Sm}, say, x ∈ Sj′. Let δ be a real

number such that d(x, Si) > δ for all i 6= j′. The ball Bn(x, δ) is cut into two (closed)

half balls by Sj′. For any Dj , j ∈ {1, . . . , k}, either Dj contains a half ball of B(x, δ), or

disjoint with B(x, δ). Moreover, only one Dj intersects B(x, δ), for otherwise, the two half

balls of B(x, δ) belong to two different Dj, j = 1, . . . , k, and so x ∈ Ω◦, which is absurd.

Therefore, B(x, δ) ∩ Ω = B(x, δ) ∩Dj and it is a closed half ball.

Finally, notice that Si ∩ Sj is a ν-zero set, the lemma is proved. �

Theorem 5.1. Let C be a convex polyhedral cone. If (T,J ) is a local tiling of C which

covers C ∩B(0, R) with R > diam(T ), then T must be a polyhedral body.

Proof. By Lemma 5.1, an open neighborhood N of 0 is contained in T , and N ∩ ∂T =

N ∩ ∂C, hence every x ∈ N ∩ ∂T is a ‘nice’ point in T . Also, notice that x ∈ ∂(T + t) is

a ‘bad’ point of the tile T + t if and only if x− t ∈ ∂T is a ‘bad’ point of the tile T .

Suppose on the contrary that the set of ‘bad’ point in ∂T , which we denote by G, is

not empty. Let β be a non-zero vector in R
n such that 〈x, β〉 > 0 for all x ∈ C \ {0}. Let

z0 be a point in G such that 〈z0, β〉 attains the minimal value. Let

ǫ = min{〈t, β〉; t ∈ J \ {0}}.

Clearly ǫ > 0 by the discreteness of J . Let z be a point in G such that |z − z0| < ǫ
|β| ; a

simple calculation shows that 〈z − t, β〉 < 〈z0, β〉 for any t ∈ J \ {0}.
If there is only one tile in T + J covering z, then for a small r > 0, Bn(z, r) ∩ T =

Bn(z, r) ∩ C, which implies that z is a ‘nice’ point, a contradiction.

If there are exactly two tiles in T + J covering z, say, z ∈ T ∩ (T + t1) where t1 6= 0,

then

Bn(z, r) ∩C = Bn(z, r) ∩ (T ∪ (T + t1))
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for r small. So, by Lemma 5.2, z is a ‘bad’ point of T + t1 since z is a ‘bad’ point of T , and

z − t1 is a ‘bad’ point of T . Hence z − t1 ∈ G and 〈z − t1, β〉 < 〈z0, β〉, which contradicts

the minimality of z0.

If there are exactly k+1 number of tiles covering z, say, z ∈ T ∩ (T + t1)∩· · ·∩ (T + tk),

then by Lemma 5.2, for at least one 1 ≤ j ≤ k, z is a ‘bad’ of T + tj . By the same

argument as above, we get a contradiction. The theorem is proved. �

Next, we show a local tiling of C induces a local tiling of Q for every (n− 1)-face Q.

Theorem 5.2. Let C ⊂ R
n be a convex polyhedral cone, and (T,J ) be a local tiling

of C which covers C ∩ B(0, R) with R > diam(T ). Then for any (n − 1)-face Q of C,

(T ∩Q,J ∩Q) is a local tiling of Q which covers Q ∩B(0, R).

Proof. By Theorem 5.1, T is a polyhedral body. Let ν be the (n−1)-dimensional Hausdorff

measure. We claim that for ν-almost every point x ∈ ∂T , there exists a real number δ > 0

such that Bn(x, δ) ∩ T is a closed half ball. By compactness of T , there exists xj ∈ ∂T ,

rj > 0, j = 1, . . . , k, such that each B(xj, rj) ∩ T is a finite non-overlapping union of

polyhedral corners and ∂T is covered by {B(xj, rj)∩ T ; j = 1, . . . , k}. So our claim holds

by Lemma 5.2(ii).

Since

(T + J ) ∩Q = (T ∩Q) + (J ∩Q),

we have that (T ∩Q,J ∩Q) is a covering of Q∩B(0, R). To prove the theorem, it suffices

to show that (T ∩Q,J ∩Q) is a packing of Q, that is, the intersection

(5.1) ((T ∩Q) + t1) ∩ ((T ∩Q) + t2)

is a ν-zero set for t1, t2 ∈ J ∩Q and t1 6= t2.

