Expanders in Group algebras
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Abstract

Let G be a finite group and let p be a prime such that (p, |G|) = 1.
We study conditions under which the Abelian group F,[G] has a few
G-orbits whose union generate it as an expander (equivalently, all the
discrete Fourier coefficients (in absolute value) of this generating set
are bounded away uniformly from one).

We prove a (nearly sharp) bound on the distribution of dimensions
of irreducible representations of G which implies the existence of such
expanding orbits. We further show a class of groups for which such
a bound follows from the expansion properties of G. Together, these
lead to a new iterative construction of expanding Cayley graphs of
nearly constant degree.

1 Introduction

We first describe our results and their context in a high level, relatively
informal style. We then give precise definitions and theorems.

1.1 Background and Motivation

A graph is called an « -expander if the first nonzero eigenvalue of its Laplacian
is at least a > 0 (equivalently the ratio between the first and second largest
eigenvalues of its adjacency matrix is at most 1 —«a < 1). An expander family
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is a sequence of graphs which are all « -expanders with the same a. A single
graph will be called an expander only in the context of some such family.

Expander graphs are highly connected: all small sets of vertices have
many neighbors; all cuts have many edges; and the random walk converges
to the stationary (uniforms) distribution extremely quickly. Indeed, the orig-
inal definition of expanders (and the reason for their name) was in terms of
connectivity properties, and the connection to the spectral gap was developed
in [Tan84, AM84, A86].

Sparse expanders, especially those which can be explicitly and efficiently
constructed, have numerous diverse applications both in Computer Science
and in pure Mathematics. The challenge to explicitly construct such graphs
was met successfully - there are several explicit families of expanders of con-
stant degree. Until last year, essentially all explicit constructions were of
algebraic nature - they were either Cayley graphs of certain groups (e.g.
[AMS84, LPS88, Mar88|), or graphs whose vertices are identified with some
algebraic structure on which there is a natural action of a group preserving
adjacency (e.g. [Mar73, GG81]). Moreover, the groups used in all of these
constructions were finite quotients of the infinite groups SL,(Z) and their
relatives, which posses Kazhdan’s property 1" or at least its relative property
7 (see [L94] for details).

In this paper we’ll give a completely different family of (near-constant
degree) expanding Cayley graphs. In particular, the groups involved will be
solvable, and moreover will have huge Abelian subgroups. Another difference
will be that they will be constructed iteratively, rather than as quotients of
one infinite “mother” group.

The motivation and starting point for our paper are the recent papers
[RVWO00, ALWO1]. The first paper [RVWO00] broke the mold of algebraic
expander constructions. It introduced the zig-zag product on graphs, and
proved that it preserves expansion. This allowed the construction of large
expanding graphs from smaller ones (without enlarging the degree) and led to
a combinatorial iterative construction of constant degree expander families.
The second paper [ALWO1] observed that the zig-zag graph product can
be viewed as a generalization of the classical semi-direct product in groups.
With some provisos, this allowed the construction of large expanding Cayley
graphs from small ones. To understand their construction, and how it leads
to our work, we give some more detail.

Let G be a group, and assume it has a small expanding generating set S
(namely the Cayley graph C'(G;.S) is an expander). Now assume G acts on
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another group H. When can we have a small expanding set of generators for
the semi-direct product G x H? A sufficient condition proved in [ALWO01]
(using [RVWO00]) is that H has an (not necessarily small) expanding gener-
ating set which is the union of a few G-orbits. Furthermore, they prove that
this condition is satisfied for an arbitrary group G, and H is the invariant
subspace of any irreducible representation of G over a fixed finite field (note
that H is Abelian!).

This idea gives hope that sparse expanding Cayley graphs may now be
constructed iteratively (as in [RVWO00]), by somehow iterating the above
procedure. But understanding the irreducible representations of the newly
constructed groups seems to be essential for the argument, and this seems
quite complex.

1.2 Overview of our Results

A natural idea to facilitate iteration is to try something more generic, namely
to take H = F,[G|, the group algebra of G over F,, (this is simply the vector
space over F, whose coordinates are labelled by elements of G). If G were
a Cayley expander, and we could find a few expanding G-orbits in F,[G]
then G x F,[G] would be a larger Cayley expander and we could repeat the
argument.

It is interesting to note that in this setting such constant number s of
orbits actually forms the generating matrix of an asymptotically good linear
error correcting code which is highly symmetric. This code is invariant under
the diagonal action of G on F,[G]°. In contrast with cyclic codes this action
is of course non transitive on the coordinates.

How can we guarantee the existence of such few generating orbits? As in
[ALWO01], these s orbits will be chosen randomly. What becomes much harder
is the analysis. A key simplifying factor in the [ALWO01] analysis is that, when
H is an irreducible representation, all orbits have full rank. This is not true
for H = F,[G]. To fix this, we go through a chain of reductions involving the
growth of several group theoretic functions, and their (surprising?) relation
to expansion.

