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Abstract. We show that, if an n-vertex triangulation G of maximum degree ∆ has a dual
that contains a cycle of length `, then G has a non-crossing straight-line drawing in which
some set, called a collinear set, of Ω(`/∆4) vertices lie on a line. Using the current lower
bounds on the length of longest cycles in cubic 3-connected graphs, this implies that every
n-vertex planar graph of maximum degree ∆ has a collinear set of size Ω(n0.8/∆4).

1 Introduction

Throughout this paper, all graphs are simple and finite and have at least 4 vertices. For a
planar graph G, we say that a set S ⊆ V (G) is a collinear set if G has a non-crossing straight-
line drawing in which the vertices of S are all collinear. A plane graph is a planar graph
G along with a particular non-crossing drawing of G. The dual G? of a plane graph G is
the graph whose vertex set V (G?) is the set of faces in G and in which f g ∈ E(G?) if and
only if the faces f and g of G have at least one edge in common. The circumference, c(G),
of a graph G is the length of the longest cycle in G. In Section 2, we prove the following
theorem:

Theorem 1. Let G be a triangulation of maximum degree ∆ whose dual G? has circumference
`. Then G has a collinear set of size Ω(`/∆4).

The dual of a triangulation is a 3-connected cubic planar graph. The study of the
circumference of 3-connected cubic planar graphs has a long and rich history going back
to at least 1884 when Tait [27] conjectured that every such graph is Hamiltonian. In 1946,
Tait’s conjecture was disproved by Tutte who gave a non-Hamiltonian 46-vertex example
[28]. Repeatedly replacing vertices of Tutte’s graph with copies of itself gives a family of
graphs, 〈Gi : i ∈ Z〉 in which Gi has 46 · 45i vertices and circumference at most 45 · 44i .
Stated another way, n-vertex members of the family have circumference O(nα), for α =
log44(45) < 0.9941. The current best upper bound of this type is due to Grünbaum and
Walther [18] who construct a 24-vertex non-Hamiltonian cubic 3-connected planar graph,
resulting in a family of graphs in which n-vertex members have circumference O(nα) for
α = log23(22) < 0.9859.

A series of results has steadily improved the lower bounds on the circumference of
n-vertex (not necessarily planar) 3-connected cubic graphs. Barnette [5] showed that, for
every n-vertex 3-connected cubic graph G, c(G) = Ω(logn). Bondy and Simonovits [8]

improved this bound to eΩ(
√

logn) and conjectured that it can be improved to Ω(nα) for
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some α > 0. Jackson [19] confirmed this conjecture with α = log2(1 +
√

5) − 1 > 0.6942.
Billinksi et al. [6] improved this to the solution of 41/α−31/α = 2, which implies α > 0.7532.
The current record is held by Liu, Yu, and Zhang [22] who show that α > 0.8.

It is known that any planar graph of maximum degree ∆ can be triangulated so that
the resulting triangulation has maximum degree d3∆/2e+ 11 [21]. This fact, together with
Theorem 1 and the result of Liu, Yu, and Zhang [22], implies the following corollary:

Corollary 1. Every n-vertex planar graph of maximum degree ∆ contains a collinear set of size
Ω(n0.8/∆4).

It is known that every planar graph G has a collinear set of size Ω(
√
n) [9, 13] . Corol-

lary 1 therefore improves on this bound for bounded-degree planar graphs and, indeed
for the family of n-vertex planar graphs of maximum degree ∆ ∈ O(nδ), with δ < 0.075.
For example, the triangulations dual to Grünbaum and Walther’s construction have max-
imum degree ∆ ∈ O(logn). As discussed below, this implies that there exists n-vertex
triangulations of maximum degree O(logn) whose largest collinear set has size O(n0.9859).
Corollary 1 implies that every n-vertex planar graph of maximum degree O(logn) has a
collinear set of size Ω(n0.8).

Recently, Dujmović et al. [14] have shown that every collinear set is free. That is, for
any planar graph G, any collinear set S ⊆ V (G), and any set X ⊂ R2 with |X | = |S |, there
exists a non-crossing straight-line drawing of G in which the vertices of S are drawn on the
points of X. Because of this, collinear sets have immediate applications in graph drawing
and related areas. For applications of Corollary 1, including untangling [11, 23, 29, 17,
20, 9, 12, 13, 25], column planarity [3, 15, 12, 13], universal point subsets [16, 1, 12, 13],
and partial simultaneous geometric drawings [15, 4, 2, 7, 13] the reader is referred to
Dujmović [13] and Dujmović et al. [14, Section 1.1]. Corollary 1 gives improved bounds
for all of these problems for planar graphs of maximum ∆ ∈ o(n0.075).

For example, it is known that every n-vertex planar geometric graph can be untangled
while keeping some set of Ω(n0.25) vertices fixed [9] and that there are n-vertex planar ge-
ometric graphs that cannot be untangled while keeping any set of Ω(n0.4948) vertices fixed
[10]. Although asymptotically tight bounds are known for paths [11], trees [17], outer-
planar graphs [17], planar graphs of treewidth two [25], and planar graphs of treewidth
three [12], progress on the general case has been stuck for 10 years due to the fact that the
exponent 0.25 comes from two applications of Dilworth’s Theorem. Thus, some substan-
tially new idea appears to be needed. By relating collinear/free sets to dual circumference,
the current paper presents an effective new idea. Indeed, Corollary 1 implies that every
bounded-degree n-vertex planar geometric graph can be untangled while keeping Ω(n0.4)
vertices fixed. Even for bounded-degree planar graphs, Ω(n0.25) was the best previously-
known lower bound.

Our work opens two avenues for further progress:

1. Lower bounds on the circumference of 3-connected cubic graphs are an active area
of research. At the time of writing, the Ω(n0.8) lower bound of Liu, Yu, and Zhang
[22] is less than a year old. Any further progress on these lower bounds will translate
immediately to an improved bound in Corollary 1 and all its applications.
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2. It is possible that the dependence on ∆ can be removed from Theorem 1 and Corol-
lary 1, thus making these results applicable to all planar graphs, regardless of maxi-
mum degree.

2 Proof of Theorem 1

LetG be a plane graph. We treat the vertices ofG as points, the edges ofG as closed curves,
and the faces of G as closed sets (so that a face contains all the edges on its boundary and
an edge contains both its endpoints). Whenever we consider subgraphs of G we treat
them as having the same embedding as G. Similarly, if we consider a graph G′ that is
homeomorphic1 to G then we assume that the edges of G′—each of which represents a
path in G whose internal vertices all have degree 2—inherit their embedding from the
paths they represent in G.

