
Reducing the seed length in the Nisan-Wigderson generator∗

Russell Impagliazzo†

Computer Science and Engineering

UC, San Diego

9500 Gilman Drive

La Jolla, CA 92093-0114

russell@cs.ucsd.edu

Ronen Shaltiel‡

Department of Computer Science

University of Haifa

Haifa 31905, Israel

ronen@cs.haifa.ac.il

Avi Wigderson§

Department of Computer Science

Institute for Advanced Study

Einstein Drive, Princeton, NJ 08540

avi@ias.edu

April 23, 2006

Abstract

The Nisan-Wigderson pseudo-random generator [NW94] was constructed to derandomize
probabilistic algorithms under the assumption that there exist explicit functions which are hard
for small circuits. We give the first explicit construction of a pseudo-random generator with
asymptotically optimal seed length even when given a function which is hard for relatively small
circuits. Generators with optimal seed length were previously known only assuming hardness
for exponential size circuits [IW97, STV01].

We also give the first explicit construction of an extractor which uses asymptotically optimal
seed length for random sources of arbitrary min-entropy. Our construction is the first to use the
optimal seed length for sub-polynomial entropy levels. It builds on the fundamental connection
between extractors and pseudo-random generators discovered by Trevisan [Tre01], combined
with the construction above.

The key is a new analysis of the NW-generator [NW94]. We show that it fails to be pseudo
random only if a much harder function can be efficiently constructed from the given hard
function. By repeatedly using this idea we get a new recursive generator, which may be viewed
as a reduction from the general case of arbitrary hardness to the solved case of exponential
hardness.

∗This paper is based on two conference papers [ISW99, ISW00] by the same authors.
†Research Supported by NSF Award CCR-9734911, NSF Award CCR-0098197, Sloan Research Fellowship BR-

3311, grant #93025 of the joint US-Czechoslovak Science and Technology Program, and USA-Israel BSF Grant
97-00188

‡Part of this work was done while at the Hebrew University and the Institute for advanced study.
§This research was supported by grant number 69/96 of the Israel Science Foundation, founded by the Israel

Academy for Sciences and Humanities and USA-Israel BSF Grant 97-00188

1

1 Introduction

1.1 Background

A central question in Complexity Theory concerns the power of probabilistic algorithms. Such
algorithms are allowed to use a string of independent coin tosses in their computation. Two
different approaches for obtaining such a string resulted in rich and elaborate theories.

Pseudo-random generators: The first direction (introduced by [BM84, Yao82]) tries to see
if probabilistic algorithms can function if given many fewer random bits than they want to use.
The idea is to use a deterministic procedure, called a pseudo-random generator, to stretch these
few independent bits (often referred to as the seed) into the appropriate length. The distribution
produced should “look random” to all efficient algorithms.

Definition 1.1 (pseudo-random generators). Let A be a predicate on m bit strings. We say
that a distribution D on m bit strings ε-fools A if

| Pr
x∈D{0,1}m

[A(x)] − Pr
x∈Um{0,1}m

[A(x)]| < ε

For a class A of such predicates, D is ε-pseudo-random for A if D ε-fools each A ∈ A. We’ll
be particularly interested in the following classes of predicates:

• The class of all predicates (on m bits): D is called ε-uniform if it ε-fools this class1.

• The class Sizem of all predicates computable by circuits with m or fewer gates: D is called
(ε, m)-pseudo-random if it ε-fools this class.2

We say that a function G : {0, 1}d → {0, 1}m is a (ε, m)-pseudo-random generator if the
distribution G(Ud) is (ε, m)-pseudo-random.

The reader is also referred to the excellent monograph [Gol98] devoted to this field and its
varied connections to complexity theory, cryptography and learning theory. Perhaps the most
important connection is that given such a generator, a simple nontrivial deterministic simulation
of the given probabilistic algorithm follows. One simply runs the probabilistic algorithm on all
outputs of the generator (varying over all seeds) and outputs the majority vote. As the running
time of this procedure is exponential in the “seed” length it is thus crucial to reduce this parameter.
Following Nisan and Wigderson we allow pseudo-random generators to run in time 2O(d) and call
such generators explicit3. We allow the running time to be exponential in the input length since in
the simulation described above we intend to run the generator over all 2d seeds anyway.

A major result in this direction was discovered in [NW94]. They showed that every difficult
problem (in E = dtime(2O(n))) could be used to construct a pseudo-random generator. The quality
of this NW-generator (i.e. its seed length) was shown to relate to the difficulty of the given function.

1It is standard that a distribution D is ε-uniform if and only if the statistical (L1-norm) distance between D and
Um is bounded by 2ε.

2We use m both for the circuit size and the number of input bits. This is done to avoid another parameter. Note
that the size of a circuit is an upper bound on the number of input bits.

3Naturally, we need a family of generators with varying input (and output) sizes for this to make sense.

1

Their work has been quantitatively improved and qualitatively extended ([BFNW93, Imp95, IW97,
IW01, STV01, KvM02, CNS99]), but their construction remains central to work in this area. While
the best “hardness vs. randomness” trade-off to be expected from such a construction should yield
a seed whose size is linear in the input length of the given hard function, this was not achieved
yet, and the best construction so far [STV01] had seeds that were nearly quadratic.

Extractors: The second direction (introduced by [Blu86, SV86]) asks if such algorithms can
function when their random input is not independent unbiased bits, but rather the output of
some “defective random source”. (In practice one rarely has access to “truly random bits” and a
more realistic assumption is that one can sample from a defective random source). Such a source is
assumed to contain sufficient entropy, but otherwise can be arbitrary. The idea is to use procedures,
called extractors, (defined in [NZ96]), to convert this “hidden” entropy into a (nearly) uniform
distribution. It is easy to show that this task cannot be achieved by deterministic procedures, and
thus extractors also get a second input: A short “seed” consisting of a small number of high quality
random bits, i.e., unbiased and independent. We now give a formal definition of extractors.

Definition 1.2 (min-entropy). A distribution P on {0, 1}n is said to have min-entropy (at least)
k, if P (x) ≤ 2−k for every x ∈ {0, 1}n.

Definition 1.3 (extractors [NZ96]). A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is called
a (k, ε)-extractor if for every distribution P on {0, 1}n which has min-entropy k, the distribution
Ext(P, Ud) is ε-uniform. We say that a family of extractors is explicit if it can be computed in
polynomial time.4

Given an extractor one can simulate probabilistic algorithm using only one sample from a high-
entropy defective source. This is done by sampling an element from the source and then running
the algorithm on all outputs of the extractor (varying over all 2d seeds) and taking the majority
vote. It is easy to verify that this procedure simulates the probabilistic algorithm correctly. Again,
minimizing the length of the seed is crucial for the efficiency of this conversion. The reader is
referred to the excellent survey papers [Nis96, NTS99] on the many varied uses of extractors in
complexity, combinatorics, coding theory and network design. A more recent survey [Sha02] covers
recent developments in extractor constructions.

In a breakthrough result, Trevisan ([Tre01]) showed that pseudo-random generators and extrac-
tors are intimately linked. He proved that any variant of the NW-generator (converting arbitrary
hard functions into pseudo-random distributions) could be used to construct an extractor. More-
over, the seeds in both constructions are of the same length under this translation. [Tre01] (and then
[RRV02]) proceeded to use the NW-generator to give simple and direct constructions of extractors.
For the same reasons as explained above, these constructions sometimes require nearly quadratic
seed length in the “optimal” value (achieved by the non-constructive “optimal” extractor which can
be proven to exist by a counting argument and has parameter matching the known lower bounds
[NZ96, RTS00]). Thus, improving the NW-generator will impact both pseudo-random generators
and extractors.

4Formally, a family E = {En} of extractors is defined given polynomially computable integer functions
d(n), m(n), k(n), ε(n) where En : {0, 1}n × {0, 1}d(n) → {0, 1}m(n) is a (k(n), ε(n)) extractor. The family is explicit
in the sense that En can be computed in time polynomial in n.

2

Table 1: Pseudo-random generators comparison

Reference seed size circuit size

[BFNW93] d = O(l4 log3 k) m = kΩ(1)

[Imp95] d = O(l2 log k) m = kΩ(1)

[IW97]∗ d = O(l4

log3 k
) m = kΩ(1)

[STV01] d = O(l2

log k) m = kΩ(1)

Theorem 1.4 d = O(l) m = k
Ω(1

log log(l/ log k)
)

Ultimate goal† d = O(l) m = kΩ(1)

All results assume the existence of a function f = {fl}, fl : {0, 1}l → {0, 1} which is computable in time 2O(l), and

that circuits of size k(l) cannot compute.

∗Impagliazzo and Wigderson state their result only for k(l) = 2Ω(l) and their result gives d = O(l), (which implies
BPP = P) for such an assumption.

†This goal has recently been achieved in [SU01, Uma02].

1.2 Results

In this paper, we construct both pseudo-random generators and extractors that have optimal seed
length (by that we mean a seed length which is linear in the optimal value). Our pseudo-random
generator gives an improved (and almost optimal) tradeoff between hardness and randomness.
The improvement we get becomes more notable (compared to previous results) as the hardness
assumption is weakened.5

The extractors we obtain from this construction (using Trevisan’s method) have the optimal
seed length regardless of the amount of randomness present in the imperfect random source, and are
thus the first for sub-polynomial entropies to have optimal seed length. Below we state our main
Theorems formalizing the above. An important note regarding both pseudo-random generators
and extractors is that while we achieve optimal seed length, the output length in both cases is
suboptimal. We discuss this in more detail in Section 6.

Theorem 1.4 (Optimal seed generators). If there exists a function f = {fl} which is com-
putable in time 2O(l) and for all l, fl cannot be computed by circuits of size k(l), then there exists

functions d(l) = O(l), m(l) = k(l)
Ω(1

log log(l/ log k)
)

and a (1/m(l), m(l))-pseudo random generator
G : {0, 1}d(l) → {0, 1}m(l) which is computable in time 2O(l).

The proof of this Theorem appears in section 4. See table 1 for comparison with previous
results.

