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COLORED GRAPHS

WITHOUT COLORFUL CYCLES

RICHARD N. BALL, ALEŠ PULTR, AND PETR VOJTĚCHOVSKÝ

Abstract. A colored graph is a complete graph in which a color has been
assigned to each edge, and a colorful cycle is a cycle in which each edge has
a different color. We first show that a colored graph lacks colorful cycles iff it
is Gallai, i.e., lacks colorful triangles. We then show that, under the operation
m◦n ≡ m+n−2, the omitted lengths of colorful cycles in a colored graph form
a monoid isomorphic to a submonoid of the natural numbers which contains all
integers past some point. We prove that several but not all such monoids are
realized.

We then characterize exact Gallai graphs, i.e., graphs in which every triangle
has edges of exactly two colors. We show that these are precisely the graphs
which can be iteratively built up from three simple colored graphs, having 2,
4, and 5 vertices, respectively. We then characterize in two different ways the
monochromes, i.e., the connected components of maximal monochromatic sub-
graphs, of exact Gallai graphs. The first characterization is in terms of their
reduced form, a notion which hinges on the important idea of a full homomor-
phism. The second characterization is by means of a homomorphism duality.

1. Introduction

For the purposes of constructing coproducts of distributive lattices, the first two
authors found certain edge-colorings of complete graphs to be useful. The specific
colorings of use were those lacking colorful cycles of particular lengths. It turns
out that such colorings exhibit a structure which may be of interest in its own
right. We investigate that structure here.

The absence of short colorful cycles implies the absence of certain longer ones,
and this fact leads to the concept of the spectrum, defined and analyzed in Sec-
tion 3. Gallai colorings, i.e., colorings which lack colorful 3-cycles, constitute
an extreme example of this phenomenon, for they have no colorful cycles at all
(Proposition 3.2).

We therefore turn our attention to Gallai colorings. These colorings are known
to have a simple and pleasing structure, which we review and elaborate in Section
4. We then impose the additional hypothesis of exactness, i.e., the hypothesis that
every 3-cycle has edges of exactly two colors. The resulting structural description,
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given in Section 5, is especially sharp, and, in fact, the analysis can be considered
to be complete. The structural results make it possible to characterize, in Section
6, the monochromes, i.e., the components of the monochromatic subgraphs. This
section introduces the important notion of a full homomorphism, which is then
used in Section 7 to elaborate the characterization of exact Gallai monochromes
by means of a homomorphism duality.

Gallai initiated the investigation of the colored graphs which now bear his name
in his foundational paper [4]. Since then, these graphs have appeared in several
different contexts and for different reasons. We mention only two of the more
recent investigations: Gyárfás and Simonyi showed the existence of monochromatic
spanning brushes in [5]; Chung and Graham found the bound on the maximum
number of vertices for a given number of colors in exact Gallai cliques in [3] (see
Theorem 6.9). A good general background reference is the survey article [7].

2. Ground clearing

Graphs will be assumed to be finite, symmetric (undirected), and without loops.
We denote a graph G by (VG, EG), where VG and EG designate the sets of vertices
and edges of G, respectively. Symbols u, v, and w are reserved for vertices, with
the edge connecting vertices u and v designated by uv. The symbol K is reserved
for complete graphs.

An edge coloring of a graph G, or simply a coloring of G, is an assignment of
an element of a finite set Γ of colors to each edge of G. We use lower-case Greek
letters to designate the individual colors, upper-case Greek letters to designate sets
of colors, uv to designate the color assigned to the edge uv, and • to designate the
coloring map itself. A colored graph is an object of the form G = (V,E, •), where
(V,E) is a graph and • : E → Γ is a coloring.

In any graph, a clique is a complete subgraph induced by a nonempty subset
of vertices. We denote cliques by symbols a, b, c, d, and for cliques a and b, we
denote the set of edges joining their vertices by

ab ≡ {uv ∈ E : u ∈ a, v ∈ b} .