Finally, if we consider the dual G? of G then we treat it as a plane graph in which each
vertex f is represented as a point in the interior of the face f of G that it represents. The
edges of G? are embedded so that an edge f g is contained in the union of the two faces f
and g of G, it intersects the interior of exactly one edge of G that is common to f and g,
and this intersection consists of a single point.

A proper good curve C for a plane graph G is a Jordan curve with the following proper-
ties:

proper: for any edge xy of G, C either contains xy, intersects xy in a single point (possibly
an endpoint), or is disjoint from xy; and

good: C contains at least one point in the interior of some face of G.

Da Lozzo et al. [12] show that proper good curves define collinear sets:

Theorem 2. In a plane graph G, a set S ⊆ V (G) is a collinear set if and only if there is a proper
good curve for G that contains S.

For a triangulation G, let v(G) denote the size of a largest collinear set in G. We
will show that, for any triangulation G of maximum degree ∆ whose dual is G? , v(G) =
Θ(c(G?)/∆4) by relating proper good curves in G to cycles in G? .

As shown by Ravsky and Verbitsky [25, 24], the inequality v(G) ≤ c(G?) is easy: If
G is a triangulation that has a proper good curve C containing k vertices, then a slight
deformation of C produces a proper good curve that contains no vertices. This curve
intersects a cyclic sequence of faces f0, . . . , fk′−1 of G with k′ ≥ k. In this sequence, fi and
f(i+1) mod k′ share an edge, for every i ∈ {0, . . . , k′ − 1}, so this sequence is a closed walk in
the dual G? of G. The properness of the original curve and the fact that each face of G is a
triangle ensures that fi , fj for any i , j, so this sequence is a cycle in G? of length k′ ≥ k.
Therefore, c(G?) ≥ v(G). From the result of Grünbaum and Walther described above, this
implies that there are n-vertex triangulations G such that v(G) =O(n0.9859).

The other direction, lower-bounding v(G) in terms c(G?) is more difficult. Not every
cycle C of length ` in G? can be easily transformed into a proper good curve containing

1We say that a graph G′ is homeomorphic to G if G′ can be obtained from G by repeatedly contracting an
edge of G that is incident to a degree-2 vertex.
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Figure 1: Faces of G? that are pinched and caressed by C. C is bold, caressed faces are teal,
pinched faces are pink, and untouched faces are unshaded.

a similar number of vertices in C. In the next section, we describe three parameters τ , ρ,
and κ of a cycle C in G? and show that C can always be transformed into a proper good
curve containing Ω(κ) vertices of G.

2.1 Faces that are Touched, Pinched, and Caressed

Throughout the remainder of this paper, G is a triangulation whose dual is G? and C is a
cycle in G? . Refer to Figure 1 for the following definitions. We say that a face f of G?

1. is touched by C if f ∩C , ∅;

2. is pinched by C if f ∩C is a cycle or has more than one connected component; and

3. is caressed by C if it is touched but not pinched by C.

Since C is almost always the cycle of interest, we will usually say that a face f of G?

is touched, pinched, or caressed, without specifically mentioning C. We will frequently
use the values τ , ρ, and κ to denote the number of faces of G? in some region that are
τouched, ρinched or κaressed. Observe that, since every face that is touched is either
pinched or caressed, we have the identity τ = ρ+κ.

Lemma 1. If C caresses κ faces of G? then G has a proper good curve that contains at least κ/4
vertices so, by Theorem 2, v(G) ≥ κ/4.

Proof. Let F be the set of faces in G? that are caressed by C. Each element u ∈ F corre-
sponds to a vertex of G so we will treat F as a set of vertices in G. Consider the subgraph

4



u

C wi

wi−1

wj

wj+1 u

wi

wi−1

wj

wj+1

C′

Figure 2: Transforming the dual cycle C into a proper good curve C′ containing u.

G[F] of G induced by F. The graph G[F] is planar and has κ vertices. Therefore, by the
4-Colour Theorem [26], G[F] contains an independent set F′ ⊆ F of size at least κ/4.

We claim that there is a proper good curve for G that contains all the vertices in F′. To
see this, first observe that the cycle C in G? already defines a proper good curve (that does
not contain any vertices of G) that we also call C. We perform local modifications on C so
that it contains all the vertices in F′.

For any vertex u ∈ F′, let w0, . . . ,wd−1 denote the neighbours of u in cyclic order. The
curve C intersects some contiguous subsequence uwi , . . . ,uwj of the edges adjacent to u.
Since u is caressed, this sequence does not contain all edges incident to u. Therefore,
the curve C crosses the edge wi−1wi , then crosses uwi , . . . ,uwj , and then crosses the edge
wjwj+1. We modify C by removing the portion between the first and last of these crossings
and replacing it with a curve that contains u and is contained in the two faces wi−1uwi and
wjuwj+1. (See Figure 2.)

After performing this local modification for each u ∈ F′ we have a curve C′ that con-
tains every vertex u ∈ F′. All that remains is to verify that C′ is good and proper for G.
That C′ is good for G is obvious. That C′ is proper for G follows from the following two
observations: (i) C′ does not contain any two adjacent vertices (since F′ is an independent
set); and (ii) if C′ contains a vertex u, then it does not intersect the interior of any edge
incident to u.

Lemma 1 reduces our problem to finding a cycle in G? that caresses many faces. It
is tempting to hope that any sufficiently long cycle in G? caresses many faces, but this
is not true; Figure 3 shows that even a Hamiltonian cycle C in G? may caress only four
faces, two inside C and two outside of C. In this example, there is an obvious sequence of
faces f0, . . . , fk , all contained in the interior of C where fi shares an edge with fi+1 for each
i ∈ {0, . . . , k − 1}. The only caressed faces in the interior of C are the endpoints f0 and fk of
this sequence.

Our strategy is to define a tree structure, T0 on groups of faces contained in the interior
of C and a similar structure, T1 on groups of faces in the exterior of C. We will then show
that every leaf of T0 or T1 contains a face caressed by C. In Figure 3, the tree T0 is the path
f0, . . . , fk and, indeed, the leaves f0 and fk of this tree are caressed by C. After a non-trivial
analysis of the trees T0 and T1, we will eventually show that, if C does not caress many
faces, then T0 and T1 have many nodes, but few leaves. Therefore T0 and T1 have many
degree-2 nodes. This abundance of degree-2 nodes makes it possible to perform a surgery
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f1 f2 f3 f4 fk−1
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Figure 3: A Hamiltonian cycle C in G? that caresses only four faces.