We now list our results for extractors. See table 2 for comparison with some previous results.
The proofs of the next Theorems appear in section 4.

Theorem 1.5 (Optimal seed extractors). For every constant δ > 0 and ε > exp(−n/(log∗ n)log
∗ n)

there is an explicitly constructible family of (k, ε)-extractors Extn,k,ε : {0, 1}n × {0, 1}O(log n
ε
) →

{0, 1}k1−δ−O(log(1/ε)).

We can do better for low entropy sources. We achieve a larger output in this case (whereas
many previous constructions work better when the entropy is large). An example is the following

5We remark that our results were improved by subsequent work. See discussion in Section 6.

3

Table 2: Extractors comparison

reference min-entropy k output length m additional randomness d

[Zuc97] k = Ω(n) m = (1 − δ)k d = O(log n)

[Tre01] any k m = k1−δ d = O(log2 n
log k)

Theorem 1.5 any k m = k1−δ d = O(log n)

[RRV02] any k m = (1 − δ)k d = O(log2 n)

Theorem 1.6 any k m = Ω(k

log log log n
log k

) d = O(log n + log2 k)

Corollary 1.7 k ≤ 2
√

log n m = (1 − δ)k d = O(log n · log log log n)

Ultimate goal any k m = k d = O(log n)

The results are given for constant ε.

δ is an arbitrary small constant.

Theorem in which we get a larger improvement in the number of extracted bits if the entropy is
small.

Theorem 1.6 (Extractors for low min-entropy). For every ε > exp(−n/(log∗ n)log
∗ n) there

is an explicitly constructible family of (k, ε)-extractors Extn,k,ε : {0, 1}n × {0, 1}O(log n
ε
+log2 k) →

{0, 1}m, for m = Ω(k
log log(log n/ log k)) − O(log(1/ε)).

Note that when k < 2
√

log n the seed length becomes the optimal O(log n). Using the method of
[WZ93] the number of bits extracted can be enlarged at the expense of enlarging the seed length.6

Using this we can improve the fraction of bits extracted to a constant fraction paying only a
O(log log log n) penalty in the seed length.

Corollary 1.7. For every constant δ > 0 and ε > exp(−n/(log∗ n)log
∗ n) there is an explicitly con-

structible family of (k, ε)-extractors Extn,k,ε : {0, 1}n×{0, 1}O(log(n/ε)·log log log n) → {0, 1}(1−δ)k−O(log(1/ε))

as long as k < 2
√

log n.

1.3 A note on optimality of seed length

In [NZ96] (and later [RTS00]) it was shown that the seed length of any (k, ε)-extractor which
outputs more bits then its seed length must be at least Ω(log(n/ε)). Thus, the seed length in our
extractor construction is optimal except for the exact constant.

In Section 5 we give evidence that the seed length in our construction of pseudo-random gener-
ators is also close to optimal. We now explain what we mean by this statement. We are concerned
with the optimality of the reduction from a hard function to a pseudo-random generator. As we
now explain, this poses some difficulties: Let’s consider studying the case of converting a function f
that is hard against say polynomial size circuits into a pseudo-random generator. Our construction

6The basic idea of Wigderson and Zuckerman is that if an extractor E does not extract all the randomness from
the source then additional randomness can be extracted by running another extractor with an independent seed. By
repeatedly running this procedure an extractor with output length m = k/r and seed length d can be transformed
into one with output length m′ = (1 − δ)k (here δ > 0 is an arbitrary small constant) and seed length d′ = O(dr).
Exact details can be found for example in [RRV02].

4

gives a generator which stretches l bits into lO(1) bits. However, it is widely believed that there
are functions hard against much large circuits which in turn lead to better generators. How can
we rule out the scenario in which the reduction ignores the function f altogether and uses a better
available pseudo-random generators?

Below, we suggest two notions of optimality that address this difficulty and address the quality
of the reduction from hard functions to pseudo-random generators rather than the quality of the
pseudo-random generator itself.

• By Trevisan’s argument ([Tre01], see also Theorem 2.8 and [KvM02]) any construction which
converts hardness into a pseudo-random generator and has some additional ”relativization
properties” gives an extractor with the same seed length. Thus, any such construction is
bounded by the lower bounds on extractors cited above. Our construction of pseudo-random
generators (as well as all previous constructions) has these ”relativization properties”. It
follows that the seed length in our pseudo-random generator construction is optimal except
for the exact constant. Exact details are given in section 5.1.

• It is possible to convert pseudo-random generators into hard functions. Roughly speaking, a
pseudo-random generator with seed length l which fools circuits of size m(l) can be converted
into a function on l bits which is hard for circuits of size m(l). It follows that if a conversion
of hardness into pseudo randomness (even one which does not have the ”relativization prop-
erties” mentioned above) does significantly better than our construction than it also yields a
harder function than the one initially supplied to it. Exact details are given in section 5.2.

1.4 Technique

This section attempts to give a complete account of the sequence of ideas used to prove our results,
at a semi-intuitive, semi-technical level, that will hopefully simplify the reader’s task when reading
the formal proof.

Our goal is to transform a function f : {0, 1}l → {0, 1} which cannot be computed by circuits
of size k into a pseudo random generator with optimal seed length:

G : {0, 1}O(l) → {0, 1}m

that fools circuits of size m for large as possible m. (Our final result has m = kΩ(1/ log log(l/ log k))

which falls slightly short of the desired m = kΩ(1)). Our starting point is the NW-generator which
uses a larger seed under the same assumption:7

NW : {0, 1}
O(l2

log k
)
→ {0, 1}m

The proof of Nisan and Wigderson shows how to construct a circuit C which computes the function f
given any circuit A which is not fooled by their generator. The circuit C is constructed by combining

7This is not quite accurate. Actually the NW-generator starts from a slightly stronger assumption, that is that
the function is hard on average for circuits of size k and not only hard on the worst case. We ignore this difference
in the informal explanation because Sudan et al. [STV01] showed how to perform “hardness amplification” (that is
transforming a function that is hard on the worst case into one that is hard on the average). The transformation of
[STV01] doesn’t significantly affect the parameters of the function and therefore in this informal discussion we always
assume without loss of generality that a hard function is actually hard on average. The precise details are given in
the technical part.

5

A with a circuit C ′ that computes some function f ′ (which we elaborate on momentarily). Such a
function f ′ (which depends on f and A) is shown to exist. In order to guarantee that C is “small”,
Nisan and Wigderson have to make sure that f ′ has a small circuit C ′. They achieve this by setting
the parameters so that f ′ is a function over very few bits (and therefore has a small circuit by
a trivial exponential bound). However, it turns out that the size of the input of f ′ depends on
the seed length of the generator. If f is not assumed to be extremely hard, Nisan and Wigderson
have to increase the seed length to guarantee that f ′ has a small enough circuit to contradict the
hardness assumption.

The main idea of this paper is a ”win-win analysis” which uses the NW-generator with the
“wrong” parameters. We set the seed length to the optimal d = O(l) regardless of k, that is
regardless of how hard is the hard function f . (In contrast to the setting by Nisan and Wigderson
in which the seed length is set to O(l2/ log k).) This is not guaranteed to produce a pseudo-random
generator as the circuit C constructed by the argument of Nisan and Wigderson may be too large.
However, if this happens and the Nisan-Wigderson argument fails to show that the generator is
pseudo-random, then f ′ does not have a small circuit. More precisely, f ′ requires a circuit of
size roughly the same as that of the best circuit for f . The parameters are chosen in a way that
guarantees that the input length to f ′ is smaller than that of f (say only a half of the input size of
f). Thus, (since we measure the complexity of functions relative to the length of their input), f ′ is
actually much harder than f ! We conclude that when setting the parameters this way, either we
obtain a pseudo-random generator with optimal seed length or we obtain a harder function than
the one initially supplied.

We then use this idea recursively trying to construct a generator from f ′. Once again either
we construct a pseudo random generator with optimal seed length or we obtain a harder function.
Eventually, if we fail to construct a pseudo-random generator we obtain a function which is ex-
tremely hard (a function on l′ bits that requires circuits of size 2Ω(l′)) and can use the standard
Nisan-Wigderson analysis to construct a pseudo-random generator. Thus, our construction can be
viewed as a reduction from the general case of arbitrary hardness to the solved case of exponential
hardness.

The main complication when trying to implement the argument above is that the identity of
the function f ′ is determined by a probabilistic argument – it only shows the existence of such
a function but does not tell us how to find it. More precisely, the argument shows that we can
index 2O(l) functions, one of which is the required one. Considering all these potential functions
at all levels of recursion, we can picture a tree. The root is labelled by the initial function f . The
descendants of a node labelled by a function g are the (2O(l)) functions which may arise as f ′ when
using the NW-argument on the function g. We consider such a tree. By choosing the parameters
carefully we get that the tree is of height O(log log(l/ log k)) and the leaves are functions on only
O(log k) inputs.

One can construct a generator from all functions labelling nodes of this tree. This approach
produces many (roughly 2O(l)) candidate generators. We claim that one of them is guaranteed to be
pseudo-random. If none of the generators in the internal nodes is pseudo-random then there must
be a function at a leaf which has hardness roughly k. Such a function has exponential hardness
and thus the generator constructed from it is pseudo-random by the Nisan-Wigderson argument.

To complete the construction we show how to “combine” all the candidate into a single pseudo-
random generator.8 Two natural ideas come to mind.

8We note that at this point we can easily get a ”hitting-set generator” by using an additional seed to choose a

6

• In every node of the above tree replace the functions f1, · · · , f2O(l) by a single function with
two arguments: f̄(i, x) = fi(x). Certainly, if one of the candidate functions is hard so is the
“concatenated” function.

• Combine all the candidate generators by running them with independently chosen seeds and
take the exclusive-or of the outputs. Certainly, if one of the candidates is pseudo-random, so
is the xor-generator.

Both ideas fail in our setting due to the huge number of candidates. The first idea will cause
the input size of f̄ to be significantly larger than that of any of the fi’s as the length of i is larger
than l. We will no longer have that f̄ is over fewer bits than f and will not be able to deduce that
f̄ is harder than its ancestor. The second idea blows the seed length by a factor of the number of
candidate generators.

