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Abstra
t

Let LN = LMBM (X1, . . . , XN ; Y1, . . . , YN ) be the minimum length of a

bipartite mat
hing between two sets of points inR
d
, whereX1, . . . , XN , . . .

and Y1, . . . , YN , . . . are random points independently and uniformly dis-

tributed in [0, 1]d. We prove that for d ≥ 3, LN/N1−1/d

onverges with

probability one to a 
onstant βMBM (d) > 0 as N → ∞.

1 Introdu
tion and statement of the result.

Given two sets of N points X = {X1, ..., XN} and Y = {Y1, ..., YN} in R
d
,

a bipartite mat
hing of X and Y is a perfe
t mat
hing M on the set X ∪ Y ,

su
h that ea
h pair in M is made of one point of X and one point of Y . The

length of su
h a mat
hing is de�ned to be the sum of the eu
lidean lengths of

the edges formed by its pairs. The (eu
lidean) minimum bipartite mat
hing

problem (MBMP) then asks one to �nd a bipartite mat
hing of X and Y whose

length is as small as possible. We shall denote by LMBM (X,Y ) the length of a

minimum bipartite mat
hing of X and Y .

A related problem is the simple minimum mat
hing problem (MMP), where

one is asked to �nd a perfe
t mat
hing of smallest eu
lidean length on a set

X = {X1, ..., XN} ⊂ R
d
. The subadditive methods inaugurated by Beardwood,

Halton and Hammersley (BHH) [4℄ and further developed in [9, 10, 12℄, show

that a strong limit theorem applies to the length LMM (X) of a simple mini-

mum mat
hing on X , when the points X1, . . . , XN are random. The theorem

states that for any dimension d, if X1, . . . , XN , . . . is a sequen
e of points dis-

tributed independently and uniformly in a bounded region Ω ⊂ R
d
, then the

ratio LMM (X1, . . . XN )/N1−1/d

onverges almost surely to Vol(Ω)1/dβMM (d),

where Vol(Ω) denotes the Lebesgues measure of Ω and βMM (d) > 0 is a univer-

sal 
onstant depending only upon d.

1

http://arxiv.org/abs/math/0205140v1


The fun
tional LMBM does not satisfy this form of limit theorem in dimen-

sions 1 and 2. For d = 1, the MBMP amounts to a sorting problem and it is

not di�
ult to show that if X and Y both 
onsist of N points independently

and uniformly distributed in [0, 1], there are 
onstants 0 < C1 < C2 su
h that

C1

√
N ≤ LMBM (X,Y ) ≤ C2

√
N with probability 1 − o(1) as N → ∞. More-

over in that 
ase the varian
e of LMBM (X,Y )/
√
N does not 
onverge to zero as

N → ∞. (LMBM is not �self-averaging�, in the statisti
al physi
s' terminology.)

For d = 2 Ajtai et al. [1℄ proved a remarkable fa
t: if the sets X,Y are now

distributed in [0, 1]2, then for some 
onstants C1, C2 indendent of N , one has

C1

√
N logN ≤ LMBM (X,Y ) ≤ C2

√
N logN with probability 1−o(1). Numeri-


al simulations suggest that LMBM (X,Y )/
√
N logN 
onverges to a non-random


onstant as N → ∞, however this has not yet been proved.

In this arti
le, we show that for any d ≥ 3 we re
over a BHH theorem for

the fun
tional LMBM .

Theorem 1.1 Let X1, ..., XN , ... and Y1, ..., YN , ... be two sequen
es of random

points independently and uniformly distributed in [0, 1]d, where d ≥ 3, and let

LN = LMBM (X1, . . . , XN ;Y1, . . . , YN ). There exists a 
onstant βMBM (d) > 0
su
h that with probability one

lim
N→∞

LN/N1−1/d = βMBM (d).

2 Proof of Theorem 1.1.

To begin, we remark that to prove this theorem it will su�
e to establish that

LN/N1−1/d

onverges in mean value to a 
onstant βMBM (d). This is a 
onse-

quen
e of the following lemma [14℄:

Lemma 2.1 For any t > 0, one has

P (| LN

N1−1/d
− E(

LN

N1−1/d
)| > t) ≤ 2 exp(−N1−2/dt2

8d
).

This result follows from the appli
ation of Azuma's inequality [3℄ and the mar-

tingale di�eren
e method to LN , in a way by now standard in the probabilisti


theory of 
ombinatorial optimisation [13℄. Given the lemma, the theorem fol-

lows easily from the 
onvergen
e of ELN/N1−1/d
as N → ∞, by applying the

Borel-Cantelli lemma.

