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Abstract. In the cake cutting problem, n ≥ 2 players want to cut a
cake into n pieces so that every player gets a ‘fair’ share of the cake by
his own measure.
We prove the following result: For every ε > 0, there exists a cake division
scheme for n players that uses at most cεn cuts, and in which each player
can enforce to get a share of at least (1 − ε)/n of the cake according to
his own private measure.

1 Introduction

The second paragraph of the poem “The voice of the lobster” by Lewis Carrol [2]
gives a classical example for the unfair division of a common resource:

“I passed by his garden, and marked, with one eye,
How the owl and the panther were sharing a pie.
The panther took pie-crust, and gravy, and meat,
While the owl had the dish as its share of the treat.”

Note that pie-crust, gravy, and meat might be of completely different value to
the owl and to the panther. Is there any protocol which enables owl and panther
to divide the food into two pieces such that both will get at least half of it by
their own measure? The answer to this question is yes, and there is a fairly
simple and fairly old solution due to Hugo Steinhaus [8] from 1948: The owl cuts
the food into two pieces, and the panther chooses its piece out of the two. The
owl is sure to get at least half the food if it cuts two equal pieces by its measure.
The panther is sure to get at least half the food by its measure by choosing the
better half.

In a more general and a more mathematical formulation, there is a certain
resource C (hereinafter referred to as: the cake), and there are n players 1, . . . , n.
Every player p (1 ≤ p ≤ n) has his own measure µp on the subsets of C. These
measures satisfy µp(X) ≥ 0 for all X ⊆ C, and µp(X)+µp(X ′) = µp(X∪X ′) for
all disjoint subsets X, X ′ ⊆ C. For every X ⊆ C and for every λ with 0 ≤ λ ≤ 1,
there exists a piece X ′ ⊆ X such that µp(X ′) = λ · µp(X). The cake C is to
be divided among the n players according to some fixed protocol, i.e., a step by
step interactive procedure that can issue queries to the players whose answers
may affect future decisions. We only consider protocols that satisfy the following
properties.
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– If the participants obey the protocol, then each player ends up with his piece
of cake after finitely many steps.

– Each time a player is required to make a cut, he must be able to do this in
complete isolation and without interaction of the other players.

– The protocol has no reliable information about the measure µp of player p.
These measures are considered private information.

The first condition simply keeps every execution of the protocol finite. The
second condition does not forbid coalitions, but it protects players from in-
timidation. Moreover, it eliminates any form of the moving knife procedure
(Stromquist [9]). The third condition states that players cannot be trusted
to reveal their true preferences. Similar and essentially equivalent conditions
are stated in the papers by Woodall [11], Even & Paz [3], and Robertson &
Webb [5, 6].

A strategy of a player is an adaptive sequence of moves consistent with the
protocol. For a real number β with 0 ≤ β ≤ 1 and some fixed protocol P , a β-
strategy of a player is a strategy that will guarantee him at least a fraction β
of the cake according to his own measure, independently from the strategies of
the other n − 1 players. (So, even if the other n − 1 players all plot up against
the nth player, the nth player in this case will still be able to get a fraction β.)
A protocol is called β-fair, if every player has a β-strategy. A protocol for n
players is called perfectly fair, if every player has a 1

n -strategy.
Even & Paz [3] show that for n ≥ 3 players, there does not exist a perfectly

fair protocol that makes only n − 1 cuts. Moreover, [3] describe a perfectly fair
protocol for n ≥ 3 players that uses only n log2(n) cuts. Tighter results are known
for small values of n: For n = 2 players, the Steinhaus protocol yields a perfectly
fair protocol with a single cut. For n = 3 and n = 4 players, Even & Paz [3]
present perfectly fair protocols that make at most 3 and 4 cuts, respectively.
Webb [10] presents a perfectly fair protocol for n = 5 players with 6 cuts, and he
shows that no perfectly fair protocol exists that uses only 5 cuts. For any n ≥ 2,
Robertson & Webb [6] design 1/(2n − 2)-fair protocols that make only n − 1
cuts, and they show that this result is best possible for n − 1 cuts. The result
in [6] was rediscovered independently by Krumke et al [4]. For more information
on this problem and on many other of its variants, we refer the reader to the
books by Brams & Taylor [1] and by Robertson & Webb [7].

The central open problem in this area is whether there exist perfectly fair n-
player protocols that only use O(n) cuts. This problem was explicitly formulated
by Even & Paz [3], and essentially goes back to Steinhaus [8]. The general belief
is that no such protocol exists. We will not settle this problem in this paper,
but we will design protocols with O(n) cuts that come arbitrarily close to being
1
n -fair. Our main result is as follows.