However, both ideas are essential components of our construction. In order to be able to use
them we need to reduce the degree of the tree from 2O(l) to poly(k), where k is the hardness of the
original function f . Assume for the moment that this can be magically done. Once achieved, the
first idea is applicable since the length of the added input is now at most O(log k) (which will not
drastically increase the input length of functions in the tree). In other words, a tree of such a small
degree (poly(k) can be collapsed into a path whose length is the depth of the tree.

Since this path is of small length O(log log(l/ log k)), we can now apply the second idea and
xor these few candidate generators. We avoid even the small loss to be suffered because of their
number by arranging the seed lengths of different levels to go down geometrically.

The missing important step is cutting down the degree of the tree from 2O(l) to k2. This requires
a slightly finer inspection of the argument of Nisan and Wigderson. We show that when we fail
to produce a pseudo-random generator, not only one of the descendants of the function is hard,
but rather a non-negligible fraction of them, (more precisely a 1/k-fraction). Thus, if we randomly
sample k2 descendants we almost surely “hit” a hard one if it exists. We will only run the recursion
on these k2 descendants. Of course, trivial sampling costs more random bits than we can afford,
but this can be done just as well with pairwise independence. This additional randomness is added
to the seed and increases the seed length of the generator only by O(l) bits which we can indeed
afford. This completes the argument.

There is however some price to performing this recursion. The circuit lower bound we can
guarantee for f ′ is slightly smaller than we can guarantee for f . (If f requires circuits of size k,
we can only guarantee that f ′ requires circuits of size k/mO(1)). This loss is accumulated over
the log log(l/ log k) levels and causes us to have output length m = kΘ(1/ log log(l/ log k)) rather than
kΩ(1).

This difficulty can be avoided when applying Trevisan’s technique for constructing extractors.
In such a case the hardness measure can be changed from circuit size to description size, (which
we define formally using Kolmogorov Complexity). This is beneficial because the procedure which
constructs a circuit for f given a circuit for f ′ can be described using many fewer bits than the
size of the final circuit. Using this measure the hardness guarantee we get on f ′ is much larger,
(k − O(m) instead of k/mO(1)), and as a result, we can increase m and extract any polynomial
fraction of the initial entropy and at the same time simplify the argument.

random candidate.

7

1.5 History of this paper

This paper is the combination of two conference papers by the same authors. The first paper,
[ISW99] included the idea of using the NW-generator with the wrong parameters and performing
the “win-win” analysis. We then constructed all candidate generators in the tree, and showed how
to combine them into a hitting set generator with optimal seed length. This in turn suffices for
derandomizing two-sided error probabilistic algorithms using the results of [ACR96, ACRT99]. We
also gave a more direct argument in which we conduct a ”tournament” between all the candidate
pseudo-random generators. While we cannot guarantee that the winning candidate is a pseudo-
random generator, we can guarantee that it could be used to derandomize a given probabilistic
algorithm on a given input. This gives a derandomization of BPP .

The second paper, [ISW00] performed the combination of candidate generators into a single
pseudo-random generator and constructed optimal seed extractors. The version presented here is
mostly based on that paper.

1.6 Organization of the paper

In section 2, we define pseudo-random generators and extractors, state our exact results, and present
the necessary background definitions and results. In section 3, we present our main construction,
and prove that it “transforms hardness into pseudo-randomness”. In section 4, we show how to
deduce our results from the main construction. In section 5 we discuss notions of optimality for
pseudo-random generators. In section 6, we discuss open problems and mention subsequent work.

2 Definitions and Ingredients

Notation Let Um be the uniform distribution on m bit strings, and let x ∈D {0, 1}m mean that
x is selected from all m bit strings according to probability distribution D. For a function G on
d bits, we use G(Ud) to denote the distribution obtained by applying G on a random sample from
Ud.

2.1 Complexity measures for functions and strings

We identify between functions f : {0, 1}l → {0, 1} and strings in {0, 1}n=2l
in the obvious way

setting fi = f(i). This identification is helpful since we use two complexity measures: circuit
complexity (which is defined for functions and is the measure we use for constructing pseudo-
random generators) and Kolmogorov complexity (which is defined for strings and is the measure
we use for constructing extractors). For both measures, we argue that our construction transforms a
“hard” function/string into a “pseudo-random” distribution. The exact meaning of this statement
is that if a test A is not fooled by the “pseudo-random” distribution then A can be used as an
oracle to compute/describe the initial function/string. This is why we define circuit complexity
and Kolmogorov complexity relative to a predicate A.

Definition 2.1 (circuit complexity). Let A be a predicate on m bit inputs.

worst case: Define SA(f) to be the size of the smallest circuit that computes f and is allowed to
use A-gates, (in addition to the standard boolean gates). We use S(f) to denote the circuit
complexity of f .

8

average case: For 0 < δ < 1/2 , let SA,δ(f) be the minimum of SA(f ′) over all strings f ′ with
hamming distance at most δ|f | from f .

The last item in the above definition measures circuit complexity of functions on the average
over a random input. If SA,δ(f) is large, then f is not only hard to compute, but also hard to
compute on average. We proceed and define these concepts for Kolmogorov complexity.

Definition 2.2 (Kolmogorov Complexity). Let A be a predicate on m bit inputs.

worst case: Define KA(f), the Kolmogorov complexity of f given A, as the length (in bits) of the
smallest description of an oracle Turing Machine which, using oracle A, outputs f .

average case: For 0 < δ < 1/2 , let KA,δ(f) be the minimum of KA(f ′) over all strings f ′ with
hamming distance at most δ|f | from f .

2.2 Pseudo-random generator schemes

Trevisan, [Tre01] discovered that any conversion of hard functions into pseudo-random generators
with certain ”relativization properties” also gives extractors. The following definition summarizes
these properties.

Definition 2.3. A (k, ε)-pseudo-random generator scheme is a function G : {0, 1}n × {0, 1}d →
{0, 1}m with the following property: For any f ∈ {0, 1}n and predicate A on m bits, if Gf does not
ε-fool A then SA(f) ≤ k. We say that a family of pseudo-random generator schemes is explicit if
it can be computed in time polynomial in n.

Note that given an explicit pseudo-random generator scheme any hard function can be used
to construct a pseudo-random generator by ”plugging” the truth table of the hard function as the
first input to the pseudo-random generator scheme. We use the following notation:

Definition 2.4. For a function G : {0, 1}n × {0, 1}d → {0, 1}m and h ∈ {0, 1}n we define Gh :
{0, 1}d → {0, 1}m by Gh(x) = G(h, x) and call it the generator derived from G by h.

The following Lemma immediately follows.

Lemma 2.5. Assume there exists a function f = {fl} which is computable in time 2O(l) and for all
l, S(fl) > k(l). Furthermore assume there is an explicit (k(l)/m(l), ε(l))-pseudo-random generator

scheme G : {0, 1}2l
× {0, 1}d(l) → {0, 1}m(l) with d(l) ≥ l. Then Gf : {0, 1}d(l) → {0, 1}m(l) is a

(ε(l), m(l))-pseudo-random generator which is computable in time 2O(l).

We remark that the condition that d(l) ≥ l is unnecessary as we later show that any pseud-
random generator scheme has d(l) ≥ l.

Proof. (of Lemma 2.5). For every l we consider G′
l = Gfl . That is we supply the truth table of fl as

the first input of G. We compute G′
l by first computing the truth table of fl (which takes time 2O(l))

and then feeding it to G. The total time is polynomial in 2l. If G′
l(·) isn’t (ε, m)-pseudo-random

then there’s a circuit A of size m which is not ε-fooled by Gfl . It follows that SA(fl) ≤ k(l)/m(l)
which gives S(fl) ≤ k(l).

9

Trevisan observed that all known hardness versus randomness tradeoffs actually construct ex-
plicit pseudo-random generator schemes. Our construction is no exception. He also proved that
any such scheme is an explicit extractor. It turns out that for this connection it is more natural to
replace circuit complexity by Kolmogorov complexity.

Definition 2.6. A (k, ε)-extractor scheme is a function G : {0, 1}n × {0, 1}d → {0, 1}m with the
following property: For any f ∈ {0, 1}n and predicate A on m bits, if Gf does not ε-fool A then
KA(f) ≤ k.

It immediately follows that a pseudo-random generator scheme is an extractor scheme.

Lemma 2.7. Any (k, ε)-pseudo-random generator scheme is a (O(k log k), ε)-extractor scheme.

Proof. This follows because any circuit of size k can be described by O(k log k) bits.

The converse is not necessarily true. The following Theorem, (by [Tre01]) asserts that extractor
schemes are extractors.

Theorem 2.8. (implicit in [Tre01]) Any (k, ε)-extractor scheme is a (k + log(1/ε), 2ε)-extractor.

Proof. Let Ext be a (k, ε)-extractor scheme, let A be any test, and let P be a distribution with
min-entropy at least k + log(1/ε). The bias of A on Ext(P, Ud) is the expectation for h ∈P {0, 1}n

of the bias of A on Exth. For all but 2k h’s, the latter bias has absolute value less than ε. The at
most 2k exceptions have total probability at most ε. Therefore, the total bias is at most 2ε.

There is also a partial converse:

Lemma 2.9. Any explicit (k, ε)-extractor is a (k + O(1), ε)-extractor scheme.

Proof. Let Ext be a (k, ε)-extractor. Let HA be the set of all h so that Exth does not ε-fool A. HA

is constructible using A as an oracle, so KA(h) ≤ log |HA|+ O(1) for any h ∈ HA. Without loss of
generality, assume that, for half the elements h in HA, A is ε more likely for an output of Exth than
for a random element. Then the same is the case if h is chosen uniformly from this subset of HA,
and x is chosen uniformly, and we compute A(Ext(h, x)). Thus, by the definition of extractors,
this distribution on A has min-entropy less than k , i.e., |HA|/2 < 2k or log |HA| < k + 1.

Following Trevisan, we use Theorem 2.8 to reduce the problem of constructing extractors into
proving hardness versus randomness tradeoffs.

