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Abstract. We prove an extension of a ham sandwich theorem for families

of lines in the plane by Dujmović and Langerman. Given two sets A,B of
n lines each in the plane, we prove that it is possible to partition the plane

into r convex regions such that the following holds. For each region C of the

partition there is a subset of crn1/r lines of A whose pairwise intersections are
in C, and the same holds for B. In this statement cr only depends on r. We

also prove that the dependence on n is optimal.

1. Introduction

A general measure partition problem deals with the way we can split points or
measures in Euclidean spaces. Given a set of rules to split the ambient space, we
are interested to know if we can divide a given set of points in a prescribed way.
The quintessential result of this kind is the classic ham sandwich theorem.

Theorem. Given d finite sets of points in Rd in general position such that each
set is of even cardinality there exists a hyperplane that simultaneously splits each
set exactly by half.

The proof of a mass partition result usually boils down to understanding topolog-
ical properties of the space of partitions [Živ17]. The methods developed to tackle
measure partitions problems have broad applications in combinatorial topology.

In this manuscript we are interested in extensions of the ham sandwich theorem
for convex partitions of the plane. A convex partition of R2 into r parts is a family
of closed sets C1, . . . , Cr ⊂ R2 such that

• the sets cover R2, so ∪ri=1Ci = R2,
• the interiors of the sets are pairwise disjoint, and
• each Ci is a closed convex set.

The ham sandwich theorem has been generalized to convex partitions of the
plane. The following theorem was proven independently by Ito, Uehara, and
Yokoyama [IUY00], by Bespamyatnikh, Kirkpatrick, and Snoeyink [BKS00], and
by Sakai [Sak02].

Theorem 1.1. Let A1, A2 be two finite sets of points in R2, in general position.
If the cardinality of each set is a multiple of r, there exists a partition of the plane
into r convex sets C1, . . . , Cr such that for each i ∈ {1, 2}, j ∈ {1, 2, . . . , r} we have

|Ai ∩ Cj | =
1

r
|Ai|.

In other words, each set is partitioned evenly.

The continuous version of the theorem above has been generalized to convex
partitions of Rd with d measures [Sob12, KHA14, BZ14]. The high-dimensional
versions of Karasev, Hubard, and Aronov [KHA14], and of Blagojević and Ziegler
[BZ14] hold in a much more general setting. These were motivated by a problem
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of Nandakumar and Rao, which has been recently solved [AAK18]. A discrete
version in high dimensions was recently established [BRSZ19]. Theorem 1.1 can be
bootstrapped to obtain partitions of measures where each part has positive size in
an arbitrary number of measures [BPSZ17]. The planar version has applications to
drawings of political district maps [Hum11, Sob17].

In this manuscript we are interested in splitting families of lines in R2 instead
of families of points. Our main result is an extension of Theorem 1.1 to families of
lines. We use the following definition for what it means to split a family of lines.
Given a set L of lines in the plane such that no two lines of L are parallel, let I(L)
be the set of pairwise intersection points of L. We call I(L) the incidence set of
L.

Definition 1. Given a closed set K ⊂ Rd, and a set of lines L in the plane such
that no two sets of lines of L are parallel, we say that K encloses L if

I(L) ⊂ K.

If K is convex, the condition above is equivalent to conv(I(L)) ⊂ K. A ham
sandwich theorem with this definition was proved by Dujmović and Langerman.

Theorem 1.2 (Dujmović, Langerman 2013 [DL13]). Given two finite sets A, B of
lines each in the plane, if no two lines of A ∪ B are parallel, there exists a line `
such that each of the two closed half-spaces it defines encloses a subset of at least√
|A| lines of A and a subset of at least

√
|B| lines of B.

Given two sets of lines, we obtain convex partitions of the plane where each part
encloses a large subset of lines. Partitions related to families of lines have been
studied before in other settings. For instance, the celebrated polynomial partition-
ing method of Guth and Katz shows the existence of an equipartition of I(L) using
a low-degree polynomial, where no line intersects too many regions [GK15, Gut16].
A recent work of Schnider proves extensions of the ham sandwich theorem for fam-
ilies of lines in R3 [Sch19], under a different interpretation of separation of lines. In
order to state our main result, we need the following definition.

Definition 2. We say that a set of lines L in the plane is in general position if

• No two lines in L are parallel
• No three lines in L are concurrent
• If three points in I(L) are colinear, they belong to the same line in L.

With this, our main result is the following.

