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Abstract

We study a family of substitution tilings with similar right triangles of two sizes which is
obtained using the substitution rule introduced in [Danzer, L. and van Ophuysen, G. A species
of planar triangular tilings with inflation factor

√
−τ . Res. Bull. Panjab Univ. Sci. 2000, 50,

1-4, pp. 137–175 (2001)]. In that paper, it is proved this family of tilings can be obtained from
a local rule using decorated tiles. That is, that this family is sofic.

In the present paper, we provide an alternative proof of this fact. We use more decorated
tiles than Danzer and van Ophuysen (22 in place of 10). However, our decoration of supertiles
is more intuitive and our local rule is simpler.

1 Introduction

Tilings and local rules. Assume that a finite family of polygons {P1, . . . , Pk}, called proto-tiles,
is given. Isometric images of those polygons are called tiles. A tiling T is a family of pair-wise
non-overlapping tiles, which means that the interiors of the tiles are disjoint. A patch is a finite
tiling. A patch P is called a fragment of a tiling T , if P is a subset of T . If the diameter of a patch
(the maximal distance between points of its tiles) is at most d, then we call that patch a d-patch.
In a similar way we define d-fragments.

Local matching rules govern how tiles may be attached to each other in a tiling. More specif-
ically, a local rule is identified by a positive real d and by a set of d-patches, whose members are
called illegal patches. A tiling satisfies the local rule, if it does not include illegal patches as frag-
ments. For instance, all polygons P1, . . . , Pk may be unit squares with colored sides, and the local
rule may require that tiles are attached side-to-side and the colors on the adjacent sides match (the
so-called Wang tiles).

Aperiodic tile sets. The pair (a set of proto-tiles, a local rule) is called aperiodic if all tilings
of the plane satisfying the local rule are non-periodic and such tilings exist.

Aperiodic sets of Wang tiles were used to prove the undecidability of Berger’s Domino problem:
find an algorithm that given a Wang tile set finds out whether that set tiles the entire plane [12].

∗The article is supported by Russian Science Foundation (20-11-20203).
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Substitutions. The usual scheme to prove non-periodicity is based on the notion of a substitution.
A substitution σ is defined by a similarity ratio φ < 1 and a way to cut every polygon Pi into a finite
number of parts where each part is congruent to some polygon from the family {φP1, . . . , φPk}.
The substitution acts on tilings as follows. Given a tiling, for all i, we cut every tile Pi from the
tiling, as defined by the substitution. We obtain a tiling of the same set by tiles of smaller size.
Then we apply to the resulting tiling some fixed pre-chosen homothety H with the coefficient 1/φ to
obtain a tiling with initial tiles P1, . . . , Pk. That homothety will be called the reference homothety
in the sequel. We call the resulting tiling the decomposition of the initial tiling and denote it by
σT . The inverse operation is called composition. That is, a tiling T is a composition of a tiling T ′

if T ′ = σT .
A supertile is a tiling, which can be obtained from an initial tile Pi by applying decomposition

several times. A supertile of the form σnPi is called a supertile of order n. Thus each supertile of
order n consists of several supertiles of order n− 1.

Assume that the substitution and the local rule have the following properties:

P1. All supertiles satisfy the local rule.

P2. Every tiling T of the plane satisfying the local rule has a unique composition satisfying the
local rule (“the unique composition property”). This tiling is then denoted by σ−1T .

In this case it is not hard to show that all tilings of the plane satisfying the local rule are non-periodic
and that such tilings exist. This can be shown as follows.

Existence. By P1 each supertile satisfies local rule. Obviously the linear size of a supertile σnPi

is (1/φ)n times larger than that of Pi. Hence there are tiling of arbitrary large parts of the plane
satisfying local rule. By compactness arguments this implies that there are such tilings of the entire
plane.

Non-periodicity. Assume that a tiling T satisfying local rule has a non-zero period a, that
is, T + a = T . Then the vector φa is the period of σ−1T . Indeed, let H denote the reference
homotethy. The decomposition of the tiling σ−1T + φa is equal to the decomposition of σ−1T
shifted by the vector Hφa = a, that is, to T + a. By our assumption, we have T + a = T . Thus
both σ−1T + φa and σ−1T are compositions of T and they both satisfy local rule. By P2 we then
have σ−1T +φa = σ−1T . Repeating the argument, we can conclude that the vector φ2a is a period
of the tiling σ−2T . In this way we can construct a tiling whose period is much smaller than the
linear sizes of tiles, which is impossible.

This scheme was used to prove aperiodicity of many tile sets. Perhaps, the most famous example
is Penrose–Robinson P4 tilings, where the set of proto-tiles consists of two isosceles triangles (see
[11, 7]). Other famous examples are Ammann tilings (two L-shaped hexagonal tiles) and Ammann–
Beenker tilings (a rhombus and a square). For the definition of these tilings and for more examples
we refer two the textbooks [1, 7] and to the Tilings Encyclopedia [8].

A similar approach was used to show non-periodicity of the famous Robinson tilings [12] with
Wang tiles. Robinson’s construction does not fit exactly the described framework, as in that
construction supertiles of order n are built from 4 supertiles of order n− 1 and several proto-tiles.
However, for the version of Robinson tilings from the paper [3], the proof of non-periodicity follows
exactly the above pattern. In the tiling of [3], there are 214 proto-tiles, which are unit squares, and
every tile is cut in four smaller squares.
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Substitution tilings. A tiling T is called a substitution tiling1 associated with substitution σ,
if for each finite subset P ⊂ T there is a supertile including P . The property P1 implies that
every substitution tiling satisfies local rule. In some cases the reverse is also true. We will call this
property P3:

P3. Every tiling of the plane satisfying the local rule is a substitution tiling associated with the
substitution σ.

For instance, it happens that the family of Penrose–Robinson tilings coincides with the family of
substitution tilings associated with the respective substitution. The same happens for Ammann
A2 tilings, see [4].

Decorations and sofic tilings. Assume now that we are given only a substitution σ acting on
a set {P1, . . . , Pk} of polygons and no local rule. Then it is natural to ask whether there is a local
rule such that the properties P1 and P2 hold, or a local rule defining the family L of substitution
tilings associated with σ. In many cases there is no such local rule. In such cases we would like to
find a decoration of the family {P1, . . . , Pk} and a local rule for the decorated family of polygons.
This means the following:

• each proto-tile is replaced by a finite number of proto-tiles of the same shape (we think that
they have different colors);

• a local rule is defined for decorated tiles, let L̃ denote the family of all tilings of the plane
satisfying that local rule;

• the family L coincides with the family of tilings obtained from tilings T̃ ∈ L̃ by removing
colors.