PL
R

C

f

X1

X2X3

Figure 4: The proof of Lemma 2.

on C that increases the number of caressed faces. Performing this surgery repeatedly will
then produce a curve C that caresses many faces.

A path P = v1, . . . , vr in G? is a chord path (for C) if v1,vr ∈ V (C) and v2, . . . , vr−1 < V (C).
Note that this definition implies that the interior vertices v2, . . . , vr−1 of P are either all
contained in the interior of C or all contained in the exterior of C.

Lemma 2. Let P be a chord path for C and let L and R be the two faces of the graph formed
by P ∪C that each contain P in their boundary. Then R contains at least one face of G? that is
caressed by C.

Proof. The proof is by induction on the number, t, of faces of G? contained in R. If t = 1,
then R is a face of G? and it is caressed by C.

If t > 1, then consider the face f of G? that is contained in R and has the first edge of
P on its boundary. Refer to Figure 4. Since t > 1, X = R \ f is non-empty. The set X may
have several connected components X1, . . . ,Xk , but each Xi has a boundary that contains a
chord path Pi for C. We can therefore apply induction on P1 (or any Pi) using R = X1 in the
inductive hypothesis.

2.2 Auxilliary Graphs and Trees: H , H̃ , T0, and T1

Refer to Figure 5. Consider the auxilliary graph H with vertex set V (H) ⊆ V (G?) and
whose edge set consist of the edges of C plus those edges of G? that belong to any face
pinched by C. Let v0, . . . , vr−1 be the clockwise cyclic sequence of vertices on some face f
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(a) (b)

(c) (d)

Figure 5: (a) the cycle C inG? with faces classified as pinched or caressed; (b) the auxilliary
graph H ; (c) the auxilliary graph H̃ with keeper paths highlighted; (d) the trees T0 and T1.

of G? that is pinched by C. We identify three kinds of vertices that are special with respect
to f : (see Figure 6).

1. A vertex vi is special of Type A if vi−1vi is an edge of C and vivi+1 is not an edge of C.

2. A vertex vi is special of Type B if vi−1vi is not an edge of C and vivi+1 is an edge of C.

3. A vertex vi is special of Type Y if vi not incident to any edge of C and vi has degree 3
in H .

We say that a chord path vi , . . . , vj is a keeper with respect to f if vi is special of Type A,
vj is special of Type B, and none of vi+1, . . . , vj−1 are special. We let H̃ denote the subgraph
of H containing all the edges of C and all the edges of all paths that are keepers with
respect to some pinched face f of G? .

It is worth emphasizing at this point that, by definition, every keeper is entirely con-
tained in the boundary of at least one face f of G? . This property will be useful shortly.

Let H̃ ′ denote the graph that is homeormophic to H̃ but does not contain any degree 2
vertices. That is, H̃ ′ is the minor of H̃ obtained by repeatedly contracting an edge incident
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Y Y

G? H H̃

Figure 6: The graphs G? , H , and Ĥ and the classification of special vertices of types A, B,
and Y .
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a degree-2 vertex. The graph H̃ ′ naturally inherits an embedding from the embedding of
H̃ . This embedding partitions the edges of H̃ ′ into three sets:

1. The set B of edges that are contained in (the embedding of) C;

2. The set E0 of edges whose interiors are contained in the interior of (the embedding
of) C; and

3. The set E1 of edges whose interiors are contained in the exterior of (the embedding
of) C.

Observe that, for each i ∈ {0,1}, the graph Hi whose edges are exactly those in B∪Ei is
outerplanar, since all vertices of Hi are on a single face, whose boundary is C. Let Hi? be
dual of Hi and let Ti be the subgraph of Hi? whose edges are all those dual to the edges of
Ei . From the outerplanarity of Hi , it follows that Ti is a tree.

Each vertex of Ti corresponds to a face of H̃ . From this point onwards, we will refer to
the vertices of Ti as nodes to highlight this fact, so that a node u of Ti is synonymous with
the subset of R2 contained in the corresponding face of H̃ . In the following, when we say
that a node u of Ti contains a face f of G? we mean that f is one of the faces of G? whose
union makes up u. The degree, δu of any node u in Ti is exactly equal to the number of
keeper paths on the boundary of u.

The following lemma allows us to direct our effort towards proving that one of T0 or
T1 has many leaves.

Lemma 3. Each leaf u of Ti contains at least one face of G? that is caressed by C.

Proof. The edge of Ti incident to u corresponds to a chord path P . The graph P ∪C has
two faces with P on its boundary, one of which is u. The lemma now follows immediately
from Lemma 2, with R = u.

We will make use of the following well-known property of 3-connected plane graphs.

Lemma 4. If G has n ≥ 4 vertices then any two faces of G? share at most one edge.

Proof. Suppose that two faces f and g share two edges e1 and e2. Then e1 and e2 form an
edge cutset of G? . If G? contains at least four vertices, then two of the endpoints of e1 and
e2 form a vertex cutset of G? of size 2, contradicting the fact that G? is 3-connected. That
G? contains at least four vertices follows from Euler’s Formula, which gives the number of
vertices in G? as 2n− 4 ≥ 4 for all n ≥ 4.

Note that, as should be evident from Figure 6, the number of faces in H̃ is not lower
bounded by any function of the number of faces inH and therefore the number of nodes in
T0 and T1 is not lower bounded by any function of `. Indeed, a single face of H̃ may contain
arbitrarily many faces of G? that are touched by C. The following important lemma shows
that, when this happens, the corresponding node in T0 or T1 either has high degree or
contains many faces of G? that are caressed by C. The latter case is obviously good for our
purposes. The former case is also good because a vertex of degree δ in any tree creates δ−2
leaves and, by Lemma 3, each leaf contains at least one caressed face.
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· · ·

Figure 7: An example showing the tightness of Lemma 5.

For a node u of Ti , we let τu , ρu , κu , and δu denote the number of touched face of T ?

in u, pinched faces of G? in u, the number of caressed faces of G? in u, and the degree of
u in Ti , respectively.

Lemma 5. For any node u of Ti , ρu ≤ 2(κu + δu).

Before proving Lemma 5, we point out that the leading constant 2 is tight. Figure 7
shows an example in which all ρu = 2k + 1 pinched faces of G? are contained in a single
(pink) node u of T0 that contains κu = 0 caressed faces and has degree δu = k + 2.

Proof of Lemma 5. The proof is a discharging argument. We assign each pinched face in
u a single unit of charge, so that the total charge is ρu . We then describe a discharging
procedure that preserves the total charge and such that, after executing this procedure,
the folowing conditions are satisfied:
(Post1) Each pinched face has no charge.
(Post2) Each caressed face has charge at most 2.
(Post3) Each keeper path has charge at most 2.
Since there is a bijection between keeper paths in u and edges of Ti incident to u, this
proves the result.