Theorem 1.3. Let A,B be two finite sets of lines in R2 such that A ∪ B is in
general position, and let r be a fixed positive integer. Then, there is a convex
partition (C1, . . . , Cr) of R2 into r parts such that for all j ∈ {1, . . . , r} there exist
sets Aj ⊂ A, Bj ⊂ B such that I(Aj) ⊂ Cj , I(Bj) ⊂ Cj and

|Aj | ≥ rln(2/3)|A|1/r − 2r, |Bj | ≥ rln(2/3)|B|1/r − 2r.

Notice that, if r is a power of two, a repeated application of Theorem 1.2 implies
the existence of a convex partition into r parts where each part encloses |A|1/r lines
of A and |B|1/r lines of B. We do not know if the leading factor rln(2/3) ∼ r−0.405

is necessary in general. The dependence of Theorem 1.3 on |A| and |B| is optimal
up to that factor, as the following theorem shows.

Theorem 1.4. Let n, r be positive integers. There exist sets A,B of n lines in
the plane in general position such that for every convex partition C1, . . . , Cr of the
plane into r sets, there exists some j ∈ {1, . . . , r} such that either Cj encloses at

most dn1/re lines of A or Cj encloses at most dn1/re lines of B.
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The proof of Theorem 1.3 is similar to the first proof of Theorem 1.1 [BKS00].
The main idea is to use only partitions of R2 into two or three convex pieces, and
subdivide each piece until we obtain the desired partition. The only topological tool
needed is the Knaster-Kuratowski-Mazurkiewicz theorem [KKM29] for a triangle.
In Section 2 we prove an Erdős-Szekeres type lemma which is crucial in the main
proof. In Sections 3 and 4 we discuss properties of partitions of R2 into three parts.
In Section 5 we prove Theorem 1.3, and we prove our upper bounds in Section 6.
Finally, in Section 7 we include remarks in the proof. We discuss the extensions of
the Erdős-Szekeres theorem which would allow us to extend other proofs of Theorem
1.1 to the setting with lines.

2. Partitions into two and three parts

Given a set A of lines in the plane, and K ⊂ Rd, we consider

µA(K) = max{|A′| : A′ ⊂ A, I(A′) ⊂ K}.

We now prove a couple of properties of µA for convex partitions of R2 into two
or three parts.

Lemma 2.1. Let A be a set of n lines in R2 in general position. Let ` be another
line in the plane, which defines a convex partition of R2 into two parts C1, C2.
Then we have

µA(C1)µA(C2) ≥ n.

Proof. First, assume that ` does not contain any point of I(A) and is not parallel
to any line in `. We may assume that ` is a vertical line. We order the points of
the form `∩a with lines in a ∈ A by their vertical coordinates, from bottom to top.
Suppose that `∩a is the i-th point. We define xi to be the slope of a. Consider the
sequence (x1, . . . , xn). An increasing subsequence defines a subset of A enclosed by
the left side of `, while a decreasing subsequence defines a subset of A enclosed by
the right side of `. Therefore, the Erdős-Szekeres theorem finishes this case.

If ` ∈ A, then we apply the argument above to A \ ` and add ` to each enclosed
set. If ` 6∈ A and it either contains a point of I(A), is parallel to a line in A, or
both, a standard approximation argument finishes the proof. �

Lemma 2.2. Let A be a set of n lines in R2 in general position. Let r1, r2 be two
rays that star from a common point p. The broken line r1 ∪ r2 splits R2 into two
sets C1, C2. Then,

µA(C1)µA(C2) ≥ 2n

3
.

Proof. We assume that r1 and r2 are not contained in lines of A, that they do not
contain points of I(A) and that they are not parallel to lines of A. A standard
approximation argument shows that we do not lose generality by making these
assumptions. We may also assume without loss of generality that r2 is the positive
y-axis, r2 form an acute angle with the positive x-axis, and C1 is convex. See Figure
1. We split the lines in A into four types:

• Type 1: lines intersecting r1 but not r2

• Type 2: lines intersecting r2 but not r1

• Type 3: lines intersecting both r1 and r2

• Type 4: lines intersecting neither r1 nor r2.
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r2

r1

Type 1

Type 2

Type 3

Type 4

p

C1C2

Figure 1. Type assignment for the proof of Lemma 2.2

Then, we consider the sets

A1 = {a ∈ A : a has type 2,3, or 4}
A2 = {a ∈ A : a has type 1,3, or 4}
A3 = {a ∈ A : a has type 1 or 2}

Notice that |A1| + |A2| + |A3| = 2n, so at least one of the sets has cardinality
greater than or equal to 2n

3 . We are going to define a partial order on each of the
three sets in such a way that the elements of any chain pairwise intersect in C1 and
the element of any anti-chain pairwise intersect in C2. An application of Dilworth’s
theorem to the largest set among A1, A2, A3 will give us the desired conclusion.