If such a decoration and local rule exist, then we say that the initial family L is sofic.
To prove that the given decoration and local rule for decorated tiles satisfy the last item, one

usually defines a substitution σ̃ for decorated proto-tiles with the following properties: (1) each
decorated proto-tile is cut exactly in the same way as prescribed by the initial substitution σ (see
an example in Fig. 1) and (2) the properties P1 and P3 hold for σ̃ and the local rule. To show that
it works, assume that there are a decorated substitution σ̃ and a local rule for decorated tilings
with properties P1 and P3.

In one direction this is trivial: assume that T is obtained from a tiling T̃ ∈ L̃ by removing
colors and assume that P is a finite subset of T . Then P is obtained from a fragment P̃ ⊂ T̃ by
removing colors. By P3 the fragment P̃ occurs in a colored supertile σ̃nP̃i. Thus P is included in
the supertile σnPi.

In the reverse direction: assume that T ∈ L. Then every finite P ⊂ T occurs in a supertile S,
and by property P1 it has a correct decoration, which means that the resulting decorated tiling
P̃ is in L̃. Those decorations for different fragments P may be inconsistent. Using compactness
arguments, we can show that it is possible to choose consistent such decorations.2

1We use here the terminology of [6]. Another name for substitution tilings, self-affine tilings, was used in [13].
2Here are more details. Consider the tree whose vertices are correct decorations of fragments of the form

{F1, F2, . . . , Fi}. Edges connect a decoration of a fragment {F1, F2, . . . , Fi} to a decoration of the fragment
{F1, F2, . . . , Fi, Fi+1} whenever the decorations are consistent. This tree has arbitrary long branches. Any ver-
tex of the tree has finitely many neighbors. By König lemma [9], the tree has an infinite branch, which provides a
correct decoration of the entire tiling.
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(a) (b)

Figure 1: A substitution (a) and its decoration (b).

Note that to prove soficness, we do not need property P2 for the decorated family L̃. However,
if we are not interested in proving that the initial family is sofic and our goal is just to construct
an aperiodic tile set, we can use P2 (for L̃) instead of P3.

To construct a decoration and a local rule with properties P1 and P2, we can try to use a general
Goodman-Strauss theorem [6] that claims that for every “good” substitution σ there is a local
rule for decorated tiles with properties P1 and P2.3 However, the resulting tile sets are generally
gigantic and not really explicit. Besides, Goodman-Strauss theorem does not achieve the property
P3. Both minor points of Goodman-Strauss theorem are inherited by its version by Fernique and
Ollinger from [5]. In the case of tilings with Wang tiles, Mozes [10] proved in a seminal paper that
the set of tilings generated by rectangular substitutions satisfying a particular property is sofic.

This paper. In this paper, we consider tilings with right “golden” triangles and the substitution
introduced by Danzer and van Ophuysen [2]. Danzer and van Ophuysen showed that there is
no local rule with properties P1 and P2 for that substitution and defined a decoration of the
substitution and a local rule for decorated tilings with properties P1, P2 and P3. However, their
decoration of the substitution is not intuitive and the local rule is complicated. The local rule uses
the notion of a crown. Let T be a tiling and A a vertex of a tile from T . The crown centered at
vertex A within T is a fragment of T consisting of all tiles from T that include the point A (not
necessarily as a vertex). The local rule of Danzer and van Ophuysen stipulates that every crown
in the tiling occurs in a supertile. There are 65 such crowns (up to isometry) and the paper does
not even provide their list.

The goal of the present paper is to provide a more intuitive decoration of the substitution and
a simpler local rule for decorated tilings, also having properties P1, P2 and P3.

2 Tilings with golden right triangles

In this paper, we consider a specific substitution and the associated family of substitution tilings
with right “golden” triangles introduced by Danzer and van Ophuysen [2] and later in [14].

3Goodman-Strauss formulates property P2, as “the local rule enforce the hierarchical structure associated with
σ”, which means that every tiling satisfying the local rule can be uniquely partitioned into supertiles of order n for
each n.
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Golden right triangles and tilings. The altitude of any right triangle cuts it into two similar
triangles. Those triangles are denoted by S,L in Fig. 2(a). If the angles of the original right triangle

φ

φ2 1

φ

φ2

φ3
φ2

φ4

S

L

(a) (b) (c)

Figure 2: Golden right triangles.

are chosen appropriately, then the ratio of the size of the initial triangle to the size of L equals the
ratio of the size of L to the size of S. More specifically, the ratio of the legs of the initial triangle

should be equal to the square root of the golden ratio φ =

√√
5−1
2 . Such a triangle is shown in

Fig. 2(b). The lengths of the sides of triangles S,L are shown in Fig. 2(c). We will call triangles of
this shape golden right triangles.4

We will use triangles L and S as proto-tiles. More specifically, isometric images of L are called
large tiles, and isometric images of S are called small tiles. In Fig. 3, we can see an example of a
tiling. We denote by [T ] the union of all tiles from T and say that T tiles [T ], or that T is a tiling

Figure 3: A tiling, which is a union of supertiles of orders 0, 1, 2, 3, 4.

of [T ].

The substitution, decomposition and composition of tilings. We consider the following
substitution:

In the course of decomposition for this substitution, each large tile produces a large and a small
tile in the decomposed tiling and each small tile becomes a large tile.

4The name “golden” in a similar context was used to call isosceles triangles whose all angles are integer multiples
of 36◦ (Robinson triangles). To avoid confusion, we add the attribute “right”.
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As usual, we call a tiling T a composition of a tiling T ′ if T ′ is the decomposition of T . There
are tilings that have no composition, for instance, the tiling consisting of a single small tile. On the
other hand, every tiling has at most one composition (the unique composition property). As usual,
the composition of a tiling T (if exists) is denoted by σ−1T .

It may happen that the composition of a tiling again has a composition. In this case the initial
tiling is called doubly composable. If a tiling can be composed any number of times, we call it
infinitely composable. In terms of [6], infinitely composable tilings are those that have “hierarchical
structure”.

Supertiles. Recall that a supertile is a tiling, which can be obtained from a small or a large tile
by applying decomposition several times. Since every large tile is a decomposition of a small tile,
every supertile can be obtained from a small tile by applying decomposition some n times. The
number n − 1 is called then the order of the supertile. (In particular, the small tile is a supertile
of order −1.) Supertiles of order i are denoted by Si. Fig. 3 shows supertiles of orders 0, 1, 2, 3, 4.

Substitution tilings. Recall that a tiling T is called a substitution tiling if for each finite P ⊂ T
there is a supertile S including P . For instance, all supertiles are substitution tilings. There exist
substitution tilings of the entire plane. This can be deduced by compactness arguments from the
existence of substitution tilings of arbitrarily large parts of the plane. However, it is easier to
prove this using the following argument. There are supertiles of orders 0 and 8, S0, S8, such that
S0 ⊂ S8 and [S0] is included in the interior of [S8]. Indeed, in Fig. 4 we can see a supertile T of
order 8. The interior of the triangle [T ] includes a large tile A (shown in green color). Applying

A

Figure 4: The green triangle A is strictly inside a supertile of order 8.