We first note that the analysis in [ALWO1] goes through if the number of
orbits of rank r grows at most exponentially with . We then give a natural
condition on GG which ensures this growth: the number of irreducible complex
representations of G of dimension d grows at most exponentially with d. We



now show that if G is a monomial' group, such a bound follows from the
expansion properties of G (which we inductively assume!). We finally prove
that if G' is monomial, so is G X F,[G].

This facilitates the iterative construction (using distinct primes p), which
can start with any Abelian group?. The components of the construction are
symmetric linear codes, which are ”glued” using the semi-direct (=zig-zag)
product. As each new code is exponentially larger than its predecessor, the
"non-Abelian” part of any group in this sequence is only of logarithmic size!
Moreover, this fact controls the growth of the degrees in our expanders to be
only slightly more than constant.

To summarize, denoting the resulting sequence of groups G, and their
respective generating sets S,, we have the following: all G,, are 1/2-expanders,
with |S,| < O(log™™¢"™ |G,|) (where log®) denotes the k time iterated
logarithm function).

We find the connection between the expansion of groups and the growth
rate of the above functions defined by the group interesting in its own right.
We compute them for some concrete groups, and use it to show that the
sufficient conditions we give on the growth functions of ranks and dimensions
are essentially tight.

Finally, we touch the explicitness issue. The basic construction above
(and thus also the iterative one) uses a probabilistic argument to show the
existence of few expanding orbits. This is not explicit, and a derandomization
of this argument would be very interesting. Nevertheless, it is far more
explicit than generating the whole graph at random. Observe that given
these (randomly chosen) orbit representatives, neighbors of a vertex can be
computed efficiently, and thus an expanding Cayley graph of size exp(n) can
be described by a Boolean circuit of size polynomial in n.

To be completely explicit, we move back into the general setting of a
group G acting on a set X which labels the coordinates of the vector space
H. In this setting, we give the first explicit construction of a constant number
of expanding orbits, for some natural choices of G and X above. We exhibit
two expanding G-orbits in Fo[X] where

'We define it later. It is however worth noting that in such groups the number of
subgroups of index ¢ grows exponentially with i, a property which is used to prove the last
implication

2To allow an arbitrary group as a starting point, we generalize the above to the so
called My-groups.



e X is the finite field F,, and G is the group of affine linear transformations
acting on it.

e X is the projective line F, U{oo} and G is the group SLs(p), acting on
X as Mobius transformations.

Note that the second case is exactly the one used by [ALWO1] to exhibit a
group which can be expanding with one set of generators and non-expanding
with another. They used a probabilistic argument to obtain the expanding
generators, and the result above completely derandomizes their construction.

1.3 Definitions and Results

This work uses some elements of the Representation Theory of finite groups.
We try to give precise references for key results we use. Our main general
references are the books of Aschbacher [Asc00] and Isaacs [Is76].

Let G be a finite group and let F[G] denote the group algebra of G over
the field F. We always assume that the characteristic of F is coprime to
|G|. The Fourier Transform of f =% _. f(x)x € F|G] at a representation
p: G — GL(V,) is given by

Zf p(z7") € Endp(V,) .

zeG

Let S be a generating multiset of G of cardinality |S| = [ and let h =
> 455 € C[G] . The Kazhdan Constant of S is given by

fic(S) = min [h(p)o = o]l

P {UEVp ||v||2 1}

where p ranges over all unitary representations of G which do not contain the
trivial representation. It is easy to see that the minimum is always attained
at an irreducible representation.

This definition slightly deviates from the usual definition of the Kazhdan
constant, see e.g. [HRV93]. We take the average (rather than the original
definition which takes the maximum) over the generators; this makes the
notion robust for any number of generators (not necessarily constant), and
makes the expansion based on it equivalent to the one using the spectral gap
(see below).



When §' is symmetric, the Kazhdan constant has the following spectral
interpretation: Let C' = C(G; S) denote the Cayley graph of G with respect
to S and let M(C) denote the normalized Laplacian of C. Then Fqg(S)
is equal to the first non-zero eigenvalue of M(C'). Equivalently, it is the
eigenvalue gap in the transition probability matrix of the random walk on
the graph C. Thus, in the notation of the first subsection, C' is a fg(S)-
expander. This connection has been observed in many previous papers —
however, since they used the original definition of the Kazhdan constant, it
was not tight. Summarizing the above, we have

Fact 1.1 Rg(S) =1—- XC(G;S))
where A(C) is the second largest eigenvalue of the random walk matriz on C.