Let us start with A1. For a line ` that intersects r2, we define

d(`) = dist(p, r2 ∩ `).
s(`) = the slope of `.

We say that `1 is comparable to `2 if either `1 = `2 or `1∩`2 ∈ C1. Furthermore,
if `1 and `2 are comparable, we say that `1 ≤ `2 if either

• `1 is of type 2 and `2 is of type 3 or
• `1 and `2 are of the same type and d(`1) ≤ d(`2).

In order to show that this is a partial order, we prove it is transitive. Suppose
that `1 ≤ `2 and `2 ≤ `3.

Case 1. The lines `1, `2, `3 are all of type 2. In this case, we know d(`1) ≤ d(`2)
and d(`2) ≤ d(`3), so d(`1) ≤ d(`3). We just need to know that `1 ∩ `3 ∈ C1. Since
d(`1) ≤ d(`2) and `1 ∩ `2 has a positive x-coordinate, then s(`1) ≥ s(`2). Similarly,
s(`2) ≥ s(`3), so s(`1) ≥ s(`3). Therefore, `1∩ `3 has a positive x-coordinate. Since
neither `1 nor `3 intersect r1, their intersection is is C1.
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Case 2. The lines `1, `2 are of type 2 and `3 is of type 3. It suffices to show
that `1 ∩ `3 ∈ C1. This is equivalent to showing that d(`1) ≤ d(`3). However,
d(`1) ≤ d(`2) and d(`2) ≤ d(`3), so we obtain the desired inequality.

Case 3. The line `1 is of type 2 and the lines `2, `3 are of type 3. We just need
to show that `1 ∩ `3 ∈ C1. This reduces to showing d(`1) ≤ d(`3), which can be
done as in Case 2.

Case 4. The lines `1, `2, `3 are all of type 3. We obtain d(`1) ≤ d(`3) as case
1, so we just need to show that `1 ∩ `3 ∈ C1. This reduces to showing that the
intersections `1 ∩ r1, `3 ∩ r1 appear in reverse order as `1 ∩ r2, `3 ∩ r2. However,
since this happens for the pairs of lines (`1, `2) and (`2, `3), we are done.

The order for A2 can be defined in an analogous way, replacing the roles of r1

and r2.
Let us define the order of A3. If ` is a line that intersects r1, we define

d′(`) = dist(p, ` ∩ r1)

We say that two lines `1, `2 in A3 are comparable if `1 ∩ `2 ∈ C1. Moreover, if
they are comparable we say that `1 ≤ `2 if either

• The lines `1, `2 are both of type 2 and d(`1) ≤ d(`2),
• The lines `1, `2 are both of type 1 and d′(`1) ≥ d′(`2), or
• The line `1 is of type 1 and the line `2 is of type 2.

Let us prove transitivity. If `1 ≤ `2 and `2 ≤ `3, the work above shows that
`1 ≤ `3 if the three lines are of the same type. Therefore, we only need to check
two cases, in which the line `1 is of type 1 and the line `3 is of type 2.

Case 1. The line `2 is of type 2. Because `1 ≤ `2, we have that s(`1) ≥ s(`2).
Since `2 ∩ `3 ∈ C1, we have that s(`2) ≥ s(`3). Therefore, s(`1) ≥ s(`3). This
means that `1 ∩ `3 ∈ C1.

Case 2. The line `2 is of type 1. This case is analogous to Case 1 if we swap
the roles of r1 and r2 and reverse the order.

�

Lemma 2.3. Let A be a set of n lines in R2 in general position. Let (C1, C2, C3)
be a convex partition of R2 into three convex parts. Then,

µA(C1)µA(C2)µA(C3) ≥ 2n

3

Proof. If (C1, C2, C3) is formed by two parallel lines, we can apply Lemma 2.1 twice
to finish. If not, then (C1, C2, C3) is formed by three rays coming out of the same
point. Consider the partition (C1, C2 ∪ C3). By Lemma 2.2, we know that

µA(C1)µA(C2 ∪ C3) ≥ 2n

3
.

Let A′ ⊂ A be the set of lines that realizes µA(C2 ∪ C3). Let ` be the line that
contains the ray spitting C2 and C3. We can apply Lemma 2.1 to A′ and ` to obtain

µA(C2)µA(C3) ≥ µA′(C2)µA′(C3) ≥ |A′| = µA(C2 ∪ C3),

which concludes the proof. �
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3. Equitable cuttings.

The gist of the proof for Theorem 1.3 is to show that for each value of r and two
finite sets of lines A,B, each in general position, we always have at least one of the
two following situations.