8 decompositions to the supertiles {A} and T we get supertiles S8 = σ8{A} and S16 = σ8T , of
orders 8 and 16, respectively. Since A ∈ T , we have S8 = σ8{A} ⊂ σ8T = S16. In this way we can
construct a tower of supertiles

S0 ⊂ S8 ⊂ S16 ⊂ S24 ⊂ . . .

where each set [S8n] extends the previous set [S8(n−1)] in all directions. Therefore the tiling S0 ∪
S8 ∪ S16 ∪ . . . tiles the entire plane and is a substitution tiling by construction.

It is not hard to see that every substitution tiling of the plane has a composition, which is
again a substitution tiling. Thus every substitution tiling of the plane is infinitely composable.
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In particular, every substitution tiling of the plane contains supertiles of all orders. (To find a
supertile of order n in a substitution tiling T of the plane, we can compose it n times and then pick
any large tile in the resulting tiling. The n-fold decomposition of that tile is a supertile of order n
and is included in the original tiling T .) As mentioned in the Introduction, the unique composition
property implies that any infinitely composable (and hence any substitution) tiling of the plane is
non-periodic.

In [2] and later in [14], it was shown that there is no local rule such that the family of tilings of the
plane satisfying that local rule coincides with the family of substitution tilings. More specifically, it
was proved that for any positive d there is a periodic (and hence not substitution) tiling Td of the
plane, whose all d-fragments occur in supertiles. For any local rule consisting of d-patches, either
all d-patches from Td are declared legal, or a d-patch from Td is declared illegal. In the first case,
the tiling Td satisfies the local rule. In the second case, some supertile has an illegal patch, and
since all substitution tilings include that supertile, all substitution tilings do not satisfy the local
rule.

We will outline a proof of this. We start with the periodic tiling T shown in Fig. 5. It has the

Figure 5: Periodic tiling T .

following remarkable feature: all its crowns occur in supertiles. In fact, up to an isometry, this
tiling has a single crown, which occurs in the supertile of order 6 (see Fig. 4). If k is large enough
compared to d, then for any d-fragment P of the tiling σkT there is a single crown C in T such
that σkC includes the entire patch P (this follows from Lemma 1 below). As we have seen, the
crown C is in the supertile S6 and hence σkC is in S6+k. Thus all d-patches in σkT occur in S6+k

and we can let Td = σkT .

3 Tilings with decorated tiles

In this section we show that the family of substitution tilings associated with our substitution is
sofic.

3.1 The local rule of Danzer and van Ophuysen

We color both tiles in five colors 0, 1, 2, 3, 4. The substitution σ̃ acts on decorated tiles as follows:
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y
2y + 1

4y + 1

x
x

Addition and multiplication refer to the respective operations modulo 5.
The local rule is based on the notion of a legal crown. By definition, a crown is legal if it occurs

in a supertile. The local rule stipulates that all crowns in the tiling must be legal. To make this
local rule explicit, we need to list all legal crowns. There are 65 of them (up to an isometry), thus
the list is quite long. However, we can reduce the list using the following observation.

Let us define on tilings the following operation called shift. To shift a tiling by y = 0, 1, 2, 3, 4,
we increment the markings of all large tiles by y and the markings of all small tiles by 2y (modulo
5). It is not hard to see that the shift of any legal crown is legal. Indeed, let C be a crown within
a supertile Si of order i, that is obtained from a large tile with color k. By induction on i it is easy
to prove the following: for each tile A from Si, its color is obtained from k by applying a linear
function of the form 2i+1x+cA for small tiles and 2ix+cA for large tiles. Here cA denotes a number
depending on the location of A within Si. Thus, if we increase k by 3iy, the colors of all large tiles
are increased by y and the colors of all small tiles by 2y, as 2 · 3 ≡ 1 (mod 5).

Let us call two legal crowns equivalent if they can be obtained from each other by a shift.
Obviously each equivalence class has 5 legal crowns and hence there are 13 equivalence classes
denoted C1, C2, C3, C4, C5, C6, C7 and C ′1, C

′
2, C

′
3, C

′
4, C

′
5, C

′
6. In Fig. 6 we present one legal crown

from each equivalence class.

1 2

3

2 1

1

C1

C ′
1

3

0

4
3

1

3

0
0

C2

C ′
2

3 2
4

2

3
1

0 3
0

1

1
3

C3

C ′
3

4

1
3

0

4

3
4

1

3
1

3

0

0
3

C4

C ′
4

2 4
4

0
2 3

4

1

1 3
3

3
3 0

0

3

C5

C ′
5

0
2

4

0
3

4
4

1

3
3

2

3
0

3
1

3

C6

C ′
6

1
2

4

1

2

4
4

0

C7

Figure 6: Legal crowns for Danzer and van Ophuysen substitution. Every crown represents 5
crowns obtained by shifts from it. Arrows indicate the action of substitution.

This local rule guarantees all the above properties P1, P2 and P3.

3.2 Our local rule

We define first how we color proto-tiles. We first choose for every side of the tile its orientation
(depicted by an arrow). Besides, every side is labeled by an integer number from 0 to 3. There
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Figure 7: Colored supertiles S0, S1, S2, S3, S4, S5.

is the following restriction for those labels: the hypotenuse and the small leg of the large triangle,
and the large leg of the small triangle have even labels, and the remaining sides have odd labels.
Tiles bearing orientation and digital labels on sides are called colored tiles. Each of 2 proto-tiles
produces 23 · 23 = 64 colored proto-tiles. Actually, only 22 of these 128 tiles can occur in supertiles
and hence we can reduce the number of proto-tiles to 22. We will not prove this, since anyway we
obtain more proto-tiles than Danzer and van Ophuysen.

Decomposition and composition of colored tilings. The substitution is extended to colored
tiles as follows:

• for small tiles: we increment all digital labels by 1 modulo 4 and keep orientation of all sides

• for large tiles: we first increment all digital labels by 1 modulo 4 keeping orientation of all
sides, and then we label the newly appeared altitude by 0 and orient it from the foot to the
vertex. The axis of the altitude is divided into two segments, those segments keep their labels
and orientations.

It is not hard to verify that the requirement of evenness/oddness of labels is preserved and thus we
obtain again a tiling by legally colored tiles.

In Fig. 7 we have shown a large colored tile, its decomposition, the decomposition of its de-
composition and so on. The digital labels are represented by colors: red is 0, yellow is 1, green
is 2, blue is 3, orientations are shown by arrows. Long line segments of the same color represent
identically oriented sides with the same digital label. This orientation is shown by an arrow at an
end of the segment. The inverse operation is called the composition of colored tilings.