In most instances, our graphs will be complete, so that the cliques could be iden-
tified with the corresponding vertex subsets. Still, we prefer to speak of cliques to
emphasize that we deal with edges rather than with vertices.

In a colored graphG, a clique is regarded as a colored graph under the restriction
of the coloring of G. For cliques a and b, we designate by ab the set of colors of
the edges of ab; note that aa = ∅ if |a| = 1.

In any graph, an n-cycle, n ≥ 2, is a sequence (v1, v2, . . . , vn) of distinct vertices.
Two cycles are regarded as identical if they can be made to coincide by a cyclical
(vi 7−→ vj+i) permutation of their elements, where all subscript arithmetic is
performed modn. 3-cycles are called triangles, 4-cycles are called squares, and so
forth. The edges of a cycle (v1, v2, . . . , vn) are those of the form vivi+1.

In a colored graph, a cycle (v1, v2, . . . , vn) is colorful if all its edges have different
colors, i.e., if

vivi+1 = vjvj+1 ⇐⇒ i = jmodn.
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Note that a 2-cycle is never colorful. A Gallai clique is a clique which is complete
and has no colorful triangles. An exact Gallai clique is a Gallai clique in which
every triangle has edges of exactly two colors.

3. The spectrum of a colored graph

In complete colored graphs, the absence of colorful cycles of a particular length
implies the absence of certain longer colorful cycles. In particular, the absence
of colorful triangles implies the absence of colorful cycles of any length. In this
section we prove this fact (Proposition 3.2) and more. The running assumption
throughout this section is that we are dealing with a complete colored graph K.

The spectrum of a coloring • is the set of prohibited lengths of colorful cycles,
designated

S (•) ≡ {n ≥ 2 : there are no colorful n-cycles} .

Obviously, every spectrum contains 2, and contains all integers n > |K|. The set
of all spectra will be denoted by S.

On the set {2, 3, . . . } define an operation ◦ by setting

m ◦ n = m+ n− 2.

The monoid so obtained is isomorphic to the additive monoid N = {0, 1, . . . } of
natural numbers via n 7→ n− 2; we denote it N(2).

Proposition 3.1. Every spectrum S ∈ S is a submonoid of N(2) which is even-
tually solid, i.e., contains all integers k ≥ n for some n.

Proof. Suppose that m, n ∈ S(•). Let C be an (m+n−2)-cycle. There is a chord
of C that makes C into an m-cycle conjoined with an n-cycle along the chord.
Since m ∈ S (•), the color of the chord must match the color of some other edge
from the m-cycle, and likewise that of some other edge of the n-cycle. This means
that C is not colorful. �

Since 3 is the unique generator of N(2) corresponding to 1 in N, we obtain the
following insight.

Proposition 3.2. If 3 ∈ S ∈ S then S is the whole of N(2). In other words, if a
colored graph contains no colorful triangles then it contains no colorful cycles at
all.

Proposition 3.3. Assume that S ∈ S satisfies 4 ∈ S. Then there is an odd
integer m ≥ 3 such that

S = {2, 4, 6, 8, . . . , m− 1, m,m+ 1, m+ 2, . . . }.

Proof. The submonoid of N(2) generated by 4 consists of all positive even integers.
Letm be the smallest positive odd integer in S. Thenm+2 = 4+m−2 = 4◦m ∈ S,
m+ 4 = 4 ◦ (m+ 2) ∈ S, and so forth. �

Corollary 3.4. If a colored graph has no colorful squares and no colorful pentagons
then it has no colorful n-cycles for any n > 3.
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The simplest question suggested by Proposition 3.3 is whether the integer m
mentioned there can be any odd number, i.e., whether colored graphs without
colorful squares can admit colorful m-gons for arbitrary odd integers m. The
answer to this question is positive.

Proposition 3.5. For every odd integer m > 1 there is a colored graph with m
vertices having a colorful m-gon but no colorful squares.