This value controls the expansion properties of C. In some papers, the second
largest in absolute value eigenvalue is used to define expansion. The conver-
sion between the two notions is easy — simply add self loops with probability
1/2 to each vertex (in other words, add |S| identity elements to the gener-
ating set). All eigenvalues become nonnegative, the random walk becomes
ergodic, and the spectral gap shrinks by a factor of 2.

For an Abelian group H it is especially easy to compute the expansion,
as all irreducible representations are 1-dimensional.

Ru(S m1n|—ZX ) — 1] (1)

x#1

where Y ranges over all non-trivial characters of H.

Let p be a prime such that (p, |G|) = 1. We will be interested in expand-
ing generators for the group algebra F,[G] as an Abelian group. The inner
product of two elements f =" . f(x)x, g =) ., 9(x)r € F,[G] is given
by f-9=">,cc [(®)g(x) € Fp. Let (o) = exp(zmz) A multiset A C F,[G]
is d-balanced if for all 0 # f € F,[G]

Y elf-h) < (1-0)4].

heA

By (1) if A is 0-balanced then &g, g(A4) > 0.
For f € F,[G] let Gf = {of : 0 € G} denote the orbit of f under G. It will
be convenient to regard G f as a multiset with |G| elements.



This work is concerned with representation theoretic conditions which guar-
antee the existence of few orbits whose union form a balanced set in F,[G]
and with an application to the construction of expanding groups.

Let r4(G;F) denote the number of irreducible representations of G over F of
dimension at most d and let

a>1 d

Theorem 1.2 For any § < % there exist

s = O(ﬁ(m(G; F,) + logp)) elements hy, ..., hs € F,[G] such that the
multiset A = U;_,Gh; C F,|G] is d-balanced. Indeed, a random choice of the
elements h; will guarantee this property with arbitrarily high probability.

The proof of Theorem 1.2 given in section 3 combines the approach of Alon,
Lubotzky and Wigderson [ALWO01] with some estimates on the distribution
of ranks in the group algebra given in section 2.

In section 4 we consider the number of the unitary d—dimensional representa-
tions of G' and its connection with the Kazhdan constants of a generating set
S C G. Wasserman [Wa91] showed that 74(G) = r4(G;C) can be bounded
in terms of d , |S| and Ag(S) alone. An explicit form of his argument due
to de la Harpe, Robertson and Vallete [HRV93] gives the following

Theorem 1.3 ([Wa91, HRV93])

14(G) < ()1

For applications involving Theorem 1.2 we need a sharper bound which we
can only prove in the following restricted case. A group G is an M,-group if
any complex irreducible representation of GG is induced from a representation
of dimension at most ¢ of some subgroup H C G. A group with property M;
is called a Monomial group.

Theorem 1.4 There exists a constant ¢ such that for any M,-group G and
d>1

’l“d(G) < (~GC(S))2E|S|d . (2)

x

As a consequence we obtain



Theorem 1.5 Let G be an My-group with a generating set S. Then there
exist s = O(logp + | S| log ﬁ(s)) orbits whose union is %-balanced.

For a group G, let G®) be given by G = G and G = [G—1) GK-1)],
The derived length of a solvable group G is the minimal n such that G™ = 1.
Results of Lubotzky and Weiss [LW93] imply the following

Proposition 1.6 Let G be a solvable group of derived length n. If S C G is
a generating set such that &g (S) > 1/2 then |S| = Qlog™ |G]) .

In section 5 we combine the Zig-zag construction of Reingold, Vadhan and
Wigderson [RVWO00] with Theorem 1.5 to give a simple example (below) of
a sequence of solvable groups which come close to the bound of Proposition
1.6. Let {p;};>1 denote the sequence of odd primes. Let Gy = Sy = Fy and
forn > 0let Gy = G, X F,, [G,] .

Theorem 1.7 There exist symmetric generating sets S, of G, such that

FG,(Sn) > 1 and for sufficiently large n

1S, < log("_log* ") |Gl -

In section 6 we give an explicit construction of two expanding orbits for Fa[F,]
under the action of the affine group G = Aff(p) where p = 1(4). Let v € H
be the characteristic function of {0} and let u € H be the characteristic

function of I = {1,2,..., p—gl}

Theorem 1.8 The set S = {Gv,Gu} C H is .01 balanced.

Let vy, uy € Fo[PG(2,F,)] = H; denote the images of v, u under the embed-
ding © — (z,1) of F, in the projective line PG(1,p) . Let Gy = SL(2,p)
then

Theorem 1.9 The set S1 = {G1v1, Giur} C Hy is .01 balanced.

2 Rank Varieties in Group Algebras

In this section we relate the distribution of ranks in the group algebra of G

to the distribution of dimensions of the irreducible representations of G.
Let IF be a field of characteristic coprime to |G| and let Irr(G; F) denote the

set of irreducible representations of G over F. For f = )" _. f(x)r € F|G]
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let Ty : F[G] — F[G] be the linear map given by T¢(h) = hf. Clearly
dim Span G'f = rank T}. Let

V,(F) ={f €F[G] : rank Ty <7} .