A colored supertile of order n is defined as the n-fold decomposition of a large colored tile.
Colored supertiles of orders 0,1,2,3,4,5 are shown in Fig. 7. A tiling with decorated tiles is called a
substitution tiling if every its fragment occurs in a (colored) supertile.

The intuition behind our decoration of supertiles. Each supertile Si, i > 0, sends a signal
whose color equals (i−1) mod 4 along its altitude from its foot to the top. If supertiles Sn−1 and Sn
form a supertile Sn+1, then the vertex of the right angle of [Sn+1] receives two signals, (n−2) mod 4
and (n− 1) mod 4, and in turn sends the signal n mod 4. The local rule will ensure that all these
three signals are “coherent”, that is, are equal to (i − 2) mod 4, (i − 1) mod 4, i mod 4 for some i.
If we were allowed infinitely many colors, the signal sent by Si would be just i− 1. In that case the
proof would be much easier. Each supertile Sn has hierarchical structure, that is, for each i < n it
can be partitioned into supertiles Si and Si−1. Hence Sn hosts many signals. The crucial point is

9



Figure 8: A complete star and an incomplete star. The colors and orientations of outer sides are
not shown, as this information is not included in the star.

C1 C2 C3 C4 C5 C6 C7

Figure 9: The list of legal stars.

that all those signals are sent along non-overlapping paths. We will explain later why the number
of colors is 4 (see Remark 4).

Our local matching rule L. To define our local rule, we need a new notion, similar to that
of a crown. We call this notion a star. Let A be a vertex of a tile from a tiling T . Consider all
non-decorated tiles from T that include the point A together with digital marks and orientations
of all the sides that include the point A. That information forms the star within T centered at A.
It is important that we forget orientations and digital labels of the outer sides of tiles from a star.
A star may be incomplete, which means that no neighborhood of A is included in the union of
tiles from the star. Incomplete stars appear on the borders of tilings of parts of the plane. Two
examples of stars are shown in Fig. 8.

Definition 1. A complete star is called legal if it is one of the stars shown in Fig. 9. The black
line segment on that figure is called the axis of a legal star and may have any orientation and any
color. All digital labels and orientations of all sides lying on the axis must coincide. An example
of a legal star is shown in Fig. 8 on the left.

Definition 2. A tiling of the plane with decorated tiles satisfies our local rule L if (1) any two
sides that share a common interval have matching orientations and digital labels and (2) every its
star is legal. For a tiling of a part of the plane the second item reads: every its complete star is
legal. Tilings satisfying the local rule L are called L-tilings. A coloring of tiles in a tiling with
non-decorated tiles is called correct if the resulting tiling is an L-tiling.

Several remarks on legal stars.

Remark 1. We will prove that a star is legal if and only if it is a complete star within a supertile.

Remark 2. Observing the tiles in the legal stars we can easily conclude that the parity of the digital
label of the axis of a legal star must be equal to that of the index of the star. Hence every star
from Fig. 9 represents 4 legal stars: there are two ways to choose orientation of the axis and two
ways to label it. Thus there are 7 · 2 · 2 = 28 different legal stars, up to an isometry.

10



Remark 3. There are one or two outgoing arrows from the center of any legal star and those arrows
are orthogonal to the axis of the star. All the remaining arrows are directed towards the center
of the star and form with the axis the acute angles arcsin

(
(
√

5− 1)/2
)

and arccos
(
(
√

5− 1)/2
)
,

called the smaller and the larger ones, respectively. Let n denote the index of a legal star. Then
the digital labels of the arrows that go into or out of the center of a legal star are the following.
On one side of the star the arrow that goes into the center of the star and forms with the axis the
smaller acute angle (if any) is labeled by n+ 1, the arrow that goes into the center of the star and
forms with the axis the larger acute angle (if any) is labeled by n + 2, and the outgoing arrow (if
any) is labeled by n + 3 (addition modulo 4). On the other side of the axis the digital labels are
n− 1, n and n+ 1, respectively.

4 Results

The following three theorems claim that our decoration and local rule have the properties P1, P2
and P3.

Theorem 1. (1) Decomposition of any L-tiling of the plane is again an L-tiling. (2) Every supertile
is an L-tiling. (3) Conversely, all legal stars occur in supertiles.

Corollary 2. There exists an L-tiling of the plane.

Theorem 3. Any L-tiling of the plane has a composition, which is again an L-tiling.

Theorem 4. A tiling of the plane with colored tiles is a substitution tiling if and only if it is an
L-tiling.

It follows from Theorem 3 that all L-tilings of the plane are non-periodic. Indeed, they are
infinitely composable, and hence non-periodic, as explained above. We first prove Theorem 1 and
Corollary 2, then we derive Theorem 4 from Theorem 3 and then we prove the latter.

Proof of Theorem 1. Let us extend decomposition to stars: to decompose a star, we decompose the
respective tiling and then delete all the resulting tiles that do not include the center of the star. It
is not hard to verify that the family of legal stars is closed under decomposition: see Fig. 10 where
the action of decomposition is shown by grey arrows.

(1) Let T be an L-tiling of the plane and A a vertex of a tile from σT . We have to show that
the star centered at A in σT is legal. We consider two cases.

Case 1: A is also a vertex of a tile from T . Then the star centered at A in T is legal, as T is
an L-tiling. The star centered at A in σT is obtained by decomposition from that star and hence
is legal as well.

Case 2: A is not a vertex of a tile from T . Then A is a foot of the altitude of a large tile
F from T and hence lies on the hypotenuse of F . Let B,C denote endpoints of that hypotenuse
(see Fig. 11). Consider the star within T centered at B. Observing Fig. 9, we can see that such
situation (the center of the star is an endpoint of the hypotenuse of a large tile and the foot of the
altitude of that tile is not a vertex) occurs only in stars C3–C7 and in all cases the star includes
the triangle F̃ obtained by the central symmetry centered at the middle point of the hypotenuse:
F together with F̃ from a rectangle. Decomposition of that rectangle produces two stars C1.

(2) We use induction on the order of the supertile. Base of induction is trivial, since supertiles
of order less than 4 have no complete stars. To make the induction step, we would like to extend

11



C1

C1

C2

C2

C3

C3

C4

C4

C5

C5

C6

C6

C7

C7

Figure 10: The action of decomposition on legal stars is shown by grey arrows. The stars C6, C7

in the course of 4 decompositions are mapped to themselves, since the decomposition works as
rotation by the right angle (ignoring colors) on the stars C6, C7, and we increment digital labels
modulo 4. Note that the decomposition maps both stars C5 and C7 to C6. This is not surprising,
as the stars C5 and C7 differ only in one tile and after decomposition this difference disappears.

