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Abstract

Let Ly = LMBM(X], XNy Y, YN) be the minimum length of a
bipartite matching between two sets of points in RY, where X1,..., XN, ...
and Yi,...,Yn,... are random points independently and uniformly dis-
tributed in [0, 1]¢. We prove that for d > 3, Ly /N'"/? converges with
probability one to a constant Sy (d) > 0 as N — oo.

1 Introduction and statement of the result.

Given two sets of N points X = {Xi,.., Xy} and Y = {Y1,...,Yx} in RY,
a bipartite matching of X and Y is a perfect matching M on the set X UY,
such that each pair in M is made of one point of X and one point of Y. The
length of such a matching is defined to be the sum of the euclidean lengths of
the edges formed by its pairs. The (euclidean) minimum bipartite matching
problem (MBMP) then asks one to find a bipartite matching of X and Y whose
length is as small as possible. We shall denote by Lyspa(X,Y) the length of a
minimum bipartite matching of X and Y.

A related problem is the simple minimum matching problem (MMP), where
one is asked to find a perfect matching of smallest euclidean length on a set
X = {Xi,..., Xn} C R% The subadditive methods inaugurated by Beardwood,
Halton and Hammersley (BHH) [ and further developed in [E, E, @], show
that a strong limit theorem applies to the length L (X) of a simple mini-
mum matching on X, when the points Xi,..., Xy are random. The theorem
states that for any dimension d, if X;,..., Xy,... is a sequence of points dis-
tributed independently and uniformly in a bounded region Q C RY, then the
ratio Lasar (X1, ... Xn)/N'~1/? converges almost surely to Vol(Q)l/dﬁMM(d),
where Vol(£2) denotes the Lebesgues measure of © and Saar(d) > 0 is a univer-
sal constant depending only upon d.
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The functional Ly;pys does not satisfy this form of limit theorem in dimen-
sions 1 and 2. For d = 1, the MBMP amounts to a sorting problem and it is
not difficult to show that if X and Y both consist of N points independently
and uniformly distributed in [0, 1], there are constants 0 < C; < Cs such that
C1VN < Lypu(X,Y) < Cyv/N with probability 1 — o(1) as N — co. More-
over in that case the variance of Lz (X,Y)/V N does not converge to zero as
N — oo. (Lypum is not “self-averaging”, in the statistical physics’ terminology.)
For d = 2 Ajtai et al. [I] proved a remarkable fact: if the sets X,Y are now
distributed in [0,1]?, then for some constants C,Cs indendent of N, one has
CivNlogN < Lypu(X,Y) < Cv/Nlog N with probability 1—o(1). Numeri-
cal simulations suggest that Ly g (X,Y)/+/Nlog N converges to a non-random
constant as N — oo, however this has not yet been proved.

In this article, we show that for any d > 3 we recover a BHH theorem for
the functional Ly -

Theorem 1.1 Let Xy, ..., Xn,... and Y1,...,Yn, ... be two sequences of random
points independently and uniformly distributed in [0,1]¢, where d > 3, and let
Ly =Lypm(X1,..., Xn;Y1,...,YN). There exists a constant Bpyrpar(d) > 0
such that with probability one

lim LN/Nl_l/d = ﬂMBM(d)
N —o0

2 Proof of Theorem [T

To begin, we remark that to prove this theorem it will suffice to establish that
Ly /N'='/4 converges in mean value to a constant 3prpa(d). This is a conse-
quence of the following lemma [[[4]:

Lemma 2.1 For any t > 0, one has

Ly Ly

N1-2/dy2
N1-1/d (Nl—l/d )-

)| >t) < 2exp(—
This result follows from the application of Azuma’s inequality [ and the mar-
tingale difference method to Ly, in a way by now standard in the probabilistic
theory of combinatorial optimisation [LJ]. Given the lemma, the theorem fol-
lows easily from the convergence of ELy/N'~'/? as N — oo, by applying the
Borel-Cantelli lemma.