While we are mainly interested in the cardinality of V,(F) when F = F, is
finite, it is instructive to first determine dim V,.(F) when F is algebraically
closed.

Let My(F) denote the space of d x d matrices over F and let

Ryr(F) = {A € My(F) : rank A = k}.

When F is algebraically closed the closure Ry (F) is an affine irreducible
algebraic variety and

dim Ry, (F) = k(2d — k). (3)
In the finite field case

|Rax(Fg)| = N(q;d, k) =

u(d, q)? k(2d—Fk) k(2d—k)
<
u(k, q)u(d — k. q) = Cla) g

where u(m,z) = [[";(1 —27") and C(q) = [[,(1—¢) ' <4

N ~—

Suppose F is algebraically closed and let Irr(G;F) = {p1,...,p:} where
pi : G — GL(V;) and dimg V; = d;.

Claim 2.1
t t
dim V,(F) = max{» ki(2d; — k) : 0<k; < d; , Y kd;<r}. (4)
i=1 i=1
In particular dim V, < 2r.
Proof: Let

¢ : F[G] — H End(V;)

denote the Fourier Transform isomorphism given by

~ ~
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For A = (Ay,...,4;) € [['_, End(V;) let Sa denote the endomorphism of
[1._, End(V;) given by

SA(Xl, .. '7Xt) - (XlAl,. .. aXtAt) .

Commutativity Sep¢ = ¢Ty implies

¢
rank Ty = rank Sy(p) = Z d; rank ]?(,0,) .

i—1
Therefore t
P(Vo(F) = {(A1, ..., Ap) Zdi rank A; < r}
i=1

and (4) follows from (3) .
0J

We now turn to the finite field case. The Galois group I' = Gal(F,/F,) acts
naturally on the set Irr(G;F,) of irreducible representations of G over F,.
Let Fi,...,F; denote the orbits of Irr(G;F,) under I" and for each 1 <i <t
choose a representative 7; € F; of dimension d;. Let I'; < T' denote the
stabilizer of 7; and let o denote the Frobenius automorphism o(z) = 9.
For e; = (I" : T';) the direct sum @;;_017];’] is equivalent to a d,e;-dimensional
irreducible F,—representation p; of G. All irreducible representations of ¢

arise this way, thus Irr(G;F,) = {p1,...,p:} and

t

Fq[G] = H Mdi (qui) :

i=1

For A = (Ay,..., Ay) € T[]\, My, (Fy) let Sa denote the endomorphism of
the F-space [['_, Mg, (Fye:) given by

SA(Xl, .. '7Xt) - (XlAl,. .. aXtAt) .

Clearly
t
rank Sy = Z d;e; rank]pqei A; .

i=1
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Denoting

t
K,={k=(k:1<i<t):0<k <d,; ,Zkidieizr}
i=1
it follows that

{f € F,G] : rank Ty =r}| = Z HN(qei;di,ki) : (5)

keK, i=1
Let
,V(Z> _ Z Zrank Ty
J€F¢[G]

be the generating function of the ranks attained in F,[G]. Equation (5)
implies the following

Proposition 2.2
t d;
’Y(Z) _ H(Z N(q6i§di,ki) Zeikidi) )

i=1 k;=0

3 Balanced Orbits

In this section we prove Theorem 1.2, that when the distribution of ranks is
controlled, the group algebra has a few expanding orbits. In the following
two subsections, we give examples of groups in which (respectively) have/ do
not have this property (exhibiting the near tightness of our bounds).

Let |G| = n. We regard F,[G]* as a probability space with the uniform
distribution.
For f € F,[G] and 0 > 0 let Bs(f) =

s

(U h) EFGE = =3 ep(ohi ) > 1- 3} .

sn i=1 oG
For f17 .. .,fr - FP[G] let C5(f1, .. .,fr) =
1 S T
{(hy,...,hy) € F)|G]* : |EZZep(hi f) > 10}
i=1 j=1

11



Claim 3.1 If fi,..., f. are linearly independent in F,[G] then

W) . (6)

Proof: For1 <:<s, 1<j <rlet X,; denote the complex valued random
variable e,(h; - fj). The X;; are clearly independent and ||.X;;||- = 1, hence
(6) follows from the Chernoff bound.

