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Abstract

The local tree-width of a graphG = (V, E) is the function ItW#’ : N — N
that associates with everye N the maximal tree-width of an-neighborhood in
G. Our main graph theoretic result is a decomposition thediangraphs with
excluded minors that essentially says that such graphs eatetomposed into
trees of graphs of bounded local tree-width.

As an application of this theorem, we show that a number ofbioatorial
optimization problems, such asiNMiMuM VERTEX COVER, MINIMUM DoOM-
INATING SET, and MaxIMUM INDEPENDENTSET have a polynomial time ap-
proximation scheme when restricted to a class of graphsamittxcluded minor.

1 Introduction

Tree-width, measuring the similarity of a graph with a tree, has turngidacto be an
important notion both in structural graph theory and in theory of graph algorithms.
It is well known that planar graphs may have arbitrarily &tgee-width. However,
for every fixedd the class of planar graphs of diameter at mbstas bounded tree-
width. In other words, the tree-width of a planar graph cabdended by a function
of the diameter of the graph. This makes it possible to decam®planar graps into
families of graphs of small tree-width in an orderly way. Bdecompositions of planar
graphs, better known under the naouterplanar decompositions, have been explored
in various algorithmic setting$][p,]10,]14] 12]. The maireisigo back to a fundamental
article of Baker|ﬂ$] on approximation algorithms on planeahs.

The local tree-width of a graphG = (V, E) is the function Itv¢’ : N — N that
associates with evenyc N the maximal tree-width of an-neighborhood irG. More
formally, we define the-neighborhood N,.(v) of a vertexv € V to be the set of all
w € V of distance at most from v, and we let{ N, (v)) denote the subgraph induced
by G on N,.(v). Then, denoting the tree-width of a graphby tw(H ), we let

tw€ (r) := max{tw((Nr(v))) ‘ vE V}.
We are mainly interested in classes of graphdainded local tree-width, that is,

classe<C for which there is a functiorf : N — N such that for allG € C and
r € N we have It (r) < f(r). The class of planar graphs is an example. It has
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been observed by Eppste[lO] that if a cl@gs closed under taking minors and has
bounded local tree-width (Eppstein calls this the “diam#teewidth property”), then
the graphs irC admit a decomposition into graphs of small tree-width in ghde of
the outerplanar decomposition of planar graphs, and threapigraph algorithms based
on this decomposition generalize to graph€irEppstein gave a nice characterization
of such classes; he proved that a minor closed dae$ graphs has bounded local
tree-width if, and only if, it does not contain all apex graph

The main graph-theoretic result of this paper, Theo@no@,be phrased as fol-
lows: LetC be a minor closed class of graphs that does not contain gdhgraThen
all graphs inC can be decomposed into a tree of graphs that, after remowingrded
number of vertices, have bounded local tree-width. (Of setine converse is also true,
but trivial: If C is a minor closed class of graphs such that every graghaiimits such
a decomposition, the@ is not the class of all graphs.) The proof of this result isslas
on a deep structural characterization of graphs with exadudinors due to Robertson
and Seymour[17].

We defer the precise technical statement of our decomposfieorem to Secticﬁh 4
and turn to its applications now. In this paper, we focus guraximation algorithms.
But let me mention that the theorem can also be used to reearoesult of Alon, Sey-
mour, and Thomag][2] that grapBswith an excluded minor have tree-width,/|G|)
(see Sectiof] 6.

Actually, the main result of Alon, Seymour, and Thomas'sétis a separator the-
orem for graphs with an excluded minor, generalizing a \kethwn separator theorem
due to Lipton and TarjarmS] for planar graphs. These s¢patiaeorems have numer-
ous algorithmic applications, among them a polynomial tapproximation scheme
(PTAS) for the MAXIMUM INDEPENDENT SET problem on planar graphﬂlG] and,
more generally, classes of graphs with an excluded mﬁhor [1]

A different approach to approximation algorithms on plagiaphs is Baker’s[[S]
technique based on the outerplanar decomposition. It dtesnty give another PTAS
for MAXIMUM INDEPENDENT SET, but also for other problems, such asN\vMmum
DOMINATING SET, to which the technique based on the separator theorem ades n
apply.

We can use our decomposition theorem to extend Baker’'s apbrto arbitrary
classes of graphs with an excluded minor. Our purpose héseeiglain the technique
and not to give an extensive list of problems to which it agli We show in detalil
how to get a PTAS for MNIMUM VERTEX COVER on classes of graphs with an ex-
cluded minor and then explain how this PTAS has to be modifiedlve the problems
MINIMUM DOMINATING SET and MAXIMUM INDEPENDENT SET. It should be no
problem for the reader to apply the same technique to othtemigation problems.