We have now to establish that for d > 3 the quantity ELN/Nl_l/d indeed
converges to a constant Syrpar(d) > 0. To prove this we exploit the subadditiv-
ity properties of Laspas, in the spirit of Steele’s theory of subadditive Euclidean
functionals [IJ]. Let us divide the unit cube [0,1]? into disjoint similar sub-
cubes Qi, k = 1,...,m? with edges of length 1/m, and compare the value of
Lypm(X,Y) to the sum

> L, (1)
k=1



where Ly is the value of the functional Lj;pas for the set of points X; and Y;
which belongs to Q. A difficulty arises as in general the Qx’s do not contain
the same number of points X; and of points Y;. (In fact the special properties
of the MBMP in dimensions 1 and 2 originate from the fluctuations of the
differences between these numbers around their mean value 0.) To give meaning
to the sum (ﬂ) we need to generalize the functional Ly gy to matchings between
two sets of different cardinalities. There are several ways to do this; we shall
define Ly pa (X1, ... Xn,; Y1, ... Yn,) by imposing that the minimum matching
contains as few unmatched points as possible. That is if N; > N, we leave
Ny — N5 points of X unmatched, whereas if N7 < Ny we leave No — N points
of Y unmatched.

Although expression (EI) now makes sense, it is still not possible to write a
subadditivity inequality of the same form as the one studied in [@] Indeed, such
a form (which Steele calls “geometric subadditivity”) implies an upper bound of
the form CN'~1/¢ for the functional at hand [[LJ], and it is easy to see that
no such bound applies to Ly g (X,Y). We shall however see that a geometric
subadditivity property holds in the mean for the functional Ly;pas. Suppose
that the points X1,...Xn,,Y1,...Yn, belong to an arbitrary cube @ having
edge length a, and divide @ into disjoint cubes Q,, p = 1,...2¢ by splitting
each edge in two halves. Construct in each @), an optimal matching in the sense
just defined, between the n; , points X; and the no, points Y; in @, and denote
its length by L,. The points that are left unpaired are in number |nj , — na |
in each @y, so if Lo denotes the length of an optimal matching for these points
one has

2d
Lupm(X1, o XnYa, oY) <O Ly+ Lo
p=1

2d 2d
1
< ;Lp + 5ax/&p§ [n1p — 1), (2)

where the last inequality is obtained by bounding L¢ in an obvious way.

We shall apply this to @ = [0,1]%. Let Q,, p1 = 1,...2% be the cubes
obtained in the above subdivision; let ()p,,, be the cubes obtained by splitting
in two halves the edges of each cube Q;, ; and so on. By repeating this operation
K times, we get a subdivision with cubes @Q,..p, Whose edges are of length
1/2K. Let 71 p,..px and N2 p, .. p, be respectively the number of points X; and
Y; in Qp,.px- Apply (@) first to the Q,, . px_,’s, then to the Qp,. px_.’s, etc,
keeping at each step only those points which are still unpaired. It is easy to
convince oneself that the number of unpaired points in each @, .. p,_,. just after
step k is given by |n1,p,...px_r — N2.p1,..px_x|- After step kK = K one obtains a
matching between X7,... Xy, and Y7, ... Yn, where all the points but | N1 — Na|
are matched. One is thus led to the following inequality:

LMBM(Xlu"'XNl;S/iu"'YNQ) S Z Lp1...;DK

P1---PK



+Z ok Z |n1101 o T M2 :Dk| (3)

P1---Pk

We now proceed to derive a subadditivity property for the mean value of
Lysm(X,Y). We first consider the case where N; = cardX and Ny = cardY
are not fixed integers but are independent Poisson random variables with the
same mean value N, the elements of X and Y being chosen independently and
uniformly in [0,1]%. For a given k, the numbers ni ,, . and na,, . p, are
then also independent Poisson random variables, with parameter N/2%¢. Let
M(N) = ELygu(X1,... XNy Y1, ... Yy,). It is immediate by homogeneity
that

ELp, . .px = 2_KM(N/2Kd)- (4)

Moreover from the well known properties of Poisson variables we have

N\ 1/2
E|n1>171~~~;0k - n2>P1~~~Pk| < ﬁ(ﬁ) (5)

By taking mean values in (f]) we obtain:

M(N) < 2KE@=Dpr(N/25K9) 4 /2dN Zz’“d/? b (6)
k=1

This inequality has been obtained for a subdivision of [0, 1]¢ which consists in
2Kd similar cubes. Suppose now that we start from the subdivision ¥ in m¢?
similar cubes Qx k = 1,...m%, where m is an arbitrary integer. One can then
reproduce the previous construction in the following manner. Let m = 2K +r
where 0 < r < 2K, Consider the cube Qo = [0,25%!/m]? and form the natural
subdivision Xy of Qo by 2(K+1D4 cubes Qpo,..px Whose edges have length 1/m.
We can proceed with Qg and ¥g to a K 41 steps construction similar to the one
which led to (f). The only differences are that Qo has edges of length 25+ /m
rather than 1, and that some of the Qp,..p’s, namely those which belong to
Yo but not to X, are empty. Nevertheless, we may write