C

B

F
F̃

C

B
A

Figure 11: A is not a vertex of a tile from T

item (1) to tilings of parts of the plane. However this cannot be done, as there is a tiling of a part
of the plane with no complete stars such that its decomposition has a complete illegal star (see
Fig. 12).

Why cannot we repeat the above arguments to show that decomposition of any L-tiling is an
L-tiling? The only reason why the above arguments fail, is that in Case 2 we cannot claim that
the star within T centered at B is legal and hence the tiling T includes the large tile F̃ . Indeed, it
might happen, that although A is an inner point of [T ], neither B, nor C are inner points of [T ].
In that case we have no information about the stars of T centered at B and C.

To handle this case, we will show that if T is a supertile, T = Si, then

(*) ignoring orientations and digital marks, all stars in T = Si, including incomplete ones, can
be extended to legal stars by adding some tiles that do not overlap tiles in T .

This statement can be proved by induction on i. Base of induction: the tile S0 has three stars and
they all can be extended to legal stars, provided we ignore digital marks and orientation.5

The induction step follows from the fact that the family of tilings T satisfying (*) is closed
under decomposition. Indeed, assume that a tiling T satisfies (*). If A is a vertex in T , then the
star centered at A in σT can be extended to decomposition of the completion of the star of A in T .
Otherwise A is a foot of the altitude of a large tile F from T and hence lies on the hypotenuse of
F . Again we consider B,C, the endpoints of that hypotenuse, see Fig. 11. By our assumption, the

5This ignoring is important, as there are colored large tiles which possess stars that cannot be extended to legal
stars.
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Figure 12: An L-tiling of a part of the plane whose decomposition is not an L-tiling

Figure 13: A colored supertile S10 has all four starts of the type C1.

star centered at B in T can be completed to a legal star (ignoring digital marks and orientation) by
adding tiles that do not overlap T . As verified above, that star contains the triangle F̃ , as shown
in Fig. 11. Hence the star centered at A in σT can be completed to the star C1 by adding the large
tile obtained by decomposition of F̃ (obviously, that tile does not overlap σT ).

Now we can handle the hard case. Assume that A is a vertex in Si+1 but not a vertex in Si, and
A is an inner point of [Si+1] = [Si]. We have to show that Si includes the the triangle F̃ (Fig. 11).
By (*) the star within Si centered at B can be extended to a complete legal star C by adding some
tiles not overlapping Si. As we have seen, C includes the triangle F̃ . If F̃ did not belong to Si,
then A would lie on the border of [Si], as F̃ does not overlap Si.

(3) It suffices to prove the statement for stars C1 only. Indeed, for every i > 1 the star Ci is
obtained from C1 by i − 1 decompositions. Thus, if C1 occurs in Sn, then Ci occurs in Sn+i−1.
There are four stars of the type C1: we have two ways to label the axis (yellow or blue) and two
ways to choose its orientations. The stars C1 with yellow axis of both orientations appear on the
altitude of the supertile S10 (Fig. 13). The stars C1 with blue axis appear on the altitude of the
supertile S4 on Fig. 7 (they appear also in Fig. 13, inside the supertile S10).

Remark 4. We can explain now why we use 4 digital marks. Assume that digital marks belong to
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Figure 14: A colored supertile S8 contains a large tile of the same color as the initial tile S0 which
it was obtained from.

Zk = {0, 1, . . . , k − 1}, the substitution σ̃ works as before and the local rule Lk stipulates that all
stars occur in supertiles. Then we would have lcm(4, k) legal stars of the shape C6, C7. Indeed,
geometrically, substitution acts as 90◦ rotation on stars of this shape (see Fig. 10). And on digital
marks it works as adding 1. Thus we have two independent cycles of lengths 4 and k, whose
superposition is a cycle of length lcm(4, k).

One can show that the choice k = 1, 2 does not work, as for k = 1, 2 there is a periodic tiling
satisfying the local rule Lk. The choice k = 3 might work. However, there are lcm(4, 3) = 12 legal
stars of the shape C6, C7 for that k, thus the local rule becomes too complicated any way. So the
choice k = 4 seems to be optimal.

Proof of Corollary 2. Consider the supertile of order 0 shown in Fig. 7. Decomposing that large
tile 8 times, we obtain a supertile of order 8 which is an L-tiling by Theorem 1 (see Fig. 14). The
green tile A has the same color as the initial large tile. Thus, if we decompose this supertile S8
eight times, then the green tile will produce another supertile S8. In this way we can construct a
tower of supertiles S0 ⊂ S8 ⊂ S16 ⊂ . . . whose union is an L-tiling of the entire plane.

Remark 5. One can show that there are only 7 different small tiles and 15 different large tiles (up
to isometry) that occur in supertiles as inner tiles (a tile is called an inner tile of a supertile, if no
its side lies on the border of the supertile). Thus we can reduce the total number of proto-tiles to
22. Indeed, to prove Corollary 2, we do not need remaining tiles.

A derivation of Theorem 4 from Theorem 3. By definition, every fragment of every substitution
tiling of the plane occurs in a colored supertile, hence is legal by Theorem 1(2). Therefore every
substitution tiling is an L-tiling.

To prove the converse, consider any fragment P of an L-tiling T of the plane. We have to show
that P occurs in a (colored) supertile. To this end add in P a finite number of tiles from T so
that P becomes an inner part of the resulting fragment Q. By Theorem 3 we can compose T any
number of times and the resulting tiling is an L-tiling. Consider the sets of the form σkC where C
is a star within the tiling σ−kT . As k increases, these sets increase as well. If k is large enough,
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then the set Q is covered by a single such set, say by σkC, that is, Q ⊂ σkC (Lemma 1 below).
As σ−kT is an L-tiling, all its stars are legal. In particular, the star C is legal. By Theorem 1(3),
the star C appears in a supertile, say in Sn. Therefore the tiling σkC appears in the supertile
Sn+k. Hence the patch Q appears in that supertile provided we ignore labels and orientations of
its outer sides. Since no side of the patch P is an outer side of Q, we are done. It remains to prove
Lemma 1.

Lemma 1. If k is large enough compared to d, then for any substitution tiling T of the plane for
any its d-fragment P there is a star C in the tiling σ−kT such that σkC includes the entire patch
P .