The paper is organized as follows: In Sect[tl)n 2 we fix our taoloigy and recall
a few basic facts about tree-decompositions of graphs. |lteswidth is introduced
in SectiorﬂB. In Sectioﬂ 4, we prove our decomposition thadia classes of graphs
with an excluded minor. Approximation algorithms are dssed in Sectioﬂ 5,andin
Sectiorﬂs we briefly explain two other applications of theateposition theorem.

1we have observed this in discussions with Reinhard DiestéDaniela Kihn.



2 Preliminaries

The vertex set of a grapfi is denoted by @, the edge set bf“. Graphs are always
assumed to be finite, simple, and undirected. We writec E< to denote that there is
an edge fromv to w. For a subseX C V¢, we let(X)“ denote the induced subgraph
of G with vertex setX. We letG \ X := (V¢ \ X)%. For graphsi and H, we let
GUH := (VEuVH ECUEH). We often omit superscriptsif G is clear from the
context.

K,, denotes the complete graph withvertices, and for an arbitrary s&f, K x
denotes the complete graph with vertex &et A vertex setX C V¢ in a graphG
is acliqueif Kx C G. Theclique number w(G) of a graphG is the maximal size
of a clique inG. For a clas€ of graphs, we letw(C) be the maximum of the clique
numbers of all graphs i@, or oo, if this maximum does not exist.

Note that ifC is closed under taking subgraphs and is not the class of abihg:;
thenw(C) is finite.

Graph minors. A minor of a graphG is a graphH that can be obtained from a sub-
graph of G by contracting edges; we writd < G to denote thaf{ is a minor of
G.

Note thatH < G if, and only if, there is a mapping : V¥ — Pow(V%) such
that (h(z))“ is a connected subgraph 6f for all z € VH, h(x) N h(y) = O for
r # y € VH, and for every edgey € E¥ there exists an edgev € E“ such
thatu € h(z),v € h(y). We say that the mappinlg witnesses H < G and write
h:H=<G.

A classC is minor closed if, and only if, for all G € C andH < G we haveH € C.
We callC non-trivial if it is not the class of all graphs.

AclassC is H-freeif H A G forall G € C. We then callH anexcluded minor for
C. Note that a clas§ of graphs has an excluded minor if, and only if, there iman 1
such that is K,-free. Furthermore, this is equivalent to saying thad contained in
some non-trivial minor closed class of graphs.

Robertson and SeymourE[lGiraph Minor Theorem states that for every minor
closed clasg of graphs there is a finite s&t of graphs such that

C={G|VHeF: HAG}

For a nice introduction to graph minor theory we refer thalezdo the last chapter of
[, a recent survey i§ [20].

Tree-decompositions.In this paper, we assume trees to be directed from the root to
the leaves. Iftu € E7 we callu achild of t andt the parent of w. The root of a tred”
is always denoted by .

A tree-decomposition of a graphG is a pair(T, (B;),cy ), WhereT is a tree and
(Bt)sevr afamily of subsets of © such that J,. - (B;)¢ = G and forevery € V¢
the set{t | v € B.} is connected. The sef3, are called thélocks of the decompo-
sition. Thewidth of (T, (Bi),cy ) is the number ma{|B;|| | t € VT} — 1. The
tree-width of G, denoted by t7), is the minimal width of a tree-decomposition@f

The following lemma collects a few simple and well-knowntfaabout tree-de-
compositions:



Lemma2.1. (1) Let (T, (B:);cyr) beatree-decomposition of a graph G and X C
V& aclique. Thenthereisat € V7 suchthat X C B,.

(2) Let G, H be graphs such that V& N V¥ is a clique in both G and H. Then
tw(G U H) = max{tw(G),tw(H)}.

(3) Let G beagraphand X C VY. Thentw(G) < tw(G \ X) + | X|.
(4) Let G, H begraphssuchthat H < G. Thentw(H) < tw(G).

Throughout this paper, for a tree-decompositi@in(B;),cyr) andt € T\ {r1}
with parents we letA; := B; N B,. We letA,.r := (.
Theadhesion of (T, (B:).cy ) is the number

adT, (By)sevr) = max{||A| [t € VT}.
Thetorso of (T, (B;),cyr) att € VT is the subgraph

[B] := (B:)“ UKa, U U Ka,,

w child of ¢

or equivalently, the subgraph with vertex €tin which two vertices are adjacent if,
and only if, either they are adjacent @i or they both belong to a block,, where
u # t. (T, (Bt)eyr) is a tree-decomposition @¥ over a class3 of graphs if all its
torsos belong t@.

Note that the adhesion of a tree-decomposition @& bounded byv(B). Actu-
ally, it can be easily seen that if a graph has a tree-decoitiggosver a minor-closed
classB then it has a tree-decomposition o¥eof adhesion at most(5) — 1.

