Dense minors in graphs of large girth

Reinhard Diestel \& Christof Rempel

Abstract

We show that a graph of girth greater than $6 \log k+3$ and minimum degree at least 3 has a minor of minimum degree greater than k. This is best possible up to a factor of at most $9 / 4$. As a corollary, every graph of girth at least $6 \log r+3 \log \log r+c$ and minimum degree at least 3 has a K_{r} minor.

1. Introduction

Thomassen [9] proved that, in graphs of minimum degree at least 3 , sufficiently high girth forces a minor of any given minimum degree:

Theorem. (Thomassen 1983)
For any integer k, every graph G of girth $g(G) \geqslant 4 k-3$ and $\delta(G) \geqslant 3$ has a minor H with $\delta(H) \geqslant k$.

Our aim in this note is to reduce the upper bound for the required girth to the correct order of magnitude:

Theorem 1. For any integer k, every graph G of girth $g(G)>6 \log k+3$ and $\delta(G) \geqslant 3$ has a minor H with $\delta(H)>k$.

The best lower bound implied by known examples is $\frac{8}{3} \log k-c$, but we note that existing conjectures about cubic graphs of large girth would raise this to about $4 \log k$.

Since an average degree of at least $c r \sqrt{\log r}$ forces a K_{r} minor [5, 10], Theorem 1 has the following consequence:

Corollary 2. There exists a constant $c \in \mathbb{R}$ such that every graph G of girth $g(G) \geqslant 6 \log r+3 \log \log r+c$ and $\delta(G) \geqslant 3$ has a K_{r} minor.

Asymptotically, Thomason [11] showed that a K_{r} minor is forced by an average degree of $(d+o(1)) r \sqrt{\log r}$, where $d=0.53131 \ldots$ is an explicit constant that is best possible. This means that, for large enough r, Corollary 2 holds with $c=-2.4742$.

We adopt the notation of [4]. All our logarithms are binary, all graphs considered finite, and $0 \in \mathbb{N}$.

2. A lower bound

Minimum-order cubic graphs of girth at least some given integer g are called g-cages and have been studied in some detail (see [1] for an overview). Their exact order is known for $g \leqslant 12$. The best more general upper bound for the order of g-cages is due to Biggs \& Hoare [2] and Weiss [12]:

Lemma 2.1. There is a constant $c^{*}>0$ such that for infinitely many integers g there exists a cubic graph of girth at least g and order at most $c^{*} 2^{3 g / 4}$.

Now suppose that a graph G as in Lemma 2.1 has a minor of minimum degree k (say). Then G has at least $k+1$ branch sets, each of which sends out at least k edges and hence contains at least $k-2$ vertices (since G is cubic). Therefore

$$
(k+1)(k-2) \leqslant|G| \leqslant c^{*} 2^{3 g / 4},
$$

giving $g \geqslant \frac{8}{3} \log k-c$ for a suitable constant c. Choosing $k=k(g) \in \mathbb{N}$ maximal with this last inequality, we can thus deduce from Lemma 2.1 the following counterpart to Theorem 1:

Proposition 2.2. There is a constant $c \in \mathbb{R}$ such that for infinitely many $k \in \mathbb{N}$ there exist cubic graphs of girth at least $\frac{8}{3} \log k-c$ that have no minor H with $\delta(H)>k$.

Any improvement on the bound in Lemma 2.1 will result in a corresponding improvement to Proposition 2.2. It has been conjectured (see [3] or [8]) that g-cages exist on as few as about $2^{g / 2}$ vertices. This would increase our lower girth bound to $4 \log k-c$.

3. The upper bound

In this section we prove Theorem 1. Following Mader [7], we start from the observation that in a graph G of girth $g(G)>2 d+1$ and $\delta(G) \geqslant 3$ the d ball around a vertex x is a tree T_{x} sending at least $\left|T_{x}\right|-2$ edges to the rest of G. Our main effort will go into proving that, depending on our lower bound for $g(G)$, not too many of these edges can go to the same tree T_{y}. Then partitioning $V(G)$ into such trees and contracting these will give us a minor of large minimum degree.

Given a tree T with root r and vertices $t, t^{\prime} \in T$, we say that t^{\prime} lies above t in T (and t below t^{\prime}) if $t \leqslant t^{\prime}$ in the tree-order on $V(T)$ associated with r, ie. if t separates t^{\prime} from r in T. Any neighbour of t above it is a successor of t in T, its unique neighbour below is its predecessor. For $i \in \mathbb{N}$ we write L_{T}^{i} for the set of leaves (maximal elements) of T at distance i from r.

Given a graph G, a vertex $x \in G$, and $d \in \mathbb{N}$, let us write $V_{G, x}^{d}$ for the set of vertices of G at distance exactly d from x. We need the following easy lemma:

Lemma 3.1. Let T be a tree with root r in which no vertex has exactly one successor, and let $d \in \mathbb{N}$. Then $\sum_{i \geqslant d} 2^{d-i}\left|L_{T}^{i}\right| \geqslant\left|V_{T, r}^{d}\right|$.

