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Abstrat

Let LN = LMBM (X1, . . . , XN ; Y1, . . . , YN ) be the minimum length of a

bipartite mathing between two sets of points inR
d
, whereX1, . . . , XN , . . .

and Y1, . . . , YN , . . . are random points independently and uniformly dis-

tributed in [0, 1]d. We prove that for d ≥ 3, LN/N1−1/d
onverges with

probability one to a onstant βMBM (d) > 0 as N → ∞.

1 Introdution and statement of the result.

Given two sets of N points X = {X1, ..., XN} and Y = {Y1, ..., YN} in R
d
,

a bipartite mathing of X and Y is a perfet mathing M on the set X ∪ Y ,

suh that eah pair in M is made of one point of X and one point of Y . The

length of suh a mathing is de�ned to be the sum of the eulidean lengths of

the edges formed by its pairs. The (eulidean) minimum bipartite mathing

problem (MBMP) then asks one to �nd a bipartite mathing of X and Y whose

length is as small as possible. We shall denote by LMBM (X,Y ) the length of a

minimum bipartite mathing of X and Y .

A related problem is the simple minimum mathing problem (MMP), where

one is asked to �nd a perfet mathing of smallest eulidean length on a set

X = {X1, ..., XN} ⊂ R
d
. The subadditive methods inaugurated by Beardwood,

Halton and Hammersley (BHH) [4℄ and further developed in [9, 10, 12℄, show

that a strong limit theorem applies to the length LMM (X) of a simple mini-

mum mathing on X , when the points X1, . . . , XN are random. The theorem

states that for any dimension d, if X1, . . . , XN , . . . is a sequene of points dis-

tributed independently and uniformly in a bounded region Ω ⊂ R
d
, then the

ratio LMM (X1, . . . XN )/N1−1/d
onverges almost surely to Vol(Ω)1/dβMM (d),

where Vol(Ω) denotes the Lebesgues measure of Ω and βMM (d) > 0 is a univer-

sal onstant depending only upon d.
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The funtional LMBM does not satisfy this form of limit theorem in dimen-

sions 1 and 2. For d = 1, the MBMP amounts to a sorting problem and it is

not di�ult to show that if X and Y both onsist of N points independently

and uniformly distributed in [0, 1], there are onstants 0 < C1 < C2 suh that

C1

√
N ≤ LMBM (X,Y ) ≤ C2

√
N with probability 1 − o(1) as N → ∞. More-

over in that ase the variane of LMBM (X,Y )/
√
N does not onverge to zero as

N → ∞. (LMBM is not �self-averaging�, in the statistial physis' terminology.)

For d = 2 Ajtai et al. [1℄ proved a remarkable fat: if the sets X,Y are now

distributed in [0, 1]2, then for some onstants C1, C2 indendent of N , one has

C1

√
N logN ≤ LMBM (X,Y ) ≤ C2

√
N logN with probability 1−o(1). Numeri-

al simulations suggest that LMBM (X,Y )/
√
N logN onverges to a non-random

onstant as N → ∞, however this has not yet been proved.

In this artile, we show that for any d ≥ 3 we reover a BHH theorem for

the funtional LMBM .

Theorem 1.1 Let X1, ..., XN , ... and Y1, ..., YN , ... be two sequenes of random

points independently and uniformly distributed in [0, 1]d, where d ≥ 3, and let

LN = LMBM (X1, . . . , XN ;Y1, . . . , YN ). There exists a onstant βMBM (d) > 0
suh that with probability one

lim
N→∞

LN/N1−1/d = βMBM (d).

2 Proof of Theorem 1.1.

To begin, we remark that to prove this theorem it will su�e to establish that

LN/N1−1/d
onverges in mean value to a onstant βMBM (d). This is a onse-

quene of the following lemma [14℄:

Lemma 2.1 For any t > 0, one has

P (| LN

N1−1/d
− E(

LN

N1−1/d
)| > t) ≤ 2 exp(−N1−2/dt2

8d
).

This result follows from the appliation of Azuma's inequality [3℄ and the mar-

tingale di�erene method to LN , in a way by now standard in the probabilisti

theory of ombinatorial optimisation [13℄. Given the lemma, the theorem fol-

lows easily from the onvergene of ELN/N1−1/d
as N → ∞, by applying the

Borel-Cantelli lemma.