The discharging procedure is made up of two routines, an initialization procedure and
a recursive procedure. The recursive procedure takes inputs (L,R,P ,c), where P is a chord
path, L,R ⊆ u, L∩R = P , L contains at least one face of G? , and 0 ≤ c ≤ 2 is a charge that we
think of as resting on P . The input (L,R,P ,c) must satisfy the following conditions:
(Pre1) Each face of G? in L that shares an edge with P is pinched.
(Pre2) If c > 1 then P is contained in the boundary of a single face of G? that is contained

in L.
The procedure guarantees that, after its completion, the charge of c that was resting on P
has been moved into R, any other charges in L are undisturbed, and the faces contained in
R satisfy (Post1)–(Post3).

Before defining the recursive procedure itself, we will show how it is used by the
initialization procedure. This initialization procedure takes an arbitrary pinched face f
contained in u. Since f is pinched, it has r ≥ 2 chord paths P1, . . . , Pr on its boundary. For
each i ∈ {1, . . . , r}, let L−i be the component of u \ Pi that contains f , let Li = L−i ∪ Pi , and
let Ri = u \ Li− . This initialization procedure guarantees that, after it runs, all the faces
and chord paths in u \R1 satisfy (Post1)–(Post3) but does not modify charges on faces and
keeper paths in R1.
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Figure 8: Discharging steps in the proof of Lemma 5.

The initialization procedure works as follows: Since f is pinched it has a charge of 1
so we move the charge from f onto P2 and apply the recursive procedure to (L2,R2, P2,1).
Since f is pinched, this satisifies (Pre1) and since the final argument c = 1 this satisfies
(Pre2). Once these recursive procedures are complete conditions (Post1)–(Post2) are satis-
fied for all faces in f ∪R2.

Next, we apply the recursive procedure on (Li ,Ri , Pi ,0) for each i ∈ {3, . . . , r}. Since f is
a pinched face, this satisifies (Pre1) and since the final argument c = 0 this satisfies (Pre2).
Once the recursive procedure is complete conditions (Post1)–(Post2) are satisfied for all
faces in f ∪Ri and does affect any charges in R1.

Since every face and keeper path contained in u is contained in Ri for at most one
i, the initialization procedure produces a distribution of charges that satisifies (Post1)–
(Post3) for u \R1, as required.

Next we describe the recursive discharging procedure that takes (L,R,P ,c) satisifying
(Pre1) and (Pre2) and moves charges in R, and the charge c resting on P , so that they satisfy
(Post1)–(Post3). There are several cases to consider (see Figure 8):

1. R contains no face of G? that is pinched by C. If R contains no face of G? at all, then

11



R = P is a keeper path, in which case we leave a charge of c on it and we are done.
Otherwise R contains at least one face of G? and Lemma 2 ensures that R contains at
least one caressed face f . We move the charge from P onto f and we are done.

2. R contains a face f of G? that is pinched by C and that shares at least one edge with
P . We consider three subcases, each illustrated in Figure 8:

(a) f contains neither endpoint of P . In this case, R\f has two distinct components,
R−1 and R−2 each containing a distinct endpoint of P . For each i ∈ {1,2}, let Pi be
the chord path that separates R−i from u \ R−i . Since f is pinched, f contains
r ≥ 3 chord paths P1, . . . , Pr . Indeed, if P1 and P2 were the only chord paths on f ,
then f would be caressed. For each i ∈ {1, . . . , r}, let L−i = u \ Pi , let Li = L−i ∪ Pi ,
and let Ri = u \L−i .
We split the charge c on P evenly between P1 and P2 and apply the recursive
procedure on (Li ,Ri , Pi , c/2) for each i ∈ {1,2}. Next, we move the charge on f
to P3 and apply the recursive procedure on (L3,R3, P3,1). Finally, we apply the
recursive procedure on (Li ,Ri , Pi ,0) for each i ∈ {4, . . . , r}.
The recursive call (L1,R1, P1, c/2) satisfies (Pre1) because the path P1 used in this
recursive call is contained in the boundary of f and P . In particular each face
of G? contained in u \ R1 that is incident to P1 is either in L and incident to
P or is the face f . The latter faces are pinched by (Pre1) and f is pinched by
definition. The recursive call on (L1,R1, P1, c/2) also satisifies (Pre2) since c ≤ 2,
so c/2 ≤ 1. The same argument shows that the recursive call on (L2,R2, P2, c/2)
satisfies (Pre1) and (Pre2).
For each i ∈ {3, . . . , r}, the recursive call on (Li ,Ri , Pi ,?) satisifies (Pre1) because
Pi is contained in f and f is pinched and satisfies (Pre2) because the final argu-
ment is 1 for i = 3 and 0 for i ∈ {4, . . . , r}.

(b) f contains exactly one endpoint of P . In this case, R \ f has one connected
component R−1 that contains an endpoint of P . Since f is pinched, f has r ≥ 2
chord paths P1, . . . , Pr on its boundary, where P1 separates R−1 from u \R1. Define
L1, . . . ,Lr , R1, . . . ,Rr , and P2, . . . , Pr as in the previous case.
Because f is pinched, it has one unit of charge on it, that we move onto P1
before calling the recursive procedure on (L1,R1, P1,1). This satisfies (Pre1) for
the same reasons described in the previous case and satisfies (Pre2) because the
final argument is 1.
The path P has a charge c ≤ 2 which we move onto P2 and call the recursive pro-
cedure on (L2,R2, P2, c). This recursive call satisfies (Pre1) because f is pinched
and it satisfies (Pre2) because P2 is entirely contained in the boundary of f .
Finally, for each i ∈ {3, . . . , r}, we call the recursive procedure on (Li ,Ri , Pi ,0).
Clearly each of these calls also satisfies (Pre1) and (Pre2).

(c) f contains both endpoints of P . We claim that, in this case, P must be on the
boundary of more than one face in L, otherwise P would be a keeper path. To
see this, observe that the face f contains both the first edge e1 and last edge e2
of P . If e1 = e2 because P is a single edge, then it is certainly a keeper, which is
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not possible since P is in the interior of u. Otherwise, by Lemma 4, e1 and e2
are on the boundary of two different faces in L.
Therefore, by (Pre2) P has c ≤ 1 units of charge assigned to it. Now, since f
is pinched, it has r ≥ 1 chord paths P1, . . . , Pr , other than P on its boundary.
Define L1, . . . ,Lr and R1, . . . ,Rr as in the previous two cases. Now, P has a charge
c ≤ 1 and, since it is pinched, f has a charge of 1. We move these c + 1 units of
charge from P and f onto P1 and call the recursive procedure on (L1,R1, P1, c+1).
This satisfies (Pre1) since f is pinched and satisifies (Pre2) since P1 is entirely
contained in the boundary of f .
For each i ∈ {2, . . . , r}we then call the recursive procedure on (Li ,Ri , P1,0). Clearly
each of these calls satisfies (Pre1) and (Pre2).

