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We show that a graph of girth greater than 6 log k + 3 and minimum
degree at least 3 has a minor of minimum degree greater than k. This
is best possible up to a factor of at most 9/4. As a corollary, every
graph of girth at least 6 log r + 3 log log r + c and minimum degree at
least 3 has a Kr minor.

1. Introduction

Thomassen [ 9 ] proved that, in graphs of minimum degree at least 3, sufficiently
high girth forces a minor of any given minimum degree:

Theorem. (Thomassen 1983)
For any integer k, every graph G of girth g(G) � 4k − 3 and δ(G) � 3 has a

minor H with δ(H) � k.

Our aim in this note is to reduce the upper bound for the required girth
to the correct order of magnitude:

Theorem 1. For any integer k, every graph G of girth g(G) > 6 log k +3 and

δ(G) � 3 has a minor H with δ(H) > k.

The best lower bound implied by known examples is 8
3 log k − c, but we

note that existing conjectures about cubic graphs of large girth would raise this
to about 4 log k.

Since an average degree of at least cr
√

log r forces a Kr minor [ 5, 10 ],
Theorem 1 has the following consequence:

Corollary 2. There exists a constant c ∈ R such that every graph G of girth

g(G) � 6 log r + 3 loglog r + c and δ(G) � 3 has a Kr minor. �

Asymptotically, Thomason [ 11 ] showed that a Kr minor is forced by an average
degree of (d + o(1)) r

√
log r, where d = 0.53131 . . . is an explicit constant that

is best possible. This means that, for large enough r, Corollary 2 holds with
c = −2.4742.

We adopt the notation of [ 4 ]. All our logarithms are binary, all graphs
considered finite, and 0 ∈ N.

1



2. A lower bound

Minimum-order cubic graphs of girth at least some given integer g are called
g-cages and have been studied in some detail (see [ 1 ] for an overview). Their
exact order is known for g � 12. The best more general upper bound for the
order of g-cages is due to Biggs & Hoare [ 2 ] and Weiss [ 12 ]:

Lemma 2.1. There is a constant c∗ > 0 such that for infinitely many integers

g there exists a cubic graph of girth at least g and order at most c∗23g/4.

Now suppose that a graph G as in Lemma 2.1 has a minor of minimum
degree k (say). Then G has at least k +1 branch sets, each of which sends out
at least k edges and hence contains at least k − 2 vertices (since G is cubic).
Therefore

(k +1)(k− 2) � |G| � c∗23g/4,

giving g � 8
3 log k− c for a suitable constant c. Choosing k = k(g) ∈ N maxi-

mal with this last inequality, we can thus deduce from Lemma 2.1 the following
counterpart to Theorem 1:

Proposition 2.2. There is a constant c ∈ R such that for infinitely many k ∈ N

there exist cubic graphs of girth at least 8
3 log k− c that have no minor H with

δ(H) > k. �

Any improvement on the bound in Lemma 2.1 will result in a correspond-
ing improvement to Proposition 2.2. It has been conjectured (see [ 3 ] or [ 8 ])
that g-cages exist on as few as about 2g/2 vertices. This would increase our
lower girth bound to 4 log k− c.

3. The upper bound

In this section we prove Theorem 1. Following Mader [ 7 ], we start from the
observation that in a graph G of girth g(G) > 2d + 1 and δ(G) � 3 the d-
ball around a vertex x is a tree Tx sending at least |Tx| − 2 edges to the rest
of G. Our main effort will go into proving that, depending on our lower bound
for g(G), not too many of these edges can go to the same tree Ty. Then
partitioning V (G) into such trees and contracting these will give us a minor of
large minimum degree.

Given a tree T with root r and vertices t, t′ ∈ T , we say that t′ lies above
t in T (and t below t′) if t � t′ in the tree-order on V (T ) associated with r,
ie. if t separates t′ from r in T . Any neighbour of t above it is a successor of t

in T , its unique neighbour below is its predecessor . For i ∈ N we write Li
T for

the set of leaves (maximal elements) of T at distance i from r.
Given a graph G, a vertex x ∈ G, and d ∈ N, let us write V d

G,x for the set of
vertices of G at distance exactly d from x. We need the following easy lemma:
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Lemma 3.1. Let T be a tree with root r in which no vertex has exactly one

successor, and let d ∈ N. Then
∑

i�d 2d−i|Li
T | � |V d

T,r|. �

We are now ready to prove our main result, which we restate:

Theorem 1. For any integer k, every graph G of girth g(G) > 6 log k +3 and

δ(G) � 3 has a minor H with δ(H) > k.

Proof. Put �log k� =: d. Let X be a maximal set of vertices such that
d(x, y) > 2d for all distinct x, y ∈ X. Beginning with T 0

x := {x }, let us define
trees T i

x rooted at x, for all x ∈ X and i = 0, . . . , 2d. Assume that for some i

the T i
x have been defined and partition the set of vertices of G at distance at

most i from X. We then add each vertex v at distance i+1 from X to one T i
x

to which it is adjacent, thereby obtaining a similar set of disjoint trees T i+1
x .

