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Parameterized Intractability

of Motif Search Problems∗

Michael R. Fellows† Jens Gramm‡ Rolf Niedermeier§

Abstract

We show that Closest Substring, one of the most important problems in the field of biological
sequence analysis, is W[1]-hard when parameterized by the number k of input strings (and
remains so, even over a binary alphabet). This problem is therefore unlikely to be solvable in
time O(f(k) · nc) for any function f of k and constant c independent of k. The problem can
therefore be expected to be intractable, in any practical sense, for k ≥ 3. Our result supports
the intuition that Closest Substring is computationally much harder than the special case of
Closest String, although both problems are NP-complete. We also prove W[1]-hardness for
other parameterizations in the case of unbounded alphabet size. Our W[1]-hardness result for
Closest Substring generalizes to Consensus Patterns, a problem of similar significance
in computational biology.

1 Introduction

Motif search problems are of central importance for sequence analysis in computational molecular
biology. These problems have applications in fields such as genetic drug target identification or
signal finding (see [5, 18, 20, 21, 26] and the references cited therein for more details and further
applications). Two core problems in this context are Closest Substring [21] and Consensus

Patterns [20]:
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Input: k strings s1, s2, . . . , sk over alphabet Σ and non-negative integers d and L.

Question in case of Closest Substring: Is there a string s of length L, and
for i = 1, . . . , k, a substring s′i of length L such that, for all i = 1, . . . , k, dH(s, s′i) ≤ d?
(Here dH(s, s′i) denotes the Hamming distance between s and s′i.)

Question in case of Consensus Patterns: Is there a string s of length L, and
for i = 1, . . . , k, a substring s′i of length L such that,

∑k
i=1 dH(s, s′i) ≤ d?

What is currently known about these two problems is summarized as follows.

The Closest Substring Problem.

1. Closest Substring is NP-complete, and remains so for the special case of the Closest

String problem, where the string s that we search for is of same length as the input strings.
Closest String is NP-complete even for the further restriction to a binary alphabet [13, 18].

2. On the positive side, both Closest Substring and Closest String admit polynomial
time approximation schemes (PTAS’s), where the objective function is the maximum length
of the string s [19, 20, 21, 22].

3. In the PTAS’s for both Closest String and Closest Substring, the exponent of the
polynomial bounding the running time depends on the goodness of the approximation. These
are not efficient PTAS’s (EPTAS’s) in the sense of [6] and therefore are probably not useful
for bioinformatics practice. Whether EPTAS’s are possible for these approximation problems,
or whether they are W [1]-hard (for the parameter k = 1/ǫ, where the approximation is to
within a factor of (1 + ǫ) of optimal), currently remains open.

4. Closest String is fixed-parameter tractable with respect to the parameter d, and can be
solved in time O(kL+ kd · dd) [16].

5. Closest String is also fixed-parameter tractable with respect to the parameter k, but here
the exponential parametric function is much faster growing, and the algorithm is probably
of less practical use (see, however, [15] for some encouraging experimental results also in this
case).

The Consensus Patterns Problem.

1. Consensus Patterns is NP-complete and remains so for the restriction to a binary alpha-
bet [19].

2. Consensus Patterns admits a PTAS [19, 20], where the objective function is the maximum
length of the string s.

3. The known PTAS’s for Consensus Patterns are not EPTAS’s, and whether EPTAS’s are
possible, or whether PTAS approximation for this objective function is W [1]-hard, is an
important issue that also currently remains open.
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parameter constant size alphabet unbounded alphabet

d ? W[1]-hard(∗)

k W[1]-hard(∗) W[1]-hard(∗)

d, k ? W[1]-hard(∗)

L FPT W[1]-hard(∗)

d, k, L FPT W[1]-hard(∗)

Table 1: Overview on the parameterized complexity of Closest Substring and Consensus

Patterns with respect to different parameterizations, where k is the number of given strings, L
is the length of the substrings we search for, and d is the Hamming distance allowed. Results from
this paper are marked by (∗). The FPT results for constant size alphabet can be achieved by
enumerating all length L strings over Σ. Open questions are indicated by a question mark.

The key distinguishing point between Closest Substring and Consensus Patterns lies in
the definition of the distance measure d between the “solution” string s and the substrings of
the k input strings. Whereas Closest Substring uses a maximum distance metric, Consensus

Patterns uses the sum of distances metric. This is of particular importance when discussing
values of parameter d occurring in practice. Whereas it makes good sense for many applications to
assume that d is a fairly small number in case of Closest Substring, this is much less reasonable
in the case of Consensus Patterns. This will be of some importance when discussing our result
for Consensus Patterns.

Many algorithms applied in practice try to solve motif search problems exactly, often using enumera-
tive approaches in combination with heuristics [2, 5, 26]. In this paper, we explore the parameterized
complexity of the basic motif problems in the framework of [10].

Our Main Results.

Unfortunately, our main results are negative ones: we show that Closest Substring and Con-

sensus Patterns are W[1]-hard with respect to the parameter k of the number of input strings,
even in case of a binary alphabet.

For unbounded alphabet size, we show that the problems are W[1]-hard for the combined param-
eters L, d, and k. In the case of constant alphabet size, the complexity of the problems remain
open when parameterized by d and k together, or by d alone. Note that in the case of Consensus

Patterns our result gains particular importance, because here the distance parameter d usually is
not small, whereas assuming that k is small is reasonable. Until now, it was known only that if one
additionally considers the substring length L as a parameter, then running times exponential in L
can be achieved [2, 11, 28]. An overview on known parameterized complexity results for Closest

Substring and Consensus Patterns is given in Table 1.

We achieve our results by giving parameterized many-one reductions from the W[1]-complete
Clique problem to the respective problems. It is important here to note that parameterized
reductions are much more fine-grained than conventional polynomial time reductions used in NP-
completeness proofs, since parameterized reductions have to take care of the parameters. Estab-
lishing that Closest Substring and Consensus Patterns are W[1]-hard with respect to the
parameter k requires significantly more technical effort than the already known demonstrations of
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NP-completeness. Finally, our work gives strong theory-based support for the common intuition
that Closest Substring (W[1]-hard) seems to be a much harder problem than Closest String

(in FPT [16]). Notably, this could not be expressed by “classical complexity measures,” since both
problems are NP-complete as well as both do have a PTAS.

Our work is organized as follows. In Section 2, we provide some background on parameterized com-
plexity theory and we give a brief overview on related computational biology results. Afterwards,
in Section 3, we present a parameterized reduction of Clique to Closest Substring in case of
unbounded input alphabet size. Then, in Section 4, this is specialized to the case of binary input
alphabet. Finally, Section 5 gives similar constructions and results for Consensus Patterns and
the paper concludes with a brief summary and open questions in Section 6.

2 Preliminaries and Previous Work

In this section, we start with a brief introduction to parameterized complexity (more details can
be found in the monograph [10] and the recent survey articles [1, 12]).