Pr(Cé(fla R fr’)) < 4eXp(

O
The following result uses an idea of Alon, Lubotzky and Wigderson [ALWO01].
Proposition 3.2 If rank Ty = r then

—(1—26)%rs
Pr(B( ) < Sexp(—L— 200
Proof: Let 7,...,7. € G such that 71 f, ..., 7.f are linearly independent in
F,[G]. Then
1 S
D R URIEE % » AT
ceG 1=1 e =1 j=1
Z Z Z ep(ohi -7 f))
creG i=1 j=1

It follows that if (hq, ..., hs) € Bs(f) then
(ohy,...,ohs) € Cos(mif,...,7f)

for at least % elements o in G. Hence

—(1—20)%rs
Pr(Bs(f)) <2 Pr(Cos(if,...,7f)) < 8exp(%) :
U
Proof of Theorem 1.2: Keeping the notation of section 2 let Irr(G; F),) =
{p1, ..., p:} where p; is of dimension d,e;, and

t

Fy[G] = [ [ My, (Fpe) - (7)
i=1
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Let m = m(G;F,) , s:ﬁ(m+210g2p+7) A = 4p? exp(— &).
Choose hy,...,hs uniformly at random from F,[G]. The probability that
A(hy, ..., hs) = U_,Gh; is not o-balanced is

Pr( U Bs(f)) < Z Pr(B;(f)) <
0#fEF[G] 0#fEF[G]
—(1—20)s

8 " |Vi(F,)| exp( w) = 87(exp( 1 <

4
r>1

t d;
Je —(1 — 2(5 2$kieidi
8HZ k(2d —k;) 1exp( ( ) )—SS

. 4
i=1 k;=0
t o0
8H(Z)\die” 8—8H — \he)Tl g =
i=1 k;=0
81— A)~Hie=lll — 8 < Bexp(2) (A2™)) - 8 <
>1 >1

Bexp(2) 307) —8<1.

It follows that there exist hq,...,hs such that A(hy, ..., hs) is —balanced.
To make the failure probability arbitrarily small, note that the above ar-
gument shows that if s = 757 26) z(m + 2logy,p + 2) (for any z) then the

probability that A(hq, ..., hs) is not d—balanced is O(277).
U

3.1 Groups whose algebras have few expanding orbits

1. The symmetric group S, has exp(O(y/n)) complex irreducible repre-
sentations and only two are of dimension < n — 1. It follows that
m(Sn; Fp,) < m(S,;C) = O(1). By Theorem 1.2 F,[S,] contains
s—balanced sets which are unions of O(logp) orbits.

2. The special linear group SLs(q) has ~ ¢ complex representations of
dimension ~ ¢, hence again m(SLs(q);F,) = O(1). By Theorem 1.2
F,[SLs(¢)] contains 5—balanced sets which are unions of O(logp) or-
bits.

13



3. Let C, = (z) denote the cyclic group of odd order n, and let w be
a primitive n—th root of unity in Fy. The characters {x;}{—y of Cy
over Fy are given by xx(27) = w®. The cardinality of the orbit of
under the Galois group Gal(Fy/Fs) is equal to the order of 2 in the

multiplicative group of Zm. It follows that for k& > 1
Orbit(y)| > logy(——— + 1)
Xk = 2982 ged(k,n)
hence
{1 <k <n—1:|0rbit(xs)| =1} <2' -2
and

d . 3 J—
=1

ool
1+Z z <2t 1.
=1

Therefore m(C,,; Fo) <1 and Fy[C,] contains O(ﬁ) orbits whose
union is d-balanced.

3.2 Groups whose algebras require many orbits to ex-

pand
In this section we show that Theorem 1.2 is nearly sharp for G = F3.
Proposition 3.3 For sufficiently large n, no union of s = %‘ orbits in

F3[F%] is 6—balanced.

We need the following Ramsey type result of Brown and Buhler [BB82] .

2%—1)n

Claim 3.4 If C C F} satisfies |C| > 2 22, then C contains an affine
d—dimensional subspace. [

Proof of Proposition 3.3: We regard an element h € F3[F3] as a function
h : F3 — F3. The action of x € F} on h € F3[F}] is thus given by
h*(y) = h(x+vy) . Forz = (z1,...,2,) , ¥y = (Y1,---,yn) € Fh let x @y =
Z?:l x;y; € Fy denote the standard inner product in F7.

14



Let hy, ..., hy € F5[F3] with s > 22 We have to show that for some 0 # f €

F3[F3]
|—Zzeg (h¥- )] > (1 —48)2".