Path decompositions.A path-decomposition of a graphG is a tree decomposition
where the underlying tree is a path. Of course we can alwaysasthat the patk of

a path decompositio(P, (B,),cp) has vertex set ¥ = {1,... ,m}, for somem €
N, and that the vertices occur éhin their natural order (that is, we haig +1) € EX
for1 < i< m).

Lemma 2.2. Let G, H begraphsand ({1, ... ,m}, (B;)1<i<m ) apath-decomposition
of H of width k. Let z;...x,, beapathin G suchthat z; € B; for 1 < ¢ < m and
VENVH ={x,... 2} Thentw(G U H) < (tw(G) + 1)(k + 1) — 1.

PROOF Let (T, (C}),cyr) be atree-decomposition 6f. Then(T', (C}),cyr) with

ci=cu |J B
1<i<m,
z;,€C

is a tree-decomposition &f U H. O



3 Local tree-width

The distancel®(z,y) between two vertices,y of a graphG is the length of the
shortest path iz from x to y. Forr > 1 andx € G we define the-neighborhood
aroundr to be N% () := {y € VY | d%(z,y) < r}.

Definition 3.1. (1) Thelocal tree-width of a graphG is the function It : N — N
defined by

Itw(r) := max{tw((NE (z))) || = € V}.

(2) A classC of graphs habounded local tree-width if there is a functiory : N — N
such that ItW (r) < f(r) forall G € C,r € N.
C haslinear local tree-width if there is a\ € R such that It (r) < \r for all
GeC,reN

Example 3.2. Let G be a graph of tree-width at most Then Itw(r) < k for all
r € N.

Example 3.3. Let G be a graph of valence at mdstfor anl > 1. Then Itw”(r) <
I(l—-1)"1forallr € N.

The planar graph algorithms due to Baker and others that weiomed in the
introduction are based on the following result:

Proposition 3.4 (Bodlaender [b]). The class of planar graphs has linear local tree-
width. More precisely, for every planar graph G and » > 1 we have ltw® (r) < 3r.

In this paper, aurface is a compact connected 2-manifold with (possibly empty)
boundary. The (orientable or non-orientalgejus of a surfaceS is denoted by;(5).
An embedding of a graph in a surfaces is a mappindI that associates distinct points
of S with the vertices of7 and internally disjoint simple curves i with the edges of
G in such a way that a vertexis incident with an edge if, and only if, I[I(v) is an
endpoint oflI(e).

Proposition 3.5 (Eppstein [p]). Let S be a surface. Then the class of all graphs em-
beddablein S has linear local tree-width. More precisely, there is a constant ¢ such
that for all graphs G embeddablein S and for all » > 0 we haveltw® (r) < c-g(S)-r.

In the next subsection, we prove an extension of Propos@rthat forms the
bases of our decomposition theorem for graphs with excludgedrs.

But before we do so, let me state another result due to Eppiai characterizes
the minor closed classes of graphs of bounded local trethwifin apex graph is a
graphG that has a vertex € V¢ such thatG \ {v} is planar.

Theorem 3.6 (Eppstein [|9]).Let C beaminor-closed class of graphs. Then C has
bounded local tree-width if, and only if, C does not contain all apex graphs.

It is an interesting open problem whether there is a minosexioclass of graphs
of bounded local tree-width that does not have linear (oympaiially bounded) local
tree-width.



Almost embeddable graphs.Let S be a surface with non-empty boundary. The
boundary ofS consists of finitely many connected componefits. .. ,C,, each of
which is homeomorphic to the cyck'.

We now define a grap@’ to bealmost embeddablein S. Roughly, this means that
we can obtainG from a graphG, embedded inS' by attaching at most graphs of
path-width at most to G along the boundary cycl€s,, ... , C, in an orderly way.

This notion plays an important role in the structure thedrgraphs with excluded
minors, to be outlined in the next subsection.

Definition 3.7. Let S be a surface with boundary cyclés, ... ,C.. A graphG is
almost embeddable in S if there are (possibly empty) subgrapfs, ... ,G. of G
such that

- GE=GoU...UG,
— Gy has an embedding in S,

- Gy, ... ,G, are pairwise disjoint,

— forl <i < s, G; has a path decompositi¢fil, . .. ,m;}, (B})1<j<m,) of width
at most,

— for1 < i < x there are vertices;,... ,z/, € V% such that:} € B! for
1<j<m;andVC nVY ={ai, ... 2l 1},

— forl < i < k, we havell(V%) N C; = {II(z}),... ,II(%, )}, and the points
I(z}),... ,I(a},,) appear orC; in this order (either if we walk clockwise or

anti-clockwise).

Proposition 3.8. Let S be a surface. Then the class of all graphs almost embeddable
in .S haslinear local tree-width.