2.1 A Crash Course in Parameterized Complexity

Given an undirected graph G = (V,E) with vertex set V , edge set E, and a positive integer k,
the NP-complete Vertex Cover problem is to determine whether there is a subset of vertices
C ⊆ V with k or fewer vertices such that each edge in E has at least one of its endpoints in C.
Vertex Cover is fixed-parameter tractable. There now are algorithms solving it in time less than
O(kn + 1.3k) [7, 24]. The corresponding complexity class is called FPT. By way of contrast,
consider the NP-complete Clique problem: Given an undirected graph G = (V,E) and a positive
integer k, Clique asks whether there is a subset of vertices C ⊆ V with at least k vertices such
that C forms a clique by having all possible edges between the vertices in C. Clique appears to
be fixed-parameter intractable: It is not known whether it can be solved in time f(k) ·nO(1), where
f might be an arbitrarily fast growing function only depending on k.

The best known algorithm solving Clique runs in time O(nck/3) [23] , where c is the exponent in
the time bound for multiplying two integer n×n matrices (currently best known, c = 2.38, see [8]).
The decisive point is that k appears in the exponent of n, and there seems to be no way “to shift
the combinatorial explosion only into k,” independent from n.

Downey and Fellows developed a completeness program for showing parameterized intractabil-
ity [10]. However, the completeness theory of parameterized intractability involves significantly
more technical effort (as will also become clear when following the proofs presented in this paper).
We very briefly sketch some integral parts of this theory in the following.

Let L,L′ ⊆ Σ∗ × N be two parameterized languages.1 For example, in the case of Clique, the
first component is the input graph coded over some alphabet Σ and the second component is the

1In general, the second component (representing the parameter) can also be drawn from Σ∗; for most cases, and,
in particular, in this paper, assuming the parameter to be a positive integer is sufficient.

4



positive integer k, that is, the parameter. We say that L reduces to L′ by a standard parameterized

m-reduction if there are functions k 7→ k′ and k 7→ k′′ from N to N and a function (x, k) 7→ x′ from
Σ∗ ×N to Σ∗ such that

1. (x, k) 7→ x′ is computable in time k′′|x|c for some constant c and

2. (x, k) ∈ L iff (x′, k′) ∈ L′.

Notably, most reductions from classical complexity turn out not to be parameterized ones. The
basic reference degree for parameterized intractability, W[1], can be defined as the class of parame-
terized languages that are equivalent to the Short Turing Machine Acceptance problem (also
known as the k-Step Halting problem). Here, we want to determine, for an input consisting of
a nondeterministic Turing machine M (with unbounded nondeterminism and alphabet size), and
a string x, whether M has a computation path accepting x in at most k steps. This can trivially
be solved in time O(nk+1) by exploring all k-step computation paths exhaustively, and we would
be surprised if this can be much improved.

Therefore, this is the parameterized analogue of the Turing Machine Acceptance problem that
is the basic generic NP-complete problem in classical complexity theory, and the conjecture that
FPT 6= W[1] is very much analogous to the conjecture that P 6= NP. Other problems that are
W[1]-complete (there are many) include Clique and Independent Set, where the parameter is
the size of the relevant vertex set [9, 10].

From a practical point of view, W[1]-hardness gives a concrete indication that a parameterized
problem with parameter k problem is unlikely to allow for an algorithm with a running time of the
form f(k) · nO(1).

2.2 Motivation and Previous Results

Many biological problems with respect to DNA, RNA, or protein sequences can be solved based
on consensus word analysis [25, Section 8.6]; Closest Substring and Consensus Patterns are
central problems in this context [14, 18, 20, 21]. Applications include locating binding sites and
finding conserved regions in unaligned sequences for genetic drug target identification, for designing
genetic probes, and for universal PCR primer design. These problems can be regarded as various
generalizations of the common substring problem, allowing errors (see [18, 19, 20, 21] and references
there). This leads to Closest Substring and Consensus Patterns, where errors are modeled
by the (Hamming) distance parameter d.

There is a straightforward factor-2-approximation algorithm for Closest Substring. The first
better-than-2 approximation with factor 2− 2/(2|Σ|+ 1) was given by Li et al. [19]. Finally, there
are PTASs for Consensus Patterns [19, 20] as well as for Closest Substring [21, 22], both of
which, however, have impractical running times.

Concerning exact (parameterized) algorithms, we only briefly mention that, e.g., Sagot [28] studies
motif discovery by solving Closest Substring, Evans and Wareham [11] give FPT algorithms for
the same problem, and Blanchette et al. [2] developed a so-called phylogenetic footprinting method
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for a slightly more general version of Consensus Patterns. All these results, however, make
essential use of the parameter “substring length” L and the running times show exponential behavior
with respect to L. To circumvent the computational limitations for larger values of L, many
heuristics were proposed, e.g., Pevzner and Sze [26] present algorithms called WINNOWER (wrt.
Closest Substring) and SP-STAR (wrt. Consensus Patterns), and Buhler and Tompa [5]
use random projections to find closest substrings. Our analysis makes a first step towards showing
that, for exact solutions, we have to include L in the exponential growth; namely, we show that it
is highly unlikely to find algorithms with a running time exponential only in k.

3 Closest Substring: Unbounded Alphabet

We first describe a reduction from theW[1]-hard Clique problem to Closest Substring which is
a parameterized m-reduction with respect to the aggregate parameter (L, d, k) in case of unbounded
alphabet size.

3.1 Reduction of Clique to Closest Substring

A Clique instance is given by an undirected graph G = (V,E), with a set V = {v1, v2, . . . , vn} of
n vertices, a set E of m edges, and a positive integer k denoting the desired clique size. We describe
how to generate a set S of

(

k
2

)

strings such that G has a clique of size k iff there is a string s of
length L := k+1 such that every si ∈ S has a substring s′i of length L with dH(s, s′i) ≤ d := k− 2.
If a string si ∈ S has a substring s′i of length L with dH(s, s′i) ≤ d, we call s′i a match. We assume
k > 2, because k = 1, 2 are trivial cases.

Alphabet. The alphabet of the produced instance is given by the disjoint union of the following
sets:

• {σi | vi ∈ V }, i.e., an alphabet symbol for every vertex of the input graph; we call them
encoding symbols;

• {ϕj | j = 1, . . . ,
(

k
2

)

}, i.e., a unique symbol for every of the
(

k
2

)

produced strings; we call
them string identification symbols;

• {#} which we call the synchronizing symbol.

This makes a total of n+
(k
2

)

+ 1 alphabet symbols.