By the choice of X, the trees Tx := T 2d
x partition the entire vertex set of G, and

Tx contains all the vertices of G at distance at most d from x. (1)

As g(G) > 4d + 1, the Tx are induced subgraphs in G. Finally, we have

d(w, y) � d(v, x)+1 whenever vw ∈ E(G) with v ∈ Tx and w ∈ Ty , (2)

as otherwise w would have been added to Tx after v rather than to Ty.
Let us use Lemma 3.1 to estimate the number of edges leaving a tree Tx.

For all i ∈ N let

Ei
x := { vw ∈ E(G) | v ∈ Tx, w ∈ G−Tx, d(v, x) = i } .

Let T ′
x denote the subgraph of G induced by Tx and all its neighbours in G.

As g(G) > 4d+3, T ′
x is again a tree. Every vertex v ∈ Tx has degree dG(v) � 3

in T ′
x, while all the vertices of T ′

x − Tx are leaves in T ′
x. As |Ei

x| = |Li+1
T ′

x
| for

all i, and |Ld
T ′

x
| = 0 by (1), Lemma 3.1 yields

∑

i�d

2d−i−1|Ei
x| =

∑

i�d

2d−i−1|Li+1
T ′

x
| =

∑

i�d

2d−i|Li
T ′

x
| � |V d

T ′
x,x| = |V d

G,x|.

Multiplying by 2d+1 and setting V d
x := V d

G,x we obtain

∑

i�d

22d−i|Ei
x| � 2d+1|V d

x |.

Every edge in Ei
x joins Tx to a tree Ty distinct from Tx. This defines a partition

of Ei
x into sets Ai

x,y (y ∈ X �{x }). Then the above inequality can be rewritten
as

2d+1|V d
x | �

∑

y

∑

i�d

22d−i|Ai
x,y| , (3)
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where the first sum is taken over all y ∈ X �{x } such that G contains a Tx–Ty

edge. We shall prove that, for each of these y,

∑

i�d

22d−i|Ai
x,y| � |V d

x | , (4)

so that (3) can be satisfied only if there are at least 2d+1 distinct y, ie. if Tx

sends edges to at least 2d+1 other trees Ty. Contracting all the trees Tx with
x ∈ X we then obtain a minor of G of minimum degree at least 2d+1 > k, as
desired.

For the proof of (4) let now x and y be fixed distinct vertices in X. Consider
a Tx–Ty edge e = vw of G, with v ∈ Tx and w ∈ Ty say. Then i := d(v, x) � d,
by (1) and w /∈ Tx. Let ze be the vertex below v in Tx at distance d from v, ie.
in V i−d

x , and let Be be the set of vertices in V d
x that lie above ze in Tx. These

vertices have distance 2d− i from ze, so

|Be| � 22d−i. (5)
Let us show that

Be ∩Be′ = ∅ for all distinct Tx–Ty edges e, e′. (6)

Suppose not, ie. suppose that ze and ze′ are comparable in Tx, say ze � ze′ .
Write e =: vw and e′ =: v′w′ with v, v′ ∈ Tx and w, w′ ∈ Ty, and put i := d(v, x).
We show that the unique cycle C in Tx ∪Ty + e + e′ has length less than g(G)
(Fig. 1).
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FIGURE 1. The cycle C between Tx and Ty.

The portion of C in Tx is a subpath of the walk v . . . ze . . . v′ in Tx, which
has length at most d+(2d− (i−d)) = 4d− i. Its portion in Ty is a subpath of
the walk w . . . y . . . w′ in Ty, which has length at most (i+1)+2d by (2). Thus
|C| � 6d + 3 < g(G), as desired. This completes the proof of (6).

Now (5), (6) and the definition of the Be imply (4):

∑

i�d

22d−i|Ai
x,y| =

∑

i�d

∑

e∈Ai
x,y

22d−i �
(5)

∑

i�d

∑

e∈Ai
x,y

|Be| �
(6)

|V d
x | .

�
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In order to improve the bound in Theorem 1 further, we have considered
the question of whether the set X might be chosen more effectively. For the
proof of (1) we need its points to be more than 2d apart. But if they were
placed in G so that every other vertex v had distance d(v, X) � αd from X for
some α < 2 (rather than just d(v, X) � 2d, which we get simply by choosing X

maximal), we would instantly shorten the cycle C in the proof of (6) to at most
(2 + 2α)d + 3, improving the girth bound in the theorem to (2 + 2α) log k + 3.
Note that the theoretical optimum of α = 1 would give us exactly (up to the
additive constant) the conjectured lower bound from Section 2.

The problem of whether such a set X exists for given values of d and α has
been shown to be NP-hard [ 8 ], and so we did not pursue this approach further.
However, Kühn and Osthus [ 6 ] have recently shown that a random choice of
X can indeed reduce the leading factor of 6 in Theorem 1 to the conjectured
optimum of 4.

References

[1] N. Biggs, Constructions for cubic graphs with large girth, Electronic J. Comb 5 (1998),
Article A1 (25 pp).

[2] N. Biggs, & M.J.Hoare, The sextet construction for cubic graphs, Combinatorica 3
(1983), 153–165.

[3] B. Bollobás, Extremal graph theory, Academic Press 1978.

[4] R. Diestel, Graph theory, 2nd edition, Springer-Verlag 2000 and
http://www.math.uni-hamburg.de/home/diestel/books/graph.theory/download.html

[5] A.V.Kostochka, Lower bound of the Hadwiger number of graphs by their average de-
gree, Combinatorica 4 (1984), 307–316.
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