We have now to establish that for d ≥ 3 the quantity ELN/N1−1/d
indeed


onverges to a 
onstant βMBM (d) > 0. To prove this we exploit the subadditiv-
ity properties of LMBM , in the spirit of Steele's theory of subadditive Eu
lidean

fun
tionals [12℄. Let us divide the unit 
ube [0, 1]d into disjoint similar sub-


ubes Qk, k = 1, . . . ,md
with edges of length 1/m, and 
ompare the value of

LMBM (X,Y ) to the sum

md

∑

k=1

Lk, (1)
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where Lk is the value of the fun
tional LMBM for the set of points Xi and Yi

whi
h belongs to Qk. A di�
ulty arises as in general the Qk's do not 
ontain

the same number of points Xi and of points Yi. (In fa
t the spe
ial properties

of the MBMP in dimensions 1 and 2 originate from the �u
tuations of the

di�eren
es between these numbers around their mean value 0.) To give meaning

to the sum (1) we need to generalize the fun
tional LMBM to mat
hings between

two sets of di�erent 
ardinalities. There are several ways to do this; we shall

de�ne LMBM (X1, . . . XN1
;Y1, . . . YN2

) by imposing that the minimum mat
hing


ontains as few unmat
hed points as possible. That is if N1 > N2, we leave

N1 −N2 points of X unmat
hed, whereas if N1 < N2 we leave N2 −N1 points

of Y unmat
hed.

Although expression (1) now makes sense, it is still not possible to write a

subadditivity inequality of the same form as the one studied in [12℄. Indeed, su
h

a form (whi
h Steele 
alls �geometri
 subadditivity�) implies an upper bound of

the form CN1−1/d
for the fun
tional at hand [13℄, and it is easy to see that

no su
h bound applies to LMBM (X,Y ). We shall however see that a geometri


subadditivity property holds in the mean for the fun
tional LMBM . Suppose

that the points X1, . . . XN1
, Y1, . . . YN2

belong to an arbitrary 
ube Q having

edge length a, and divide Q into disjoint 
ubes Qp, p = 1, . . . 2d by splitting

ea
h edge in two halves. Constru
t in ea
h Qp an optimal mat
hing in the sense

just de�ned, between the n1,p points Xi and the n2,p points Yi in Qp, and denote

its length by Lp. The points that are left unpaired are in number |n1,p − n2,p|
in ea
h Qp, so if L0 denotes the length of an optimal mat
hing for these points

one has

LMBM (X1, . . . XN1
;Y1, . . . , YN2

) ≤
2d
∑

p=1

Lp + L0

≤
2d
∑

p=1

Lp +
1

2
a
√
d

2d
∑

p=1

|n1,p − n2,p|, (2)

where the last inequality is obtained by bounding L0 in an obvious way.

We shall apply this to Q = [0, 1]d. Let Qp1
p1 = 1, . . . 2d be the 
ubes

obtained in the above subdivision; let Qp1p2
be the 
ubes obtained by splitting

in two halves the edges of ea
h 
ube Qp1
; and so on. By repeating this operation

K times, we get a subdivision with 
ubes Qp1...pK
whose edges are of length

1/2K. Let n1,p1...pK
and n2,p1...pK

be respe
tively the number of points Xi and

Yi in Qp1...pK
. Apply (2) �rst to the Qp1,...pK−1

's, then to the Qp1...pK−2
's, et
,

keeping at ea
h step only those points whi
h are still unpaired. It is easy to


onvin
e oneself that the number of unpaired points in ea
h Qp1,...pK−k
just after

step k is given by |n1,p1,...pK−k
− n2,p1,...pK−k

|. After step k = K one obtains a

mat
hing between X1, . . .XN1
and Y1, . . . YN2

where all the points but |N1−N2|
are mat
hed. One is thus led to the following inequality:

LMBM (X1, . . . XN1
;Y1, . . . YN2

) ≤
∑

p1...pK

Lp1...pK

3



+

K
∑

k=1

√
d

2k

∑

p1...pk

|n1,p1...pk
− n2,p1...pk

|. (3)

We now pro
eed to derive a subadditivity property for the mean value of

LMBM (X,Y ). We �rst 
onsider the 
ase where N1 = cardX and N2 = cardY
are not �xed integers but are independent Poisson random variables with the

same mean value N , the elements of X and Y being 
hosen independently and

uniformly in [0, 1]d. For a given k, the numbers n1,p1,...pk
and n2,p1,...pk

are

then also independent Poisson random variables, with parameter N/2kd. Let

M(N) = ELMBM (X1, . . . XN1
;Y1, . . . YN2

). It is immediate by homogeneity

that

ELp1...pK
= 2−KM(N/2Kd). (4)

Moreover from the well known properties of Poisson variables we have

E|n1,p1...pk
− n2,p1...pk

| ≤
√
2
( N

2kd

)1/2

. (5)

By taking mean values in (3) we obtain:

M(N) ≤ 2K(d−1)M(N/2Kd) +
√
2dN

K
∑

k=1

2k(d/2−1). (6)

This inequality has been obtained for a subdivision of [0, 1]d whi
h 
onsists in

2Kd
similar 
ubes. Suppose now that we start from the subdivision Σ in md

similar 
ubes Qk k = 1, . . .md
, where m is an arbitrary integer. One 
an then

reprodu
e the previous 
onstru
tion in the following manner. Let m = 2K + r
where 0 ≤ r < 2K . Consider the 
ube Q0 = [0, 2K+1/m]d and form the natural

subdivision Σ0 of Q0 by 2(K+1)d

ubes Qp0,...pK

whose edges have length 1/m.