Choice strings. We generate a set of
(

k
2

)

choice strings Sc = {c1,2, . . . , c1,k, c2,3, c2,4, . . . , ck−1,k}
and we assume that the strings in Sc are ordered as shown. Every choice string will encode the
whole graph; it consists of m concatenated strings, each of length k + 1, called blocks; by this, we
have one block for every edge of the graph. The blocks will be separated by barriers, which are
length k strings consisting of k identification symbols corresponding to the respective string. A
choice string ci,j, which, according to the given order, is the i′th choice string in Sc, is given by

ci,j := 〈block(i, j, e1)〉 (ϕi′)
k 〈block(i, j, e2)〉 (ϕi′ )

k . . . (ϕi′)
k 〈block(i, j, em)〉,
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v1 v2

v3 v4

(a)

c1 = ϕ1 ϕ1 ϕ1 ϕ1# # # #ϕ1 ϕ1 ϕ1 ϕ1 ϕ1 ϕ1 ϕ1 ϕ1 ϕ1σ1 σ3 σ1 σ4 σ2 σ3 σ3 σ4

c2 = ϕ2 ϕ2 ϕ2 ϕ2# # # #ϕ2 ϕ2 ϕ2 ϕ2 ϕ2 ϕ2 ϕ2 ϕ2 ϕ2σ1 σ3 σ1 σ4 σ2 σ3 σ3 σ4

c3 = ϕ3 ϕ3 ϕ3 ϕ3# # # #ϕ3 ϕ3 ϕ3 ϕ3 ϕ3 ϕ3 ϕ3 ϕ3 ϕ3σ1 σ3 σ1 σ4 σ2 σ3 σ3 σ4

solution s = σ1 σ3 σ4 #

edge (v1, v3) edge (v1, v4) edge (v2, v3) edge (v3, v4)barrier barrier barrier

(b)

Figure 1: Example for the reduction from a Clique instance G with k = 3 (shown in (a)) to a
Closest Substring instance with bounded alphabet (shown in (b)) as explained in Example 1.
In (b), we display the constructed strings c1, c2, and c3 (the contained blocks are highlighted by
bold boxes) and the solution string s that is found, since G has a clique of size k = 3; s is a string
of length k + 1 = 4 such that c1, c2, and c3 have length 4 substrings (indicated by dashed boxes)
that have Hamming distance at most k − 2 = 1 to s.

where e1, e2, . . . , em are the edges of G and 〈block()〉 will be defined below. The solution string s
will have length k + 1, which is exactly the length of one block.

Block in a choice string. Every block is a string of length k + 1 and it encodes an edge of
the input graph. Every choice string contains a block for every edge of the input graph; different
choice strings, however, encode the edges in different positions of their blocks: For a block in choice
string ci,j, positions i and j are called active and these positions encode the edge. Let e be the edge
to be encoded and let e connect vertices vr and vs, 1 ≤ r < s ≤ n. Then, the ith position of the
block is σr in order to encode vr and the jth position is σs in order to encode vs. The last position
of a block is set to the synchronizing symbol #. Let ci,j be the i′th choice string in Sc; then, all
remaining positions in the block are set to ci,j’s identification symbol ϕi′ . Thus, the block is given
by

〈block(i, j, (vr , vs))〉 := (ϕi′)
i−1 σr (ϕi′)

j−i−1 σs (ϕi′)
k−j #.

Values for L and d. We set L := k + 1 and d := k − 2.

Example 1. Let G = (V,E) be an undirected graph with V = {v1, v2, v3, v4} and E = {(v1, v3),
(v1, v4), (v2, v3), (v3, v4)} (as shown in Fig. 1(a)) and let k = 3. Using G, we exhibit the above con-
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struction of
(k
2

)

= 3 choice strings c1, c2, and c3 (as shown in Fig. 1(b)). Note that, in the described
construction, the strings were called c1,2, c1,3, and c2,3, but, here, for the ease of presentation, we
call them c1, c2, and c3. We claim that (which will be proven in the following subsection) there
exists a clique of size k in G iff there is a string s of length L :=

(

k
2

)

+1 = 4 such that, for i = 1, 2, 3,
each ci contains a length 4 substring si with dH(ci, si) ≤ d := k − 2 = 1.

The choice strings are over an alphabet consisting of {σ1, σ2, σ3, σ4} (the encoding symbols, i.e.,
one symbol for every node of G), {ϕ1, ϕ2, ϕ3} (the string identification symbols), and {#} (the
synchronizing symbol). Every string ci, i = 1, 2, 3 consists of four blocks, each of which encodes an
edge of the graph. Every block is of length

(k
2

)

+ 1 = 4 and has # at its last position. The blocks
are separated by barriers consisting of (ϕi)

k = (ϕi)
3.

In string c1, positions 1 and 2 within a block are active and encode the corresponding edge (in c2
positions 1 and 3, and, in c3 positions 2 and 3 within a block are active). All of the first k positions
of a block in string ci, i = 1, 2, 3 which are not active, contain the ϕi symbol. Thus, e.g., the block
in c1 encoding the edge (v1, v3) is given by σ1σ3ϕ1#. Further details can be found in Fig. 1.

The closest substring that corresponds to the k-clique in G consisting of vertices v1, v3, and v4
is σ1σ3σ4#. The corresponding matches are σ1σ3ϕ1# in c1 (encoding the edge (v1, v3)), σ1ϕ2σ4#
in c2 (encoding the edge (v1, v4)), and ϕ3σ3σ4# in c3 (encoding the edge (v3, v4)).

3.2 Correctness of the Reduction

To prove the correctness of the proposed reduction, we have to show an equivalence, consisting of
two directions. The easier one is to see that a k-clique implies a closest substring fulfilling the given
requirements.

Proposition 1. For a graph with a k-clique, the construction in Subsection 3.1 produces an in-

stance of Closest Substring which has a solution, i.e., there is a string s of length L such that

every ci,j ∈ Sc has a substring si,j with dH(s, si,j) ≤ d.

Proof. Let the input graph have a clique of size k. Let h1, h2, . . . , hk denote the indices of the
clique’s vertices, 1 ≤ h1 < h2 < . . . < hk ≤ n. Then, we claim that a solution for the produced
Closest Substring instance is

s := σh1
σh2

. . . σhk
#.

Consider choice string ci,j , 1 ≤ i < j ≤ k. As the vertices vh1
, vh2

, . . . , vhk
form a clique, we have

an edge connecting vhi
and vhj

. Choice string ci,j contains a block si,j := 〈block(i, j, (vhi
, vhj

))〉
encoding this edge:

si,j := (ϕi′)
i−1 σhi

(ϕi′)
j−i−1 σhj

(ϕi′)
k−j#,

where i′ is the number (according to the given order) of the choice string in Sc. We have dH(s, si,j) =
k − 2, and we can find such a block for every ci,j , 1 ≤ i < j ≤ k.

For the reverse direction, we show in Proposition 2 that a solution in the produced Closest

Substring instance implies a k-clique in the input graph. For this, we need the following two
lemmas, which show that a solution to the instance constructed in Subsection 3.1 has encoding
symbols at its first k positions and the synchronizing symbol # at its last position.
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Lemma 1. A closest substring s contains at least two encoding symbols and at least one synchro-

nization symbol.