We have now to establish that for d ≥ 3 the quantity ELN/N1−1/d
indeed

onverges to a onstant βMBM (d) > 0. To prove this we exploit the subadditiv-
ity properties of LMBM , in the spirit of Steele's theory of subadditive Eulidean

funtionals [12℄. Let us divide the unit ube [0, 1]d into disjoint similar sub-

ubes Qk, k = 1, . . . ,md
with edges of length 1/m, and ompare the value of

LMBM (X,Y ) to the sum

md

∑

k=1

Lk, (1)
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where Lk is the value of the funtional LMBM for the set of points Xi and Yi

whih belongs to Qk. A di�ulty arises as in general the Qk's do not ontain

the same number of points Xi and of points Yi. (In fat the speial properties

of the MBMP in dimensions 1 and 2 originate from the �utuations of the

di�erenes between these numbers around their mean value 0.) To give meaning

to the sum (1) we need to generalize the funtional LMBM to mathings between

two sets of di�erent ardinalities. There are several ways to do this; we shall

de�ne LMBM (X1, . . . XN1
;Y1, . . . YN2

) by imposing that the minimum mathing

ontains as few unmathed points as possible. That is if N1 > N2, we leave

N1 −N2 points of X unmathed, whereas if N1 < N2 we leave N2 −N1 points

of Y unmathed.

Although expression (1) now makes sense, it is still not possible to write a

subadditivity inequality of the same form as the one studied in [12℄. Indeed, suh

a form (whih Steele alls �geometri subadditivity�) implies an upper bound of

the form CN1−1/d
for the funtional at hand [13℄, and it is easy to see that

no suh bound applies to LMBM (X,Y ). We shall however see that a geometri

subadditivity property holds in the mean for the funtional LMBM . Suppose

that the points X1, . . . XN1
, Y1, . . . YN2

belong to an arbitrary ube Q having

edge length a, and divide Q into disjoint ubes Qp, p = 1, . . . 2d by splitting

eah edge in two halves. Construt in eah Qp an optimal mathing in the sense

just de�ned, between the n1,p points Xi and the n2,p points Yi in Qp, and denote

its length by Lp. The points that are left unpaired are in number |n1,p − n2,p|
in eah Qp, so if L0 denotes the length of an optimal mathing for these points

one has

LMBM (X1, . . . XN1
;Y1, . . . , YN2

) ≤
2d
∑

p=1

Lp + L0

≤
2d
∑

p=1

Lp +
1

2
a
√
d

2d
∑

p=1

|n1,p − n2,p|, (2)

where the last inequality is obtained by bounding L0 in an obvious way.

We shall apply this to Q = [0, 1]d. Let Qp1
p1 = 1, . . . 2d be the ubes

obtained in the above subdivision; let Qp1p2
be the ubes obtained by splitting

in two halves the edges of eah ube Qp1
; and so on. By repeating this operation

K times, we get a subdivision with ubes Qp1...pK
whose edges are of length

1/2K. Let n1,p1...pK
and n2,p1...pK

be respetively the number of points Xi and

Yi in Qp1...pK
. Apply (2) �rst to the Qp1,...pK−1

's, then to the Qp1...pK−2
's, et,

keeping at eah step only those points whih are still unpaired. It is easy to

onvine oneself that the number of unpaired points in eah Qp1,...pK−k
just after

step k is given by |n1,p1,...pK−k
− n2,p1,...pK−k

|. After step k = K one obtains a

mathing between X1, . . .XN1
and Y1, . . . YN2

where all the points but |N1−N2|
are mathed. One is thus led to the following inequality:

LMBM (X1, . . . XN1
;Y1, . . . YN2

) ≤
∑

p1...pK

Lp1...pK

3



+

K
∑

k=1

√
d

2k

∑

p1...pk

|n1,p1...pk
− n2,p1...pk

|. (3)

We now proeed to derive a subadditivity property for the mean value of

LMBM (X,Y ). We �rst onsider the ase where N1 = cardX and N2 = cardY
are not �xed integers but are independent Poisson random variables with the

same mean value N , the elements of X and Y being hosen independently and

uniformly in [0, 1]d. For a given k, the numbers n1,p1,...pk
and n2,p1,...pk

are

then also independent Poisson random variables, with parameter N/2kd. Let

M(N) = ELMBM (X1, . . . XN1
;Y1, . . . YN2

). It is immediate by homogeneity

that

ELp1...pK
= 2−KM(N/2Kd). (4)

Moreover from the well known properties of Poisson variables we have

E|n1,p1...pk
− n2,p1...pk

| ≤
√
2
( N

2kd

)1/2

. (5)

By taking mean values in (3) we obtain:

M(N) ≤ 2K(d−1)M(N/2Kd) +
√
2dN

K
∑

k=1

2k(d/2−1). (6)

This inequality has been obtained for a subdivision of [0, 1]d whih onsists in

2Kd
similar ubes. Suppose now that we start from the subdivision Σ in md

similar ubes Qk k = 1, . . .md
, where m is an arbitrary integer. One an then

reprodue the previous onstrution in the following manner. Let m = 2K + r
where 0 ≤ r < 2K . Consider the ube Q0 = [0, 2K+1/m]d and form the natural

subdivision Σ0 of Q0 by 2(K+1)d
ubes Qp0,...pK

whose edges have length 1/m.