Lypm (X1, XNy Y1, Y,) — ZLk

\/_2K k
<Z Z |n1>170 pr T M2,p0.. pkl

Po---Pk
< E 2k E | N1,po...px — 12,p0.. ;Dk| (7)
Po---Pk
Now 11 py...p, and no g p, are Poisson variables with parameter lower than

2K=R)AN/md < 27k N 50 we still have

1/2
E|n1>170~~~;0k n2,pg.. Pk' < \/_( ) (8)



Taking average values one is led to

K
M(N) < m™ M(N/m®) + 2*V2dN ) 2k(@/2=1), 9)

k=0

Dividing this last inequality by N*~'/¢ and then replacing N by m?N, we get

d d
Md(m ]_V) < M(_N) 27v/2d 22 (d/2-1) (10)
(miAN)I-1/d = N1-1/d T Ni2-1/d
If d > 2, the sum on the r.h.s. of the last inequality is bounded above indepen-
dently of IV, and is divided by a positive power of N. Elementary analysis now
shows that the ratio M (N)/N'~1/4 necessarily converges to a limit Ba5(d) as
N — oo. Indeed, let f(t) = M(t%)/t?~L. One verifies at once that f(t) satisfies

f(mt) < f(t) +C /122 (11)

for all ¢ > 0 and any integer m; f(¢) is continuous, since M (N) is a continuous
function of N. So the expression f(t) 4+ Cy4/t%?~' is bounded in [1,2] and since
[1,00] is the union of the intervals m[1,2],m > 1, it follows from that f(t)
remains bounded as ¢ — oo, thus lim" f(t) < co. Now define g = lim, f(¢).
For any € > 0, chose to > 1 and 5 > 0 such that f(t) + Cyq/t¥?>"' < B+ ¢
for ¢ in the interval I = [ty — 7, to + n]. Since the intervals mI, m > 1 span a
whole interval [A, oo| for an A sufficiently large, it follows again from ([L1) that
lim* f(t) < B+ €. Since € is arbitrary one has lim* f(¢) = 3, hence f(t) — S8 as
t — 0o, from which it follows that limy ., M(N)/N'=Y/¢ = 5. Q.E.D.
We have thus shown for d > 3, that one has

ELyy (X1, .., XN Y1, Ya) ~ BY pup(@NTYE N 500 (12)

when N; and N, are independent Poisson variables with parameter N. The
same result for the mean value E Ly, where N is a fixed integer, follows then
easily. Indeed, we have the obvious bound

|LMBM(X1,...XN;Y1,...YN) — LMBM(X17"'XN1;1/17"'YN2)|
<VA(Ny = N[+ [No = N[), (1)

whence taking mean values,
|ELN—ELMBM(Xl,...XNI;le,...YNQH§2v2dN, (14)
and dividing by N1=/¢ we deduce that

ELyn
lim

Theorem [L.1] is now proved.



3 Concluding remarks.

1) Our decimation procedure does not give back the bounds proven by Ajtai et
al. in d = 2, but a weaker O(v/N In N) bound. It is believed that a self-averaging
theorem applies also to the functional La;gps in dimension 2 |E]

2) The estimation of the constants Sarpar(d) is also an interesting problem. A
remarkable result of Talagrand [[L4] shows that one has S par(d) = \/d/2em(1+
O(Ind/d)) as d — oo. It is conjectured that a 1/d series expansion actually exists
for ﬁMBM (d)

3) Mézard and Parisi have obtained detailed analytic predictions for the ran-
dom link versions of the MMP and the MBMP [§], where the distance matrix
between the points X; and Y is replaced by a matrix of independent and identi-
cally distributed entries. (Some of these predictions, for the random assignment
problem, have been proven recently by Aldous [E]) Numerical studies [ﬂ,ﬂ]
indicate that for the MMP and the MBMP, the random link model provides
one with a very good “mean-field” approximation to the Euclidean model in the
large d limit. Except for simpler combinatorial problems however [E], very few
rigorous results are known for comparing the euclidean and the random link
models.
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