3. R contains at least one pinched face of G? , but no pinched face in R shares an edge
with P . We claim that there is a single face, g of H , contained in R, that contains all
of P on its boundary. Indeed, edges of G? not in C are in H only if they are on the
boundary of some pinched face of G? . Since no pinched face of G? in R shares an
edge with P , none of the edges incident to internal vertices of P and contained in R
are part of H . Therefore, P is on the boundary of a single face of H that is contained
in R.

Let f be the face of G? that is contained in R and that contains the first edge of P .
The face f is touched by C but not pinched, so it must be caressed. We move the c
units of charge from P onto f .

Now, R still contains one or more pinched faces f1, . . . , fk , such that each fi shares
part of a chord path Pi with g. Consider one such fi and observe that u \ fi has ri ≥ 2
chord paths Pi,1, . . . , Pi,ri on its boundary and use the convention that Pi,1 = Pi . Define
Li,1, . . . ,Li,ri and Ri,1, . . . ,Ri,ri in a manner analagous to L1, . . . ,Lr and R1, . . . ,Rr in the
previous cases.

On each such face fi , we run the initialization procedure and this reorganizes the
charges in u \Ri,1 so that they satisfy (Post1)–(Post3) and does not modify charges in
L∪ g. Doing this for each i ∈ {1, . . . , k} completes the description of the discharging
procedure.

To complete the proof, first observe that if u contains no pinched faces then the result is
trivially true. Otherwise u contains a pinched face f such that one of the components R1 of
u \f contains no pinched faces. (The existence of such an f is established by choosing f so
that the minimum number of faces in any component of u \f is minimum over all pinched
faces f in u.) Since R1 contains no pinched faces, it contains no charges, so it already
satisfies (Post1)–(Post3). Running the initialization procedure on f will then redistribute
charges so that they satisfy (Post1)–(Post3) for all faces and keeper paths in u.

2.3 Bad Nodes

We say that a node of Ti is bad if it has degree 2 and contains no face of G? that is caressed
by C. We now move from studying individual nodes of T0 and T1 to studying global
quantities associated with T0 and T1. From this point on, for each i ∈ {0,1},
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1. τi , ρi , and κi refer the total numbers of faces contained in nodes of Ti that are
touched, pinched, and caressed by C, respectively;

2. ni refers to the number of nodes of Ti ;

3. δi = 2(ni − 1) is the total degree of all nodes in Ti ; and

4. bi is the number of bad nodes in Ti .

Lemma 6. If κi ≤ τi/6 then ni ≥ τi/8.

Proof. From Lemma 5 we know ρi ≤ 2(κi + δi), so

τi = κi + ρi ≤ 3κi + 2δi = 3κi + 4(ni − 1) ≤ τi/2 + 4ni ,

and reorganizing the left- and right-hand sides gives the desired result.

Lemma 7. For any 0 < ε < 1, if bi ≤ (1− ε)ni , then κi ≥ ετi/24.

Proof. Partition the nodes of Ti into the following sets:

1. the set B of bad nodes;

2. the set N1 of leaves;

3. the set N≥3 of nodes having degree at least 3;

4. the set N2 of nodes having degree 2 that are not bad.

Then

bi = ni − |N1| − |N≥3| − |N2|
> ni − 2|N1| − |N2| since |N1| > |N≥3|
≥ ni − 2κi − |N2| (since, by Lemma 3, κi ≥ |N1|)
≥ ni − 3κi (since each node in N2 contains a caressed face)

Thus, we have
ni − 3κi ≤ bi ≤ (1− ε)ni

and rewriting gives
κi ≥ εni/3 . (1)

If κi ≥ τi/6, then the proof is complete since τi/6 > τi/24. On the other hand, if κi ≤ τi/6
then, by Lemma 6, ni ≥ τi/8. Combining this with (1) gives

κi ≥ εni/3 ≥ ετi/24 .
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Figure 9: Cases in the proof of Lemma 8

2.4 Interactions Between Bad Nodes

We have now reached a point in which we know that the vast majority of nodes in T0 and
T1 are bad nodes, otherwise Lemma 7 implies that a constant fraction of the faces touched
by C are caressed by C. At this point, we are ready to study interactions between bad
nodes of T0 and bad nodes of T1.

Lemma 8. If u is a bad node then u is a face of G? .

Proof. First observe that, since u is bad, it has degree 2, so C∩u has exactly two connected
components C1 and C2. Thus u’s boundary consists of C1, C2 and two chord paths P1 and
P2. We first argue that there is a single face g of G? that contains C1 ∪C2. If not, then G?

must contain a path P whose interior is in u and has both endpoints on the boundary of u.
There are a few cases to consider:

1. P has both endpoints on Ci for some i ∈ {1,2}. In this case, P is a chord path and, by
Lemma 2 u contains a face that is caressed by C, contradicting the assumption that
u is a bad node.

2. P has one endpoint on Ci and one endpoint on Pj for some i, j ∈ {1,2}. In this case,
P ∪ Pj contains a chord path with both endpoints on Ci , again contradicting the as-
sumption that u is a bad node.

3. P has one endpoint on P1 and one endpoint on P2. In this case, P ∪ P1 ∪ P2 contains a
chord path with both endpoints on C1, again contradicting the assumption that u is
a bad node.
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4. P has one endpoint on C1 and one endpoint on C2. The path P is not a keeper,
otherwise it would have split u into two nodes. Therefore, it must be the case that P
contains an internal vertex. Let S1 be the set of internal vertices of P and let S2 be
the set of vertices on the boundary of u, not including the endpoints of P . Since G? is
3-connected, there is a path from S1 to S2 that does not contain either endpoint of P .
The shortest such path, P ′, does not contain any edges of P . Again, using portions of
P , P1, P2, and P ′ we can construct a chord path, contained in u, with both endpoints
on C1 or both endpoints on C2, contradicting the assumption that u is a bad node.