Proof. Let s be a solution of the Closest Substring instance produced by the construction in
Subsection 3.1. Let Aϕ(s) be the set of string identification symbols from {ϕi | 1 ≤ i ≤

(k
2

)

} that
occur in s. Let Sϕ(s) ⊆ Sc be the subset of choice strings that do not contain a symbol from Aϕ(s).

Since s is of length k+1, we have |Aϕ(s)| ≤ k+1. Therefore, for k ≥ 4, there are at least
(k
2

)

−(k+1)
choice strings in Sϕ(s). We show that with less than two encoding symbols and no synchronizing
symbol, we cannot find matches for s (with maximally allowed Hamming distance d = k − 2) in
the choice strings of Sϕ(s). Observe that, in every choice string, because of the barriers, every
length k+1 substring contains at most two encoding symbols and at most one symbol #. Observe
further that, taken a choice string from Sϕ(s), positions with symbols from {ϕi | 1 ≤ i ≤

(k
2

)

}
cannot coincide with the corresponding positions in s. Therefore, s has a match in such a string only
if s has two encoding symbols and one symbol # that all coincide with the corresponding positions
in the selected substring. This proves the claim for k ≥ 4. Regarding k = 3, if |Aϕ(s)| < 3, then
the above argument applies here, too. If, however, |Aϕ(s)| = 3, a length 4 substring in every choice
string has at least two positions that do not coincide with the corresponding positions in s.

Based on Lemma 1, we can now exactly specify the numbers and positions of the encoding and
synchronizing symbols in the closest substring.

Lemma 2. A closest substring s contains encoding symbols at its first k positions and a symbol #
at its last position.

Proof. Let n#(s) denote the number of symbols # in s, let nϕ(s) denote the number of string
identification symbols in s, and let nσ(s) denote the number of encoding symbols in s. Let Sϕ(s) ⊆
Sc be the subset of choice strings whose string identification symbol does not occur in s. In the
following, we establish a lower bound on the number of strings in Sϕ(s) and an upper bound on
the number of strings from Sϕ(s) in which we can find a match for s. Comparing these bounds,
we will show that, if n#(s) > 1, then there are choice strings in Sϕ(s) in which we cannot find a
match; we will conclude that n#(s) = 1. Then, we will show that, if nσ(s) < k, then again there
are strings in Sϕ(s) without a match; we will conclude that nσ(s) = k.

Regarding the size of Sϕ(s), a lower bound on its size is |Sϕ(s)| ≥
(

k
2

)

− nϕ(s). To explain the
upper bound on the number of strings from Sϕ(s) in which we can find a match for s, we recall
that such matches must contain two encoding symbols and one symbol # that all coincide with the
corresponding positions in s. On the one hand, the synchronizing symbol of a block must coincide
with a symbol # in s. On the other hand, in all blocks of a choice string, its encoding symbols
are in fixed positions relative to the block’s synchronizing symbol, e.g., in choice string c1,2, the
encoding symbols are located only at the first and second position and # at the last position of
a block in c1,2. For these two reasons, one symbol # in s can provide matches in at most

(nσ(s)
2

)

choice strings from Sϕ(s). Consequently, n#(s) many symbols # in s can provide matches in at

most n#(s) ·
(nσ(s)

2

)

choice strings from Sϕ(s).

Summarizing, we have at least
(

k
2

)

− nϕ(s) choice strings in Sϕ(s) and we can find matches in at
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most n#(s) ·
(nσ(s)

2

)

many of them. Thus, we find matches for s in all choice strings only if

n#(s) ·

(

nσ(s)

2

)

≥

(

k

2

)

− nϕ(s). (1)

In order to show that s contains exactly one synchronizing symbol, we assume that n#(s) > 1 (we
know that nϕ(s) ≥ 1 by Lemma 1) while k > 2, and show that inequality 1 is violated.

We know that k + 1 = nσ(s) + nϕ(s) + n#(s) and, by Lemma 1, that nσ(s) ≥ 2. Using these, we

conclude, on the one hand, that n#(s) ·
(nσ(s)

2

)

≤ n#(s) ·
(k+1−n#(s)

2

)

and, since n#(s) ≥ 2, that

n#(s) ·
(k+1−n#(s)

2

)

≤ 2 ·
(k−1

2

)

. On the other hand, we have that
(k
2

)

−nϕ(s) ≥
(k
2

)

− (k−1−n#(s))

and, since n#(s) ≥ 2,
(k
2

)

− (k − 1 − n#(s)) ≥
(k
2

)

− (k − 3). For k ≥ 3, however we have
(

k
2

)

− (k − 3) > 2 ·
(

k−1
2

)

. Thus,

n#(s) ·

(

nσ(s)

2

)

≤ n#(s) ·

(

k + 1− n#(s)

2

)

<

(

k

2

)

− (k − 1− n#(s)) ≤

(

k

2

)

− nϕ(s),

i.e., there are choice strings in Sϕ(s) which contain no match for s, a contradiction. Since (Lemma 1)
n#(s) ≥ 1, we conclude that n#(s) = 1.

In order to show that s contains exactly k encoding symbols, we assume that nσ(s) < k while k > 2
and n#(s) = 1, and show that inequality 1 is violated. Since k + 1 = nσ(s) + nϕ(s) + n#(s) =

nσ(s) + nϕ(s) + 1, we have
(k
2

)

− nϕ(s) =
(k
2

)

− (k − nσ(s)) and, thus,

(

nσ(s)

2

)

<

(

k

2

)

− (k − nσ(s)) ≤

(

k

2

)

− nϕ(s),

i.e., again, some strings in Sϕ(s) have no match for s, a contradiction. Thus, on the one hand, we
have nσ(s) ≥ k, and, on the other hand, we have n#(s) = 1 and, therefore, nσ(s) ≤ k.

Note that, if an encoding symbol is located after the synchronizing symbol in s, then, due to the
barriers, it is not possible that both # and this encoding symbol coincide with the respective
positions in a choice string from Sϕ(s). Therefore, symbol # is located at the last position of s.

Proposition 2. The first k characters of a closest substring correspond to k vertices of a clique in

the input graph.

Proof. By Lemma 2, a closest substring s has encoding symbols at its first k positions and a
synchronizing symbol at its last position. Consequently, the blocks are the only possible matches
of s in the choice string. Now, assume that s = σh1

σh2
. . . σhk

# for h1, h2, . . . , hk ∈ {1, . . . , n}.
Consider any two hi, hj , 1 ≤ i < j ≤ k, and choice string ci,j . Recall that in this choice string,
the blocks encode edges at their ith and jth position, they have # at their last position, and all
their other positions are set to a string identification symbol unique for this choice string. Thus,
we can only find a block that is a match if there is a block with σhi

at its ith position and σhj
at its

jth position. We have such a block only if there is an edge connecting vhi
and vhj

. Summarizing,
the closest substring s implies that there is an edge between every pair of {vh1

, vh2
, . . . , vhk

}; these
vertices form a k-clique in the input graph.
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Propositions 1 and 2 establish the following hardness result. Note that hardness for the combination
of all three parameters also implies hardness for each subset of the three.