2.3 The Nisan-Wigderson generator

Almost all schemes of converting hardness into pseudo-randomness, as well as some extractor
constructions, use the NW-generator from [NW94]. Their construction converts a “hard” Boolean
function f on l bit inputs, into a pseudo-random generator taking an input seed of size d > l to
an output of length m >> d. To use the construction for derandomization, one needs to specify
the hard function f , and a family ∆ of subsets of {1, · · · , d} such that each pair of sets has small
intersection. Such families are called “designs”, and the intersection sizes determine the quality of
the pseudo-random generator.

Definition 2.10 (designs). A family of sets ∆ = (S1, · · · , Sm ⊆ [d]) is called a (l, u)-design if

10

• For all i, |Si| = l.

• For all i 6= j, |Si ∩ Sj | ≤ u.

Definition 2.11 (The NW-generator). Let l < d < m be integers, and let n = 2l. Let ∆ be a
(l, u)-design. Define a function NW ∆ : {0, 1}n × {0, 1}d → {0, 1}m in the following way: Given
f ∈ {0, 1}n and x ∈ {0, 1}d, we view f as a function over l = log n bits, (by having f(v) = fv). Let
x|S denote the |S| bit string obtained by restricting x to the indices in S. Define:

NW∆(f, x) = f(x|S1) ◦ f(x|S2).. ◦ f(x|Sm)

For a fixed f , let NW f,∆ be the function from {0, 1}d to {0, 1}m defined by NW f,∆(x) = NW∆(f, x).

Given ∆, f and x as inputs, NW∆(f, x) can be computed in polynomial time in (n, d) and in
particular NW f,∆(x) can be computed, given ∆, in time polynomial in m, with an oracle for f .

Theorem 2.12. (see for example, Lemma 13 in [RRV02]) There exist constants c1, c2 such that for
every l, d, m, such that l < d < m and d > c2 log m there exists a (l, u)-design ∆ = (S1, · · · , Sm ⊆

[d]), with u = max(c1l2

d , log m), Furthermore, this design can be constructed in time poly(2d).

Remark 2.13. It can be shown that the designs constructed by Nisan and Wigderson are optimal
up to constants for the parameters we are interested in. Thus, it is impossible to improve the seed
length of the NW-generator by constructing more efficient designs. More precisely, shooting for the
optimal seed length d = O(l), it has to be the case that u = Ω(l). This follows directly from the
inclusion-exclusion formula, see [ISW99] for details.

In [RRV02] it was observed that a weaker combinatorial property (which they call “weak de-
signs”) is sufficient for performing the analysis of Nisan and Wigderson. Weak designs are better
than designs when u is very small. However, the lower bound of u = Ω(l) when d = O(l) applies also
to weak designs. Our construction can be carried out with weak designs but this does not improve
the parameters of our pseudo-random generators/extractors.

The proof that the NW construction is a good pseudo-random generator involves looking at
certain restrictions of f .

Definition 2.14. Given an (l, u)-design ∆ = (S1, · · · , Sm ⊆ [d]) and a function f : {0, 1}l → {0, 1},
define a collection of functions R∆

f = {f∆
i,j,β |β ∈ {0, 1}d, 1 ≤ i < j ≤ m} as follows:

f∆
i,j,β : {0, 1}u → {0, 1}

is the function defined by: On input z ∈ {0, 1}u, construct a string s ∈ {0, 1}d by first assigning,
for each p 6∈ Si ∩ Sj, sp = βp, and then filling the remaining (at most) u bits according to (the first
bits of) z.

f∆
i,j,β(z) = NW f,∆(s)j

For 1 ≤ i ≤ m, let f∆
i,β(j, z) = f∆

i,j,β(z). We refer to these functions as the “restrictions” of f . Note
that the input size of each such restriction is u + log m.

11

Note that given ∆ and a function f (encoded as a n = 2l bit truth table) and β ∈ {0, 1}d the
truth table of f∆

i,β can be computed in time poly(2l). These functions are over u+log m bits, which

trivially entails that S(f∆
i,β) and K(f∆

i,β) are bounded by m2u.

The following Lemma is implicit in [NW94]9:

Lemma 2.15. There is a polynomial-time oracle Turing Machine M g,A with the following property.
Assume NW f,∆ does not ε-fool a test A. Choose uniformly a β, an i, an m bit string α, and an l
bit string x. Then if M is run on (x, α, β) using oracles g = f∆

i,β and A

|Prob[Mg,A(x, i, α, β) = f(x)] − 1/2| = Ω(ε/m)

The conclusion of Lemma 2.15 is that when given oracle access to a test A which is not fooled
by the NW-generator we can use g to compute f (or the negation of f) correctly on a 1/2+Ω(ε/m)
fraction of the inputs. For completeness we give a proof of Lemma 2.15. We need the following
theorem which is a variant of the ”distinguisher to next-bit predictor” lemma of [Yao82, GM84].10

Theorem 2.16. [Yao82] There is a polynomial time oracle Turing Machine MA with the following
property. Assume a distribution b = (b1, · · · , bm) on {0, 1}m does not ε-fool a test A. Choose
uniformly an i and an m bit string α. Then if M is run on (b1, · · · , bi−1; α) using oracle A,

|Prob[MA(b1, · · · , bi−1; α) = bi] − 1/2| = Ω(ε/m)

Proof. (of Lemma 2.15) Let (b1, · · · , bm) denote the distribution NW f,∆ and let A be a test that is
not ε-fooled by this distribution. We now explain how to construct the machine M . Recall that the
machine is given uniformly chosen (x, i, α, β). We first think of i and α as fixed and show how to
use the oracle access to f∆

i,β to generate the distribution b1, . . . , bi from the randomly chosen x and
β. We start by using x and β to construct a seed s for the generator. Let us denote the elements
of Si by {a1 < · · · < al}. For each p 6∈ Si, we set sp = βp. We fill the remaining l places with
x by setting sav = xv. Note that s is uniformly distributed when x, β are uniformly distributed
and therefore the distribution NW f,∆(s) is identical to (b1, · · · , bm). We now have the following
equalities.

9[NW94] prove that NW f,∆ is ε-pseudo-random for all tests computable in size S1/2−Ω(ε/m)(f)/(m2u). This means
that the existence of functions which are “hard to approximate” implies the existence of a pseudo-random generator.

With the above terminology, the original argument of [NW94] can be presented this way: [NW94] uses designs
with very small u, (which in turn forces d to be relatively large). This makes the circuit complexity of all the f∆

i,β ’s

relatively small. Lemma 2.15 shows that any circuit A of size m which is not fooled by NW f,∆ can be combined with
the circuits for the restricted functions to construct a circuit of size poly(m)2u which approximates f . Thus, if f is
assumed to be hard to approximate by such circuits, the distribution induced by the generator is pseudo-random for
Sizem.

The observation that the proof of Nisan and Wigderson relativizes was made in [KvM02]. This observation is
important for Trevisan’s extractor, [Tre01]. The observation added here is that the argument of Nisan and Wigderson
connects the complexity of f and its restrictions.

10The standard variants of this argument transforms a distinguisher for the distribution b1, · · · , bm into a predictor
which when given b1, · · · , bi−1 predicts the next bit bi. In this variant we only demand that the predictor output is
correlated with the bit bi (but not necessarily positively correlated). Nevertheless, the standard proof of this theorem
works by first achieving this goal and then choosing whether to keep the output bit or flip it. We settle for this
weaker notion because we want a uniform reduction which uses few random bits. However, we could have replaced
the machines in both Theorem 2.16 and Lemma 2.15 with nonuniform circuits which would have allowed us to use
the standard version and get almost the same results.

12

• bi = f(x).

• For j < i, bj = f∆
i,j,β(s|Si∩Sj).

We get that for all j < i, bj can be computed from x and β using f∆
i,j,β . Thus, having oracle to

f∆
i,β we can compute b1, · · · , bi−1. We now use the Turing machine of Theorem 2.16 to give a good

estimate on bi = f(x).

The Lemma above can be used to connect the complexity of the original function, that of the
restricted functions, and the power of the generator.

Corollary 2.17. If NW f,∆ does not ε-fool A, then for an Ω(ε/m) fraction of pairs β and i:
SA,1/2−Ω(ε/m)(f) ≤ SA(f∆

i,β) · mO(1)

Corollary 2.17 gives that if NW f,∆ does not fool A, then some of the restrictions can be used
to show that f is “easy”, (at least in the sense that there exists a small circuit that uses A gates
and “approximates” f). As we explained in the introduction, this is useful since all the restrictions
are on only u + log m bits.

Proof. (of corollary 2.17) By Lemma 2.15 if NW f,∆ does not ε-fool A, then by averaging there
exists an α ∈ {0, 1}m such that:

|Probx,i,β [Mf∆
i,β ,A(x, α, β) = f(x)] − 1/2| = Ω(ε/m)

By a Markov argument this gives that for a Ω(ε/m) fraction of pairs (β, i):

|Probx[Mf∆
i,β ,A(x, α, β) = f(x)] − 1/2| = Ω(ε/m)

Fix such a pair of β and i. We have that the output on a uniformly chosen x is correlated with
f(x). The equation above can be expressed in the following form: There is a bit b ∈ {0, 1} so that

Probx[Mf∆
i,β ,A(x, α, β) ⊕ b = f(x)] ≥ 1/2 + Ω(ε/m)

By ”hard-wiring” α, b, β, i and the circuit for f∆
i,β to M , we get the circuit promised in the

Corollary.

An analogous argument can be used to state Corollary 2.17 for Kolmogorov Complexity. It turns
out that by considering Kolmogorov complexity the same argument gives much better parameters!
This happens because in the Kolmogorov complexity setting, the running time of M doesn’t count.
We only have to specify (α, b, β, i). The total length of these strings is m + O(log m) ≤ 2m. Note
that as we only need to specify these strings we get an additive term and not a multiplicative term.