• There exists two positive integers r1, r2 such that r1 + r2 = r and there is
a convex partition of the plane into two parts (C1, C2) such that

µA(Ci) ≥
(

2|A|
3

)ri/r
− 2, µB(Ci) ≥

(
2|B|

3

)ri/r
− 2 for i = 1, 2

• There exists three positive integers r1, r2, r3 such that r1 + r2 + r3 = r and
there is a convex partition of the plane into three parts (C1, C2, C3) such
that

µA(Ci) ≥
(

2|A|
3

)ri/r
− 2, µB(Ci) ≥

(
2|B|

3

)ri/r
− 2 for i = 1, 2, 3

The constant 2/3 factors are the reason why we have the rln(2/3) factor in the
main theorem. We will call the first type of partition an equitable (r1, r2) cut,
and the second type an equitable (r1, r2, r3) cut.

The rest of the paper will focus on proving the following lemma.

Lemma 3.1. Let A,B be two finite sets of points in the plane, each in general
position, and r ≥ 2 be a positive integer. Then, there either exists a pair (r1, r2) of
positive integers with sum r for which there is an equitable (r1, r2) cut, or there exists
a triple (r1, r2, r3) of positive integers with sum r for which there is an equitable
(r1, r2, r3) cut.

Let us first show that Lemma 3.1 implies Theorem 1.3.

Proof that Lemma 3.1 implies Theorem 1.3. First, notice that rln(2/3) =
(

2
3

)ln r
.

We prove Theorem 1.3 by strong induction on r. When r = 1, the result is clear.
If r ≥ 2, suppose that there is a pair (r1, r2) with sum r for which there is an
equitable (r1, r2) cut. The case for a triple will be analogous. Denote by (C1, C2)
the two sets of the partition.

We know that µA(Ci) ≥
(

2|A|
3

)ri/r
− 2. Let Ai ⊂ A of cardinality µA(Ci) be

enclosed by Ci. We apply Theorem 1.3 to Ai to find a convex partition (Ci1, . . . , C
i
ri)

of the plane into ri parts. We know that

µA(Cij ∩ Ci) ≥ µAi
(C ′j ∩ Ci) ≥

(
2

3

)ln(ri)

|Ai|1/ri − 2ri ≥
(

2

3

)ln(ri)
([

2|A|
3

]ri/r
− 2

)1/ri

− 2ri

≥
(

2

3

)ln(ri)
([

2|A|
3

]ri/r)1/ri

− 2(ri + 1) ≥
(

2

3

)ln(r−1)+1/r

|A|1/r − 2r

≥
(

2

3

)ln r

|A|1/r − 2r,

where the last inequality follows from the mean value theorem. Equivalent argu-
ments work for B. Therefore, the partition formed by the sets Cij ∩Ci for i = 1, 2,
j = 1, . . . , ri is the one we are looking for. �

Definition 3. Let r1 be an integer with 1 ≤ r1 ≤ r − 1. We say that a closed
half-plane H is r1-critical for A if

• H encloses a subset of A of cardinality at least
(

2|A|
3

)r1/r
− 2 and
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• The interior of H does not enclose a subset of A of cardinality at least at

least
(

2|A|
3

)r1/r
− 2.

Notice that the boundary line of an r1-critical halfspace is a support line of a

set of the form conv(I(A′)), where A′ ⊂ A and |A′| =

⌈(
2|A|

3

)r1/r⌉
− 2, and its

interior contains no other such set.

Lemma 3.2. Let A be a finite family of lines in R2 in general position and r1, r
be two positive integers with 1 ≤ r1 ≤ r− 1. Suppose that a line ` induces a convex
partition into two closed half-spaces (C1, C2). If C1 is r1-critical, then

µA(C2) >

(
3

2

)(r1/r)

|A|1−(r1/r)

Proof. Let (C ′1, C
′
2) be a convex partition of the plane such that C ′1 ⊂ C1 and

C ′1 contains the same points of I(A) as the interior of C1. Therefore, µA(C ′1) <(
2|A|

3

)r1/r
and µA(C2) = µA(C ′2). However, by Lemma 2.1, µA(C ′1)µA(C ′2) ≥ |A|,

so we get the desired conclusion. �

Lemma 3.3. Let A,B be two finite sets of lines in the plane, each in general
position, and r ≥ 2 be a positive integer. Let 1 ≤ r1 ≤ r − 1 be an integer. If there

are two r1-critical half-spaces H and H ′ for A, such that µB(H) ≥
(

2|B|
3

)r1/r
− 2

and µB(H ′) ≤
(

2|B|
3

)r1/r
− 2, then there exists a closed half-space H ′′ which is

r1-critical for A and such that µB(H ′′) =

⌈(
2|B|

3

)r1/r⌉
− 2.