Suppose the intersection (5.1) is not a ν-zero set, then by the claim above, there exists a

point x in the above intersection such that both Bn(x, δ)∩ (T + t1) and Bn(x, δ)∩ (T + t2)

are closed half balls for δ small enough. It follows that the closed half ball Bn(x, δ) ∩ C

coincide with the above two half balls, and is a subset of both T + t1 and T + t2, a

contradiction. The theorem is proved. �

6. Proof of Theorem 1.1(i)

To prove Theorem 1.1(i), we need only show that every irregular convex polyhedral

cone with regular boundary admits no translation tiling. For if C is an irregular cone

whose boundary is not regular and if C admits a ‘large’ local tiling (T,J ), then there is
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an (n−1)-face Q of C is irregular, and by Theorem 5.2, Q also admits a ‘large’ local tiling.

Therefore, Theorem 1.1(i) can be proved by induction.

Assumptions In the rest of this section, we always assume that C is an irregular

convex polyhedral cone with regular boundary, and (T,J ) is a packing of C as well as a

covering of C ∩B(0, R) with R > diam(T ).

Under the above assumptions, we are going to deduce a contradiction.

Notations Let F be a feasible 2-face of C with frame a and b. We may assume that

a and b are orthogonal by applying a linear transformation. Let B∗ ⊂ C◦ be a ball in

Theorem 4.1, that is, for any y ∈ B∗,

Xy = (span(F ) + y) ∩ C

is a corner-cut slice, and

(6.1) N = sup
y∈B∗

dH(Xy, F ) < ∞,

(6.2) M = sup
y∈B∗

|a1(y)| < ∞, M ′ = sup
y∈B∗

|b1(y)| < ∞,

where a1(y) and b1(y) are the origins of the rays on ∂Xy with directions a and b, respec-

tively. Denote Σ = span(F ).

Lemma 6.1. Let δ > 0. For any y ∈ δB∗, Xy is a corner-cut slice and

(6.3) sup
y∈δB∗

dH(Xy , F ) = δN,

where N is defined in (6.1).

Proof. Since

Xy = (Σ + y) ∩ C = δ ((Σ + y/δ) ∩C) = δXy/δ ,

that is, Xy is a dilation of Xy/δ , we infer that Xy is a corner-cut slice for y ∈ δB∗. (6.3)

follows from the fact that dH(δA, δB) = δdH (A,B). �

Now we study the intersection of Σ + y and the local tiling (T,J ). We define the

x-section of a set A as

(6.4) (A)x = A ∩ (Σ + x).

Here are some easy facts.

Lemma 6.2. (i) If t ∈ J \ F , then (T + t) ∩ F = ∅.
(ii) For t ∈ J ∩ F , we have (T + t)x = (T )x + t.
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Proof. (i) For otherwise, there exists x ∈ T and t ∈ J \F such that x+t ∈ F . So x/2+t/2,

a convex combination of x and t belongs to F . By the definition of a face, x, t ∈ F , which

is a contradiction.

(ii) Since (T+t)x = (T+t)∩(Σ+x) = (T∩(Σ−t+x))+t = T∩(Σ+x)+t = (T )x+t. �

Let µr be the r-dimensional Lebesgue measure.

Lemma 6.3. For any δ > 0, there exists y ∈ δB∗ such that ((T )y,J ∩ F ) is a packing of

Xy.

Proof. Fix t1, t2 ∈ J ∩ F with t1 6= t2. Notice that T + t1 and T + t2 are disjoint in

measure µn. Let M ⊂ δB∗ be a cube of dimension n− 2 such that M is orthogonal to Σ.

Let f : C◦ → R be the function

f(x) = µ2((T + t1)x ∩ (T + t2)x).

By Fubini Theorem,
∫

x∈M
f(x)dx ≤ µn((T + t1) ∩ (T + t2)) = 0,

so f(x) = 0 a.e. x ∈ M .