This establishes that C1 ∪ C2 is contained in the boundary of a single face g of G? . The
boundary of g contains two disjoint paths P ′1 and P ′2 joining C1 and C2. We claim that P ′i is
a keeper path, for each i ∈ {1,2}. Indeed, each internal x vertex of P ′i is either a vertex of Pj
or is on the boundary of three faces: g and two faces that are not touched by C. In either
case, x is not special of Type Y. Therefore P ′i has endpoints that are special of Type A and
Type B with respect to the pinched face g and has no internal vertices that are special of
Type Y, so P ′i is a keeper. Therefore {P ′1, P

′
2} = {P1, P2} since, otherwise f would not be a face

of H̃ . Therefore g = f so f is a face of G? .

The following lemma shows that a bad node u in T0 and a bad node w in T1 share at
most one edge of C.

Lemma 9. Any two bad nodes u of Ti and w of Tj have at most one edge in common.

Proof. By Lemma 8 u and w are each faces of G? . Therefore, by Lemma 4, u and w share
at most one edge.

2.5 Really Bad Nodes

At this point we will start making use of the assumption that the triangulation G has
maximum degree ∆, which is equivalent to the assumption that each face of G? has at
most ∆ edges on its boundary.

Observation 1. If G has maximum degree ∆ and C has length `, then the number of faces τ of
G? touched by C is at least 2`/∆. At least `/∆ of these faces are in the interior of C and at least
`/∆ of these faces are in the exterior of C.

Proof. Orient the edges of C counterclockwise so that, for each edge e of C, the face of G?

to the left of e is in C’s interior and the face of G? to the right of e is in C’s exterior. Each
face of G? has at most ∆ edges. Therefore, the number of faces to the right of edges in C is
at least `/∆. The same is true for the number of faces of G? to the left of edges in C.

For each node u of Ti , we define N (u) as the set of nodes in T0 and T1 (excluding u)
that share an edge of G? with u. Note that N (u) contains the neighbours of u in Ti as well
as nodes of T1−i with which u shares an edge of C.

We say that a node u is really bad if u and all nodes in N (u) are bad.

Lemma 10. For each i ∈ {0,1} and each 0 < α < 1/24, if G has maximum degree ∆, C has length
`, and the number κ, of faces of G? caressed by C is at most α`/∆, then the number bi of really
bad nodes in Ti is at least ni −α(120∆+ 72)ni .
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Proof. Without loss of generality, let i = 0. From Observation 1, we know that τ0 ≥ `/∆.
Therefore, κ0 ≤ κ ≤ α`/∆ ≤ ατ0 ≤ τ0/6 so, by Lemma 6, n0 ≥ τ0/8.

By Lemma 7, if b0 < (1− 24α)n0, then

κ > κ0 ≥ ατ0 ≥ α`/∆ .

This violates our assumption that κ ≤ α`/∆. Therefore, we may assume that b0 ≥ (1 −
24α)n0.

We now want to study how many of the bad nodes in T0 are really bad. Let A be the
set of nodes in T0 that are not bad and partition A into A1 (leaves), A2 (degree-2 nodes)
and A≥3 (nodes of degree at least 3). We make use of the following inequality:

|A1| = 2 +
∑
w∈A≥3

(δw − 2) ≥
∑
w∈A≥3

(δw − 2) ≥
∑
w∈A≥3

δw/3 , (2)

which is true because x − 2 ≥ x/3 for all x ≥ 3.
Now each node w in A can prevent at most δw bad nodes of T0 from being really bad.

We count this as follows:∑
w∈A

δw =
∑
w∈A1

δw +
∑
w∈A2

δw +
∑
w∈A≥3

δw ≤ |A1|+ 2|A2|+ 3|A1| .

Now, A1 contains leaves of T0 and, by Lemma 3, each leaf of T0 contains a caressed face.
Therefore |A1| ≤ κ. Next, A2 contains degree-2 nodes of T0 that are not bad. If a node has
degree-2 and contains no caressed face, then it is bad. Therefore each node in A2 contains
a caressed face. Therefore |A2| ≤ κ, so |A1|+2|A2|+3|A1| ≤ 6κ. Picking up where we left off:∑

w∈A
δw ≤ |A1|+ 2|A2|+ 3|A1| ≤ 6κ ≤ 6α`/∆ ≤ 48αn0 ,

where the last inequality uses the fact that n0 ≥ τ0/8 ≥ `/(8∆). That is, the set A of non-
bad nodes in T0 prevents at most 48αn0 bad nodes in T0 from being really bad. Next we
account for nodes in T1 that prevent bad nodes in T0 from being really bad.

Let A′ be the set of nodes in T1 that are not bad. For two nodes u in T0 and w in T1,
w ∈ N (u) if and only if w and u share an edge of C. The number of edges of C incident to
a node w is at most ∆τw. Therefore, we can upper bound the number of bad nodes in T0
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that are prevented from being really bad by some node in T1 as∑
w∈A′

∆τw

=
∑
w∈A′

∆(ρw +κw) (since τw = ρw +κw)

≤
∑
w∈A′

(3∆κw + 2∆δw) (by Lemma 5)

≤ 3∆κ+
∑
w∈A′

2∆δw

< 3∆κ+ 12∆κ (by defining A′1, A′2, A′≥3 and arguing as above)

= 15∆κ

≤ 15α` (since κ ≤ α`/∆, by assumption)

≤ 120α∆n0 (since n0 ≥ τ0/8 ≥ `/(8∆))

Therefore, the number of bad nodes in T0 is b0 and the number of these that are really bad
is at least

b0 −α(120∆+ 48)n0 ≥ n0 −α(120∆+ 72)n0 .

We say that a node u is really really bad if all the nodes in N (u) are really bad. (Note
that this implies that u is bad.) The following lemma extends Lemma 10 to really really
bad nodes:

Lemma 11. For each i ∈ {0,1} and each 0 < α < 1/24, if G has maximum degree ∆, C has length
`, and the number κ, of faces of G? caressed by C is at most α`/∆, then the number bi of really
really bad nodes in Ti is at least ni −α(∆+ 1)(120∆+ 72)ni = ni −O(α∆2).

Proof. A node u is a fringe node if it is really bad but not really really bad. A node u is
a critical node if it is bad but not really bad. Observe that every fringe node u is in N (w)
for some critical node w. To bound the number of fringe nodes, it therefore suffices to
bound

∑
w |N (w)| ≤

∑
w∆ where the sum is over all critical nodes and the inequality is due

to Lemma 8, so |N (w)| ≤ ∆ for any bad node w.
By Lemma 10, the number of nodes that are not really bad, and hence the number of

critical nodes, is at most α(120∆+ 72)ni . Therefore, the number of fringe nodes is at most
α∆(120∆ + 72)ni . Any node that is not really really bad is either a fringe node or is not
really bad. Therefore, the number of nodes that are really really bad is at least

ni −α(∆+ 1)(120∆+ 72)ni .