=1 :EGF"
For 1 <1 < s write the Fourier expansion
hi(y) = Z a;:(—1)"
zeFy

with coefficients a;, € F3 . There clearly exist by,...,b, € F3 and a subset
C C F} of cardinality |C| > 37°2" such that

=0 for all 1<i<s,zeC .
Let d = [logy(3)] . If n is large enough then 372" > 254" +2 hence there

exists a d—dimensional linear subspace U C F5 and a v € Fj such that
L=v+4+UcCC. Let

L={2cF} : zeu=0 for all ueU}
and define f € F3[F}] by

= { 0 ver

Then for any 1 <7 < s and z € F}

hi - f= Z hi(x +y)f(y) = Z (—1)v* Z aiz(_l)(ﬂy)-z _

yeFy yeU+ zeFYy
Z aiz(_l)xoz Z ( 1)yo (v+2) _ on—d Z azz xoz _
z2€FY yeU-+ zev+U
2", Y (—1)" = 2" f (x) -
zev+U

In particular h? - f =0 for all z ¢ UL. Tt follows that

\—Zzeghw )= 2" — U+ = ZZeghm

i=1 z€FY =1 zcUL
)
2" —2UH| =2"(1 — 274 > 27(1 — 5) .
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4 Counting Representations

In this section we prove Theorem 1.4, showing an exponential upper bound
on the growth rate of dimensions of irreducible representations in M, groups.
The proof depends on several results which are described below. Let F
denote the class of finite groups whose compositions factors do not include
an alternating group Ay with k > /.

Proposition 4.1 There exists a constant c¢; such that if G is an M;-group
then G € F.p .

Proof: By Jordan’s Theorem (see [Is76]) for any ¢ there exists a finite J(¢)
such that any finite subgroup G C GL(C*) contains a normal Abelian sub-
group A such that |G/A| < J({). Isaacs [Is84] showed that if G is an M-
group then every non-Abelian composition factor of G has order bounded by
J(€). Weisfeiler [We84] nearly sharp estimate J(¢) < ¢¢1°8+°(¢ + 1)! implies
that for ¢; sufficiently large J(¢) < 2(c1€)! hence G € F; .

O

Let a,,(G) denote the number of subgroups of G of index at most m. Pyber
and Shalev [PS96] proved the following

Theorem 4.2 ([PS96]) There exists a constant cy such that for any G € Fy
with a generating set S and any m > 1

am(G) < (ex057H™ O (8)

Let [[A = (32, lai;|*)"/? denote the Hilbert-Schmidt norm of a complex
matrix A = (a;;) . The following observation is due to Wassermann [Wa91].

Lemma 4.3 [Wa91] Suppose p1 , pa are two irreducible unitary representa-
tions of G on C¢. Suppose there exists a non zero matriz A € My(C) such
that for all s € S

lpr(8)A = Aps(s)]| < R (S)IIAl -

Then p1 =~ ps.
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Proof: The tensor product representation p; ® pj is realized on a matrix
X e Md(C) by

P @ p3(9)(X) = p1(9)Xp2(9)"
Suppose p; # p2 and let y; denote the character of p;. Then the multiplicity
of the trivial representation in p; ® p5 is (x1x5,1) = (x1, x2) = 0. It follows
that

RSN < g7 32 @ i) 4) = Al <

seS

5 2 1 A5(6)(A) = All = 7 S (A = Apa()]

seS seS

It follows that ||p1(s)A — Apa(s)|| > Ra(S)||A|| for some s € S, a contradic-
tion.

O

Let U(n) C GL(C") denote the unitary group. A simple volume argument
shows the following

Lemma 4.4 There exists a constant c3 such that U(n) can be covered by at
most ()2 balls of radius $/n in M,(C). O

Let H be a subgroup of G of index m and let n : H — GL(W) be an
n-dimensional unitary representation of H. Let G = UjL,g;H be a coset
decomposition and for g € G and 1 < j < mlet 7(g, g;) be the unique g such
that gg; € gpH and let u(g, g;) = g; *gg; . Let V denote the m—dimensional
vector space with basis g1, ..., gq. The induced representation

p=ind5n: G — GL(V @ W)

is given by
p(9)(g; ® w) = (g, 9;) @ n(ulg, g;))(w) .

In particular, if v is another n—dimensional representation of H then

lind%n(g) — indfe(g)|l = (Z In(u(g. g5)) — W (ulg, ) .
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Proof of Theorem 1.4: Let py,..., p; denote the complex irreducible rep-
resentations of G of dimension at most d. We show that

t < (02(01€)|S‘_1)m( _ G )2n2m|3‘
{(m7§n<d} ka(S)
< (5(5) 20d|S| ©

For each 1 < i <t there exists a subgroup H; < G of index m; and a unitary
representation n; : H; — GL(C"™) such that p; = indgi n; , with m;n; < d and
n; < ¢ (the later using the assumption that G is an M;-group). Suppose (9)
does not hold. By Proposition 4.1 and Theorem 4.2 there exists a subgroup
H < G of index m, an integer n and subset I C [t] of cardinality

C3 2n2m|S|
I > (——
| | (Fég(S))

such that H; = H and n; = n for all i € I. For i € I let M; be the |S| x m
array of n X n unitary matrices given by