Hence, for a pair t1, t2 ∈ J , to insure µ2((T + t1)x∩ (T + t2)x) = 0, we need to eliminate

a measure zero set of M . After eliminating the measure zero sets for all pairs in J ∩F , a

point y in the remaining set fulfills the requirement of the lemma. �

Lemma 6.4. There exists δ > 0 such that for any y ∈ δB∗, B(0, R) ∩ Xy is covered by

(T )y + (J ∩ F ).

Proof. Without loss of generality, we may assume that J is a finite set. Let

ε = min{d(T + t, F ); t ∈ J \ F}.

By Lemma 6.2, d(T + t, F ) > 0 for all t ∈ J \ F , so ε > 0. In other words, we have that

(6.5) d(T + t, F ) ≥ ε for all t ∈ J \ F.

We choose 0 < δ < ε/N , where N is defined in (6.1). Pick any y ∈ δB∗, by Lemma 6.1,

(6.6) dH(Xy, F ) < ε.

Equation (6.5) together with (6.6) imply that

(T + t) ∩Xy = ∅ for t ∈ J \ F,
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so Xy ∩ B(0, R) is covered by (T + t)y with t ∈ J ∩ F . Finally, (T + t)y = (T )y + t by

Lemma 6.2(ii). The lemma is proved. �

Proof of Theorem 1.1(i). We prove assertion (i) of the theorem by induction on the

dimension of C.

For dimC = 1 or 2, the cone must be regular, and the theorem holds automatically.

Suppose dimC = n. Assume on the contrary that C is irregular, (T,J ) is a packing of

C as well as a covering of C ∩B(0, R) with R > diam(T ).

If C has irregular boundary, then an (n − 1)-face Q of C is an irregular cone. By

Theorem 5.2, (T ∩ Q,J ∩ Q) is a packing of Q and a covering of Q ∩ B(0, R), which

is impossible by our induction hypothesis. So C must be an irregular cone with regular

boundary. Now we use the notations listed in the beginning of this section.

Let 0 < κ < R − diam(T ). Let δ > 0 be the constant in Lemma 6.4 and satisfies the

additional requirement

δ < min

{

κ

M
,

R− κ

M +M ′

}

,

where M and M ′ are the constants in formula (6.2).

Let y be a point in δB∗ satisfying the requirements of Lemma 6.3. Then members in

the cluster

(6.7) {(T )y + t; t ∈ J ∩ F}

are disjoint in µ2, and cover the set B(0, R) ∩Xy.

Since δ < κ/M , by (6.2) and Xy = δXy/δ , for any y ∈ δB∗, |a1(y)| < κ where a1(y) is

the origin of the ray on ∂Xy with direction a. Then B(a1(y), R−κ) ⊂ B(0, R) and hence

the cluster in (6.7) is a packing of Xy and covers the set B(a1(y), R− κ) ∩Xy. Similarly,

from δ < (R − κ)/(M +M ′)), we deduce that R − κ > |a1(y) − b1(y)| for any y ∈ δB∗.

However, in next section, we prove that this is impossible (Theorem 7.1), and we get a

contradiction. This completes the proof of the theorem. ✷

7. Corner-Cut region can not be tiled by translations of one set

Let X ⊂ R
2 be a unbounded convex region determined by a system of liner inequalities:

(7.1) ajx+ bjy + cj ≥ 0, 1 ≤ j ≤ N.

We call X a corner-cut region, if X has at least two extreme points, and the two rays on

∂X are not parallel.
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Let a1, a2, · · · , aq be the extreme points of ∂X from left to right, and write

∂X = ℓ0 ∪ ℓ1 ∪ · · · ∪ ℓq,

where ℓ0 and ℓq are two rays, and the other ℓj = [aj , aj+1] are line segments.

Theorem 7.1. Let X ⊂ R
2 be a corner-cut region, T be a compact set, and J ⊂ R

2 be a

finite set. Let

R > max{diam(T ), |a1 − a2|}.

Then the following two items can not be fulfilled at the same time:

(i) X ∩B(a1, R) is covered by T + J and T + J ⊂ X;

(ii) The members in {T + t; t ∈ J } are disjoint in Lebesgue measure.

Note that in the above theorem, we do not assume that T = T ◦.