Proof. Consider supertiles of the form σk{A} for A ∈ σ−kT , call them k-supertiles. These supertiles
partition T and hence P is covered by a finite number of k-supertiles. More specifically, P is covered
by those k-supertiles σk{A} which intersect [P ]. For small k, for instance for k = 0, the respective
tiles A might not belong to a single star within the tiling σ−kT . However, the sizes of k-supertiles
increase as k increases, and for a large enough k the respective tiles A belong to a single star within
the tiling σ−kT . Indeed, cover the set [P ] by a disc S of radius d (centered at any point from
[P ]). It suffices to show that if k is large enough, then there is a star C in σ−kT such that [σkC]
covers disc S. In other words, [C] covers H−kS, the inverse image of S under the kth power of
the reference homothety H. The radius of H−kS equals φkd, therefore the claim follows from the
following

Geometrical observation: Let α denote the minimal angle of the right golden triangle
and h the length of the altitude of the small right golden triangle. Let S be a disc of
diameter D. If h > D/ sinα+D, then every tiling of the plane has a star C such that
S ⊂ [C].

Proof of the observation. We have to show that tiles intersecting the disc S belong to a single star.
If there is a single such tile, then this is obvious. If there are exactly two such tiles, A and B,
then they must share a part of a side and at least one end of these two sides belongs to both tiles.
Then for the star C centered at that end we have [C] ⊃ A ∪ B ⊃ S. Finally, if there are three or
more such tiles, then at least one of those tiles, call it F , has common points with S lying on two
different sides of the tile F . Let E denote the common point of those sides and let A,B denote
the points from S that belong to different sides of F . The angle ∠AEB is one of the angles of the
right golden triangle and the length of AB is at most D. Hence D > |AB| > |AE| sinα. Therefore
|AE| is at most D/ sinα. All the points from S are at distance at most D from A and hence at
distance at most D/ sinα+D from E. That is, S is covered by the disc with center E and radius
D/ sinα+D. That disc is covered by the star centered at E, provided the length of the altitude h
of small tiles is at least its radius D/ sinα+D.

This observation provides the relation between k and d we need. Assume that h > 2dφk(1/ sinα+
1). Then any d-fragment P of the initial substitution tiling T is covered by a disc of diameter 2d
and is included in σkC for some star C from the tiling σ−kT .

Proof of Theorem 3. Let T be an L-tiling of the plane. We have to show that it has a composition
and that its composition is again an L-tiling.

Why T has a composition? Let S be any small tile from T . Consider the star within T centered
at the vertex of the right angle of S. We know that that star is legal. There are only two stars in
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C2 C3 C4 C5 C6 C7

Figure 15: Surroundings of legal stars

the list of legal stars, whose center is a vertex of the right angle of a small tile, the stars C1 and
C3.

S L

L S

In both these stars the small tile S has the complement labeled L on the picture. Therefore the
tiling T has a composition which is obtained by removing the common legs of all complementary
pairs of tiles S,L and by decrementing all labels by 1 (and then applying H−1, where H is the
reference homothety). Hypotenuses of large tiles are built of two legs of different tiles from T .
Those legs have the same labels, since they belong to axes of stars C1 and C3. Hence hypotenuses
of all large tiles obtain unique digital labels. Finally, new labeling of sides is legal, that is, the
hypotenuses and small legs of large tiles and large legs of small tiles have even colors and all other
sides have odd colors.

Why the composition of T is an L-tiling? We have to show now that the resulting colored tiling
is an L-tiling. Since T satisfies item (1) of the local rule, so does σ−1T . Let us verify item (2) of
the local rule.

Let A be a vertex of a tile from σ−1T . We have to prove that the colored star centered at A
in σ−1T is legal. First note that the star centered at the same vertex A in the initial tiling T is
different from C1, as the centers of stars C1 become inner points of sides in σ−1T . Thus that star
is one of the stars C2–C7. We claim that the composition transforms these stars by the inverse
arrows from Fig. 10. To prove this, we need the following

Lemma 2. If T is an L-tiling of the plane, then every its star of type C2–C7, depending on its
index, includes all tiles marked green in Fig. 15 and does not include tiles marked red (the star
itself is marked grey).

We will first finish the proof of the theorem assuming Lemma 2. Lemma 2 guarantees that
via composition tiles from each star Ci except C6 are transformed to tiles from the star Ci−1. In
the course of composition, we decrement the labels and do not change the orientation of sides.
Therefore, digital labels and orientations of all sides become, as in the star Ci−1. Hence for i > 1,
i 6= 6, the star Ci is transformed to the star Ci−1. For the star C6, one its large tile can be
transformed in two ways, depending on whether the small yellow tile is in T or not. If it is, then
tiles from C6 form the star C7 and otherwise C5.

Hence in the course of composition, all stars in the tiling T are transformed by the inverse grey
arrows from Fig. 10, which implies legality of all stars in σ−1T . It remains to prove Lemma 2.
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5 Proof of Lemma 2

We first show that in any L-tiling of the plane every star must have some fixed neighborhood,
called the neighborhood of the star. Those neighborhoods include all green small tiles (Fig. 15)
except one small tile near C7. In this analysis, we do not use labels and orientation of sides of tiles.
It is instructive, for reader’s convenience, to print out all the legal stars and their neighborhoods
(Fig. 38, 39 and 40 on pages 29 and 30) and then to cut them out of paper. Matching tiles from
those paper stars with the tiles from the figures below, it is easy to verify all the claims that certain
stars do not fit in certain places.

The neighborhoods of legal stars. The neighborhoods of the stars C1, C2, C3, C4, C5 are shown
in Fig. 16. They all are centrally symmetric. The initial star is colored in grey, the added tiles are
colored in light-grey. These neighborhoods are obtained from each other by decomposition. One
can verify that each of the first five stars indeed must have such neighborhood as follows.

The star C1. Look at the blue vertex inside the grey star C1 (Fig. 16). That vertex lies on the
large leg of a large tile. One can easily verify that there is the unique legal star whose center lies
on the large leg of a large tile, namely the star C1. Hence the star within T centered at the blue
vertex is again C1 and we get the sought neighborhood.

Figure 16: The neighborhoods of the first five stars.

The star C2. The argument is similar to the previous one. The star C2 has the following feature:
it has a vertex (colored in blue) that lies on the hypotenuse of its large tile. It is easy to verify that
there is the unique star whose center lies on the hypotenuse of its large tile, namely the star C2.

The star C3. The star C3 is the unique star that has two small triangles sharing the small leg.
Hence the star centered at the blue vertex is again C3.

The star C4. The star C4 is the unique star that has two large triangles sharing the small
leg. Hence the star centered at the blue vertex is again C4. However this star does not complete
the neighborhood: the stars centered at yellow vertices must be C1 and the stars centered at red
vertices again must be C1.

The star C5. The star C5 is the unique star that has two small triangles sharing the hypotenuse.
Hence the star centered at the blue vertex again must be C5. The stars centered at yellow and
green vertices must be C1. Furthermore, the stars centered at red and white vertices must be C2.

The neighborhoods of the stars C6, C7 are shown on Fig. 17 (on the right). One can verify in
the following way that the stars C6, C7 indeed must have such neighborhoods.