Corollary 2.18. If NW f,∆ does not ε-fool A, then for an Ω(ε/m) fraction of pairs β and i:
KA,1/2−Ω(ε/m)(f) ≤ KA(f∆

i,β) + 2m

13

2.4 Xoring generators

We need a technique for combining many candidate generators where one of them is guaranteed to
fool a test A. We’d like to “xor” them all on independent seeds to get one generator. A technical
inconvenience is that the “xor generator” does not necessarily fool A. The following definition and
trivial Lemma enable us to overcome this difficulty.

Definition 2.19. For a predicate A on m bits and y ∈ {0, 1}m, define a predicate A⊕y on m bits
by having A⊕y(x) = A(x ⊕ y). Define A⊕ to be the class of all predicates A⊕y.

Lemma 2.20. Let P1, · · · , Pr be distributions on {0, 1}m and A : {0, 1}m → {0, 1} be a predicate.
Suppose that one of the Pi’s is ε-pseudo-random for A⊕. Consider the distribution P̄ = P1⊕· · ·⊕Pr,
which samples independently zi ∈Pi {0, 1}m, and outputs z1 ⊕ · · · ⊕ zr. Then the distribution P̄
ε-fools A.

Proof. Suppose Pi is ε-pseudo-random for A⊕. Without loss of generality, assume i = r.

Prz∈P̄ {0,1}m(A(z) = 1) = Ez1∈P1
{0,1}m,··· ,zr−1∈Pr−1

{0,1}m ,
[

Przr∈Pr{0,1}m(A(z1 ⊕ · · · ⊕ zr) = 1)
]

Fix z1, · · · , zr−1 arbitrarily and let y = z1⊕· · ·⊕zr−1. We know that Pr ε-fools A⊕y, and therefore

|Przr∈Pr{0,1}m(A(z1 ⊕ · · · ⊕ zr) = 1) − Prz∈R{0,1}m(A(z) = 1)| ≤ ε

Taking expectation over z1, · · · , zr−1, we get that P̄ ε-fools A.

The price of Lemma 2.20 is that if you have two candidate generators G1 : {0, 1}d1 → {0, 1}m,
G2 : {0, 1}d2 → {0, 1}m the ⊕-generator G(x1, x2) = G1(x1)⊕G2(x2) takes a seed of length d1 +d2.
This means that “xoring” many generators blows up the seed length. We want to only increase the
seed length of a single generator linearly. We will be able to avoid increasing the total seed length
by more than a constant factor over that of G1 by making sure that the seed lengths are decreasing
exponentially.

Let us rephrase corollaries 2.17, 2.18, and replace A by A⊕. This change does not affect the
parameters by much. To convert a circuit using A⊕y gates to one using A gates, we can replace
the A⊕y gates with A gates, and negate wires going to the i’th input of an A⊕y gate if yi = 1. This
gives:

Corollary 2.21. If NW f,∆ is not ε-pseudo-random for A⊕, then for an Ω(ε/m) fraction of pairs
β and i: SA,1/2−Ω(ε/m)(f) ≤ SA(f∆

i,β)(mO(1))

As to Kolmogorov complexity, note that by giving y, we can convert a machine with oracle
access to A⊕y into one with oracle access to A.

Corollary 2.22. If NW f,∆ is not ε-pseudo-random for A⊕, then for an Ω(ε/m) fraction of pairs
β and i: KA,1/2−Ω(ε/m)(f) ≤ KA(f∆

i,β) + 4m

14

2.5 Hardness Amplification

The above connections relate the quality of the generator and the complexity of the specified
restrictions to the complexity of approximating the function f , i.e., computing a function f ′ that
has non-negligible correlation to f . Much of the work on improving the results in [NW94] concerns
constructing a hard to approximate function from one that is hard to compute in the worst-case
([BFNW93, Imp95, IW97, STV01]). This process is usually called hardness amplification. Here,
we use the hardness amplification from [STV01], which is nearly optimal.

Theorem 2.23. [STV01] There exists a polynomial time algorithm that given a function f :
{0, 1}l → {0, 1} (encoded as a 2l bit truth table) and ρ > 2−l, produces the truth table of a function
f̂ : {0, 1}4l → {0, 1}, with the following properties for any predicate A:

1. SA(f) ≤ SA,1/2−ρ(f̂)(l
ρ)O(1)

2. KA(f) ≤ KA,1/2−ρ(f̂) + O(log 1
ρ)

Remark 2.24 (List decoding and Kolmogorov Complexity). The first item in Theorem 2.23
explicitly appears in [STV01]. The second item which concerns Kolmogorov complexity immediately
follows from the construction of [STV01] as we now explain.

A list decodable code is a mapping C from n bits to n̄ > n bits such that every A ∈ {0, 1}n̄ has
few f ∈ {0, 1}n such that C(f) is close to A in Hamming distance. In other words given a list
decodable code and A ∈ {0, 1}n̄ any f for which f̂ = C(f) is close to A has small description size
KA(f). The construction of [STV01] is of a list decodable code C which runs in polynomial time.
The second item in Theorem 2.23 follows.

Combining this with the corollaries from the last section gives the following analogous results
for circuit complexity and Kolmogorov complexity. Note that again the same argument produces
more efficient parameters in the Kolmogorov complexity setting.

Corollary 2.25. If NW f̂ ,∆ is not ε-pseudo-random for A⊕, then for an Ω(ε/m) fraction of pairs
β and i: SA(f) ≤ SA(f̂∆

i,β)(m/ε)O(1)

Corollary 2.26. If NW f̂ ,∆ is not ε-pseudo-random for A⊕, then for an Ω(ε/m) fraction of pairs
β and i: KA(f) ≤ KA(f̂∆

i,β) + 4m + O(log m
ε)

The above Lemmas give the same intuitive connection between the hardness of the function f
and its restrictions. The difference is that now we measure “worst-case” hardness in both sides of
the inequality. This enables us to use these corollaries recursively.

3 A recursive application of the Nisan-Wigderson generator

In this Section we give our main construction and prove its correctness.

3.1 The construction

We use the same construction both for pseudo-random generators and extractors. Our goal is to
construct a function Rec : {0, 1}n × {0, 1}d → {0, 1}m. Below we explain how to construct the
function Rec when given parameters n and m and a function Base that serves as the base of the
recursion.

15

Ingredients:

• An integer n (the desired length of the first input of Rec).

• An integer m < n (the desired output length of Rec).

• A function Base : {0, 1}m6
×{0, 1}dBase → {0, 1}m. This is going to be an extractor/pseudo-

random generator that is going to be the base of the recursion.

Result: A function Rec : {0, 1}n × {0, 1}d → {0, 1}m where d = O(log n) + dBase.

The inputs of Rec: The function Rec : {0, 1}n × {0, 1}d → {0, 1}m gets inputs f ∈ {0, 1}n and
y ∈ {0, 1}d. Let l = log n. Let c3 be a constant to be determined later, and let r be
a parameter to be determined later. We define a sequence of integers d1, · · · , dr by dt =
c3l/2

t−1 = c3 log n/2t−1. We interpret the string y as a sequence of three parts defined as
follows:

• A string sBase of length dBase.

• A string s composed of r strings s1, · · · , sr where for each 1 ≤ t ≤ r, st ∈ {0, 1}dt .
Note that as the di’s are a geometric progression the total length of s is bounded by
2d1 = 2c3 log n.

• A string p composed of r strings p1, · · · , pr where for each 1 ≤ t ≤ r, pt ∈ {0, 1}4dt . Note
that the total length of p is bounded by 8d1 = 8c3 log n.

By this choice d = 10c3 log n + dBase which is O(log n) + dBase as we have promised.

The operation of Rec: The function Rec constructs r + 1 function f1, · · · , fr+1. This is done
recursively as follows:

• Set f1 = f and l1 = l.

• For t > 1 we now explain how to construct ft+1 : {0, 1}lt+1 → {0, 1} from ft : {0, 1}lt →
{0, 1}.

• Let l̂t = 4lt. Apply Theorem 2.23 on ft and obtains the function f̂t : {0, 1}l̂t → {0, 1}.

• Let ut = max(c1 l̂t
2

dt
, log m) where c1 is the constant from Theorem 2.12. Apply Theorem

2.12 to construct a (l̂t, ut)-design ∆t using dt as the “d-parameter” of the design (recall
that this measures the size of the universe in which the sets live).

• We define zt = NW f̂t,∆t(st) (that is applying the Nisan-Wigderson generator with the
(hardness amplified) version of ft using the seed st).

• Use pt as randomness to pick m4 elements in [m] × {0, 1}dt in a pairwise independent
way. Let’s denote these elements by (it,q, βt,q) for 1 ≤ q ≤ m4.11

• For each 1 ≤ q ≤ m4 we consider the function (f̂t)
∆t

(it,q ,βt,q) : {0, 1}log m+ut → {0, 1}

defined in Definition 2.14. We then define ft+1 : {0, 1}4 log m+log m+ut → {0, 1} by:

ft+1(q, j, z) = (f̂t)
∆t

(it,q ,βt,q)(j, z)

We define lt+1 = 5 log m + ut (so that lt+1 is the input length of ft+1).

11Note that using linear functions (cf. [CG89]) choosing less than 2a pairwise independent elements in {0, 1}a can
be done using 2a bits. Thus, we need 2(dt + log m) random bits. Recall that dt ≥ ut ≥ log m and therefore the total
number of random bits required is at most 4dt and we can use pt for this purpose.

16

• We showed how to define lt+1, ut+1 and ft+1 using lt, ut and ft. We continue this process
recursively and let r be the first integer so that ur = log m. The recursion stops at this
point having defined fr+1.

Finally, let zBase = Basefr+1(sBase) and the final output of Rec is z1 ⊕ z2 ⊕ ... ⊕ zr ⊕ zBase.

As explained in the introduction, the main idea in the construction above is to maintain that
if the Nisan-Wigderson generator fails to fool a test A when applied with the function f̂t then
assuming ft is “hard to compute/describe using A” we get that ft+1 is even harder.

Before showing that the construction produces pseudo-random generators and extractors we first
need to verify that the construction above is well defined. That is that the recursive process above
terminates. This is done in the next lemma that gives a bound on r (the number or applications of
the recursion). In addition the lemma also asserts that when the recursion stops the last function
fr is over only O(log m) bits.