M,’(S,j) = ni(u(sv g]))

for s € S and 1 < j < m (we are using the notation introduced above). By
Lemma 4.4 and the pigeon hole principle there exist i # ¢’ € I such that

1Mi(s, ) = M (s, )l < Fa(S)v/n

forall s € S and 1 < j < m. It follows that for all s € .S

lpi(s) = pir ()l = lindGmi(s) — imdgmi(s)]| =
(Z 1Mi(s, 7) = M (s, 5)|)'? < Ra(S) vVam = Ea(S)[ |

. Applying Lemma 4.3 with A = [,,,,, we obtain that p; ~ py, a contradiction.
Remarks:

1. The bound is nearly sharp: Let G = C, x F3[C,] where p is an odd
prime and C), is the cyclic group of order p. G is a monomial group
and it can be shown that G has a generating set S of size O(logp) and
Ra(S) > 1/2. Hence the bound (2) gives r,(G) = exp(O(plogp)) while
the exact value of r,(G) is 2p + %.

18



2. The monomial case of Theorem 1.4 which is needed for Theorem 1.7
admits a somewhat simpler proof. Proposition 4.1 and Theorem 4.2
can be respectively replaced by Taketa’s Theorem on the solvability
of monomial groups (see [Is76]) and by Mann’s result [Ma96] on the
exponential subgroup growth in solvable groups.

Proof of Theorem 1.5 : Note that 74(G; F,) < r4(G;F,) = r4(G) for all
d. Hence by Theorem 1.4

m(G;F,) < m(G;C) = O({]S|log )

1
ka(S)

and the result follows from Theorem 1.2 .

5 Expanders from Group Algebras

Proposition 1.6 is a direct consequence of the following result of Lubotzky
and Weiss

Proposition 5.1 [LW93] Let S be a generating set of G with kg(S) > %
Then for any subgroup H < G

(H: HV) < (47)ISHGH) (10)
O

Proof of Proposition 1.6 : Let f(k) = (G : G®). Applying (10) with
H = G™ we obtain

Flk+1) = F(B) - (G : GE) < 7(R) - (4m) 910
Since f(n) = |G|, this implies that |S| = Q(log™ |G]).
0J

We now prove Theorem 1.7, which shows that Proposition 1.6 is nearly
sharp. We first recall some properties of semi-direct products and their repre-
sentations (see e.g. [Is76]) . Let H act on the left on an Abelian group N and
let G = H x N be the corresponding semi-direct product. The induced action
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of H on the character group N is given by h(x)(n) = y(h='(n)). Let K < H
be the stabilizer of some y € ]Ff , and let ¢ : K — GL(W) be an irreducible
representation of K. Define ¢ : K x N — GL(W) by ¢(kn) = x(n)o(k).
Then ind%., y¢ € Irr(G) and all p € Irr(G) arise this way.

Claim 5.2 If (|H|,|N|) = 1 and all subgroups of H are monomial then all
subgroups of G = H x N are monomial.

Proof: First we prove that any subgroup GG; < G is conjugate to a subgroup
of the form H; x Ny , where H; < H and N; < N is invariant under H;.
Indeed let ¢ denote the projection from G; to H and let Ny = kerp < N.
Clearly (|NVa|,|G1/N2|) = 1 hence by the Schur-Zassenhaus Theorem (see
[Asc00]) there exists an M < G; such that M N Ny = {1} and M N, = G, .
By Taketa’s Theorem H and therefore G are solvable. Since M < G and
(|]M],|N|) = 1it follows by P. Hall’s Theorem (see [Asc00]) that gMg~' < H
for some g € G. Let Hy = gMg~' |, N = gNog~! , then ¢G1g~' = H; x N .

It therefore suffices to show that G itself is monomial. Let p € Irr(G)
then p is of the form indf([>< N¢~> described above. By the monomiality of
K < H there exists an L < K and a 1—dimensional ¢) € Irr(L) such that
¢ = indf(@/)). Let ¢ € Trr(L x N) be given by ¥(In) = x(n)y(l) then
¢ = indF XY hence p = ind¥ \1 .

O

Next we describe a special case of the Zig-zag construction of Reingold,
Vadhan and Wigderson [RVWO00] used in [ALWO1]. Let G = H x N be a
semi-direct product. Suppose S is a symmetric generating multiset (which
for simplicity we assume contains the identity as well) of H with Kazhdan
constant Ry (S) , and A C N is a symmetric set such that

B = OI"bltH(A) = UheHh_lAh
generates N with Kazhdan constant #y(B) . Let
T =SAS ={s1asy : 51,89 € S5, a€A}.