We an proeed with Q0 and Σ0 to a K+1 steps onstrution similar to the one

whih led to (3). The only di�erenes are that Q0 has edges of length 2K+1/m
rather than 1, and that some of the Qp0...pK

's, namely those whih belong to

Σ0 but not to Σ, are empty. Nevertheless, we may write

LMBM (X1, . . . XN1
;Y1, . . . , YN2

)−
md

∑

p=1

Lk

≤
K
∑

k=0

√
d2K−k

m

∑

p0...pk

|n1,p0...pk
− n2,p0...pk

|

≤
K
∑

k=0

√
d

2k

∑

p0...pk

|n1,p0...pk
− n2,p0...pk

|. (7)

Now n1,p0...pk
and n2,p0...pk

are Poisson variables with parameter lower than

2(K−k)dN/md ≤ 2−kdN so we still have

E|n1,p0...pk
− n2,p0...pk

| ≤
√
2
( N

2kd

)1/2

. (8)
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Taking average values one is led to

M(N) ≤ md−1M(N/md) + 2d
√
2dN

K
∑

k=0

2k(d/2−1). (9)

Dividing this last inequality by N1−1/d
and then replaing N by mdN , we get

M(mdN)

(mdN)1−1/d
≤ M(N)

N1−1/d
+

2d
√
2d

N1/2−1/d

K
∑

k=0

2−k(d/2−1). (10)

If d > 2, the sum on the r.h.s. of the last inequality is bounded above indepen-

dently of N , and is divided by a positive power of N . Elementary analysis now

shows that the ratioM(N)/N1−1/d
neessarily onverges to a limit βMBM (d) as

N → ∞. Indeed, let f(t) = M(td)/td−1
. One veri�es at one that f(t) satis�es

f(mt) ≤ f(t) + C/td/2−1
(11)

for all t > 0 and any integer m; f(t) is ontinuous, sine M(N) is a ontinuous

funtion of N . So the expression f(t)+Cd/t
d/2−1

is bounded in [1, 2] and sine

[1,∞[ is the union of the intervals m[1, 2],m ≥ 1, it follows from (11) that f(t)
remains bounded as t → ∞, thus lim∗ f(t) < ∞. Now de�ne β = lim∗ f(t).
For any ǫ > 0, hose t0 ≫ 1 and η > 0 suh that f(t) + Cd/t

d/2−1 < β + ǫ
for t in the interval I = [t0 − η, t0 + η]. Sine the intervals mI, m ≥ 1 span a

whole interval [A,∞[ for an A su�iently large, it follows again from (11) that

lim∗ f(t) ≤ β + ǫ. Sine ǫ is arbitrary one has lim∗ f(t) = β, hene f(t) → β as

t → ∞, from whih it follows that limN→∞ M(N)/N1−1/d = β. Q.E.D.
We have thus shown for d ≥ 3, that one has

ELMBM (X1, . . . , XN1
;Y1, . . . , YN2

) ∼ βE
MBMP (d)N

1−1/d, N → ∞ (12)

when N1 and N2 are independent Poisson variables with parameter N . The

same result for the mean value ELN , where N is a �xed integer, follows then

easily. Indeed, we have the obvious bound

|LMBM (X1, . . . XN ;Y1, . . . YN )− LMBM (X1, . . . XN1
;Y1, . . . YN2

)|
≤

√
d(|N1 −N |+ |N2 −N |), (13)

whene taking mean values,

|ELN − ELMBM (X1, . . . XN1
;Y1, . . . YN2

)| ≤ 2
√
2dN, (14)

and dividing by N1−1/d
we dedue that

lim
N→∞

ELN

N1−1/d
→ βMBM (d). (15)

Theorem 1.1 is now proved.
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3 Conluding remarks.

1) Our deimation proedure does not give bak the bounds proven by Ajtai et

al. in d = 2, but a weakerO(
√
N lnN) bound. It is believed that a self-averaging

theorem applies also to the funtional LMBM in dimension 2 [11℄.

2) The estimation of the onstants βMBM (d) is also an interesting problem. A

remarkable result of Talagrand [14℄ shows that one has βMBM (d) =
√

d/2eπ(1+
O(ln d/d)) as d → ∞. It is onjetured that a 1/d series expansion atually exists
for βMBM (d).
3) Mézard and Parisi have obtained detailed analyti preditions for the ran-

dom link versions of the MMP and the MBMP [8℄, where the distane matrix

between the points Xi and Yj is replaed by a matrix of independent and identi-

ally distributed entries. (Some of these preditions, for the random assignment

problem, have been proven reently by Aldous [2℄.) Numerial studies [6, 7℄

indiate that for the MMP and the MBMP, the random link model provides

one with a very good �mean-�eld� approximation to the Eulidean model in the

large d limit. Exept for simpler ombinatorial problems however [5℄, very few

rigorous results are known for omparing the eulidean and the random link

models.
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