Proof. Notice that for every direction there is a unique oriented line that defines a
r1-critical half-plane for A on the left side of the line. Moreover, as the direction
changes, this line changes continuously, since it is defined as a minimum of several
support functions of convex sets. Therefore, we can go fromH toH ′ by a continuous
change of the boundary line, while always maintaining an r1-critical half-plane
for A. The value of µB(·) on this half-plane can only change by increments or
decrements of one, as B is in general position. Therefore, at some point µB(·) has
the required value. �

If the conditions of the Lemma 3.3 are satisfied, define r2 = r − r1. Then, we
have a partition of R2 into two closed convex parts (C1, C2) such that

µA(C1) ≥
(

2|A|
3

)r1/r
− 2, µA(C2) ≥

(
3

2

)(r1/r)

|A|1−(r1/r) ≥
(

2|A|
3

)r2/r
− 2

µB(C1) ≥
(

2|B|
3

)r1/r
− 2, µB(C2) ≥

(
3

2

)(r1/r)

|B|1−(r1/r) ≥
(

2|B|
3

)r2/r
− 2

This means we have an equitable (r1, r2) cut. Therefore, if A,B are two finite
sets of lines in the plane, each in general position, such that there is no equitable
(r1, r2) cut, we either have that

• Every r1-critical half-plane H for A satisfies µB(H) >
(

2|B|
3

)r1/r
− 2, or

• Every r1-critical half-plane H for A satisfies µB(H) <
(

2|B|
3

)r1/r
− 2.

We can assign a sign to r1 depending on which scenario above holds true. We will
say that r1 is positive for A if the first one happens, and negative for A otherwise.
Notice that r1 is positive for A if and only if it is negative for B.
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Now we can use the following theorem.

Theorem 3.4 (Theorem 9 in [BKS00]). If every element of 1, 2, . . . , r− 1 is given
a sign, there is either a pair (r1, r2) or a triple (r1, r2, r3) with sum r of the same
sign. Moreover, we can further assume that ri ≤ 2r/3 for all i.

Lemma 3.5. Let A,B be two finite sets of lines in the plane, each in general
position. Let r1, r2, r be positive integers such that r1 + r2 = r. If there is no
equitable (r1, r2) cut, then the signs given to r1 and r2 are different.

Proof. Suppose that there are such r1, r2 with the same sign and we look for a
contradiction. By swapping the role of A and B, we may assume that both r1, r2

have positive sign. Let x0 be the value such that the half-plane H0 = {(x, y) : x ≤
x0} is r1-critical for A. Let x1 be the value for which the half-plane H1 = {(x, y) :
x ≥ x1} is r2-critical for A. By Lemma 2.1, we know x0 ≤ x1. Therefore, any
vertical line between these two half-planes induces an (r1, r2) equitable cut, which
is the contradiction we wanted. �

4. Region of convex canonical cuts

For this section, consider A to be a finite set of lines in general position and
r a positive integer. By applying an appropriate rotation we may assume that
no two points of I(A) have the same x-coordinate. Let (r1, r2, r3) be a triple of
positive integers such that r1 + r2 + r3 = r. Let x0, x1 be the numbers such that
the half-planes

H0 = {(x, y) : x ≤ x0}
H1 = {(x, y) : x ≥ x1}

are r1-critical and r2-critical for A, respectively. We know that x0 ≤ x1. For
each point p = (x, y) such that x0 ≤ x ≤ x1 we are going to define a canonical
p-cutting. This is going to be a partition of the plane into three parts (C1, C2, C3).

For convenience, let Mi =

⌈(
2|A|

3

)ri/r⌉
− 2 for i = 1, 2, 3. In order to find our

partition, the main idea is to construct three rays starting from p. The first ray r0

is pointing downwards. Given an angle α1, we define C1 to be the region made by
a clockwise angle of α1 starting at r0. We choose α1 to be the minimum number
such that µA(C1) = M1. Notice that due to the location of p, we know that α ≤ π

2
(i.e., C1 is convex). We define α2, C2 equivalently on the other side with α2 now
begin a counter-clockwise angle such that µA(C2) = M2 and α2 is minimal with
that property. The region C3 is the top region, which may or may not be convex.
See Figure 2.

The main issue with this construction is that α1, α2 are not continuous as func-
tions of p, which is undesirable. The discontinuities may occur when p shares the
x-coordinate of a point of I(A). We will refine the definitions of α1 and α2 to avoid
this problem. We will redefine the values of α1, α2 when the x-coordinate of p is
equal to x0, when it is equal to x1, and when it it very close to the x-coordinate of
a point in I(A), but not very close to x0 or x1.