PROOF. Let G be a graph that is almost embeddabl&inMe use the notation of Def-
inition @ LetH, be the graph obtained frotd, by adding new vertices,, . .. , z.,
and edgesz;, z%), (2%, 2%, ), and(zl, 2), for1 <i < k,1 < j < m; (see Figurg]1).
Clearly, Hy is still embeddable ity. Forl < i < kweletH; := HyUG,U...UG;.

H0

Figure 1: FromG, to Hy

Let A € N such that for every grapi embedabble it and everyr € N we have
ltw® (r) < Ar (such ax exists by Theorerh 3.5). Ferc N we let fo(r) := Ar and, for



i € N,weletf;(r) := (fi—1(r +1) 4+ 1)(k + 1) — 1. Thenf; is a linear function for
every: € N.
By induction oni > 0 we shall prove that for everny € N andz € Vi we have

tw((N () < fi(r). 1)

Fori = 0, this is immediate. So we assume that 1 and that we have proveﬁ (2) for
1 — 1.
Forallz € H;, we either haveV"i (z) C H; 1, or NMi(x) € Gi, or NFin
{of, ... o, } #0.
If NHi(z) C Vi1 then tW((NTHI(:c))Hl) < fi—i(r) < fi(r).
If z € VHi-r andNi (z) ¢ VHi-r thenN T (z) N {a4,... 2%, } # 0. By the
construction oy, this impliesz; € N, (z) and thug(z, ... , 2, } € N (@),
By Lemma[2.R and the induction hypothesis we get
tw (VT (@) 7) < w({N () U V)
S (fira(r+ 1)+ 1)(k+1) =1 = filr).
If « € VG, thenNHi(z) N VHi-t C NI (2;). Thus by Lemm4 2|2 and the
induction hypothesis we have
i ; H;_1 ) ]
tw (N () ™) (N3 () VO

<tw
<(firalr+ D)+ (s +1) = 1= fi(r).

O

Note that the local tree-width of a graph is not minor-mometéhat is,H < G
does not imply ItW (r) < Itw&(r) for all r). However, we do have

HCG = Iwf < Itw®. ()

Proposition 3.9. Let S be a surface. Then the class of all minors of graphs almost
embeddablein S haslinear local tree-width.

ProoF Recall the proof of Propositio@.& We use the same natdt@ye. Suppose
G’ is a minor ofG. We can assume thé&t' is a subgraph of a grapghi’ obtained from
G only by contracting edges. Because[¢f (2) we can even ashat@'t= G”.

let X = {z/ | 1 < i < k,1 < j < m;}. Contracting edges with at least
one endpoint not inX is unproblematic, because the resulting graph is still atmo
embeddable iy

So we can further assume th@t is obtained fromZ by contracting edges,, .. .,
en, With both endpoints inX. Let H := H,, (the graph obtained froi¥ by adding the
verticesz; and corresponding edges as in Figﬂre 1). Hébe the graph obtained from
H by contracting:, ... ,e,, and leth : H' < H witness these edge contractions.



The key observation is that for all y € VH' andu € h(z),v € h(y) we have
d"(u,v) < d" (@,y) +3r ~ 1 3)

(no matter how large: is). To see this, le”’ be a shortest path fromto y in H'.
Let P be a path fromu to v in H such thatP’ is obtained fromP by contracting
the edges:; ... ,e,. Let us call such an edge dn j)-edge if it connects a vertex
in {zf,...,x}, } with a vertexin{z1, ... ,z}, }. Suppose thaP = w ... w,. For
1 <1 < kg, letws andw,, wherel < s < t < r, be the first and last vertex from
{xi, ... ,xim} onP. If s < t we replace the intervab, . . . w; in P by w,z;w,;. Doing
this for1 < i < k we obtain a new pattp from «» to v in H. This path@ contains no
at most2x edges that are not df and no(i, 7)-edges. Furthermore, far< i < j <n
the number of;, j)-edges orY) is at most(x — 1). Because assume th@tcontains
at leastx such edges. Then there would be a “cyadleZ iy, is,... ,4 = i such that
for1 < j < I, Q contains ar(i;, i;+1)-edge. However, this cycle would have been
removed while transforming to Q.

Hence lengttR) < length(P’) + 3x — 1, which proves|(B).

(E) implies that for all- > 0, z € V#', andu h(z) we have
<NTHI () = <Nr}{|—3m—l(u)>' (4)

To see this, ley € N/ (). Then for allv € h(y), by @) we haver € N2 5, (u).
Thus A(N/'(x)) € Pow(N,, _(u)). Therefore the restriction df to N (z)
witnessesNH' (z)) < (N2 5, (u)). This proves[|4).

By () and [I}) we get t( N/’ ())) < f.(r+3x—1). The statement of the lemma
follows. O

4 Graphs with excluded minors

The following deep structure theorem féf,,-free graphs plays a central role in the
proof of the Graph Minor Theorem. For a surfé€@ndu € N we let A(S, 1) be the
class of all graphg&’ such that there is aX € V& with || X || < u such thatG'\ X is
almost embeddable ifi.