Theorem 1 For every ε > 0, there exists a constant cε > 0 and a cake division
scheme for n players such that

– each player can enforce to get a share of at least (1 − ε)/n of the cake, and
– altogether at most cεn cuts are made.
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This seems to be the strongest possible result one can prove without settling
the general question. The protocol is defined and explained in Section 2, and its
fairness is analyzed in Section 3.

(S0) If there are n ≤ 2t − 1 players,
then the cake is divided according to the Even & Paz protocol.
STOP.

(S1) Each of the first 2t players p (p = 1, . . . , 2t) makes an arbitrary cut cp

through the cake.

(S2) The first 2t players are divided into two groups L′ and R′ with |L′| =
|R′| = t such that for every � ∈ L′ and for every r ∈ R′ we have c� ≤ cr.

(S3) Let c∗ = max{cp : p ∈ L′}.
The cut c∗ divides the cake C into a left piece CL and a right piece CR.

(S4) Every player p in L′ chooses an integer xp with 	n/2
 ≤ xp ≤ n.
Every player p in R′ chooses an integer xp with 0 ≤ xp ≤ 	n/2
.
Every player p /∈ L′ ∪ R′ chooses an integer xp with 0 ≤ xp ≤ n.

(S5) The players are divided into two non-empty groups L and R, such that
(i) |L| ≥ t and |R| ≥ t,

(ii) xp ≥ |L| holds for every player p ∈ L,

(iii) xp ≤ |L| holds for every player p ∈ R.

(S6) The players in L recursively share the left piece CL.
The players in R recursively share the right piece CR.

Fig. 1. The protocol P (t) for n players

2 The Protocol

In this section, we define a recursive protocol P (t) that is based on an integer
parameter t ≥ 1. Without loss of generality we assume that the cake C is the unit
interval [0, 1], and that all pieces generated during the execution of the protocol
are subintervals of [0, 1]. The steps (S0)–(S6) of protocol P (t) are described in
Figure 1. The protocol P (t) is based on a divide-and-conquer approach that is
similar to that of Even & Paz [3].

Let us start with some simple remarks on P (t). It is irrelevant for our argu-
ments and for our analysis, whether the cuts in step (S1) are done in parallel
or sequentially, and whether one player knows or does not know about the cuts
of the other players. The same holds for the selection of the numbers xp in
step (S4). If there are two or more feasible partitions L′ ∪ R′ in step (S2), then
the protocol selects an arbitrary such partition.
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Next, we will discuss the exact implementation of step (S5). Let y1 ≥ y2 ≥
· · · ≥ yn be an enumeration of the integers x1, . . . , xn. Consider the function
g(j) := yj − j for 1 ≤ j ≤ n. Since the t integers of players in L′ are all greater
or equal to �n/2	, we have yt ≥ �n/2	 ≥ t. Hence, g(t) ≥ 0. Since the t integers
of players in R′ are all less or equal to �n/2	, we have yn−t+1 ≤ �n/2	 ≤ n − t.
Hence, g(n − t+ 1) < 0. We define the splitting index s as

s = min{j : g(j) ≥ 0 and g(j + 1) < 0 and t ≤ j ≤ n − t}.
We define the set L of players in such a way that the two multi-sets {yi : 1 ≤
i ≤ s} and {xp : p ∈ L} are identical. Moreover, we define R = {1, . . . , n} − L.
Then |L| = s ≥ t and |R| = n − s ≥ t. Since ys ≥ s, we have xp ≥ |L| for
every p ∈ L. Since ys+1 < s + 1, we have xp ≤ |L| for every p ∈ R. Hence, the
conditions (i)–(iii) of step (S5) are indeed satisfied by these groups L and R.

In the rest of this section, we prove an upper bound on the number of cuts
in the protocol P (t).

Lemma 2 If the cake is divided among n players according to protocol P (t),
then the players altogether make at most 2t · (n − 1) cuts.

Proof. By induction on the number n of players. If n ≤ 2t− 1 is small, protocol
P (t) becomes the Even & Paz protocol. Hence, there are at most n log2(n) ≤
2t · (n − 1) cuts. For n ≥ 2t, there are 2t cuts made in step (S1). Moreover, by
the inductive assumption there are at most 2t(|L| − 1) and at most 2t(|R| − 1)
cuts made in the recursion in step (S6). Altogether, this yields at most 2t(|L|+
|R| − 1) = 2t · (n − 1) cuts. ✷

3 Proof of Fairness

In this section, we prove that the protocol P (t) is (1− 1
t )-fair.