Theorem 1. Closest Substring with unbounded alphabet is W[1]-hard for every combination

of the parameters L, d, and k.

4 Closest Substring: Binary Alphabet

We modify the reduction from Section 3 to achieve a Closest Substring instance with binary
alphabet proving a W[1]-hardness result also in this case. In contrast to the previous construction,
we cannot encode every vertex with its own symbol and we cannot use a unique symbol for every
produced string. Also, we have to find new ways to “synchronize” the matches of our solution, a
task previously done by the synchronizing symbol #. To overcome these problems, we construct an
additional “complement string” for the input instance and we lengthen the blocks in the produced
choice strings considerably.

4.1 Reduction of Clique to Closest Substring

Number strings. To encode integers between 1 and n, we introduce number strings 〈number(pos)〉,
which have length n and which have symbol “1” at position pos and symbol “0” elsewhere:
0pos−1 1 0n−pos. In contrast to the reduction from Section 3, now we use these number strings
to encode the vertices of a graph.

Choice strings. As in Section 3, we generate a set of
(k
2

)

choice strings Sc = {c1,2,c1,3 . . . , ck−1,k}.
Again, every choice string will consist of m blocks, one block for every edge of the graph. The
choice string ci,j is given by

ci,j := 〈block(i, j, e1)〉〈block(i, j, e2)〉 . . . 〈block(i, j, em)〉,

where e1, e2, . . . , em are the edges of the input graph and 〈block()〉 is defined below. The length of
a closest substring will be exactly the length of one block.

Block in a choice string. Every block consists of a front tag, an encoding part, and a back
tag. A block in choice string ci,j encodes an edge e; let e be an edge connecting vertices vr and vs,
1 ≤ r < s ≤ n, and let ci,j be the (according to the given order) i′th string in Sc. Then, the
corresponding block is given by

〈block(i, j, (vr , vs))〉 := 〈front tag〉〈encode(i, j, (vr , vs))〉〈back tag(i′)〉.

Front tags. We want to enforce that a closest substring can only match substrings at certain
positions in the produced choice strings, using front tags:

〈front tag〉 := (13nk0)nk,

i.e., a front tag has length (3nk + 1) · nk. By this arrangement, the closest substring s and every
match of s start (as will be shown in Subsection 4.2) with the front tag.

11



Encoding part. The encoding part consists of k sections, each of length n. The encoding part
corresponds to the blocks used in Section 3. As a consequence, in 〈block(i, j, e)〉 the ith and jth
section are called active and encode edge e = (vr, vs), 1 ≤ r < s ≤ n; section i encodes vr
by 〈number(r)〉 and section j encodes vs by 〈number(s)〉. The other sections except for i and j are
called inactive and are given by 〈inactive〉 := 0n. Thus,

〈encode(i, j, (vr , vs))〉 := (〈inactive〉)i−1 〈number(r)〉 (〈inactive〉)j−i−1 〈number(s)〉 (〈inactive〉)k−j .

Back tag. The back tag of a block is intended to balance the Hamming distance of the closest
substring to a block, as will be explained later. The back tag consists of

(k
2

)

sections, each section
has length nk − 2k + 2. The i′th section consists of symbols “1,” all other sections consist of
symbols “0”:

〈back tag(i′)〉 := 0(i
′−1)(nk−2k+2)1nk−2k+20((

k

2)−i′)(nk−2k+2)

Template string. The set of choice strings is complemented by one template string. It consists,
in analogy to the blocks in the choice strings, of three parts: A front tag of length (3nk + 1) ·
nk, followed by a length nk string of symbols “1,” followed by a length

(k
2

)

(nk − 2k + 2) string
of symbols “0.” Thus, the template string has the same length as a block in a choice string,
i.e., (3nk + 1) · nk + nk +

(

k
2

)

(nk − 2k + 2).

Values for d and L. We set L := (3nk + 1) · nk + nk +
(k
2

)

(nk − 2k + 2) and d := nk− k. As we
will show in Subsection 4.2, the possible matches for a string of this length are the blocks in the
choice strings, and, concerning the template string, the template string itself.

Notation. For a closest substring s, we denote its first (3nk + 1) · nk symbols (the front tag)
by s′, the following nk symbols (its encoding part) by s′′, and the last

(

k
2

)

(nk − 2k + 2) symbols
(its back tag), by s′′′. Analogously, the three parts of the template string t are denoted t′, t′′, and
t′′′. A particular block of a choice string ci,j , is referred to by si,j; its three parts are called s′i,j, s

′′
i,j,

and s′′′i,j.

Example 2. Let G = (V,E) be the graph from Example 1, with V = {v1, v2, v3, v4} and E =
{(v1, v3), (v1, v4), (v2, v3), (v3, v4)} (as shown in Fig. 1(a)) and let k = 3. In the following, we
outline the above construction of

(k
2

)

= 3 choice strings c1, c2, and c3 and one template string t
over alphabet Σ = {0, 1} as displayed in Fig. 2.

Every string c1, c2, and c3 consists of four blocks corresponding to the four edges of G. Fig. 2(a)
displays the first block of c1 corresponding to edge (v1, v3). It consists of a front tag, an encoding
part, and a back tag. The front tag (not displayed in detail in the figure) is given by 〈front tag〉 :=
(13nk0)nk = (1360)12; all front tags for all blocks in all constructed strings are the same. The back
tag of the first block consists of

(k
2

)

sections; since the back tag is in the first string, the first section
is filled with “1”s and the remaining sections are filled with “0”s. Thus, the back tag is given by

1nk−2k+20((
k

2)−1)(nk−2k+2) = 18016, and all back tags for blocks in the first string are given like this.
The encoding part consists of k = 3 sections, each section of length n = 4. In the blocks of string c1,
the first and the second section are active; in the first block they encode edge (v1, v3). Therefore,
the first section is given by 〈number(1)〉 and the second one by 〈number(3)〉, the remaining inactive
section is filled with “0”s.
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c1 · · ·

front tag encoding part back tag

v1 v3 inactive

(a)

c1

c2

c3

t

s

edge (v1, v3) edge (v1, v4) edge (v2, v3) edge (v3, v4)

(b)

s1

s2

s3

t

s

front tag encoding part back tag

dH(s, si) 0 k − 2 = 1 nk − 2k + 2 = 8
dH(s, t) 0 nk − k = 9 0

(c)