Lemma 3.1. The constant c3 in the construction can be chosen so that for any n, m the recursion
terminates, and when it does

r ≤ log log
log n

log m

and lr+1 = 6 log m.

Proof. Recall that the recursion continues as long as ut > log m. We now study the behavior of ut in
these steps. We first derive a bound on ut+1 as a function of ut. Recall that lt+1 = ut+5 log m ≤ 6ut

assuming the recursion does not stop at this step. It follows that l̂t+1 = 4lt ≤ 24ut and ut+1 is

given by
c1 l̂2t+1

dt+1
≤ c1(24ut)2·2t

c3l where here we also used the fact that dt = c3l/2
t−1.

Suppose we have for some t that

ut ≤
cit
1 · (24l)jt · 2kt

(c3l)it
(1)

(Note that this is indeed the case for t = 1 with it = 1, jt = 2 and kt = 0). Then using the
bound we derived for ut+1 we get that:

ut+1 ≤
c2it+1
1 · (24l)2jt · 22kt+t

(c3l)2it+1

We conclude that (1) holds for all t ≤ r with:

• i1 = 1 and it+1 = 2it + 1 which gives it = 2t − 1.

• j1 = 2 and jt+1 = 2jt which gives jt = 2t

• k1 = 0 and kt+1 = 2kt + t which gives

kt =
∑

1≤i≤t−1

2i−1(t − i) ≤ 2t−1
∑

1≤i≤t−1

2−(t−i)(t − i) ≤ 2t−1
∑

1j≤j≤t−1

2−jj ≤ c42
t

For some constant c4 > 0.

17

Thus, we have that:

ut ≤
c2t−1
1 · (24l)2

t
· 2c42t

(c3l)2
t−1

≤ 24 · 2c4 · l ·

(

c1 · 2
c4

c3

)2t−1

We can pick c3 large enough as a function of c1, c4 so that

ut ≤
l

22t (2)

It follows that there is an r ≤ log log l
log m = log log log n

log m such that ur = log m and the recursion
stops. By definition lr+1 = ur + 5 log m = 6 log m.

The Lemma above also implies that Rec can be computed in time polynomial in n.

Remark 3.2. It is instructive to consider what would have happened if we had set up the parameters
in a different way. The more obvious choice would have been to use the “same design parameters”
in all applications. That is choose dt = c3lt for all t and then use the design with these parameters.
This choice is easier to calculate. We get that lt+1 = lt/2 which gives ut = l/2t. This would make
the recursion run for more steps (as with our settings we get that ut = l/22t

). Intuitively, we
want to keep dt fixed to c3l during the recursion and benefit from the fact that lt decreases quickly.
Nevertheless, we also want to have the property that

∑

dt = O(l). To achieve this we arrange dt

as a geometric series. The point is that dt decreases much slower than lt and therefore we get the
same effect as if dt was fixed.

3.2 Correctness of the construction

We now state two lemmas showing that our construction yields pseudo-random generators and
extractors when applied with the correct ingredients.

Lemma 3.3 (Constructing pseudo-random generator schemes). There exists some con-
stant c > 0 such that for every integers n, m and kBase, if Base is an explicit (kBase, 1/2m)-
pseudo-random generator scheme Base : {0, 1}m6

× {0, 1}dBase → {0, 1}m, then Rec is an explicit
(kBasem

cr, 1/m)-pseudo random generator scheme with r ≤ log log log n
log m .

Lemma 3.4 (constructing extractor schemes). There exists some constant c > 0 such that
for every integers n, m and kBase, if Base is an explicit (kBase, 1/2m)-extractor Base : {0, 1}m6

×
{0, 1}dBase → {0, 1}m, then Rec is an explicit (kBase + crm, 1/m)-extractor scheme Rec : {0, 1}n ×
{0, 1}O(log n)+dBase → {0, 1}m with r ≤ log log log n

log m .

By Theorem 2.8 any extractor scheme is an extractor and so we can rephrase Lemma 3.4 in the
following form:

Lemma 3.5 (constructing extractors). There exists some constant c such that for every inte-
gers n, m and kBase, if Base is an explicit (kBase, 1/2m)-extractor Base : {0, 1}m6

× {0, 1}dBase →
{0, 1}m, then Rec is an explicit (kBase + crm, 2/m)-extractor Rec : {0, 1}n × {0, 1}O(log n)+dBase →
{0, 1}m with r ≤ log log log n

log m .

In both lemmata above, when shooting for output length m one needs to use a function Base
with output length m (which forces kBase ≥ m). The final quality of Rec (that is its k parameter)
is larger than kBase by a factor that depends on the number of levels of the recursion.

18

3.3 Proof of correctness for pseudo-random generator schemes

We now give the proof of correctness for pseudo-random generator schemes.

Proof. (of Lemma 3.3) Let r be the number of steps in the recursion. By Lemma 3.1 we have
that r ≤ log log log n

log m . We need to show that there exists a constant c > 0 such that Rec is a
(kBasem

cr, 1/m)-pseudo-random generator scheme. Let c be a constant to be chosen later and let
k = kBasem

cr. It remains to show that given any f ∈ {0, 1}n and a predicate A on m bits such
that SA(f) > k then Recf 1/m-fools A.

For every 1 ≤ t ≤ r we define the following two events over the probability space of choosing
p = (p1, . . . , pr):

• E1
t : NW f̂t,∆t is 1/2m-pseudo-random for A⊕.

• E2
t : SA(ft+1) ≥ SA(ft)/m

c.

Claim 1. For every 1 ≤ t ≤ r, Prp=(p1,...,pr)[E
1
t ∪ E2

t] ≥ 1 − O(1/m2).

Proof. (of claim 1) Fix some 1 ≤ t ≤ r. The function ft is a random variable that depends
only on p1, . . . , pt−1. It is sufficient to show that for any fixed values p1, . . . , pt−1, Prpt [E

1
t ∪ E2

t] ≥
1−O(1/m2) (where the difference is that the probability is only over the choice of pt). By Corollary
2.25 there exists a constant c (hidden in the O(·) notation of the corollary) such that if E1

t does
not occur then for a Ω(1/m2) of the pairs β ∈ {0, 1}dt and i ∈ [m] we have that

SA(ft) ≤ SA((f̂t)
∆t
i,β)mc (3)

Recall that in the definition of ft+1 we use pt to sample m4 pairs (it,1, βt,1), · · · , (it,m4 , βt,m4) in a
pairwise independent way. For 1 ≤ q ≤ m4 let Rq denote the indicator random variable for the
event that (it,q, βt,q) fulfil the condition in (3) and let R =

∑

q Rq denote the number of good pairs.

Note that the expected number of good pairs is Ω(m2) and that the Rq’s are pairwise independent.
Chebichev’s inequality gives that the probability that a sum of pairwise independent indicator
random variables is zero is bounded from above by 1/µ where µ is the expectation of the sum. We
conclude that with probability 1 − O(1/m2) there exists a q such that

SA(ft) ≤ SA((f̂t)
∆t
it,q ,βt,q

)mc

Note that as ft+1 “contains” (f̂t)
∆t
it,q ,βt,q

we have that given a circuit C (with A gates) that computes

ft+1 we can construct a circuit C ′ (with A gates) of the same size that computes (f̂t)
∆t
it,q ,βt,q

. Thus,
we get that:

SA(ft) ≤ SA(ft+1)m
c

and E2
t occurs as required.

We define E1 = ∪1≤t≤rE
1
t and E2 = ∩1≤t≤rE

2
t . By the Claim above we have that Prp=(p1,··· ,pr)[E

1∪
E2] ≥ 1 − Ω(r/m2) > 1 − 1/2m. Consider some fixed p = (p1, · · · , pr). It is sufficient to show that
for a (1 − 1/2m)-fraction of such values Recf (UdBase

, Ud1+···+dr , p1, · · · , pr) 1/2m-fools A as this
means that Recf 1/m-fools A as required.

If a fixing p = (p1, · · · , pr) makes E1 occur then there is a 1 ≤ t ≤ r such that NW f̂t,∆t

is 1/2m-pseudo-random for A⊕. For a fixed value of p = (p1, · · · , pr) the function Rec outputs

19

the exclusive-or of r + 1 independent distributions z1, · · · , zr and zBase (each generated using its

own seed). We have that zt is distributed like NW f̂t,∆t (when varying over the choice of st) and
therefore by Lemma 2.20 we conclude that Recf (UdBase

, Ud1+···+dr , p1, · · · , pr) 1/2m-fools A.
We now consider the case that the fixing p = (p1, · · · , pr) makes E2 occur. If this is the case

then
SA(f1) ≤ SA(fr+1)m

c·r

It follows that SA(fr+1) ≥ k/mc·r ≥ kBase and thus, by the assumption that Base is a (kbase, 1/2m)-
pseudo-random generator scheme we have that Recf (UdBase

, Ud1+···+dr , p1, · · · , pr) 1/2m-fools A.

3.4 Proof of correctness for extractor schemes

We now give the proof of correctness for extractor schemes. The argument is similar to that of
pseudo-random generator schemes with the exception that we measure hardness by Kolmogorov
Complexity. We give the full proof for completeness.

Proof. (of Lemma 3.3) Let r be the number of steps in the recursion. By Lemma 3.1 we have
that r ≤ log log log n

log m . We need to show that there exists a constant c > 0 such that Rec is a
(kBase + rcm, 1/m)-extractor scheme. We choose c = 5 and let k = kBase + rcm. It remains to
show that given any f ∈ {0, 1}n and a predicate A on m bits such that KA(f) > k then Recf

1/m-fools A.
For every 1 ≤ t ≤ r we define the following two events (over the probability space of choosing

p = (p1, . . . , pr):

• E1
t : NW f̂t,∆t is 1/2m-pseudo-random for A⊕.

• E2
t : KA(ft+1) ≥ KA(ft) − cm.

Claim 2. For every 1 ≤ t ≤ r, Prp=(p1,...,pr)[E
1
t ∪ E2

t] ≥ 1 − O(1/m2).