Theorem 4.1 (Robertson and Seymoum7])For everyn € Nthereexist n € Nand
surfaces S, S’ such that all K ,,-free graphs have a tree-decomposition over A(S, p) U
A(S', ).

Further details concerning this theorem can be founf] inqd12].
For A, u > 0 we let

L) ={G||VH=2GVYr>0: tw’(r) <A-r},
LOwp) = {G H IX C VO ()X guAG\XeL‘,(/\))}.

Note thatL (A, i) is minor closed and that(£(\, 1)) = A + p + 1. Thus a tree-
decomposition ovef (A, 1) has adhesion at most+ p + 1.



Theorem 4.2. Let C be a class of graphs with an excluded minor. Then there exist
A, 1 € Nsuchthat all G € C have a tree-decomposition over £(A, u).

PrROOF: This follows immediately from Theorefn 4.1 and Proposifto#. O

For algorithmic applications we have in mind, Theo@ 4ahalis not enough; we
also have to compute a tree-decomposition of a given graph&j\, ;). Fortunately,
Robertson and Seymour have proved another deep resulteipatds with this task:

Theorem 4.3 (Robertson and Seymou9])Every minor closed class of graphs
has a polynomial time membership test.

Lemma 4.4. Let C beaminor closed class of graphs.
Then thereis a polynomial time algorithm that computes, given a graph G, a tree-
decomposition of G over C, or rejects GG if no such tree-decomposition exists.

PROOF. Note that the clas§ of all graphs that have a tree-decomposition avés
minor closed. Thus by Theore@ﬁl.B we have polynomial time beship tests for
bothC and7.

Without loss of generality, we can assume & not the class of all graphs. Thus
the cligue numbew := w(C) is finite. Recall that every tree-decomposition oder
has adhesion at most Our algorithm uses the following observation to recurgive
construct a tree-decomposition of the input gréph

G € T if,and onlyif, G € C or thereisaset X C V¢ suchthat | X| < w,
G\ X hasat least two connected components, and for all components C
of G\ X wehave (X UC)Y UKx € T.

We omit the details. O
In particular, we are going to apply this result to the minlosed classeg (A, u).

5 Approximation algorithms

Optimization problems. An NP-optimization problem is a tuple(Z, S, C, opt), con-

sisting of a polynomial time decidable sebf instances, a mappingS that associates

a non-empty sefS(z) of solutions with eachaz € I such that the binary relation

{(z,y) | y € S(x)} is polynomial time computable and there i&a N such that

forallz € I, y € S(z) we havely|| < ||z||*¥, a polynomial time computablenst (or

value) functionC' : {(z,y) |z € I,y € S(z)} — N, and agoal opt € {min, max}.
Given anz € I, we want to find a/ € S(z) such that

C(x,y) = opt(z) := op{C(z, 2) | z € S(x)}.
Letz € I ande > 0. A solutiony € S(x) for x is e-close if
(1 —eoptlz) < C(z,y) < (1 + €)opt(x).

A polynomial time approximation scheme (PTAS) for (I, .S, C, opt) is a uniform family
(A¢)eso Of approximation algorithms, wheré. is a polynomial time algorithm that,
given anz € I, computes ar-close solution forz in polynomial time. Uniformity
means that there is an algorithm that, givenomputesA..



The levels of graphs of bounded local tree-width.For graphG, a vertexv € V¢,
and integerg > ¢ > 0 we let

Lf[i,j] ={we Ve |4 < dG(U,w) <j}

To keep the notation uniform, we are actually going to wiitg[i, 5] for arbitrary
i,j € Z, with the understanding thdt$[i, j] := () for i > j andLS[i, j] := LS0, 5]
fori <0.

Lemmab5.1. Let A € N. Thenfor all G € £()\),v € V¥, and i, j € Z withi < j we
havetw ((LS[i,j])) < A+ (j —i+1).

PROOF. First note that.$'[1, j] € L0, j] = N (v), thus the claim holds far < 1.
Fori > 2, consider the minoH of GG obtained by contracting the connected subgraph
(LS10,i — 1]) to a single vertex’. Then we have.$[i,j] € N, (v'), and the
claim follows. O

Minimum vertex cover. Instances of NNIMUM VERTEX COVER are graphgx, so-
lutions are setsX C V& such that for every edgew € E€ eitherv € X orw € X
(such sets are calledrertex covers), the cost function is defined By(G, X) := | X|,
and the goal is min.

Lemma 5.2 (|B]). For every k > 1, therestriction of MINIMUM VERTEX COVER to
instances of tree-width at most % is solvablein linear time.