Figure 2: Example for the reduction from the Clique instance G (shown in Fig. 1(a)) to a
Closest Substring instance with binary alphabet as explained in Example 2. When display-
ing the strings, we omit the details of the front tag parts and only indicate them shortened in
their proportion to the other parts of the strings; all front tag parts in all strings are equal. In the
encoding parts and the back tag parts, we indicate the symbols “1” of the construction by dark
boxes, the symbols “0” by white boxes. In (a), we outline the first block of c1. In its encoding part,
sections 1 and 2 (sections are indicated by bold separating lines) are active (indicated by dashed
boxes) and encode the first edge (v1, v3) of graph G; the remaining third section is inactive. In
its back tag part, the first section is filled with symbols “1.” In (b), we give an overview on all
constructed strings, the choice strings c1, c2, and c3, and the template string t. We also display the
closest substring s that is found, since G has a clique of size k = 3; its matches in c1, c2, c3, and t
are indicated by dashed boxes. In (c), we focus on these matches and the solution string s, and
state, separately for the front tag, the encoding, and the back tag part, the Hamming distances of
s to a match si, i = 1, 2, 3 (the distances are equal for s1, s2, and s3) and to the template string t.

13



Fig. 2(b) displays an overview on all constructed strings c1, c2, c3, and t. In all strings, block i
encodes the ith edge, 1 ≤ i ≤ 4. However, the active sections of the encoding part and the back
tags differ for different strings. The template string t consists only of one block, which has a front
tag, a part corresponding to the encoding part, filled with “1”s, and a part corresponding to the
back tag, filled with “0”s.

Since G has a k-clique for k = 3, consisting of vertices v1, v3, and v4, we find a solution s for
the constructed Closest Substring instance. This s has a front tag, and its back tag part
is filled with “0” symbols. The encoding part encodes the vertices of the clique, it is given by
〈number(1)〉〈number(3)〉〈number(4)〉.

Fig. 2(c) gives a focus on the matches that are found in c1, c2, c3, and t, which are, for the choice
strings, referred to by s1, s2, and s3, respectively. The front tag part s′ has distance 0 to the front
tags s′1, s

′
2, s

′
3, and t′. The encoding part s′′ contains k = 3 many “1”s; s′′1, s

′′
2, s

′′
3 have two “1”s

each and, in each case, these “1”s coincide with “1”s in s′′. Therefore, dH(s′′, si) = k − 2 = 1,
1 ≤ i ≤ 3. The encoding part of the template string, t′′, only consists of “1”s and, therefore,
dH(s′′, t′′) = nk − k. The back tag s′′′ only consists of “0”s; each back tag s′′′1 , s′′′2 , and s′′′3
contains nk − 2k + 2 = 8 many “1”s; therefore dH(s′′′, s′′′i ) = 8, 1 ≤ i ≤ 3. The back tag of the
template string, t′′′, contains only “0”s and, hence, dH(s′′′, t′′′) = 0. Altogether, this shows that,
for 1 ≤ i ≤ 3, dH(s, si) = dH(s, t) = nk − k = 9 as required.

4.2 Correctness of the Reduction

To prove the correctness of the reduction, again the easier direction is to show that a k-clique
implies a closest substring fulfilling the given requirements.

Proposition 3. For a graph with a k-clique, the construction in Subsection 4.1 produces an in-

stance of Closest Substring that has a solution, i.e., there is a string s of length L such that

every ci,j ∈ Sc has a length L substring si,j with dH(s, si,j) ≤ d and dH(s, t) ≤ d.

Proof. Let the graph have a clique of size k. Let h1, h2, . . . , hk denote the indices of the clique’s
vertices, 1 ≤ h1 < h2 < . . . < hk ≤ n. Then, we can find a closest substring s, consisting of
three parts s′, s′′, and s′′′, as follows: its front tag s′ is given by 〈front tag〉; its encoding part s′′

is given by 〈number(h1)〉〈number(h2)〉 . . . 〈number(hk)〉; its back tag s′′′ is 0(
k

2)(nk−2k+2). It follows
from the construction that the choice strings have substrings that are matches for this s: For every
1 ≤ i < j ≤ k, we produced choice string ci,j with a block si,j encoding the edge between vertices vhi

and vhj
. For these blocks as well as for the template string, the following table reports the distance

they have to the solution string, separately for each of their three parts and in total:

dH(·, ·) s′ s′′ s′′′ s

match si,j in choice string ci,j 0 k − 2 nk − 2k + 2 nk − k

template string t 0 nk − k 0 nk − k

As is obvious from these distance values, the indicated substrings in the choice strings all have
Hamming distance d = nk − k to the solution string and, therefore, are matches for s.
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For the reverse direction, we assume that the Closest Substring instance has a solution. We
need the following statements:

Lemma 3. A solution s and all its matches in the input instance start with the front tag.

Proof. Since s is of length L = (3nk+1) ·nk+nk+
(k
2

)

(nk−2k+2), the only possible match in the
template string is the template string itself. Therefore, s′ can differ from t′ in at most d = nk − k
symbols. We can show that the only substrings in a choice string ci,j that are possible matches
for s with Hamming distance at most d start with the front tag, as we argue in the following.

Since s is a solution, there is a match in ci,j and we denote it by si,j. Denote the the first (3nk+1)·nk
symbols of si,j by s′i,j. Since dH(s′, s′i,j) ≤ nk − k and dH(s′, t′) ≤ nk − k, we necessarily (triangle
inequality for Hamming metric) have dH(s′i,j, t

′) ≤ 2(nk − k). We show that this is only possible
when s′i,j coincides with a front tag of a block of ci,j. Assuming that it does not, we will show that
dH(s′i,j, t

′) > 2(nk − k), a contradiction.

Firstly, assume that the starting position of s′i,j and the starting position of a front tag in ci,j differ
by p positions, 1 ≤ p ≤ 3nk. Then, at least nk − 1 symbols “0” of t′ are aligned with symbols “1”
of the front tag in s′i,j and at least nk − 1 symbols “1” of t′ are aligned with symbols “0” of s′i,j.
This implies dH(s′i,j, t

′) > 2nk − 2. Secondly, assume that the starting position of s′i,j and the
starting position of its closest front tag in ci,j differ by p > 3nk positions. Then, a block of 3nk
symbols “1” falls onto the encoding and/or the back tag part of s′i,j. Since the encoding part and
back tag contain together only 2 + (nk − 2k + 2) < nk (under the assumption that k > 2) many
symbols “1”, we have more than 2nk mismatching symbols and dH(s′i,j, t

′) > 2(nk − k).

Summarizing, we conclude that s′i,j coincides with a front tag in choice string c′i,j, i.e., s
′
i,j = t′ =

s′ = 〈front tag〉.

Lemma 4. The encoding part of s contains exactly k symbols “1”.