Proof. By applying an affine map, without loss of generality, we may assume that a1 = 0

is the origin, and the two rays on ∂X are ℓ0 = {0}× [0,+∞) and ℓq = aq + [0,+∞)×{0}.
(We remark that under this assumption, it holds that |a1 − a2| ≤ |a1 − aq|. So we can use

Theorem 7.1 in the previous section.) For simplicity, we identify R
2 to the complex plane

C.

Suppose on the contrary that (T,J ) is a pair satisfying the two items in Theorem 7.1.

By Remark 1.1, without loss of generality, we may assume 0 ∈ T , 0 ∈ J , J ⊂ X, and

T ⊂ X.

Lemma 7.1. For any b ∈ {a1, · · · , aq}, b belongs to exact one tile in {T + t : t ∈ J }.
Especially, T is the only tile contains the point a1 = 0.

Proof. Assume that b ∈ (T+t1)∩(T+t2), where t1, t2 ∈ J and t1 6= t2. Then b−t1, b−t2 ∈
T . So

z1 = b− t1 + t2 ∈ T + t2 ⊂ X and z2 = b− t2 + t1 ∈ T + t1 ⊂ X.

Hence b = (z1 + z2)/2, which contradicts that b is an extreme point. �

The following is a technical lemma we need in the proof of the following Lemma 7.3.

Lemma 7.2. Let A ⊂ R
2 be a trapezoid, and let L = [0, 1]×{0} be the base line of A with

shorter length. Let T be a compact subset of A, and J = {t0 = 0, t1, . . . , tp} be a subset

of L with p ≥ 1. Then (T,J ) can not be a tiling of A.
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The proof of the above lemma is very similar to the proof of Theorem 8.2, but much

more simpler. We put the proof in Appendix A. In the following, the topology we use is

the relative topology of X.

Lemma 7.3. A neighborhood of [a1, a2] ⊂ T .

Proof. By our assumption, [a1, a2] ⊂ B(0, R) and is covered by (T,J ).

Let t0 = 0, t1, · · · , tp be the elements in J satisfying

(T + tj) ∩ [a1, a2] 6= ∅.

Then t0, t1, · · · , tp ∈ [a1, a2], since [a1, a2] is a face of X.

To prove the lemma, we need to show that p = 0. Suppose on the contrary p ≥ 1.

Assume that t0, t1, · · · , tp are arranged from left to right on [a1, a2] . Let L be the line

containing [a1, a2]. There exists δ > 0 such that no element of J \ {t0, t1, . . . , tp} locates

in strip between L and L+ δi. Denote

A = X ∩ (L+ [0, δ] · i),

then using (T + tj) ∩ (L+ [0, δ] · i) = (T + tj) ∩A, it is easy to show that

A = (T ∩A) + {t0, . . . , tp},

and the right hand side is a tiling of A. We choose δ small to ensure A is a trapezoid. By

Lemma 7.2, this is impossible. The lemma is proved. �

Let z0 ∈ ∂X be the first point on the right side of a1 such that z0 is not a relative interior

point of T , that is, there exists t∗ ∈ J \{0}, such that z0 ∈ T + t∗. Then z0 6∈ {a1, · · · , aq}
by Lemma 7.1 and z0 is on the right side of a2 by Lemma 7.3.

Let γ be the open broken line from a1 to z0 on ∂X. Since z0 − t∗ ∈ T ⊂ X and

t∗ ∈ J ⊂ X, their real parts must be non-negative, i.e.,

(7.2) Re(z0 − t∗) ≥ 0 and Re(t∗) ≥ 0.

If Re(z0 − t∗) = 0, then t∗ and z0 are located in the same vertical line, so to guarantee

z0 ∈ T + t∗, we must have z0 = t∗. Since the slope of the line containing z0 is larger

than the slope of the line containing [a1, a2], we get that T + t∗ is not a subset of X, a

contradiction. If Re(t∗) = 0, then T + t∗ can not contain z0, which is also a contradiction.

So the equalities in (7.2) are strict, and consequently,

(7.3) 0 < Re(z0 − t∗) < Re(z0),
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a1

a2

a3

b

t∗

z0

Figure 3.

(7.4) 0 < Re(t∗) < Re(z0).