The following observation, illustrated in Figure 10, follows from the fact that all the
nodes it considers are bad and that H̃ is a cubic graph, so each vertex of H̃ is on the
boundary of 3 faces. The second part of the figure shows an example in which {a1, . . . , ar}
and {b1, . . . , bs} are not disjoint. (In this example b1 = a3.)

Observation 2. Let x1, . . . ,xt, t ≥ 1 be a path in T0 consisting entirely of really bad nodes. Then
C ∩

⋃t
i=1 xi consists of two paths Ca and Cb each having at least one edge and the subgraph
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Figure 10: Two illustrations of Observation 2

of T1 induced by
⋃t
i=1N (xi) is contained in two (not necessarily disjoint) paths a1, . . . , ar and

b1, . . . , bs, r, s ≥ 1 where ai contains an edge of Ca for each i ∈ {1, . . . , r} and bi contains an edge
of Cb for each i ∈ {1, . . . , s}.

2.6 Tree/Cycle Surgery

We summarize the situation so far. By Lemma 1, finding a large collinear set is equivalent
to finding a cycle in G? that caresses many faces. By existing results on the circumference
of cubic triconnected graphs, G? has a cycle C0 of length ` = Ω(nα) for some α > 0.8. Thus
we assume that G? has a cycle C0 of length ` and we want to show the existence of a cycle
C that caresses Ω(`/∆4) faces.

Because each face of G? has at most ∆ edges, C0 touches Ω(`/∆) faces (Observation 1).
To complete the proof of Theorem 1 we must deal with the situation where C0 caresses
o(`/∆4) faces and therefore each of T0 and T1 has o(`/∆4) leaves (Lemma 3), Ω(`/∆) nodes
(Lemma 6), and the fraction of really really bad nodes in T0 and T1 is 1−o(1/∆) (Lemma 11).

Figure 11 illustrates an extreme example of this situation. To handle cases like these,
the only option is to perform surgery on the cycle C to increase the number of caressed
faces. We achieve this by performing a surgery that increases the number of leaves in
T1. This surgery is quite delicate and requires a particular node u for which we have a
good enough understanding of the faces of H̃ surrounding u so that we can make a local
modification ofC aroundN (u) that is guaranteed to stricly increase the number of caressed
faces.

Proof of Theorem 1. By Lemma 1, it suffices to prove the existence of a cycle C in G? that
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f0
f1 f2 f3 f4 fk−1

fk

Figure 11: An example in which C caresses only 4 faces of G? , T0 has only 2 non-bad nodes
(in teal), 2 non-really bad nodes (in light pink), and 2 non-really really bad nodes (in pink).

caresses Ω(`/∆4) faces. We begin by applying Lemma 11 with α = ε/∆3. For sufficiently
small, but constant, ε, Lemma 11 implies that κ = Ω(`/∆4) or the number of nodes in T0
that are not really really bad is at most O(εn0/∆). In the former case, C caresses Ω(`/∆4)
faces of G? and we are done.

In the latter case, consider the forest obtained by removing all nodes of T0 that are not
really really bad. This forest has (1−O(ε/∆))n0 nodes. We claim that it also has O(εn0/∆)
components. To see why this is so, let L be the set of leaves in T0 and let S be the set of
non-leaf nodes in T0 that are not really really bad. Observe that it is sufficient to upper
bound the number, k, of components in T0 − S.

Since removing a degree d vertex from a graph increases the number of components
by at most d − 1, we have k ≤

∑
u∈S(degT0

(u)− 1). Since (S,L) is a partition of the nodes of
T0 that are not really really bad, we have |L| ≤ |S | + |L| = O(εn0/∆). Recall that a standard
fact about trees is that the number of leaves in a tree G is exactly 2+

∑
u(degT (u)−2, where

the sum runs over all non-leaf nodes u of G. Therefore,

|L| ≥
∑
u∈S

(degT0
(u)− 2) =

∑
u∈S

(degT0
(u)− 1)− |S | = k − |S | .

Therefore k ≤ |S |+ |L| =O(εn0/∆), as claimed.
Thus the forest induced by all really really bad nodes of Ti has at most O(εn0/∆)

components, each of which is a path. At least one of these paths contains Ω(∆/ε) nodes. In
particular, for a sufficiently small constant ε, one of these components, X, has at least 5∆
nodes.

Consider some node u in X, and let Ca and Cb be the two components of u∩C. By Ob-
servation 2, the subgraph of T1 induced byN (u) consists of two paths a1, . . . , ar and b1, . . . , bs
of really bad nodes where each a1, . . . , ar contains an edge of Ca and each of b1, . . . , br con-
tains an edge of Cb.

It follows from Lemma 9 that among any sequence of ∆ consecutive nodes in X, at
least one node has r ≥ 2 and therefore |N (u)| ≥ 5. Let u be any such node that is not among
the first 2∆ or last 2∆ nodes of X. Such a u always exists because X contains at least 5∆
nodes.

Let x0 = u. We now define notations for some of the nodes in the vicinity of u (refer to
Figure 12):
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x1

xi

xi+j

u = x0

y1

y2∆

x2∆

a1

a0

a−1

a2

...

...

...

...

Figure 12: Nodes in the vicinity of u = x0.

1. there is a path x2∆, . . . ,x1,x0, y1, . . . , y2∆ in T0 consisting entirely of really really bad
nodes.

2. some really bad node a1 of T1 shares an edge with each of x0, . . . ,xi for some i ∈
{1, . . . ,∆− 4}.

3. some really bad node a2 of T1 shares an edge with a1 and and edge with x0.

4. some really bad node a0 , a2 of T1 shares an edge with a1 and with each of xi , . . . ,xi+j
for some j ∈ {0, . . . ,∆− 4}.

The surgery we perform focuses on the nodes u and a1. Consider the two components
of C ∩ a1. At least one of these components, p, shares an edge with u. By Lemma 9,
the other component, q, does not share an edge with u. Imagine removing u from T0,
thereby separating T0 into a component Tx containing x1 and a component Ty containing
y1. Equivalently, one can think of removing the edges of u from C separating C into two
paths Cx and Cy on the boundary of Tx and Ty , respectively. Since q does not share an edge
with u, q ⊆ Cx or q ⊆ Cy . We treat these cases separately:

1. q ⊂ Cx. We transform this into Case 2, by redefinining u, x1, y1 and a1 as follows: By
Lemma 4 a1 \C contains exactly two edges of G? and exactly one of these edges, e, is
not incident to u. Instead, e is incident to xi . We set u′ = xi , x′1 = xi−1, y′1 = xi+1, and
a′1 = a1. Observe that a′1 connects the two components of T0 − u′ and shares edges
with u′ and x′1. This is exactly the situation considered in Case 2, next.