Let p0 = (x′, y′) be a point of I(A) such that x0 < x′ < x1. Let ε be a small
positive real number such that the no closed vertical strip of width 2ε contains more
than one point of I(A). If p = (x, y) and p = (x′ + tε, y) for some t ∈ [0, 1], we
redefine α1. Let

• α′1 be the minimum angle such that C1 encloses a subset A′ ⊂ A of size
M1.

• α′′1 be the minimum angle such that C1 encloses a subset A′ ⊂ A of size M1

but such that p0 6∈ I(A′).
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α1

α2

I(A′)

I(A′′)

︸ ︷︷ ︸
ε

p0

C1

C2

C3

r0

Figure 2. Construction of the p-canonical cutting. For points in
the vertical strip of width ε on the right side of a point p0 of I(A),
we need to redefine the value of α1.

In order to define C1, we use an angle of α1 = tα′1 + (1− t)α′′1 . Since α′′1 ≥ α′1, we
know that α1 ≥ α′1, so µA(C1) ≥M1. However, if µA(C1) ≥M1 +2, by removing at
most one line from the set realizing µA(C1), we can assume that p0 is not part of its
incidence set. This would imply that α1 > α′′1 , which is a contradiction. Therefore,
M1 + 1 ≥ µA(C1).

The value of α2 is not changed in this region. If p = (x′ − tε, y), then we do
an analogous modification by swapping the roles of C1, C2. The reader may notice
that now the angles α1, α2 are continuous functions of the point p.

Along the line x = x0 and the region x0 ≤ x ≤ x0 + ε we will redefine α1.
For this, assume that we have another set B of lines in general position, and that

µB(H0) ≥
⌈(

2|B|
3

)r1/r⌉
− 2. Also assume that I(B) has no points on the line

x = x0.
Since H0 is r1-critical for A, it means that there is a set A0 ⊂ A such that

H0 encloses A0, the cardinality of A0 is exactly M1 and there is a unique point
p0 = (x0, y0) in I(A0). Notice that α1 is not continuous in the line x = x0. At any
point p = (x0, y) with y < y0, α1 = π/2. However, at p0, α1 defines a ray r1 whose
slope is equal to the slope of the top tangent of conv(I(A0)) at p0 (if there are
multiple sets A0 that satisfy the properties above, then the slope is the minimum
of the top tangents to those sets). For a point p = (x0, y) we define

• α′1 to be the minimum angle such that µA(C1) ≥M1 and

• β1 to be the minimum angle such that µB(C1) ≥
⌈(

2|B|
3

)r1/r⌉
− 2.

Now we define the angle ã1 = ã1(x0, y) of C as

ã1 =


π/2 if y < y0

tmax{α′1, β1}+ (1− t)π/2 if y = y0 + tε, t ∈ [0, 1]

max{α′1, β1} if y > y0 + ε

The region C1 defined by angle α̃1 satisfies µA(C1) = M1 (since H0 was r1-

critical) and µB(C1) ≥
⌈(

2|B|
3

)r1/r⌉
− 2.
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Then, for p = (x0 + sε, y) for some s ∈ [0, 1], we define

• α′′1 the minimum angle such that the region C1 satisfies µA(C1) ≥M1.
• α1 = sα′′1 + (1− s)α̃1(x0, y).

The angle α1 is now a continuous function, M1 + 1 ≥ µA(C1) ≥ M1 and the
behavior of C1 on the line x = x0 is the one we described above. We do an
analogous definition for α2. Now we are ready to define the region of the points p
we are interested in.

Let

R = {p = (x, y) ∈ R2 : x0 ≤ x ≤ x1 and the region C3 of the canonical p-cutting is convex}.
Notice that the top boundary of R is defined by the equation α1 + α2 ≥ π/2.

The region R is bounded above and unbounded below. For every point on the top
boundary the region C3 is a half-plane. Moreover, the continuity of α1 and α2

implies that there are no vertical segments in the boundary of R except for those
contained on the lines x = x0 and x = x1.

R
C1 C2

C3

C1
C2

C3

A0
p0

A1p1

q0

q1

Figure 3. An example of the region R, with a couple of canonical
p-cuttings marked.

Claim 4.1. For every point p of R, we have µA(C3) ≥M3.

Proof. If we apply Lemma 2.3, we know that µA(C1)µA(C2)µA(C3) ≥ 2|A|
3 . We

also know that (M1 +1)(M2 +1)(M3 +1) < 2|A|
3 . Therefore, since µA(C1) ≤M1 +1

and µA(C2) ≤M2 + 1, we have µA(C3) ≥M3. �

5. Proof of Lemma 3.1

With the construction of the region R in the previous section, we are ready to
prove Lemma 3.1.