Moreover, since z0 is a lowest point in t∗ + T (w.r.t. the vertical direction), z0 − t∗ must

be a lowest point in T (w.r.t. the vertical direction), hence, by formula (7.3), we have

(7.5) z0 − t∗ ∈ γ◦.

Let b 6= 0 be the smallest point on ℓ0 ∩ J . Clearly the interval [b, a1] \ {b} is contained

in T and does not intersect any other tiles. Denote by κ the open broken line from b to

z0 on ∂X, then there is an open set U such that

κ ⊂ U ⊂ T.

See Figure 3, where we use a polygon to illustrate the open set U .

Next we show that

(7.6) (b+ κ) ∩ (t∗ + κ) 6= ∅.

We claim that t∗ + b, the initial point of t∗ + κ, is above b + κ, and b + z0, the terminal

point of b+κ, is above t∗+κ. The first assertion holds, since by formula (7.4), t∗ is above

the curve κ, and the second assertion holds since the point b+ (z0 − t∗) is above κ. Our

claim is proved. If t∗ is below the curve b+ γ, then apparently (7.6) holds. If t∗ is above

b + γ, regarding b + γ and t∗ + γ as graphs of two functions and using the Intermediate

Value Theorem, we conclude (b+ γ) ∩ (t∗ + γ) 6= ∅ and (7.6) is confirmed.

Let x be the intersection of the two curves in (7.6), then x+[0, δ]2 belongs to both b+U

and t∗+U for δ small. It follows that (b+T )◦∩(t∗+T )◦ 6= ∅, which is a contradiction. �
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8. From tilings of (R+)n to tilings of (Z+)n

Let T be a compact set satisfying T = T ◦. Let R > diam(T ). Let (T,J ) be a packing

of (R+)n as well as a covering of (R+)n ∩B(0, R); we call such (T,J ) a local tiling in this

section. As before, we may assume that 0 ∈ T, 0 ∈ J , T ⊂ (R+)n, and J ⊂ (R+)n.

Since R > diam(T ), for each j ∈ {1, . . . , n}, J ∩ ejR
+ contains at least one non-zero

element. By applying a dilation matrix U = diag(u1, . . . , un), we may assume that

(8.1) e1, . . . , en ∈ J , and λej 6∈ J for all 0 < λ < 1 and all j = 1, . . . , n.

Since (T,J ∩B(0, R)) also covers (R+)n ∩B(0, R), without loss of generality, we assume

that

(8.2) J ⊂ B(0, R);

especially, J is a finite set.

The tiling of R+ has been characterized by Odlyzko implicitly. Some idea of this section

comes from Odlyzko [17].

Theorem 8.1. ([17]) Let (T,J ) be a tiling of R+. Then there exist a real number c > 0

such that cT = E + [0, 1], where E ⊂ Z
+.

For x = (x1, . . . , xn) ∈ R
n, we use ‖x‖1 = max |xj| to denote the 1-norm. We say x > 0

(or x ≥ 0) if xj > 0 (or xj ≥ 0) for all j = 1, . . . , n.

Lemma 8.1. Let (T,J ) be a local tiling of (R+)n satisfying (8.1) and (8.2). Then

J ∩ [0, 1)n = {0} and [0, 1]n ⊂ T.

Consequently, if t, t′ ∈ J , then ‖t− t′‖1 ≥ 1.

Proof. Let Q be a m-face of (R+)n with 1 ≤ m ≤ n, denote

D = Q ∩ [0, 1)n.

Let Q⊥ be the (n − dimQ)-face of (R+)n complement to Q, that is, Q + Q⊥ = (R+)n.

Denote D⊥ = Q⊥ ∩ [0, 1)n, then D +D⊥ = [0, 1)n.

For a m-face Q with 1 ≤ m ≤ n− 1, we define δQ as

δQ =

{

1, if J ∩ [0, 1)n \Q = ∅;
min{d(t,Q); t ∈ J ∩ [0, 1)n \Q}, otherwise.

Set

(8.3) δ = min{δQ; Q is a face of (R+)n}.
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We shall prove by induction on dimQ that

(8.4) J ∩D = {0}, and D ⊂ T

The result holds when m = 1 by the assumption (8.1). Suppose m ≥ 2 and (8.4) holds

for m− 1. Without loss of generality, we assume Q is generated by e1, . . . , em.