The star C6. The stars centered at yellow and green vertices must be C1 and the stars centered
at red and black vertices must be C2 (on the left in Fig. 17). Now we see that the star centered at
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C6 C7

Figure 17: The neighborhood of the stars C6, C7.

C2 C3 C4 C5 C6 C7

Figure 18: Neighborhoods of stars

the brown vertex must be C3, which is added together with its neighborhood.
The star C7. Since the star C7 can be obtained from C6 by rotation (ignoring labels and

orientation), the arguments are entirely similar to those for the star C6.
Now we can start the proof of the lemma. Assume that the star centered at a vertex A in an

L-tilling T is Ci where i > 1. We have to prove that T includes all tiles marked green on Fig. 18
(= Fig. 15) and does not include tiles marked red (the star itself is marked grey). We will treat all
i’s separately. We start with simple cases i = 2, 5, 6.

The star of A in T is C2 or C6. It is easy to verify that in both cases the neighborhood of the
star includes all tiles marked green in Fig. 18, and we are done.

The star of the vertex A in T is C5. Fig. 19(a,b) show the star C5 and its neighborhood. We
can see that the neighborhood includes all 4 tiles marked green in Fig. 18. We need to show that
the small red triangle is not in T . For the sake of contradiction assume that the tiling T includes
the patch shown in Fig. 19(c). We will say that a star Ci fits for a given patch in a given its vertex
if one can draw (an isometric copy of) Ci centered at that vertex so that each of its tiles either does
not overlap all the tiles from that tiling, or belongs to that tiling. It is easy to verify that only the
star C3 fits for this patch in the yellow vertex. Adding to the patch that star and its neighborhood,
we obtain the patch shown in Fig. 19(d). Now, we can verify that no legal star fits for this patch
in the blue vertex. Indeed, that star must have 7 triangles, and only C4 has this property among
legal stars. It is easy now to verify that C4 does not fit.
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(a) (b) (c) (d)

Figure 19: Composition of the star C5

We proceed now to hard cases C3, C5, C7. The arguments are very similar to those used in
the case of C5 but the analysis is much more involved. Therefore we moved most of the proof to
Appendix, as the proof of Claim 1 (page 20).

The star of A in T is C3. The vertex A is colored green on Fig. 20(a) and its star is colored in
dark-grey. In Fig. 20(b) we show the neighborhood of that star (added tiles are colored in light-
grey). We can see that the neighborhood includes the large tile marked green in Fig. 18. Now we
have to show that the tiling T does not the small triangle marked red in Fig. 20(c). This is the
statement of Claim 1(a).

(a) (b) (c)

Figure 20: Composition of the star C3.

The star of the vertex A is C4. The vertex A is shown by the green point in Fig. 21(a). And
Fig. 27(b) shows the neighborhood of that star. We can see that the neighborhood includes both
tiles marked green in Fig. 18. It remains to show that the tiling T does not the small triangle
marked red (Claim 1(b)).

The star of A in T is C7. Fig. 22(a,b) show the star C7 and its neighborhood. We can see that
the neighborhood includes all 6 tiles marked green in Fig. 18, except for the bottommost small tile.
To prove that it includes also that tile, consider the blue vertex. Only the stars C2, C3, C4 fit for
the patch in that vertex, they are shown on Fig. 22(c). If the star of the blue vertex is C3, we are
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(a) (b) (c)

Figure 21: Composition of the star C4.

C2:

C3:

C4:

(c)(a) (b) (d)

Figure 22: Composition of the star C7.

done, as that star includes the sought tile. It remains to show that neither of the stars C2, C4 can
stand in the blue vertex.

It is easy to show that C4 cannot be there. Indeed, adding that star to the patch, we obtain the
patch shown in Fig. 22(d). No legal star fits for that patch in the yellow vertex. And Claim 1(c)
claims that the star centered at the blue vertex cannot be C2 either. It remains to prove

Claim 1. The following patches (Fig. 23) cannot occur in L-tilings of the plane.

To prove the claim, we explore a small neighborhood of the patches in a similar way, as it was
done in finding neighborhoods of the stars. The proof is deferred to Appendix.
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A Proof of Claim 1

(a) For the sake of the contradiction assume that the patch in Fig. 24(a) occurs in an L-tiling.
Look at the vertex colored black. A quick look at the list of legal stars reveals that only the star

(a) (b) (c) (d)

C3:

C3:

C4:

Figure 24: Composition of the star C3 (the beginning).

C3 (shown in Fig. 24(b)) fits for the patch in that vertex. Adding that star and its neighborhood,
we obtain the patch shown in Fig. 24(d), where the added tiles are colored light-gray.

Now look at the blue vertex on the bottom left. In that vertex only the stars C3 and C4 fit.
Those stars are shown in Fig. 24(c). The star C3 has non-matching orientation of the green arrow,
hence C3 cannot be the star within T in the blue vertex. Therefore, it is the star C4. Adding the
star C4 and its neighborhood, we obtain the tiling shown on Fig. 25(a).

C3:

C4: C5:

C6: C7:

(a) (b) (c) (d)

Figure 25: Composition of the star C3 (the end).

A small search reveals that only the star C3 fits for that patch in the brown vertex on the
top left. Fig. 25(b) shows the tiling that is obtained by adding the star C3 and its neighborhood.
Thus we conclude that the axis of the initial star and its extension to the right must be directed
from the right to the left (yellow arrows in Fig. 25(c)). Now look at the beginning of the leftmost
yellow arrow (the red point on the top right in Fig. 25(c)). Only the stars shown in Fig. 25(d) fit
for the resulting patch in the red vertex. However none of them can be there, since all they have
non-matching orientation of the horizontal yellow arrow.

(b) For the sake of contradiction assume that an L-tiling T includes the patch shown in Fig.
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26(a). Our plan is the following. We first show that, in addition to all tiles in the patch in Fig. 26(a),

A
B

A
B C5: C6: C7:

(c)(b)(a)

Figure 26: Composition of the star C4 (beginning)

the tiling T must contain all the tiles shown in Fig. 26(b).
Assume that this is done. It is easy to verify that only the stars C5, C6, C7 (shown in Fig. 26(c))

fit for the patch in the rightmost brown vertex. In all three cases the axis of the initial star (the
horizontal black line) must be directed rightwards. However, similar arguments applied to the
leftmost brown vertex show that that axis must be directed leftwards, which is a contradiction.

So we have to show that the tiling T must contain all the tiles shown in Fig. 26(b). To this
end, let us go back to Fig. 26(a). We copied that patch in Fig. 27(a). Only the star C3 fits for this

C4:
C5:

C6: C7:

(a) (b) (c)

Figure 27: Composition of the star C4 (continued)

patch in the blue vertex. Fig. 27(b) shows the patch that is obtained by adding the star C3 and
its neighborhood. Look now at the yellow vertex on the bottom. Only the stars C4, C5, C6, C7 fit
for the patch in that vertex, they are shown in Fig. 27(c). Note that the stars C4, C6 (from the left
column) have non-matching orientation of the vertical blue arrow, which must direct downwards,
hence cannot be there. We will consider the remaining two cases separately.