Proof of Lemma 3.1. Let A,B be two sets of lines in R2, each in general position.
We may assume that no two points of I(A) ∪ I(B) share an x-coordinate. If there
is no (r1, r2)-equitable cut for any pair (r1, r2) of positive integers with sum r, we
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may assign to every integer in {1, . . . , r − 1} a sign as in Section 3. By Theorem
3.4, there exists a triple (r1, r2, r3) of positive integers whose sum is r and each ri
has the same sign. By swapping the roles of A and B, we can assume that the sign
of each ri is positive.

For each i ∈ {1, 2, 3}, let Ni =
(

2|B|
3

)ri/r
− 2.

We are going to color the points of R, where each color is represented by an
element of {1, 2, 3}. The point p ∈ R is going to be colored of color i if and only
if in the canonical cutting of p, we have µB(Ci) ≥ Ni. Points are allowed to have
multiple colors. By Claim 4.1, it is sufficient to prove that a point p has all three
colors to finish the proof. Notice the following lemma.

Claim 5.1. Every point of R has at least one color.

Proof. This follows from Lemma 2.3 and the fact that N1N2N3 <
2|B|

3 . �

Claim 5.2. Every point of the top boundary of R has color 3, every point of R on
the line x = x0 has color 1 and every point of R on the line x = x1 has color 2.

Proof. Since r1, r2, r3 all have positive sign, we know that µB(H0) ≥ N1 and
µB(H1) ≥ N2. By the definition of the canonical cuttings on the lines x = x0 and
x = x1, we have the claim on the left and right boundaries. For every point p on
the top boundary, we know that C3 is a half-plane with µA(C3) ≥M3. This means
that C3 contains a r3-critical halfplane C ′3. Therefore, µB(C3) ≥ µB(C ′3) ≥ N3,
due to the sign of r3. �

Claim 5.3. The color classes are closed sets.

Proof. Take any converging sequence of points of color i. There must be a subse-
quence on which Ci encloses the same subsets of B. By the continuity of the angles
α1, α2, on the point of convergence we also have that Ci encloses those subsets. �

Claim 5.4. There is a sufficiently small value ỹ such that every point on the
intersection of the line y = ỹ and the region R has colors 1 and 2.

Proof. For every value of x, there has to be a yx such that if y < yx, then C1

encloses A0 for the canonical cutting of p = (x, y). Moreover, the value of yx is
a continuous function of x. Therefore, it attains a minimum value ỹ1 on [x0, x1].
Points in R with y-coordinate ỹ1 or less will have color 1. Similarly, we can find a
ỹ2 such that points in R with y-coordinate ỹ2 or less will have color 2. �

We define R′ = {p = (x, y) : p ∈ R, y ≥ ỹ}. Now, we are able to apply the
classic Knaster-Kuratowski-Mazurkiewicz (KKM) theorem in dimension two.

Theorem (Knaster, Kuratowski, Mazurkiewicz [KKM29]). Let ∆ be a triangle
with vertices 1, 2, 3. Suppose that ∆ is colored with colors {1, 2, 3} such that every
vertex i has color i, and every point on a side ij has at least one of the colors i or
j. If every color class is a closed set, then there is a point with all three colors.

We can choose a point on the left side of the boundary of R′ to be vertex 1, a
point on the right side of the boundary of R′ to be vertex 2, and a point on the top
boundary to be vertex 3. The application of the KKM theorem finishes the proof.

�

6. Upper bounds

In order to obtain upper bounds for our results, let’s start with a single set of
lines that is hard to split using vertical strips. Consider [a] = {1, . . . , a}.
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Theorem 6.1. Let a and r be positive integers. There is a set A of ar lines in
the plane in general position such that for any partition of the plane into r closed
vertical strips A1, . . . , Ar, there exists an i ∈ [r] such that

µA(Ai) ≤ a.

Proof. Let us first construct a set X of ar points in the plane. We consider v1, . . . , vr
nonzero vectors in R2, none of which are vertical or horizontal, with the following
properties

• The slope of vi is li, and l1 < l2 < . . . < lr
• The norms of the vectors satisfy ||v1|| < . . . < ||vr||. Moreover, ||vi+1|| is

significantly larger than ||vi||, in a way that will be made precise below.

Then, let

X =

{
r∑
i=1

xivi : (x1, . . . , xr) ∈ [a]r

}
.

Let ε > 0 be a sufficiently small number such that the intervals Ii = [li − ε, li + ε]
are pairwise disjoint. For two points p =

∑r
i=1 xivi and q =

∑r
i=1 yivi in X, we

consider

m(p, q) = max{i ∈ [a] : xi 6= yi}.
We want the sequence ||v1||, . . . , ||vr|| to grow fast enough so that, if j = m(p, q),
then the slope of p− q lies in the interval [lj − ε, lj + ε] = Ij .