Proof. Assume that s has less than k symbols “1” in its encoding part, i.e., s′′ contains less than k
symbols “1”. Then, because t′′ = 1nk, dH(s′′, t′′) ≥ nk − k + 1, implying dH(s, t) ≥ nk − k + 1, a
contradiction.

Assume that s has more than k “1” symbols in its encoding part s′′. Then, dH(s′′, s′′i,j) > k − 2
for the encoding part s′′i,j of a match in every choice string ci,j . Now consider the solution’s back
tag s′′′. To achieve dH(s, si,j) ≤ nk − k, we need dH(s′′′, s′′′i,j) < nk − 2k + 2 and s′′′ must contain
one or more symbols “1”. Every “1” symbol in s′′′ will decrease the value dH(s, si,j) for a block si,j
of one choice string ci,j by one, but will increase the solution’s Hamming distance to the selected
blocks of all other choice strings. No matter how many “1” symbols we have in the back tag of s,
there will always be a choice string ci,j with dH(s′′′, s′′′i,j) ≥ nk−2k+2. In summary, we will always
have a choice string ci,j with dH(s, si,j) = dH(s′′, s′′i,j) + dH(s′′′, s′′′i,j) > nk − k, a contradiction.

Lemma 5. Every section of the encoding part of s contains exactly one symbol “1”.

Proof. Assume that not every section in the encoding part of s contains exactly one “1” symbol.
Then, there must be a section containing no symbol “1”, since, by Lemma 4, the number of
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symbols “1” in the encoding part of s adds up to k. Let i′, 1 ≤ i′ ≤ k, be the section containing
no symbol “1”. W.l.o.g., consider a choice string ci′,j, i

′ < j ≤ k or, if i′ = k, a choice string ci′,j,
1 ≤ j < i′. In every block si′,j of ci′,j, sections i

′ and j of the encoding part are active and, therefore,
contain exactly one symbol “1” each; these are the only symbols “1” in s′′i′,j. Now consider the k
symbols “1” in the encoding part of s: The “1”s in all sections of s′′ except for section j are all
aligned with “0”s in s′′i′,j ; within section j, only a single “1” of s′′ can be matched to a “1” of s′′i′,j.
Therefore, dH(s′′, s′′i′,j) > k− 2. As in the proof of Lemma 4, we conclude that s is no solution.

Proposition 4. The k symbols “1” in the solution string’s encoding part correspond to a k-clique
in the graph.

Proof. Let s be a solution for the Closest Substring instance. Summarizing, we know by
Lemma 3 that s can have as a match only one of the choice string’s blocks. By Lemma 5, every
section of the encoding part s′′ contains exactly one “1” symbol; therefore, we can read this as an
encoding of k vertices of the graph. Let vh1

, vh2
, . . . , vhk

be these vertices. Further, we know that the
back tag s′′′ consists only of “0” symbols: By Lemma 4, the encoding part s′ has only k “1”s; would
s′′′ contain a “1”, then we would have dH(s, t) > nk−k. We have dH(s′′′, s′′′i,j) = nk−2k+2 for every
choice string match si,j and, since every s′′i,j contains only two “1” symbols, dH(s′′, s′′i,j) ≥ k − 2.
Now consider some 1 ≤ i < j ≤ k and the corresponding choice string ci,j. Since s is a solution,
we know that there is a block si,j with dH(s′′, s′′i,j) = k − 2. That means that the two “1” symbols
in s′′i,j have to match two “1” symbols in s′′; this implies that the two vertices vhi

and vhj
are

connected by an edge in the graph. Since this is true for all 1 ≤ i < j ≤ k, vertices vh1
, . . . , vhk

are
pairwisely interconnected by edges and form a k-clique.

Propositions 3 and 4 yield the following main theorem:

Theorem 2. Closest Substring is W[1]-hard for parameter k in the case of a binary alphabet.

5 Consensus Patterns

Our techniques for showing hardness of Closest Substring, parameterized by the number k
of input strings, also apply to Consensus Patterns. Because of the similarity to Closest

Substring, we restrict ourselves to explaining the problem and pointing out new features in the
hardness proof.

Given strings s1, s2, . . . , sk over alphabet Σ and integers d and L, the Consensus Patterns

problem asks whether there is a string s of length L such that
∑k

i=1 dH(s, s′i) ≤ d where s′i is a
length L substring of si. Thus, Consensus Patterns aims for minimizing the sum of errors. Since
errors are summed up over all strings, the value of d will, usually, not be a small and, therefore,
the most significant parameterization for this problem seems to be the one by k. The problem is
NP-complete and has a PTAS [19]. By reduction from Clique, we can show W[1]-hardness results
as for Closest Substring given unbounded alphabet size. We omit the details here and focus on
the case of binary input alphabet. We can apply basically the same ideas as were used in Section 4;
however, some modifications are necessary.
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5.1 Reduction of Clique to Consensus Patterns

Choice strings. As in Subsection 4.1, we generate a set of
(

k
2

)

choice strings Sc = {c1,2,
c1,2 . . . , ck−1,k} with ci,j := 〈block(i, j, e1)〉〈block(i, j, e2)〉 . . . 〈block(i, j, em)〉, encoding them edges
of the input graph. This time, however, every block consists only of a front tag and an encoding part.
No back tag is necessary. Therefore, we use 〈block(i, j, (vr , vs))〉 := 〈front tag〉〈encode(i, j, (vr , vs))〉,
in which the encoding part 〈encode(i, j, (vr , vs))〉 is constructed as in Subsection 4.1. Before we
explain the front tags, we already fix the distance value d.

Distance Value. We set the distance value d := (
(k
2

)

− (k − 1))nk.

Front tags. The front tag is now given by (1nk
3

0)nk
3

0nk
3

. Thus, the front tag has length n2k6 +
2nk3. The front tag here is more complex than the one used in Subsection 4.1. The reason is as
follows. Its purpose is to make sure that a substring which is not a block cannot be a match. To
achieve this, the front tag lets such an unwanted substring necessarily have a distance value larger
than d to a possible solution (as explained in the proof of Lemma 3). Since d has a higher value
here compared to Section 4, we need the more complex front tag.

Solution length. We set the substring length to the length of one block, i.e., the sum of n2k6+2nk3

(the length of the front tag) and nk (the length of the encoding part). Therefore, L := n2k6 +
2nk3 + nk.

Template strings. In contrast to Subsection 4.1, we produce not only one but
(k
2

)

− (k− 1) many
template strings. All template strings have length L, i.e., the length of one block. The template
strings are a concatenation of the front tag part (as given above) and an encoding part consisting
of nk many symbols “1”.

In summary, the front tag ensures that only the block of a choice string can be selected as a substring
matching a solution. Regarding the distribution of mismatches, we note that a closest substring’s
front tag part will not cause any mismatches. In its encoding part, every of its nk positions causes
at least

(

k
2

)

− (k − 1) mismatches. It causes exactly
(

k
2

)

− (k − 1) mismatches for every position iff
the input graph contains a k-clique.