Lemma 3 Let n ≥ 2t. Then every player p (p = 1, . . . , n) can enforce that at
the end of step (S4)

xp = �(n − 1) · µp(CL)/µp(C)	.
Proof. The statement trivially holds for the players p = 2t + 1, . . . , n, since in
step (S4) these players are free to choose xp arbitrarily between 0 and n. Hence,
consider a player p with p = 1, . . . , 2t. We claim that a good strategy for player p
is to make his cut cp in step (S1) in such a way that µp([0, cp]) = µp(C) ·�n/2	/n.
We distinguish two cases.

In the first case, we assume that step (S2) puts player p into group L′.
Then cp ≤ c∗ and [0, cp] ⊆ [0, c∗] = CL. Hence,

(n − 1) · µp(CL)
µp(C) ≥ (n − 1) · 1

µp(C) · µp(C) · �n/2	
n

= (1− 1
n
)�n/2	 > �n/2	 − 1.
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Therefore, in this case the value �(n − 1) · µp(CL)/µp(C)	 is greater or equal to
�n/2	, and indeed constitutes a feasible choice for a player p from L′ in step (S4).

In the second case, we assume that step (S2) puts player p into group R′.
This implies cp ≤ c∗ and CL = [0, c∗] ⊆ [0, cp]. Hence,

(n − 1) · µp(CL)
µp(C) ≤ (n − 1) · 1

µp(C) · µp(C) · �n/2	
n

= (1− 1
n
)�n/2	 ≤ �n/2	.

In this case the value �(n − 1) · µp(CL)/µp(C)	 is less or equal to �n/2	, and
constitutes a feasible choice for any player from R′ in step (S4). ✷

Lemma 4 Let n ≥ 1. Then every player p (p = 1, . . . , n) can enforce to get at
least a fraction min

{
1
n , t−1

t(n−1)

}
of the cake C.

Proof. Player p behaves according to Lemma 3 and chooses xp = �(n − 1) ·
µp(CL)/µp(C)	. We prove by induction on the number n of players that this

ensures him a fraction min
{

1
n , t−1

t(n−1)

}
of the cake C.

For n ≤ 2t−1, the statement is trivial since p gets a fraction 1/n in step (S0).
For the inductive step, we consider n ≥ 2t and we distinguish two cases. If in
step (S6) the protocol assigns player p to the group L, then by properties (i) and
(ii) from step (S5) we have xp ≥ |L| ≥ t. By the inductive assumption, player p
receives at least

min
{

1
|L| ,

t − 1
t(|L| − 1)

}
µp(CL) =

t − 1
t(|L| − 1)

· µp(CL)

≥ t − 1
t(xp − 1)

· µp(CL)

≥ t − 1
t

· µp(C)
(n − 1)µp(CL)

· µp(CL)

=
t − 1

t(n − 1)
· µp(C).

Here the first equation follows from |L| ≥ t, and the first inequality follows
from xp ≥ |L|. The second inequality holds since xp − 1 ≤ (n − 1)µp(CL)/µp(C)
by the choice of xp. This completes the first case.

In the second case, we assume that step (S6) assigns player p to the group R.
Then by properties (i) and (iii) from step (S5) we have |R| ≥ t and |L| ≥ xp.
Therefore, 1/|R| ≥ (t−1)/t(|R|−1). Then by the inductive assumption, player p
receives at least

t − 1
t(|R| − 1)

· µp(CR) ≥ t − 1
t(n − xp − 1)

· µp(CR)

≥ t − 1
t(n − (n − 1)µp(CL)/µp(C)− 1)

· (µp(C)− µp(CL))

=
t − 1

t(n − 1)
· µp(C).
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Here the first inequality follows from xp ≤ |L| = n − |R|. The second inequality
holds since xp ≥ (n − 1)µp(CL)/µp(C) by the choice of xp. This completes the
second case, and also the inductive proof. ✷

Finally, let us prove Theorem 1. We use the protocol P (t) with t = �1/ε	.
By Lemma 2, the total number of cuts is at most 2� 1

ε	 · (n− 1) and hence grows
linearly in the number n of players. By Lemma 4, every player may enforce to
get at least a fraction

min
{
1
n

,
t − 1

t(n − 1)

}
≥ (1− 1

t
) · 1

n
≥ (1− ε) · 1

n

of the cake C. This completes the proof of Theorem 1.
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