Denote

Qj = span({e1, . . . , em} \ {ej}), Dj = [0, 1)n ∩Qj.

By the induction hypothesis, we have

(8.5) Dj ⊂ T, and J ∩Dj = {0}, 1 ≤ j ≤ m.

Denote δ′ = δ/
√
n and

Lj = Dj + [0, δ′)D⊥
j .

Pick x ∈ Lj and let T+t be the tile containing x. Notice that x ∈ [0, 1)n and d(x,Dj) < δ.

It follows that t ∈ [0, 1)n and d(t,Dj) < δ since x− t ≥ 0. Moreover, since dimDj ≤ n−1,

by the definition of δ, we have t ∈ Dj , which forces t = 0 by our induction hypothesis.

This proves that

(8.6) Lj ⊂ T, j = 1, . . . ,m.

Suppose on the contrary that there exists t = (t1, . . . , tm, 0, . . . , 0) ∈ J ∩ D and t 6= 0,

then by (8.5), tj > 0 for j = 1, . . . ,m. It is seen that

L1 = [0, δ′)× [0, 1)m−1 × [0, δ′)n−m and Lm = [0, 1)m−1 × [0, δ′)× [0, δ′)n−m.

We have that

L1 + t = [t1, t1 + δ′)×
m
∏

j=2

[tj , tj + 1)× [0, δ′)n−m.

Lm + em = [0, 1)m−1 × [1, 1 + δ′)× [0, δ′)n−m.

Hence

(L1 + t)∩ (Lm + em) = [t1,min{1, t1 + δ′})×
m−1
∏

j=2

[tj , 1)× [1, 1 +min{tm, δ′})× [0, δ′)n−m,

which implies that (T + t) ∩ (T + em) has positive Lebesgue measure. This contradiction

proves that J ∩D = {0}, the first assertion of (8.4).

Now J ∩ D = {0} implies that T is the only tile intersecting D. It follows that

D ∩ B(0, R) is a subset of T . By Lemma 8.2 we list below, D is a subset of T , which

verifies the second assertion of (8.4).

Finally, set D = [0, 1)n in (8.4), we obtain the lemma. �
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Lemma 8.2. If U is a connected set and B(0, R) ∩ U ⊂ T , then U ⊂ T .

Proof. If U is not a subset of B(0, R), then there exists x ∈ U ∩ B(0, R) such that |x| is
as closer to R as we want, so x 6∈ T , which is a contradiction. Therefore, we must have

U ⊂ T . �

Let ‘≺’ be the order on (R+)n defined by a ≺ b if b− a ≥ 0 and a 6= b.

Theorem 8.2. Let (T,J ) be a local tiling of (R+)n satisfying (8.1) and (8.2). Then

(i) J ⊂ (Z+)n.

(ii) There exists a subset E ⊂ (Z+)n such that T = E + [0, 1]n.

Proof. To prove the theorem, we need only prove the following two statements: For each

z ∈ (Z+)n ∩B(0, R),

(8.7) {t ∈ J ; t � z} ⊂ (Z+)n,

(8.8) u+ (0, 1)n belongs to exactly one tile for all u ∈ (Z+)n ∩B(0, R) with u � z.

In the following, we prove the above statements by induction on z. If z = 0, the

statements are valid by Lemma 8.1. Assume 0 ≺ z. Suppose (8.7) and (8.8) hold for all

z′ ∈ (Z+)n with z′ ≺ z, and we show they hold for z in the following.

First, we prove (8.7). Write z = (z1, . . . , zn). By the induction hypothesis of (8.8), we

have

Y =
⋃

{T + t; t ∈ J ∩ (Z+)n and t ≺ z}

covers the set

Ω = [0, z1 + 1]× · · · × [0, zn + 1] \ (z + [0, 1]n),

which is a rectangle missing the ‘last cube’ z+[0, 1]n. So if t ∈ J and t ≺ z, then t+[0, 1]n

and Y overlap, which forces t ∈ (Z+)n. Therefore, no matter z ∈ J or not, (8.7) holds.