Case 1: the star C7 is in the yellow vertex in Fig. 27(b). In this case we are able to derive a
contradiction quite easily. Adding the star C7 and its neighborhood we obtain the patch shown in
Fig. 28(a). Only the stars C3, C4 (shown in Fig. 28(b)) fit in the blue vertex. Adding the star C4,
we obtain the patch shown in Fig. 28(c). We can see that no legal star fits in the green vertex on
the right.

Hence only the star C3 can be in the blue vertex. Adding that star and its neighborhood, we
obtain the patch shown in Fig. 29(b). Only the stars C3, C4 (shown in Fig. 29(c)) fit for the
resulting patch in the green vertex on the right. However the star C3 has non-matching orientation
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C3:

C4:

(a) (c)(b)

Figure 28: Composition of the star C4: case 1 (beginning)

C3:

C4:

(a) (b) (c)

Figure 29: Composition of the star C4: case 1 (continued)

of the green arrow, hence the star centered at the green vertex is C4. Adding it and its neighborhood,
we obtain the patch in Fig. 30(a).

Only the stars C4, C5, C6, C7 (shown in Fig. 30(b)) fit for the patch in the brown vertex on the
top right. However all those stars have non-matching orientation of the yellow arrow in the lower
half of the star. Thus we have derived a contradiction in the first case.

Case 2: the star centered at yellow vertex in Fig. 27(b) is C5. In this case we need a more
involved analysis. Let us go back to Fig. 27(b) and add the star C5 and its neighborhood in
the yellow vertex. We obtain the patch shown on Fig. 31(b). Which stars fit for the patch in the
leftmost vertex (colored in red)? These are the stars C6, C7, which are shown in Fig. 31(a). Assume
first that it is C6. Adding the neighborhood of the star C6 centered at the red point, we get the
patch shown in Fig. 31(c). If it is C7, we get a patch that differs from this one in orientation and
labels of some sides. This difference does not matter and therefore we will consider only the case
of C6.

Look at the vertex colored black (on the top left). Only the star C4 fits for the patch in
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C4:

C5:

C6:

C7:

(b)(a)

Figure 30: Composition of the star C4: case 1 (the end)

C6:

C7:

C4:

(c)
(a) (b)

Figure 31: Composition of the star C4: case 2 (beginning)

that vertex. Adding C4 and its neighborhood in the black vertex we obtain the patch shown in
Fig. 32(a). We have shown that our tiling T includes all the tiles from Fig. 26(b) except for both
triangles labeled by letter B and one triangle labeled by letter A. We have also shown that the
tiling T includes the image of the initial star under the inversion through the white point. Via
central symmetrical arguments we can prove that T includes also the other triangle labeled by
letter A in Fig. 26(b). It remains to show that T includes both triangles labeled by B.

To this end look at the blue vertex on the right in Fig. 32(a). Only the stars C3 and C4, shown
in Fig. 32(b), fit for the patch in that vertex. If the star centered at the blue vertex is C3, we obtain
the patch shown in Fig. 32(c), and no legal star fits for it in the green vertex on the right.

In the remaining case the star centered at the blue vertex is C4, and we get the patch shown
in Fig. 33(a). Adding its neighborhood, we get the patch that includes the sought triangle B
(see Fig. 33(b)). Via central symmetrical arguments we can prove that T includes also the other
triangle labeled by letter B. We have reached our goal: we have proved that the tiling T includes
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A

C3:

C4:

(b)

A

(a) (c)

Figure 32: Composition of the star C4: case 2 (continued)

A A
B

(a) (b)

Figure 33: Composition of the star C4: case 2 (the end)

the patch shown in Fig. 26(b).
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(c) For the sake of contradiction assume that an L-tiling includes the patch shown in Fig. 34(a).
First add the neighborhood of the star C2 centered at the blue vertex, we obtain Fig. 34(b). Only

C6:

C7:

C5:

C6:

C7:

(a) (b) (c) (d)

(e)

Figure 34: Composition of the star C7 (continued)

the stars C6 and C7, shown on Fig. 34(c), fit for the resulting patch in the yellow vertex (on the
bottom). However the star C7 cannot be there, since its vertical green arrow has the non-matching
orientation. Hence the star of the yellow vertex is C6. Fig. 34(d) shows the patch which is obtained
by adding that star and its neighborhood. Now look at the red vertex on the right. Only the stars
C5, C6, C7 (Fig. 34(e)) fit for the patch in that vertex. In all the three cases there is a horizontal
blue arrow that goes into the red vertex. That arrow lies on the axis of the initial star.

Now we know the color and orientation of that axis (see Fig. 35(a)). We can find now the

C5:

C6:

C6:

C7:

C7:

(a) (b)

Figure 35: Composition of the star C7 (continued)

stars in the leftmost and the bottommost vertices (both are colored blue). Indeed, only the stars
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C5, C6, C7 fit for the patch in the bottommost vertex, and two latter stars fit in two ways (see
Fig. 35(b)). In four cases the vertical arrow has the red (and not green) color. Hence those cases
are impossible and only the lower star C6 can stand in the bottommost blue vertex.

A similar situation occurs in the leftmost blue vertex: the stars C3, C4, C5, C6, C7 fit for the
patch there (two of them fit in two ways, see Fig. 36(a)). However only one star, the lower C7, can

C3:

C4:

C5:

C6:

C6:

C7:

C7:

(a) (b)

Figure 36: Composition of the star C7 (continued)

have the matching color (blue) of the horizontal arrow.
Adding to the patch the stars in the blue vertices and adding then their neighborhoods, we

obtain the patch shown in Fig. 37(b). Only the star C4 fits for that patch in the yellow vertex,

C4:

(a) (b)

Figure 37: Composition of the star C7 (the end)

that star is shown in Fig. 37(a). Now it is obvious that neither of the legal stars can stand in the
adjacent black vertex, since the yellow arrow that goes out the yellow vertex into the black one
cannot change its color to blue in the black vertex. We have considered all the cases. The claim is
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proved.

B To cut out of paper

C1

C1

C2

C2

C3

C3

C4

C4

C5

C5 C6

C6 C7

C7

Figure 38: Legal stars. The stars in the second row are reflections of the stars in the first row. It
is not necessary to use the color print, since labels on sides are used only in one place of the proof
(in the very end).

Figure 39: The neighborhood of the first five stars.
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Figure 40: The neighborhoods of the stars C6, C7.
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