We are now ready to prove our main result, which we restate:
Theorem 1. For any integer k, every graph G of girth $g(G)>6 \log k+3$ and $\delta(G) \geqslant 3$ has a minor H with $\delta(H)>k$.
Proof. Put $\lfloor\log k\rfloor=: d$. Let X be a maximal set of vertices such that $d(x, y)>2 d$ for all distinct $x, y \in X$. Beginning with $T_{x}^{0}:=\{x\}$, let us define trees T_{x}^{i} rooted at x, for all $x \in X$ and $i=0, \ldots, 2 d$. Assume that for some i the T_{x}^{i} have been defined and partition the set of vertices of G at distance at most i from X. We then add each vertex v at distance $i+1$ from X to one T_{x}^{i} to which it is adjacent, thereby obtaining a similar set of disjoint trees T_{x}^{i+1}. By the choice of X, the trees $T_{x}:=T_{x}^{2 d}$ partition the entire vertex set of G, and

$$
\begin{equation*}
T_{x} \text { contains all the vertices of } G \text { at distance at most } d \text { from } x \text {. } \tag{1}
\end{equation*}
$$

As $g(G)>4 d+1$, the T_{x} are induced subgraphs in G. Finally, we have

$$
\begin{equation*}
d(w, y) \leqslant d(v, x)+1 \text { whenever } v w \in E(G) \text { with } v \in T_{x} \text { and } w \in T_{y} \tag{2}
\end{equation*}
$$

as otherwise w would have been added to T_{x} after v rather than to T_{y}.
Let us use Lemma 3.1 to estimate the number of edges leaving a tree T_{x}. For all $i \in \mathbb{N}$ let

$$
E_{x}^{i}:=\left\{v w \in E(G) \mid v \in T_{x}, w \in G-T_{x}, d(v, x)=i\right\} .
$$

Let T_{x}^{\prime} denote the subgraph of G induced by T_{x} and all its neighbours in G. As $g(G)>4 d+3, T_{x}^{\prime}$ is again a tree. Every vertex $v \in T_{x}$ has degree $d_{G}(v) \geqslant 3$ in T_{x}^{\prime}, while all the vertices of $T_{x}^{\prime}-T_{x}$ are leaves in T_{x}^{\prime}. As $\left|E_{x}^{i}\right|=\left|L_{T_{x}^{\prime}}^{i+1}\right|$ for all i, and $\left|L_{T_{x}^{\prime}}^{d}\right|=0$ by (1), Lemma 3.1 yields

$$
\sum_{i \geqslant d} 2^{d-i-1}\left|E_{x}^{i}\right|=\sum_{i \geqslant d} 2^{d-i-1}\left|L_{T_{x}^{\prime}}^{i+1}\right|=\sum_{i \geqslant d} 2^{d-i}\left|L_{T_{x}^{\prime}}^{i}\right| \geqslant\left|V_{T_{x}^{\prime}, x}^{d}\right|=\left|V_{G, x}^{d}\right| .
$$

Multiplying by 2^{d+1} and setting $V_{x}^{d}:=V_{G, x}^{d}$ we obtain

$$
\sum_{i \geqslant d} 2^{2 d-i}\left|E_{x}^{i}\right| \geqslant 2^{d+1}\left|V_{x}^{d}\right| .
$$

Every edge in E_{x}^{i} joins T_{x} to a tree T_{y} distinct from T_{x}. This defines a partition of E_{x}^{i} into sets $A_{x, y}^{i}(y \in X \backslash\{x\})$. Then the above inequality can be rewritten as

$$
\begin{equation*}
2^{d+1}\left|V_{x}^{d}\right| \leqslant \sum_{y} \sum_{i \geqslant d} 2^{2 d-i}\left|A_{x, y}^{i}\right|, \tag{3}
\end{equation*}
$$

where the first sum is taken over all $y \in X \backslash\{x\}$ such that G contains a $T_{x}-T_{y}$ edge. We shall prove that, for each of these y,

$$
\begin{equation*}
\sum_{i \geqslant d} 2^{2 d-i}\left|A_{x, y}^{i}\right| \leqslant\left|V_{x}^{d}\right|, \tag{4}
\end{equation*}
$$

so that (3) can be satisfied only if there are at least 2^{d+1} distinct y, ie. if T_{x} sends edges to at least 2^{d+1} other trees T_{y}. Contracting all the trees T_{x} with $x \in X$ we then obtain a minor of G of minimum degree at least $2^{d+1}>k$, as desired.