Theorem 5.3. Let C be a class of graphs with an excluded minor. Then the restriction
of MINIMUM VERTEX COVERto instancesin C hasa PTAS

PROOF. Applying Theoren] 4]2, we choose i € N such that every? € C has a
tree-decomposition ovef(\, u). Lete > 0; we shall describe a polynomial time
algorithm that, given a grapf € C, computes are-close solution for MNIMUM
VERTEX COVER on G. Uniformity will be clear from our description. Lét = [1]
and note thatL < (1 +e).

In a first step, let us prove that the restriction ofNMUM VERTEX COVER to
instances inC(\) has a PTAS.

Let G € £(A\) andv € V¢ arbitrary. Forl < i < kandj > 0we letL;; :=
LS((j — 1)k + i, 5k + i]. By Lemma[5J1, tW(Li;)) < A(k + 1).

Forl <i <k, j > 0let X;; be a minimal vertex cover ofL;;). We letX; :=
Uj>0 Xi;. ThenX; is a vertex cover ofy. Let Xmin be a minimal vertex cover for
G. We have X;;| < |Xmin N L;j|, becaus€Xmin N L;; is also a vertex cover diL;;).
Hence

k k k
Z | X5| < ZZ |X55] < ZZ |Lij N Xmin| < (k + 1)| Xmin|-
i=1

i=1 >0 i=1j>0
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The last inequality follows from the fact that everye V¢ is contained in at most
(k + 1) (successive) sets;;.
Choosen,1 < m < ksuch thatX,,| = min{| X1|,...,|Xk|}. Then

k+1
|Xm| < T|Xmin| < (1 + 6)|vain|-

Since theX;; can be computed in polynomial time by Lem@ 5%, can also be
computed in polynomial time.

In a second step, we show how to extend this approximatiaritthgn to classes
L\, p) for \,u > 0. LetG € L(A\, ) andU C V¢ such thatU| < pandH :=
G\ U € L(A,0). The following extension of Lemma$.2 can be proved by steshda
dynamic programming techniques (cﬁ. [3]):

Lemma 5.4. For every k > 0, the following problem can be solved in linear time:
Given agraph G, asubset U C V& suchthat tw(G' \ U) < k,andasubset Y C U,
computea set X C V¢ \ U of minimal order such that X U Y isa vertex cover of G,
if such a set exists, or reject otherwise.

For everyY C U we shall compute aiX (Y') € Pow(V \ U) U { L} such that
eitherX (Y) UY is a vertex cover of7 and

IX(Y)] < (1+e)min{|X|| X CVE\U, X UY vertex cover of7},

or X(Y) := L if no suchX (Y exists. Using Lemmf §.4 instead of Lemng 5.2, we
can do this analogously to the first step.

Then we choose &, C U such thaf X (Yy) U Y| is minimal. Here we define
1L uUZ:=1forall Zand|Ll| := co. Then clearlyX (Y;) U Yy is ane-close solution
for MINIMUM VERTEX COVER onG. Moreover, sincelU| < p, there are at mo¥*
setsY C U, so X (Y;) U Y, can be computed in polynomial time (remember thag
a constant only depending on the clg3s

In the third step, we extend our PTAS to graphs that have ed@eemposition over
L(A\ ), i.e.toall graphsirt.

So letG be such a graph. We first compute a tree-decompodifio(B; ) ;7 ) of
G over L(\, ). Remember that by Lem@A, this is possible in polynoniiae t
Recall thatr” denotes the root o’ and that, for every € V7 with parentu, we
let A, = B, N B,. Foreveryt € VT, we letS, be the subtree of" with root ¢,
that is, the subtree with vertex sét | t occurs on the path fromtor”}. We let
Ct = USGSt Bt.

Inductively from the leaves to the root, for every nade V7' and for everyy” C
A we compute aiX (¢,Y) € Pow(C; \ A¢) U {L} such that eitheX (¢,Y)UY isa
vertex cover of C;) and

X Y) < (1+¢min{|X|| X UY vertex cover of C,)},

or X(t,Y) := L if no such vertex set exists. Since a tree-decomposition 6, 1)
has adhesion at moat+ 1 + 1 we havelA;| < A + p + 1, thus for every € VT we
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have to compute at mogt+++! setsX (¢,Y). For the root-” we haveA,r = (), so
X (rT,0) is ane-close solution for MNIMUM VERTEX COVERONG.

Suppose thatc V7 and that for every child of 7' we have already computed the
family X (¢',-). LetU C B, suchthatU| < pand[B:]\U € L()\). LetW :=U U A,
andletZ C W. Let Xpin(Z) € PowC; \ W) U {_L} be a vertex set of minimal order
such thatXmin(Z) U Z is a vertex cover ofC;), or X (Z) := L if no such vertex set
exists.