Next, we prove (8.8). Assume on the contrary (8.8) is false for z, then the ‘last cube’

z + (0, 1)n intersects at least two tiles. Denote the tiles intersecting z + (0, 1)n by T + t1,

T + t2, . . . , T + tℓ. In particular, z does not belong to J . Clearly

{t1, . . . , tℓ} ⊂ [0, z1 + 1)× · · · × [0, zn + 1).

Since Ω is covered by tiles T+t with integral t ≺ z, we conclude that tj is either integral

and precedes z, or tj belongs to the ‘last cube’ z + [0, 1]n. In the formal case, we must

have tj = 0, for otherwise, T +tj contains only a proper subset of z+(0, 1)n, so T contains

only a proper subset of (z − tj) + (0, 1)n, which contradicts our induction hypothesis on
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(8.8). In the later case, by Lemma 8.1, at most one element of J belongs to z + [0, 1)n.

It follows that there are exactly two tiles intersecting z + (0, 1)n, one is T , and the other

one, which we denote by T + t2, satisfies z ≺ t2. So

(8.9) (z + (0, 1)n) ∩B(0, R) ⊂ T ∪ (T + t2).

Let πj be the projection such that πj(x1, . . . , xn) = xj . Notice that πj(t2) > πj(z) for

at least one j ∈ {1, . . . , n}, without loss of generality, let us assume that π1(t2) > π1(z).

Clearly, (T + t2) ∩ (z + (0, 1)n) = (t2 + [0, 1]n) ∩ (z + (0, 1)n), so the open rectangle

U = z + (0, π1(t2)− π1(z))× (0, 1)n−1,

as a subset of z + (0, 1)n, is not covered by T + t2. Consequently, U ∩ B(0, R) must be

covered by T . It follows that U ⊂ T by Lemma 8.2.

Recall that e1 ∈ J . Now (T + e1) ∩ (T + t2) contains (e1 + U) ∩ (t2 + (0, 1)n) as a

subset, and the later one has positive Lebesgue measure, which is a contradiction. This

contradiction proves that

(z + (0, 1)n) ∩B(0, R) ⊂ T or T + t2.

In the former case, z + (0, 1)n ⊂ T by Lemma 8.2; in the later case, t2 = z and clearly

z + (0, 1)n ⊂ T + z. This verifies (8.8) and finishes the proof of the theorem. �

Proof of Theorem 1.1 (ii). It is the immediate consequence of Theorem 8.2. ✷

Proof of Corollary 1.2. Let (T,J ) be a tiling of (R+)n with T = T ◦. Then there is

a diagonal matrix U such that (T ′ = UT,J ′ = UJ ) satisfies the normalization condition

(8.1). For any R > diam(T ′), (T ′,J ′ ∩ B(0, R)) is a local tiling of (R+)n satisfying the

conditions of Theorem 8.2. It follows that T ′ = E + [0, 1]n for some E ⊂ (Z+)n, and

J ′ ∩B(0, R) ⊂ (Z+)n for all R > 0, so J ′ ⊂ (Z+)n.

Finally, notice that (E + [0, 1]n,J ′) is a tiling of (R+)n if and only if (E,J ′) is a tiling

of (Z+)n. ✷

9. Self-affine tiles with polyhedral corners

Let T = T (A,D) be a n-dimensional self-affine tile with expanding matrix A and digit

set D. Denote

Dk = D +AD + · · ·+Ak−1D,

then iterating AT (A,D) = T (A,D) +D k-times, we obtain

AkT (A,D) = T (A,D) +Dk.
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Recall that T has a polyhedral corner at x0 means that there is a convex polyhedral

cone C and a number r > 0 such that

(9.1) T ∩Bn(x0, r) = x0 +Bn(0, r) ∩ C.

Proof of Theorem 1.2. Take k ≥ 1. Let B(0, ℓk) be the maximal ball centered at 0

and contained in AkB(0, 1). Since A is expanding, it is seen that ℓk → ∞ when k → ∞.

Applying Ak to both sides of (9.1), we have

AkT ∩AkB(x0, r) = Akx0 + (AkC ∩AkB(0, r)).

Using AkT = T +Dk, we deduce that

(9.2) (T +Dk) ∩AkB(x0, r) = Akx0 + (AkC ∩AkB(0, r)).

Notice that B(Akx0, rℓk) ⊂ AkB(x0, r). Let

Jk = {t ∈ Dk; T + t intersects Akx0 +AkC ∩B(0, rℓk − diam(T ))}.