The following theorem, which states that G is expanding if H and N are,
is stated here in terms of the Kazhdan constants, while in the references it
is stated in terms of the 2nd largest (in absolute value) eigenvalues of the
random walk matrix, but the two are identical as explained in section 1.2.
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Theorem 5.3 ([RVW00, ALW01]) T generates G and
Fa(T) = f(ku(S), in(B))
where [ is a function which satisfies f(\, ) > 0 whenever A,y > 0.

Proof of Theorem 1.7 : Arguing by induction we show that if S,,_; is a
symmetric generating set of G,y and &g, ,(S,-1) > 1/2 then G,, contains
a symmetric generating set S, with &g, (S,) > 1/2 and cardinality [S,| <
O(]Sp-1]¢) for some constant ¢ to be specified later.

Let H = G,y and N = F, [H]. Repeated applications of Claim 5.2
imply that H is monomial, hence by Theorem 1.5 there exists a symmet-
ric A C N such that |A| = O(logp, + |S,_1|) and B = OrbityA satis-
fies Aiy(B) > 3 . Theorem 5.3 then implies that G, = H x N contains
a generating set T of cardinality |T'| < |A||S,_1*> = O(|S,_1]%) such that
Ron(T) > 1(1/2,1/3) =c

Let T denote (the multiset of) all words of length ¢ in the elements of
T. It is easy to check that

Ra, (T >1—(1—Rg,(T))°.

Let ¢ = [2], and set S, = T*°. Tt follows that R¢,(S,) > 3 and [S,| <
O(]Sn-1]¢) . Starting the process with Sy = Gy = Fy we obtain |S,| =
exp(exp(O(n))) . Since |G, is bigger then the n—th iterated exponential it
follows that |S,| < log™ 8" ™ |@,,| for large enough n.

O

6 Explicit Construction of Expanding Orbits

Proof of Theorem 1.8: The members of G are all functions ax + b with
a,b € F,, a # 0, acting on the coordinates x € F,. Let xr be the character
associated with a set 7' € F,,. Similarly, identify each vector in S with the
set of 1’s in it. We want to prove that for every T' # () we have

D (=T < 992G
Aes
Clearly, it suffices if either one of the following two hold:

() D2 (=) < 981G

AeGu
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(i) Y (=)A< 98- |G
AeGu
Since v is a singleton vector, condition (i) is satisfied for every T' that
is not too small or large, namely &5 < IT| < %. But note that since the
support of u is even, condition (i7) is the same for 7" and 7. Thus proving
that condition (éi) holds for all small sets |T'| < p/100 will complete the
proof.

Let us rewrite condition (i) as

(i) Y (=1)MeTHl < 986

a,b

Let us give some intuition first. The key to the proof will be that the
functions in G are good hash functions, and thus well disperse the elements
of any small set T'. The dispersion means that most elements of the set a1’
for a random a are “isolated”. We say that an element y € aT is ¢ —isolated
if there are no other elements from a7 in the intervals of length ¢/2 centered
at y and y + (p — 1)/2. Note that if y is isolated, the shifts y + b near the
edges of the interval I will cause a cancellation of ¢ in the sum above (the
change in parity of the intersection with I in these values of b depends solely
on whether y is in I or not, which happens exactly half the time. Choosing
c=Q(p/|T|), and making sure that the above happens for most elements of
a’l’, for most choices of a will complete the proof.

We will omit floor and ceiling notation, since rounding does not affect the
calculations in any significant way.

Let ¢t = |T'| and let ¢ = p/100¢. Denote by I, the union of two intervals
[1,¢/2]U[(p—1)/2+1, (p—1+¢)/2]. For 0 < j < (p—1/c—1let I; = Iy+jc/2.
Note that the k = (p—1)/c sets I, are form a partition F,, (except 0) into equal
size parts. Assume for simplicity that 0 ¢ 7. Thus the random mapping
x — I(ax) which maps x € F} to j € [k] if ax € [} is a nearly 2-universal
mapping (see [CW79]), namely we have for a random 0 # a € F, both
Pro[I(az) = j] = 1/k for every z, j and for 2’ # x Pr,[l(az) = I(az')] < 3.

For a fixed a, let BAD,, contain all x € T which is not alone in its interval,
namely for some other ' we have I(ax) = I(az’). Similar to [FKS84] we can
upper bound the expectation E,[|BAD,| by twice the number of colliding
pairs x, 2/, which is at most % < t/50.

By Markov’s inequality, the fraction of a’s for which |BAD,| > t/10 is at
most 3/20. An identical argument shows that if we define new (shifted by
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c/4) intervals, I = I; + c/4, at most 3/20 of the a’s will have the analogous
|BAD!| > t/10. But note that an element = which is neither in BAD, nor
in BAD), satisfied that ax is c-isolated. So we have just proved that for each
of .7 of all a’s, at least .8 of all x satisfy that ax are c-isolated. This yield a
bound of .1 on the expression (ii), which concludes the proof.
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