We show how to compute aXi(Z) € Powm(C, \ W)U { L} suchthatX (Z)UZ is a
vertex cover of C;) and| X (Z)] < (1 + €)| Xmin(Z)|, if Xmin(Z) # L,0orX(Z) = L
otherwise. Then for every C A; we choose & C W such thaty” C Z with
minimal | X (Z) U (Z \Y)| (among allZ D Y) and letX (¢,Y) := X (Z). Note that,
since|U| < u, for everyY we have to compute at mogt setsX (7) to determine
X(t,Y).

So let us fix aZz C W; we show how to comput& (Z) in polynomial time.

If W=DB,weletX(Z) :=U, cigort X', Av N Z).

Otherwise, we choose an arbitrasye B; \ W. Forl < i < kandj > 0
we let L; := L[ — 1)k + 4, jk + . Then t((L;;)) < A(k + 1). For
1 < i < k and every child’ of ¢ there is at least ong > 0 such thatd,, \ W C L,
becaused induces a clique ifB;]. Let j*(i,t') be the least such and L}; :=
Lij U U;;?hiig)of; Cr \ Av.

For éve}yXJg L;; we let

X =Xu |J X, (Xuz)nAy)

t’ child of t

3 (it)=j
We compute arX;; C L;; with minimal |X;*j| such thatX,;; U Z is a vertex cover of
(L;; U W) if such a vertex cover exists, adf};; = L otherwise. The usual dynamic
programming techniques on graphs of bounded tree-widtlv shat eachX;; can be
computed in linear time if the numbelE (¢, Y')| for the childrert’ of ¢ are given (cf.
Lemmag 52 an[d§.4 anf] [3]). Itis important here that eviery W is a clique in(L;;)
and thus by Lem .1(1) completely contained in a block eftree-decomposition
of <Llj>

We letX; := ;5o Xij and X} = ;5 X};- ThenXF U Z is a vertex cover of
(Cy), if such a vertex cover exists, addl = | otherwise. We choose anl < i < k,
such that X;/| = min{|X7|,...,|X}|} and letX(Z) := X;}. ThenX(Z) can be
computed in polynomial time.

Recall thatXmin := Xmin(Z) C C; \ W is a vertex set of minimal order such
that Xmin U Z is a vertex cover ofC;), if such a vertex cover exists, adtnn = L
otherwise. It remains to prove thigt (Z)| < (1 + €)| Xmin|-

Recall that for every child’ of ¢t we have

I X, (XminUZ)NAp)| < (14 €)|Xmin N Cpr \ Ay |.
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Our construction of theX;; and X/; guarantees that fdr< i < k, j > 0 we have

X5 < [ Xmin N Ligl + > |X(#, (Xmin U Z) N Ap)].

t’ child of ¢
J*(Gt)=j
Then
k
KX (Z)] <) 17
i=1
k
S
i=1 >0
k
<33 (KN Ligl+ > IX(, (XmnU Z) 1 Av)])
i=1 j>0 t’ child of ¢
37 (t")=3
k
< (|XminﬂLij| + Z (1 +6)|Xminﬂct’ \At/l)
i=1 j>0 +' child of ¢

3 (6t =g

<(k + 1)| Xmin N Be| + k(1 + €)| Xmin N Cy \ Byl

This implies| X (Z)| < (1 + €) Xmin- O

Minimum dominating set. Instances of NNIMUM DOMINATING SET are graphs,
solutions are set& C V¢ such that for every € V& \ X there is aw € X such
thatvw € ES (such setsY are callecdominating sets), the cost function is defined by
C(G, X) :=|X]|, and the goal is min.

Theorem 5.5. Let C be a class of graphs with an excluded minor. Then the restriction
of MINIMUM DOMINATING SET toinstancesin C hasa PTAS.

PROOF. We proceed very similarly to the proof of Theor 5.3, thalagous result
for MINIMUM VERTEX COVER. Let A\, 1 € N such that every graph ifi has a tree-
decomposition ove£ (), 11). Lete > 0 andk := [2].

Again, in the first step we consider the restriction of thelyem to input graphs
from £()). Given such a grap&¥, we choose an arbitraryc V<. Forl <i < k and
j>o0weletL; := LE[(j — 1)k +i—1,jk + i]. Thentw((L;;)) < A(k + 2). Note
thatL;; andL;(;+1) overlap in two consecutive rows, which is different from greof
of Theore. Thénterior of L;; is the setl;; := LS[(j — 1)k + i, jk +i — 1].

Forl <i <k,j > 0weletX;; C L;; be a vertex set of minimal order with the
following property:

(*) Foreveryw € L?; \ X;; thereis ar € X;; such tha{w, z) € EC.
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Thenforl < i < k the setX; := (J,, Xi; is a dominating set of+. Letm be such
that|X,,| = min{|X4|,...,|Xk|}. ComputingX,,, amounts to solving a variant of
MINIMUM DOMINATING SET on instances of tree-width at mostk + 2); using the
usual dynamic programming techniques, this can be donaéatitime.