21



x1

xi

xi+j

y1

y2∆

x2∆

a0

a−1

a2

...

...

...

...

u = x0

a1q
p

x1

xi

xi+j

y1

y2∆

x2∆

a0

a−1

a2

...

...

...

...

u = x0

a1q
p

x1

xi

xi+j

y1

y2∆

x2∆

a0

a−1

a2

...

...

...

...

u = x0

a1q
p

(1) (2) C′

Figure 13: Cases 1 and 2 in the proof of Theorem 1 and the surgery performed in Case 2.

22



2. q ⊂ Cy . At this point it is helpful to think of T0, T1, and C as a partition of R2, where
nodes of T0 are coloured red, nodes of T1 are coloured blue and C is the (purple)
boundary between red and blue. To describe our modifications of C, we imagine
changing the colours of nodes. The effect that such a recolouring has on C is imme-
diately obvious: It produces a 1-dimensional set C′ that contains every (purple) edge
contained in the red-blue boundary. The set C′ is a collection of vertices and edges
of G? . Therefore, if C′ is a simple cycle, then C′ defines a new pair of trees T ′0 and T ′1.

Refer to the right two thirds of Figure 13 for a simple (and misleading) example
of what follows. For a full example, refer to Figure 14. The surgery we perform
recolours x0,x1, . . . ,xi−1 blue and recolours a1 red. Observe that, because q ⊂ Cy and
p contain an edge of xi , this implies that the red subset of R2 is connected. Similarly,
one can verify that T1 − {a1} contains two components, one containing a2 and one
containing a0 and b1. The blue subset of R2 is connected because it contains a path
from a2 through u to b1. Therefore the red and blue subsets of R2 are each connected
and their common boundary C′ is a simple cycle consisting of edges of G? . The
new trees T ′0 and T ′1 are therefore well defined. We now make two claims that will
complete our proof.

Claim 1. For each i ∈ {0,1}, and each node w of Ti that is not bad, C ∩ w = C′ ∩ w.
(Equivalently, for every face f of G? that is not a bad node of T0 or T1, C ∩ f = C′ ∩ f .)

Claim 2. The face a0 is caressed by C′.

These two claims complete the proof because, together, they imply that C′ caresses
at least one more face of G? than C. Indeed, by definition, C did not caress any
faces belonging to bad nodes. Therefore, the first claim implies that the faces of G?

caressed by C′ are a superset of those caressed by C. The face a1 is a bad node of Ti so
it is not caressed by C but the second claim states that it is caressed by C′. Therefore
C′ caresses at least one more face than C.

This surgery recolours at most ∆ − 2 ≤ ∆ nodes of T0 and T1, so the difference in
length between C and C′ is at most ∆2. If we start with a cycle C of length `, then
we can perform this surgery at least `/(4∆2) times before the length of C decreases
to less than `′ = `/2. If at some point during this process, we are no longer able to
perform this operation, it is because C caresses Ω(`′/∆4) = Ω(`/∆4) faces of G? and
we are done. If the process runs to completion, then by its end, the number of faces
caressed by C is at least `/(4∆2) ∈Ω(`/∆2) ⊂Ω(`/∆4) and we are also done.

Thus, all that remains is to prove Claim 1 and Claim 2.

To prove Claim 1, we observe that C and C′ differ only on the boundaries of nodes
that are recoloured. Thus, it is sufficient to show that all nodes in R = ∪{N (v) : v ∈
{x0, . . . ,xi−1, a1} are bad. But this is immediate since x0, . . . ,xi−1 are really really bad
and a1 ∈ N (x0), so a1 is really bad. Since every node in R share an edge with at least
one of {x0, . . . ,xi−1, a1}, every node in R is therefore bad, as required.

To prove Claim 2 we consider the boundary of the face a0 of G? after the recolouring
operation. This boundary consists of, in cyclic order:
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Figure 14: Performing surgery on C to obtain C′ that caresses a0.
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(a) An edge p0p1 shared between a0 and a1. This edge is in C′ since a0 is in T ′1 and
a1 is in T ′0. This edge has one endpoint, p0, on the boundary of xi (p0 is also an
endpoint of p).

(b) A path p1, . . . ,pµ whose edges are shared with xi , . . . ,xi+j . The nodes xi , . . . ,xi+j
are in T0 and are distinct from x0, . . . ,xi−1, so these nodes are in T ′0. Therefore,
p1, . . . ,pµ is also contained in C′.

(c) An edge pµpµ+1 shared between a0 and another node a−1 , a1 of T1. The faces
of a−1 are in T ′1 because a1 is the only face that moves from T1 to T ′0. (a1 is the
only face whose colour goes from blue to red.) The edge pµpµ+1 is therefore not
contained in C′.

(d) A path pµ+1, . . . ,pν with pν = p0 that is contained in C. Let C′x be the path ob-
tained by removing all edges on the boundary of x1, . . . ,xi−1 from Cx. Thus, the
boundary of C is partitioned into four paths: Cy ; a path P1 that contains p; C′x;
and a path P2 that does not contain p. Without loss of generality, assume that
these four paths occur in the order Cy , P1,C

′
x, P2 when traversing C clockwise.

The path pµ+1, . . . ,pν ends at pν = p0, which is contained in Cy . This path must
therefore either begin in P2 or be entirely contained in Cy since, otherwise it
would contain an edge of xi , contradicting Lemma 4. The edges of P2 are not
in C′. Therefore pµ+1, . . . ,pν begins with a (possibly empty) sequence of edges
pµ+1, . . . ,pµ+k not contained in C′ followed by a non-empty sequence pµ+k , . . . ,pν
of edges that are contained in C′.

Therefore the intersection C′ ∩ a0 is a path pµ+k , . . . ,pν ,p1, . . . ,pµ so a0 is caressed by
C′.

3 Discussion

It remains an open problem to eliminate the dependence of our results on the maximum
degree, ∆, of G. The next significant step is to resolve the following conjecture:

Conjecture 1. If G is a triangulation whose dual G? has a cycle of length `, then G? has a cycle
that caresses Ω(`) faces. (Therefore, by Lemma 1 and Theorem 2, G has a collinear set of size
Ω(`).)
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