Now we construct the set A of lines (given by their equations) as

A = {y = mx+ c : (m, c) ∈ X}

If we are given two lines with equations y = m1x + c1 and y = m2x + c2, the
x-coordinate of their intersection is given by x = c2−c1

m1−m2
, which is the negative of

the slope between (m1, c1) and (m2, c2). Now, consider a partition of R2 into r
vertical strips. The boundary of these strips is given by the r − 1 lines x = t1, x =
t2, . . . , x = tr−1, for some real t1 ≤ . . . ≤ tr−1. A simple inductive argument shows
that at least one of the intervals [−∞, t1], [t1, t2], . . . , [tr−1,∞] intersects at most
one of the intervals −I1, . . . ,−Ir. Suppose that [ti, ti+1] intersects only −Ij .

This means that if a subset A′ ⊂ A is enclosed by the strip between the lines
x = ti, x = ti+1, these lines came from a subset X ′ ⊂ X whose pairwise slopes are
contained in Ij . This, in turn, implies that for p, q ∈ X ′ we have that m(p, q) = j,
so all the points of X ′ differ in the j-th coordinate (as vectors in [a]r). Thus,
|A′| = |X ′| ≤ a, as we wanted. If we want our set of lines to be in general position,
a small perturbation of A gives us the desired set. �

Now we are ready to prove Theorem 1.4.

Proof of Theorem 1.4. We may assume without loss of generality that |A| is the
r-th power of an integer. We set A to be the example from Theorem 6.1. We set B
to be such that I(B) is contained in a disk of small radius. If we start to translate
the set B upwards, and C1, C2, . . . , Cr is a convex partition of the plane where
each Ci intersects both conv I(B) and conv I(A), then the boundary between all
pairs Ci, Cj is either above conv(B) or very close to a vertical line. Therefore, for a
sufficiently high I(B), the properties that the set A satisfies complete the proof. �

7. Remarks

The proof of our main results follows the ideas from Bespamyatnikh, Kirkpatrick,
and Snoeyink [BKS00]. It would be interesting to see if it is possible to obtain a
proof that uses stronger topological tools, as we have for point sets [Sob12, KHA14,
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`1
`2

`3

`4

`5

C1

C2

Figure 4. Every triangle made by three blue lines intersects the
broken black line. The points `1 ∩ `3 and `2 ∩ `4 are in C2.

BZ14]. The problem boils down to the following question, which would be a nice
extension of the Erdős-Szekeres theorem.

Open question 7.1. Determine if the following statement is true. Given a finite
set A of lines in the plane and a convex partition (C1, . . . , Cr) of the plane that
comes from a power diagram, the following equation holds

µA(C1)µA(C2) . . . µA(Cr) ≥ |A|.

Actually, it would be sufficient to have

max
1≤i≤r

µA(Ci) ≥ |A|1/r.

One may also wonder what happens in higher dimensions. We say that a set
of hyperplanes A in Rd is in general position if every d of its normal vectors are
linearly independent and no d + 1 hyperplanes of A share a point. We denote by
I(A) the set of all points that come from the intersection of d hyperplanes in A,
and say that K encloses A if I(A) ⊂ K. It is natural to ask the following question.

Open question 7.2. Given n, d, r positive integers, find the smallest value of M =
fd,r(n) such that the following holds. Given d sets A1, . . . , Ad of M hyperplanes
each in Rd, there exists a convex partition of Rd into r parts (C1, . . . , Cr) such that
each Cj encloses a subset of at least n hyperplanes of each Ai.

Dujmović and Langerman proved the existence of such a function when r = 2,
and the rate of growth of fd,2 has been bounded by Conlon, Fox, Pach, Sudakov,
and Suk [CFP+14] to

fd,2(n) ≤ twrd−1(cdn
2 log n),

where the tower function twrd−1(·) is the composition of the function 2x with
itself d− 1 times, and cd is a constant that depends only on d.

If one is interested to see if the constant leading constant rln(2/3) can be replaced
by 1 with the current proof, we would need to remove the need for 2/3 in Lemma
2.2 or in Lemma 2.3. However, this replacement cannot be done for Lemma 2.2.
Figure 4 shows an example of five lines and two rays such that none of the two
sides of the broken line encloses more than two lines.

The loss of 2r lines in Theorem 1.3 comes from requiring that the angles of the
canonical 3-cuttings are continuous. Without this assumption, we are not able to
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guarantee that the coloring of the region R′ satisfies the properties of the KKM
theorem. Moreover, it would also allow the top boundary of R to have vertical
segments, which makes the analysis more difficult (the arguments presented would
only show that the top point of each vertical segment has color 3, instead of the
whole segment).
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