Since for every dominating séf of G the setX N L,; has propertyx) we have
X;; < X N Ly;. Using this, we can argue as in the proof of Theoferh 5.3 to ghatv
X,, is ane-close solution.

Adapting the second and third step of the proof ofTheﬁSBStraightforward
to extend this algorithm to arbitrary input graph<’in O

Maximum independent set. Instances of MXIMUM INDEPENDENTSET are graphs
G, solutions are set¥ C V¢ such that for alb, w € X we havevw ¢ E© (such sets
X are calledndependent sets), the cost function is defined by (G, X) := |X|, and

the goal is max.

Theorem 5.6. Let C be a class of graphs with an excluded minor. Then the restriction
of MAXIMUM INDEPENDENTSET to instancesin C hasa PTAS.

PrROOF. Again we proceed similarly to the proof of Theor 5.3. hetr € N such
that every graph i€ has a tree-decomposition ov&f\, 11). Lete > 0 andk = [%].

We describe how to treat input graphsdf\). Following the lines of the proof of
Theoren[5]3, the extension to arbitraye C is straightforward. LeG € £()\) and
ve VY Forl <i<kandj>0weletL;; := LS[(j — 1)k +i,jk + 14 — 2]. Then
tw((L;;)) < A(k —1). Note that there are no edges betwégnandL;(; y1).

Forl <i < k,j > 0 we letX;; be a maximal independent set @;;). Then
X; = Uj>0 X,; is an independent set ¢f. Letl < m < k such thatX,,| =
max{|X1|,...,|Xk|}. Since the restriction of MXIMUM INDEPENDENT SET to
graphs of bounded tree-width is solvable in linear timehsartX,,, can be computed
in linear time.

Let Xmax be a maximum independent set@f Then forl < ¢ < k, 7 > 0 we have
|XZJ| > |Xmaxﬂ LU| Thus

k k k
FIXn =Y 1Xi =YD X 2 >0 [ Xmax Lig| 2 (k = 1)| Xmal,
i=1

=1 5>0 =1 3520
which implies that\,,, > £2 | Xnax > (1 =€) Xmax- O
Other problems. Our approach can be used to find polynomial time approximatio
schemes for the restrictions of a number of other problentdatsses of graphs with
excluded minors, in particular for the other problems coeed by Baker[[5]. | leave
it to the reader to work out the details.
6 Other applications of Theorem[5.B

The tree-width of K, -free graphs. We re-prove a theorem of Alon, Seymour, and
Thomas|[[] that the tree-width of &,,-free graphG is O(/|G|). This is joint work
with Reinhard Diestel and Daniela Kuihn.
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Lemma6.1. Let A € Nand G € L()). Thentw(G) < 34/A|G].

PROOF. Letv € V¢ arbitrary and, fori > 0, L; := {w € V& | d%(v,w) = i}. Let
m be maximal such thak,, is non-empty. We subdividél, ... ,m} into intervals
I, J1,15,...,J,_1,1;, J; such that forl <i <[ we have

— |Lj| < \/A-|Glforallj € I,
— |Lj| > /A |G| forall j € J,.

Then W(U,¢;, Ly) < 2¢/A- |G| and (U, 5, L)) < /A-|G| (because the

length of J; is at most,/ @). We can glue the decompositions together by adding
to every block of a tree-decomposition &f the last level of the previoug and the
first level of the nexf; ;; and obtain tWG) < 3/X - |G|. O

Corollary 6.2. Let \,u € Nand G € L(A, p). Thentw(G) < 3/ A|G| + p.

Corollary 6.3. Let G be K,,-free. Thentw(G) < O(+/|G|).

Deciding first-order properties. In [EI] we give another algorithmic application of
Theore2. We show that for every classf graphs with an excluded minor there
is a constant > 0 such that for every property of graphs that is definable in dirder
logic there is arO(|G|¢)-algorithm deciding whether a given grapgh € C has this
property.

For example, this implies that for every clagsvith an excluded minor there is a
constant such that for every grapH there is arO(|G|¢)-algorithm testing whether a
given graphZ € C has a subgraph isomorphic £b.

7 Further research

We have never specified the exponents and coefficients obthipgmials bounding the
running times of our algorithms; they seem to be enormoususalgorithms are only
of theoretical interest. The first important step towardgroving the algorithms would
be a practically applicable algorithm for computing tressdmpositions of graphs of
small tree-width. On the graph theoretic side, it would [adallg help to prove Theorem
k.2 directly without using Robertson’s and Seymour’s Tieeté.].

The traveling salesman problem is another optimizatiomlero that has a PTAS
on planar graphd [18] 4]. It would be interesting to see & firoblem has a PTAS on
class of graphs with an excluded minor.

Acknowledgements| thank Reinhard Diestel and Jorg Flum for helful commenmts o
earlier versions of this paper.
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