Since T +Dk is a covering of Akx0 + (AkC ∩AkB(0, r)), T + Jk is a covering of

Akx0 +AkC ∩B(0, rℓk − diam(T )).

On the other hand, T +Jk ⊂ T +Dk = AkT , and clearly T +Jk ⊂ B(Akx0, rℓk); these

together with (9.2) imply that

T + Jk ⊂ AkT ∩B(Akx0, rℓk) ⊂ Akx0 +AkC,

which proves that (T,Jk −Akx0) is a packing of AkC.

Let k be large enough so that ℓkr > 2diam(T ), then (T,Jk − Akx0) is a ‘large’ local

tiling of AkC. Hence, by Theorem 1.1, AkC, and also C, are regular, and T is a finite

union of translations of [0, 1]n up to a linear transformation. ✷
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Appendix A. Proof of Lemma 7.2.

Proof. For simplicity, we identify R
2 to the complex plane C. Let L0 = {x+hi; x ∈ [a, b]}

be the base line with longer line. Assume that t1, t2, · · · , tp are points in L from left to

right. Suppose on the contrary that (T, {t0, t1, . . . , tp}) is a tiling of A. Let

I = {x+ y(a+ hi);x ∈ [0, t1], y ∈ [0, 1]}

be a parallelogram on the left part of A. Clearly I ⊂ T .

Let M be the largest integer such that Mt1 < 1. We claim that T ∩
(

⋃M−1

m=0 (I +mt1)
)

is a union of translations of I. To prove this, we need only prove the following two

statements: for each integer m, 0 ≤ m ≤ M − 1, we have

(i) J ∩ [0,mt1] ⊂ t1Z
+;

(ii) For every integer 0 ≤ u ≤ m, I + ut1 belongs to one tile except a measure zero set.
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We prove (i) and (ii) by induction on m. Clearly (i) and (ii) holds for m = 0. Now we

assume that (i) and (ii) holds for m− 1 with m ≥ 1.

First, we prove (i). If t ∈ J ∩ [0,mt1), then t + I and
⋃m−1

j=0 (I + jt1) overlap, we

have t /∈ ((m− 1)t1,mt1) by the induction hypothesis of (ii). Therefore, by the induction

hypothesis of (i), no matter mt1 ∈ J or not, (i) holds for m.

Now we prove (ii). Suppose on the contrary that (ii) is false. Then I + mt1 does

not belong to one tile. This first implies that mt1 6∈ J . Secondly, if there exists 1 ≤
m′ ≤ m − 1, such that m′t1 ∈ J and 0 < µ((T + m′t1) ∩ (I + mt1)) < µ(I), then

0 < µ(T ∩ (I + (m − m′)t1)) < µ(I), which contradicts the assumption (ii). Therefore,

if a tile T + t satisfying that 0 < µ((T + t) ∩ (I + mt1)) < µ(I), then either t = 0, or

mt1 < t < (m + 1)t1. In the latter case, there is only one t satisfying this property, and

we denote it by t∗. Then

I +mt1 ⊂ T ∪ (T + t∗).

Denote U = {x+ y(a+ hi); x ∈ [mt1, t
∗), y ∈ [0, 1]}. By U ∩ (T + t∗) = ∅ and the above

equation, we have U ⊂ T . Then the intersection of T + t1 and T + t∗ contains U + t1 as a

subset, which is a contradiction. So (ii) holds for m.

Since tp is the rightmost point of J , T + tp must contains a relative neighborhood

B(1, r) ∩ A of 1, for all small enough r(< 1 − Mt1). Moreover, we have B(1, r) ∩ A =

(T + tp) ∩B(1, r), thus

(A.1) (B(1, r) ∩A)− tp = T ∩B(1− tp, r).

On the other hand, since 0 ≤ 1 − tp ≤ Mt1 and T ∩
(

⋃M−1

m=0 (I +mt1)
)

is a union of

translations of I, then for small enough r, T ∩B(1− tp, r) is a half ball or a translation of

I∩B(0, r), or a translation of I∩B(t1, r), which contradicts with the shape of T∩B(1−tp, r)

in (A.1). The lemma is proved. �
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