Proof. (of claim 2) Fix some 1 ≤ t ≤ r. The function ft is a random variable that depends
only on p1, . . . , pt−1. It is sufficient to show that for any fixed values p1, . . . , pt−1, Prpt [E

1
t ∪ E2

t] ≥
1−O(1/m2) (where the difference is that the probability is only over the choice of pt). By Corollary
2.26 if E1

t does not occur then for a Ω(1/m2) of the pairs β ∈ {0, 1}dt and i ∈ [m] we have that

KA(ft) ≤ KA((f̂t)
∆t
i,β) + cm (4)

Recall that in the definition of ft+1 we use pt to sample m4 pairs (it,1, βt,1), · · · , (it,m4 , βt,m4) in a
pairwise independent way. For 1 ≤ q ≤ m4 let Rq denote the indicator random variable for the
event that (it,q, βt,q) fulfil the condition in (4) and let R =

∑

q Rq denote the number of good pairs.

Note that the expected number of good pairs is Ω(m2) and that the Rq’s are pairwise independent.
Chebichev’s inequality gives that the probability that a sum of pairwise independent indicator
random variables is zero is bounded from above by 1/µ where µ is the expectation of the sum. We
conclude that with probability 1 − O(1/m2) there exists a q such that

KA(ft) ≤ KA((f̂t)
∆t
it,q ,βt,q

) + cm

20

Note that as ft+1 “contains” (f̂t)
∆t
it,q ,βt,q

we have that given a machine with oracle access to A that

describes ft+1 we can construct a machine with oracle access to A that computes (f̂t)
∆t
it,q ,βt,q

. Thus,
we get that:

KA(ft) ≤ KA(ft+1) + cm

and E2
t occurs as required.

We define E1 = ∪1≤t≤rE
1
t and E2 = ∩1≤t≤rE

2
t . By the Claim above we have that Prp=(p1,··· ,pr)[E

1∪
E2] ≥ 1 − Ω(r/m2) > 1 − 1/2m. Consider some fixed p = (p1, · · · , pr). It is sufficient to show that
for a (1 − 1/2m)-fraction of such values Recf (UdBase

, Ud1+···+dr , p1, · · · , pr) 1/2m-fools A as this
means that Recf 1/m-fools A as required.

If a fixing p = (p1, · · · , pr) makes E1 occur then there is a 1 ≤ t ≤ r such that NW f̂t,∆t

is 1/2m-pseudo-random for A⊕. For a fixed value of p = (p1, · · · , pr) the function Rec outputs
the exclusive-or of r + 1 independent distributions z1, · · · , zr and zBase (each generated using its

own seed). We have that zt is distributed like NW f̂t,∆t (when varying over the choice of st) and
therefore by Lemma 2.20 we conclude that Recf (UdBase

, Ud1+···+dr , p1, · · · , pr) 1/2m-fools A.
We now consider the case that the fixing p = (p1, · · · , pr) makes E2 occur. If this is the case

then
KA(f1) ≤ KA(fr+1) + mcr

It follows that KA(fr+1) ≥ k − mcr ≥ kBase and thus, by the assumption that Base is a
(kbase, 1/2m)-extractor and using Lemma 2.9 we get that Recf (UdBase

, Ud1+···+dr , p1, · · · , pr) 1/2m-
fools A.

4 Proof of the main Theorems

In this section we show how “plugging” different bases to our construction gives the previously
stated Theorems.

4.1 Pseudo-random generators

The generator of Theorem 1.4 can be achieved by using the generator of [IW97] (or the simplification
of [STV01]) as Base. The generator of [STV01] works by first applying their hardness amplification
scheme (Theorem 2.23) on the hard function f to obtain a function f̂ and then using the Nisan-
Wigderson generator with f̂ . In fact, this generator is a component in our construction, and so we
do not really need a “base function”. (In the formal proof we use a “bogus” base function that
is constant so that we can apply Lemma 3.3). We first restate Theorem 1.4 in the more general
terminology of pseudo-random generator schemes:

Theorem 4.1. For every k < n there is an explicit (k, 1/m)-pseudo-random generator scheme
E : {0, 1}n × {0, 1}O(log n) → {0, 1}m with m = kΩ(1/r) for r = log log log n

log m .

Proof. Given n and k let l = log n and c be the constant from Lemma 3.3 and choose m to be
the largest integer so that mcr+6 ≤ k. Note that m = kΩ(1/r). We use a “bogus” Base function.
Let Base : {0, 1}m6

× {0, 1}0 → {0, 1}m be the constant zero function. As any function over
6 log m bits has a circuit of size kBase = m6 it follows trivially that Base is a (kBase, 1/2m)-pseudo-
random generator scheme. Applying Lemma 3.3 we get that Rec : {0, 1}n ×{0, 1}O(l) → {0, 1}m is
(kBasem

cr, 1/m)-pseudo-random generator scheme as required.

21

Theorem 1.4 immediately follows from Theorem 4.1 and Lemma 2.5.

4.2 Extractors with large error

In this Section we apply our technique to construct extractors. Our technique is tailored towards
constructing extractors with error ε = 1/m. We explain how to get lower error in the next section.

Achieving seed length O(log n): We use Trevisan’s extractor as Base:

Theorem 4.2. [Tre01] For every δ > 0 there is an explicitly constructible family of (k, 1/m)-

extractors Extn,k : {0, 1}n × {0, 1}
O(log2n

log k
)
→ {0, 1}k1−δ

.

Applying Lemma 3.5 we obtain the following Corollary:

Corollary 4.3. For every δ > 0 there is an explicitly constructible family of (k, O(1/m))-extractors

Extn,k : {0, 1}n × {0, 1}O(log n) → {0, 1}k1−δ
.

Proof. (of Corollary 4.3) We use the extractor of [Tre01] (Theorem 4.2) as Base. Given a constant

δ, we pick kBase = 1
2 · m

1
1−δ . Indeed, the extractor of [Tre01] is an explicit (kBase, 1/2m)-extractor

Base : {0, 1}m6
× {0, 1}dBase → {0, 1}m, where dBase = O(log m). Using Lemma 3.5 we get that

Rec is an explicit (k, 1/m)-extractor, for k = 1
2 · m

1
1−δ + crm < m

1
1−δ . The seed length of Rec is

O(log n) + dBase = O(log n).

Extracting a larger fraction of the randomness: We use the extractor of Raz, Reingold and
Vadhan as Base:

Theorem 4.4. [RRV02] For every δ > 0 there is an explicitly constructible family of (k, 1/m)-

extractors Extn,k : {0, 1}n × {0, 1}O(log2 n) → {0, 1}(1−δ)k.

Applying Lemma 3.5 we obtain the following Corollary:

Corollary 4.5. There is an explicitly constructible family of (k, O(1/m))-extractors Extn,k : {0, 1}n×

{0, 1}O(log n+log2 k) → {0, 1}m, for m = Ω(k
log log(log n/ log k)).

Proof. (of Corollary 4.5) We use the extractor of [RRV02] (Theorem 4.4) as Base. We pick kBase =
2m. Indeed, the extractor of [RRV02] is an explicit (kBase, 1/2m)-extractor Base : {0, 1}m6

×
{0, 1}dBase → {0, 1}m, where dBase = O(log2 m). Using Lemma 3.5 we get that Rec is an explicit
(k, 1/m)-extractor, for k = 2m + O(rm) = O(m log log(log n/ log k)) as required. The seed length
of Rec is O(log n) + dBase = O(log n + log2 k).

4.3 Extractors with small error

Our technique yields extractors with rather large error, (ε = O(1/m)). In [RRV99] it was shown
how to transform an extractor with large error into one that works for arbitrary small error ε.
When one starts with error ε = O(1/m), this transformation increases the seed length only by an
inevitable and optimal additive factor of O(log 1

ε). The transformation of [RRV99] slightly hurts the
output length. The extractor one gets only extracts a constant fraction of the randomness extracted
by the initial extractor. This does not matter in our case since we lose a constant fraction of the
randomness anyway. We now formally state the transformation of [RRV99].

22

Theorem 4.6. [RRV99] Every (k, O(1/m))-extractor E : {0, 1}n ×{0, 1}d → {0, 1}m can be trans-
formed into a (k+O(log(1/ε), ε)-extractor E ′ : {0, 1}n×{0, 1}d+O(log(1/ε)) → {0, 1}Ω(m)−O(log(1/ε) as
long as ε > exp(−n/(log∗ n)log

∗ n). Furthermore, if E is an explicit extractor then E ′ is an explicit
extractor.

Performing this transformation on Corollaries 4.3,4.5 gives Theorems 1.5,1.6.

5 Notions of optimality for pseudo-random generators construc-

tions

In this section we examine two notions of optimality for pseudo-random generators constructions,
and show that our construction comes close to optimal in both notions.

5.1 Pseudo-random generator schemes give extractors

Our construction of pseudo-random generators gives a (k, 1/m)-pseudo-random generator scheme

G : {0, 1}n × {0, 1}O(log n) → {0, 1}m for every log n < k < n and m = kΩ(1/ log log(log n
k

)). We now
show that the seed length in this construction is optimal except for the exact constant by giving a
lower bound on the seed length of every pseudo-random generator scheme.

Lemma 5.1. For every log n < k < n, every (k, 1/3)-pseudo-random generator scheme with m > d
has d = Ω(log n).

Proof. By Lemma 2.7 a (k, 1/3)-pseudo-random generator scheme is a (O(k log k), 1/3)-extractor
scheme. By Theorem 2.8 every extractor scheme is an extractor. It was shown by [NZ96, RTS00]
that every extractor with m > d has d = Ω(log n).

5.2 Pseudo-random generators imply hard functions

In this section, we show how to convert a pseudo-random generator into a hard function. It follows
that a pseudo-random generator construction which does significantly better than ours also gives
a harder function than the one initially supplied to it.

Lemma 5.2. If there exists a pseudo-random generator G : {0, 1}l−1 → {0, 1}m(l) that is com-
putable in time 2O(l) and 1/2-fools all m(l) size circuits then there exists a function f = {fl},
fl : {0, 1}l → {0, 1} that is computable in time 2O(l) so that for any l, fl cannot be computed by
circuits of size m(l).