5.2 Correctness of the Reduction

Proposition 5. For a graph with a k-clique, the construction in Subsection 5.1 produces an in-

stance of Consensus Patterns which has a solution, i.e., there is a string s of length L such that

every ci,j , 1 ≤ i < j ≤ k, has a substring si,j with
∑k−1

i=1

∑k
j=i+1 dH(s, si,j) ≤ d.

Proof. Given an undirected graph G with n vertices andm edges, let 1 ≤ h1 < h2 < . . . < hk ≤ n be
the indices of k-clique’s vertices. Then, let string s consist of the front tag described in the above
construction, concatenated with the encoding part 〈number(h1)〉〈number(h2)〉 . . . 〈number(hk)〉,
which encodes all clique vertices. For every 1 ≤ i < j ≤ k, we choose in choice string ci,j the
block si,j encoding the edge connecting vertices vhi

and vhj
. We will show that these blocks have

exactly total Hamming distance (
(k
2

)

− (k − 1))nk to s.
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The front tags of s and of each si,j coincide, their Hamming distance is 0. Recall from Subsection 4.1
that the encoding parts consist of k sections, each section of length n. We consider the encoding
parts section by section and, within a section, columnwise. Given a section i′, 1 ≤ i′ ≤ k, there
are k − 1 choice strings in which this section is active, and this section in these blocks encodes
vertex vhi′

. Consider the column at position hi′ in this section, over all selected substrings and all

template strings. We have
(k
2

)

− (k − 1) “0” symbols from the choice strings in which this section
is inactive; in all other strings, there is a “1” at this position. In s, this position is “1,” causing
(k
2

)

− (k − 1) mismatches. Now consider the remaining columns of section i′. In each of them, we

have
(

k
2

)

− (k − 1) “1” symbols from the template strings; all
(

k
2

)

choice strings have “0” at the

corresponding position. In s, this position is “0,” causing
(k
2

)

− (k− 1) mismatches. Thus, we have
(k
2

)

− (k − 1) mismatches at every of the n positions within a section, and this is true for all k
sections of the encoding part. The sum of distances from s to the matches in choice strings and
the template strings is (

(

k
2

)

− (k − 1))kn; s is a solution.

For the reverse direction, we use two lemmas to show important properties that a solution of the
constructed instance has. The first lemma is proved in analogy to Lemma 3.

Lemma 6. A solution s and all its matches in the input instance start with the front tag.

The second property of a solution, although also valid for the solutions in Subsection 4.2, is estab-
lished in a different way here. It relies on the additional template strings that have been introduced
in the construction of the Consensus Patterns instance.

Lemma 7. A solution s contains exactly one symbol “1” in every section of its encoding part.

Proof. Let s be a solution for the constructed Consensus Patterns instance. By Lemma 6, we
know that s and all its matches in the choice strings start with the front tag. Consequently, the
matches in the choice strings must be blocks.

Consider the encoding part of a solution s together with the encoding parts of its matches in the
input strings. We note that we have at least

(k
2

)

−(k−1) mismatches for every column at positions p,

1 ≤ p ≤ nk: On the one hand, all
(k
2

)

− (k − 1) template strings have “1” symbols at position p.

On the other hand, all
(k
2

)

− (k− 1) choice strings in which position p’s section is inactive have “0”
at this position, no matter which blocks we chose in these choice strings. Since s is a solution and
only a total of (

(k
2

)

− (k− 1))nk mismatches are allowed, we have exactly
(k
2

)

− (k− 1) mismatches
for every position of the encoding part of s with the corresponding positions in the matches of s.

Now, consider an arbitrary section i′, 1 ≤ i′ ≤ k, and consider all k − 1 choice strings in which
section i′ is active. In these choice strings, section i′ contains exactly one “1” symbol. We will
show that in these choice strings’ blocks that form the matches for s, the “1” in section i′ must
be at the same position in all matches, because, otherwise, s is no solution. Assume that we chose
blocks in which the “1” symbols of section i′ are at different positions. We can easily check that
this would cause more than

(k
2

)

−(k−1) mismatches for the columns corresponding to the positions
of the “1” symbols; this contradicts the assumption that s is a solution. We conclude that, for all
matches in choice strings, the “1” symbols of section i′ must be at the same position. For columns
in which we have “1” symbols in choice strings, there is a majority of “1” symbols, namely those in
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the (k−1) choice strings in which section i′ is active and those in the
(k
2

)

− (k−1) template strings.
Therefore, the respective position in s must be “1.” For all other columns, there is a majority of
“0” symbols, namely those in all

(k
2

)

choice strings. Therefore, the respective position in s must
be “0.”

These two lemmas allow us to show that also the reverse direction of the reduction is correct.

Proposition 6. The k symbols “1” in the solution string’s encoding part correspond to a k-clique
in the graph.

Proof. Let s be a solution for the constructed Consensus Patterns instance. By Lemma 7, every
section in the encoding part of s encodes a vertex of the input graph. In the following, we show
that all encoded vertices are interconnected by edges.

Let VC = {vh1
, vh2

, . . . , vhk
} be the vertices encoded in the solution’s encoding part. For every

two sections 1 ≤ i < j ≤ k, we select in choice string ci,j a substring in which the “1” symbols of
sections i and j are at the same positions as the “1” symbols of sections i and j in the solution:
Selecting another substring would result in a Hamming distance greater than

(

k
2

)

− (k − 1) in the
hith and hjth column and s could not be a solution. Hence, the selected block encodes the edge
connecting vhi

and vhj
. Since we find such a substring for every 1 ≤ i < j ≤ k, every pair of

vertices in VC is connected by an edge, VC is a k-clique.

Propositions 5 and 6 yield the following main result.

Theorem 3. Consensus Patterns is W[1]-hard for parameter k in case of a binary alphabet.

6 Conclusion

We have proven that Closest Substring and Consensus Patterns, parameterized by the
number k of input strings and with alphabet size two, are W[1]-hard. This contrasts with related
sequence analysis problems, such as Longest Common Subsequence [3, 4] and Shortest Com-

mon Supersequence [17], where, until now, parameterized hardness has only been established
in the case of unbounded alphabet size. Now, it is also known that these problems, parameter-
ized by the number of input strings, are W[1]-hard in case of bounded alphabet size [27]. In our
opinion, however, intuitively speaking, our W[1]-hardness result for Consensus Patterns is the
most surprising one in this context, because Consensus Patterns seems to carry significantly
less combinatorial structure than the other problems.

The parameterized complexity of Closest Substring and Consensus Patterns, parameterized
by “distance parameter” d, remains open for alphabets of constant size. If these problems are also
W[1]-hard, then an efficient and practically useful PTAS would appear to be impossible [6, 10],
unless further structure of natural input distributions is taken into account in a more complex
aggregate parameterization of these basic computational problems of bioinformatics.
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