For the proof of (4) let now x and y be fixed distinct vertices in X. Consider a $T_{x}-T_{y}$ edge $e=v w$ of G, with $v \in T_{x}$ and $w \in T_{y}$ say. Then $i:=d(v, x) \geqslant d$, by (1) and $w \notin T_{x}$. Let z_{e} be the vertex below v in T_{x} at distance d from v, ie. in V_{x}^{i-d}, and let B_{e} be the set of vertices in V_{x}^{d} that lie above z_{e} in T_{x}. These vertices have distance $2 d-i$ from z_{e}, so

$$
\begin{equation*}
\left|B_{e}\right| \geqslant 2^{2 d-i} . \tag{5}
\end{equation*}
$$

Let us show that

$$
\begin{equation*}
B_{e} \cap B_{e^{\prime}}=\emptyset \text { for all distinct } T_{x}-T_{y} \text { edges } e, e^{\prime} . \tag{6}
\end{equation*}
$$

Suppose not, ie. suppose that z_{e} and $z_{e^{\prime}}$ are comparable in T_{x}, say $z_{e} \leqslant z_{e^{\prime}}$. Write $e=: v w$ and $e^{\prime}=: v^{\prime} w^{\prime}$ with $v, v^{\prime} \in T_{x}$ and $w, w^{\prime} \in T_{y}$, and put $i:=d(v, x)$. We show that the unique cycle C in $T_{x} \cup T_{y}+e+e^{\prime}$ has length less than $g(G)$ (Fig. 1).

Figure 1. The cycle C between T_{x} and T_{y}.
The portion of C in T_{x} is a subpath of the walk $v \ldots z_{e} \ldots v^{\prime}$ in T_{x}, which has length at most $d+(2 d-(i-d))=4 d-i$. Its portion in T_{y} is a subpath of the walk $w \ldots y \ldots w^{\prime}$ in T_{y}, which has length at most $(i+1)+2 d$ by (2). Thus $|C| \leqslant 6 d+3<g(G)$, as desired. This completes the proof of (6).

Now (5), (6) and the definition of the B_{e} imply (4):

$$
\sum_{i \geqslant d} 2^{2 d-i}\left|A_{x, y}^{i}\right|=\sum_{i \geqslant d} \sum_{e \in A_{x, y}^{i}} 2^{2 d-i} \underset{(5)}{\leq} \sum_{i \geqslant d} \sum_{e \in A_{x, y}^{i}}\left|B_{e}\right| \leqslant\left|V_{x}^{d}\right| .
$$

In order to improve the bound in Theorem 1 further, we have considered the question of whether the set X might be chosen more effectively. For the proof of (1) we need its points to be more than $2 d$ apart. But if they were placed in G so that every other vertex v had distance $d(v, X) \leqslant \alpha d$ from X for some $\alpha<2$ (rather than just $d(v, X) \leqslant 2 d$, which we get simply by choosing X maximal), we would instantly shorten the cycle C in the proof of (6) to at most $(2+2 \alpha) d+3$, improving the girth bound in the theorem to $(2+2 \alpha) \log k+3$. Note that the theoretical optimum of $\alpha=1$ would give us exactly (up to the additive constant) the conjectured lower bound from Section 2.

The problem of whether such a set X exists for given values of d and α has been shown to be NP-hard [8], and so we did not pursue this approach further. However, Kühn and Osthus [6] have recently shown that a random choice of X can indeed reduce the leading factor of 6 in Theorem 1 to the conjectured optimum of 4 .

References

[1] N. Biggs, Constructions for cubic graphs with large girth, Electronic J. Comb 5 (1998), Article A1 (25 pp).
[2] N. Biggs, \& M.J. Hoare, The sextet construction for cubic graphs, Combinatorica 3 (1983), 153-165.
[3] B. Bollobás, Extremal graph theory, Academic Press 1978.
[4] R. Diestel, Graph theory, 2nd edition, Springer-Verlag 2000 and http://www.math.uni-hamburg.de/home/diestel/books/graph.theory/download.html
[5] A.V. Kostochka, Lower bound of the Hadwiger number of graphs by their average degree, Combinatorica 4 (1984), 307-316.
[6] D. Kühn \& D. Osthus, Minors in graphs of large girth, Random Struct. Alg. 22 (2003), 213-225.
[7] W. Mader, Topological subgraphs in graphs of large girth, Combinatorica 18 (1998), 405-412.
[8] C. Rempel, Erzwingung von Teilstrukturen in Graphen durch globale Parameter, PhD Thesis, Hamburg 2001.
[9] C. Thomassen, Girth in graphs, J. Combin. Theory B 35 (1983), 129-141.
[10] A.G. Thomason, An extremal function for contractions of graphs, Math. Proc. Camb. Phil. Soc. 95 (1984), 261-265.
[11] A.G. Thomason, The extremal function for complete minors, J. Combin. Theory B 81 (2001) 318-338.
[12] A. Weiss, Girths of bipartite sextet graphs, Combinatorica 4 (1984), 241-245.

Mathematisches Seminar
10.7.2001

Universität Hamburg
Bundesstraße 55
D - 20146 Hamburg
Germany