We remark that the same conclusion holds even if G is a ”hitting set generator”, (see [ISW99]).

Proof. (of Lemma 5.2) We define a function f = {fl} fl : {0, 1}l → {0, 1}. Given an l bit input
x, we define fl(x) to be 1 if and only if there exist some z ∈ {0, 1}m(l)−l for which x ◦ z is an
output of the generator G on l− 1 bit long inputs. We claim that S(fl) > m(l) since any circuit C
computing f is not 1/2-fooled by G. This is because C always answers 1 when given the output of
the generator, and answers 1 with probability at most 1/2 when given a uniformly chosen input.
(Note that there are at most 2l−1 possible outputs of G on l−1 bit long inputs). f can be computed
in time 2O(l) by generating all outputs of the generator G on l − 1 bit strings.

23

6 Conclusions, open problems and subsequent work

We have shown how to improve the Nisan-Wigderson generator, to use optimal seed length for arbi-
trary hardness. However, there still remains a small gap between the output length of our pseudo-

random generator and that of the best expected generator. (Namely, we get m = k
Ω(1

log log(l/ log k)
)

whereas we expect to get m = kΩ(1)). In a subsequent work, [SU01, Uma02] give a new construc-
tion of pseudo-random generator schemes which does not use the Nisan-Wigderson generator and
achieves m = kΩ(1).

There’s also a gap between the output length of our extractor construction and the optimal ex-
tractor, here the gap is quantitively smaller (since using Kolmogorov complexity we get m = k1−δ).
However we are more picky in the parameters when it comes to extractors and the optimal extractor
achieves m = k + d − 2 log(1/ε) − O(1). In subsequent works [RSW00, TSUZ01, SU01, LRVW03]
this gap is made smaller, however existing constructions do not achieve the optimal output length
with seed length O(log n). The reader is referred to a survey on extractor constructions [Sha02].

Our construction works by reducing the problem of constructing extractors for general sources to
that of constructing extractors for sources with polynomial min-entropy. In retrospect, this transfor-
mation can be seen as a condenser that is a function Con : {0, 1}n×{0, 1}O(log n) → {0, 1}kO(1)

such
that for any distribution P with min-entropy at least k the output distribution Con(P, UO(log n))
is (close to) a distribution with min-entropy very close to k. (The final step towards constructing
an extractor is running some prespecified “base extractor” on the output distribution of the con-
denser). A related approach was used in the subsequent [TSUZ01] to construct “lossless condensers”
in which preserve all the min-entropy in the source distribution P .

Acknowledgments

We thank Oded Goldreich for a conversation12 that started us working on this paper, and for
many helpful comments. We are grateful to anonymous referees for many helpful comments that
improved the presentation.

References

[ACR96] A. E. Andreev, A. E. F. Clementi, and J. D. P. Rolim. Hitting sets derandomize BPP. In
Friedhelm Meyer auf der Heide and Burkhard Monien, editors, Automata, Languages
and Programming, 23rd International Colloquium, volume 1099 of Lecture Notes in
Computer Science, pages 357–368, Paderborn, Germany, 8–12 July 1996. Springer-
Verlag.

[ACRT99] Andreev, Clementi, Rolim, and Trevisan. Weak random sources, hitting sets, and BPP
simulations. SICOMP: SIAM Journal on Computing, 28, 1999.

12which went roughly like this:
Oded: Does the IW97 technique implies generators with optimal seed length for every hardness assumption?
Avi: Obviously!
Oded: How?
Avi: Ummmm...

24

[BFNW93] L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. BPP has subexponential time simu-
lations unless EXPTIME has publishable proofs. Computational Complexity, 3(4):307–
318, 1993.

[Blu86] M. Blum. Independent unbiased coin flips from a correlated biased source–A finite state
markov chain. COMBINAT: Combinatorica, 6, 1986.

[BM84] M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudo-
random bits. SIAM Journal on Computing, 13(4):850–864, November 1984.

[CG89] B. Chor and O. Goldreich. On the power of two-point based sampling. Journal of
Complexity, 5(1):96–106, March 1989.

[CNS99] J.Y. Cai, A. Nerurkar, and D. Sivakumar. Hardness and hierarchy theorems for prob-
abilistic quasi-polynomial time. In Proceedings of the Thirty-First Annual ACM Sym-
posium on Theory of Computing, pages 726–735, 1999.

[GM84] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System
Sciences, 28(2):270–299, April 1984.

[Gol98] O. Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudorandomness.
Springer-Verlag, Algorithms and Combinatorics, 1998.

[Imp95] R. Impagliazzo. Hard-core distributions for somewhat hard problems. In 36th Annual
Symposium on Foundations of Computer Science, pages 538–545, Milwaukee, Wiscon-
sin, 23–25 October 1995. IEEE.

[ISW99] R. Impagliazzo, R. Shaltiel, and A. Wigderson. Near-optimal conversion of hardness into
pseudo-randomness. In 40th Annual Symposium on Foundations of Computer Science:
October 17–19, 1999, New York City, New York,, pages 181–190, 1999.

[ISW00] R. Impagliazzo, R. Shaltiel, and A. Wigderson. Extractors and pseudo-random gener-
ators with optimal seed length. In Proceedings of the thirty second annual ACM Sym-
posium on Theory of Computing: Portland, Oregon, May 21–23, [2000], pages 1–10,
2000.

[IW97] R. Impagliazzo and A. Wigderson. P = BPP if E requires exponential circuits: Deran-
domizing the XOR lemma. In Proceedings of the Twenty-Ninth Annual ACM Sympo-
sium on Theory of Computing, pages 220–229, El Paso, Texas, 4–6 May 1997.

[IW01] R. Impagliazzo and A. Wigderson. Randomness vs time: Derandomization under a
uniform assumption. JCSS: Journal of Computer and System Sciences, 63, 2001.

[KvM02] A. R. Klivans and D. van Melkebeek. Graph nonisomorphism has subexponential size
proofs unless the polynomial-time hierarchy collapses. SIAM Journal on Computing,
31(5):1501–1526, October 2002.

[LRVW03] C. J. Lu, O. Reingold, S. Vadhan, and A. Wigderson. Extractors: optimal up to constant
factors. In Proceedings of the 35th Annual ACM Symposium on Theory of Computing,
pages 602–611, 2003.

25

[Nis96] N. Nisan. Extracting randomness: How and why: A survey. In Proceedings, Eleventh
Annual IEEE Conference on Computational Complexity, pages 44–58, Philadelphia,
Pennsylvania, 24–27 May 1996. IEEE Computer Society Press.

[NTS99] N. Nisan and A. Ta-Shma. Extracting randomness: A survey and new constructions.
JCSS: Journal of Computer and System Sciences, 58, 1999.

[NW94] N. Nisan and A. Wigderson. Hardness vs randomness. Journal of Computer and System
Sciences, 49(2):149–167, October 1994.

[NZ96] N. Nisan and D. Zuckerman. Randomness is linear in space. Journal of Computer and
System Sciences, 52(1):43–52, February 1996.

[RRV99] R. Raz, O. Reingold, and S. Vadhan. Error reduction for extractors. In 40th Annual
Symposium on Foundations of Computer Science: October 17–19, 1999, New York City,
New York,, pages 191–201, 1999.

[RRV02] R. Raz, O. Reingold, and S. Vadhan. Extracting all the randomness and reducing the
error in trevisan’s extractors. JCSS: Journal of Computer and System Sciences, 65,
2002.

[RSW00] O. Reingold, R. Shaltiel, and A. Wigderson. Extracting randomness via repeated con-
densing. In 41st Annual Symposium on Foundations of Computer Science: proceedings:
12–14 November, 2000, Redondo Beach, California, pages 22–31, 2000.

[RTS00] J. Radhakrishnan and A. Ta-Shma. Bounds for dispersers, extractors, and depth-
two superconcentrators. SIAM Journal on Discrete Mathematics, 13(1):2–24, February
2000.

[Sha02] R. Shaltiel. Recent developments in extractors. Bulletin of the European Association
for Theoretical Computer Science, 77, 2002.

[STV01] M. Sudan, L. Trevisan, and S. Vadhan. Pseudorandom generators without the XOR
lemma. JCSS: Journal of Computer and System Sciences, 62, 2001.

[SU01] R. Shaltiel and C. Umans. Simple extractors for all min-entropies and a new pseudo-
random generator. In 42nd IEEE Symposium on Foundations of Computer Science:
proceedings: October 14–17, 2001, Las Vegas, Nevada, USA, pages 648–657, 2001.

[SV86] M. Santha and U. V. Vazirani. Generating quasi-random sequences from semi-random
sources. Journal of Computer and System Sciences, 33(1):75–87, April 1986.

[Tre01] L. Trevisan. Extractors and pseudorandom generators. Journal of the ACM, 48(4):860–
879, July 2001.

[TSUZ01] A. Ta-Shma, C. Umans, and D. Zuckerman. Loss-less condensers, unbalanced ex-
panders, and extractors. In Proceedings of the 33rd Annual ACM Symposium on Theory
of Computing: Hersonissos, Crete, Greece, July 6–8, 2001, pages 143–152, 2001.

[Uma02] C. Umans. Pseudo-random generators for all hardnesses. In Proceedings of the 34th
Annual ACM Symposium on Theory of Computing, pages 627–634, 2002.

26

[WZ93] A. Wigderson and D. Zuckerman. Expanders that beat the eigenvalue bound: Explicit
construction and applications. In Proceedings of the Twenty-Fifth Annual ACM Sym-
posium on the Theory of Computing, pages 245–251, San Diego, California, 16–18 May
1993.

[Yao82] A. C. Yao. Theory and applications of trapdoor functions (extended abstract). In
23rd Annual Symposium on Foundations of Computer Science, pages 80–91, Chicago,
Illinois, 3–5 November 1982. IEEE.

[Zuc97] D. Zuckerman. Randomness-optimal oblivious sampling. Random Structures & Algo-
rithms, 11(4):345–367, 1997.

27