We 
an pro
eed with Q0 and Σ0 to a K+1 steps 
onstru
tion similar to the one

whi
h led to (3). The only di�eren
es are that Q0 has edges of length 2K+1/m
rather than 1, and that some of the Qp0...pK

's, namely those whi
h belong to

Σ0 but not to Σ, are empty. Nevertheless, we may write

LMBM (X1, . . . XN1
;Y1, . . . , YN2

)−
md

∑

p=1

Lk

≤
K
∑

k=0

√
d2K−k

m

∑

p0...pk

|n1,p0...pk
− n2,p0...pk

|

≤
K
∑

k=0

√
d

2k

∑

p0...pk

|n1,p0...pk
− n2,p0...pk

|. (7)

Now n1,p0...pk
and n2,p0...pk

are Poisson variables with parameter lower than

2(K−k)dN/md ≤ 2−kdN so we still have

E|n1,p0...pk
− n2,p0...pk

| ≤
√
2
( N

2kd

)1/2

. (8)
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Taking average values one is led to

M(N) ≤ md−1M(N/md) + 2d
√
2dN

K
∑

k=0

2k(d/2−1). (9)

Dividing this last inequality by N1−1/d
and then repla
ing N by mdN , we get

M(mdN)

(mdN)1−1/d
≤ M(N)

N1−1/d
+

2d
√
2d

N1/2−1/d

K
∑

k=0

2−k(d/2−1). (10)

If d > 2, the sum on the r.h.s. of the last inequality is bounded above indepen-

dently of N , and is divided by a positive power of N . Elementary analysis now

shows that the ratioM(N)/N1−1/d
ne
essarily 
onverges to a limit βMBM (d) as

N → ∞. Indeed, let f(t) = M(td)/td−1
. One veri�es at on
e that f(t) satis�es

f(mt) ≤ f(t) + C/td/2−1
(11)

for all t > 0 and any integer m; f(t) is 
ontinuous, sin
e M(N) is a 
ontinuous

fun
tion of N . So the expression f(t)+Cd/t
d/2−1

is bounded in [1, 2] and sin
e

[1,∞[ is the union of the intervals m[1, 2],m ≥ 1, it follows from (11) that f(t)
remains bounded as t → ∞, thus lim∗ f(t) < ∞. Now de�ne β = lim∗ f(t).
For any ǫ > 0, 
hose t0 ≫ 1 and η > 0 su
h that f(t) + Cd/t

d/2−1 < β + ǫ
for t in the interval I = [t0 − η, t0 + η]. Sin
e the intervals mI, m ≥ 1 span a

whole interval [A,∞[ for an A su�
iently large, it follows again from (11) that

lim∗ f(t) ≤ β + ǫ. Sin
e ǫ is arbitrary one has lim∗ f(t) = β, hen
e f(t) → β as

t → ∞, from whi
h it follows that limN→∞ M(N)/N1−1/d = β. Q.E.D.
We have thus shown for d ≥ 3, that one has

ELMBM (X1, . . . , XN1
;Y1, . . . , YN2

) ∼ βE
MBMP (d)N

1−1/d, N → ∞ (12)

when N1 and N2 are independent Poisson variables with parameter N . The

same result for the mean value ELN , where N is a �xed integer, follows then

easily. Indeed, we have the obvious bound

|LMBM (X1, . . . XN ;Y1, . . . YN )− LMBM (X1, . . . XN1
;Y1, . . . YN2

)|
≤

√
d(|N1 −N |+ |N2 −N |), (13)

when
e taking mean values,

|ELN − ELMBM (X1, . . . XN1
;Y1, . . . YN2

)| ≤ 2
√
2dN, (14)

and dividing by N1−1/d
we dedu
e that

lim
N→∞

ELN

N1−1/d
→ βMBM (d). (15)

Theorem 1.1 is now proved.
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3 Con
luding remarks.

1) Our de
imation pro
edure does not give ba
k the bounds proven by Ajtai et

al. in d = 2, but a weakerO(
√
N lnN) bound. It is believed that a self-averaging

theorem applies also to the fun
tional LMBM in dimension 2 [11℄.

2) The estimation of the 
onstants βMBM (d) is also an interesting problem. A

remarkable result of Talagrand [14℄ shows that one has βMBM (d) =
√

d/2eπ(1+
O(ln d/d)) as d → ∞. It is 
onje
tured that a 1/d series expansion a
tually exists
for βMBM (d).
3) Mézard and Parisi have obtained detailed analyti
 predi
tions for the ran-

dom link versions of the MMP and the MBMP [8℄, where the distan
e matrix

between the points Xi and Yj is repla
ed by a matrix of independent and identi-


ally distributed entries. (Some of these predi
tions, for the random assignment

problem, have been proven re
ently by Aldous [2℄.) Numeri
al studies [6, 7℄

indi
ate that for the MMP and the MBMP, the random link model provides

one with a very good �mean-�eld� approximation to the Eu
lidean model in the

large d limit. Ex
ept for simpler 
ombinatorial problems however [5℄, very few

rigorous results are known for 
omparing the eu
lidean and the random link

models.
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