Proof. Let m = 2k+1, and label the vertices vi, −k ≤ i ≤ k. We employ a palette
consisting of distinct colors α and βi, −k ≤ i ≤ k, i 6= 0. For distinct indices i
and j, set

vivj ≡

{
α if i and j have the same parity,
βi if i and j have different parity and |i| > |j| .

The cycle (v−k, v−k+1, . . . , vk) is colorful, with the color of the edges in order being

β−k, β−k+1, . . . , β−1, β1, . . . , βk−1, βk, α.

It remains to show that there are no colorful squares. Let (vi, vj, vk, vl) be a
square. Assume that the following happens at least twice around the square:

(∗) Two consecutive vertices have the same parity.

Then at least two of the four edges are colored by α, and the square is not colorful.
We can therefore assume that (∗) happens at most once. But (∗) cannot happen
precisely once since the square has 4 vertices, and so (∗) never happens. Without
loss of generality, let i have the maximum absolute value among the four indices.
Since (∗) never happens, we conclude that |j| < |i| and |k| < |i|. But then
vivj = vivk = βi. �

v0

v1v−1

v−2 v2

β−1 β1

β−2 β2

β2 β−2

α

α

α α

Figure 1. A colorful pentagon without colorful squares.
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Figure 1 shows a colorful pentagon without colorful squares obtained by the
construction of Proposition 3.5.

We have shown that if S is an eventually solid submonoid of N(2) containing
3 or 4 then S ∈ S. An older version of this paper asked the question whether
every eventually solid submonoid of N(2) can be found in S. We now know that
this is not the case, thanks to results of Boris Alexeev [1], who observed that a
decagon with no colorful pentagons is itself not colorful, and proved that a colored
graph with no colorful n-gons, for some n > 1 odd, contains no colorful cycles of
length greater than 2n2. See [1] for more details. Here is our proof of Alexeev’s
observation:

Lemma 3.6. There is no colorful decagon without colorful pentagons.

Proof. Suppose for a contradiction that v0v1 · · · v9 is a colorful decagon without
colorful pentagons. Let αij be the color of vivj , and set α01 = γ0, α12 = γ1, . . . ,
α89 = γ8, α90 = γ9, where γ0, . . . , γ9 are distinct colors.

Since the pentagon v0v1v2v3v4 is not colorful, we must have α04 ∈ {γ0, γ1, γ2,
γ3}. Similarly, the pentagons v0v6v7v8v9, v1v2v3v4v5, v1v7v8v9v0 and v2v3v4v5v6
show that α06 ∈ {γ6, γ7, γ8, γ9}, α15 ∈ {γ1, γ2, γ3, γ4}, α17 ∈ {γ0, γ7, γ8, γ9}, and
α26 ∈ {γ2, γ3, γ4, γ5}, respectively. The pentagon v2v6v0v4v3 then implies that
α26 ∈ {γ0, γ1, γ2, γ3, γ6, γ7, γ8, γ9}, and hence α26 ∈ {γ2, γ3}.

We finish the proof by eliminating all possible colors for α05. The pentagon
v0v5v6v7v1 shows that α05 ∈ {γ0, γ5, γ6, γ7, γ8, γ9}, and v0v5v6v2v1 implies α05 ∈
{γ0, γ1, γ2, γ3, γ5}. Finally, v0v5v1v2v6 yields α05 ∈ {γ1, γ2, γ3, γ4, γ6, γ7, γ8, γ9},
and we are through. �

We close this section with another construction in the positive direction:

Proposition 3.7. For every m > 2 there is a colorful 2m-gon without colorful
(2m− 1)-gons.

α0

α1α−1
α1 α−1

α0

v−1 v1

v2v−2

Figure 2. Construction of Proposition 3.7.

Proof. Draw the complete graph K on 2m vertices in the usual way, as a convex
2m-gon P on the perimeter and all remaining inner edges as straight line segments
inside P . We say that two inner edges cross if they have a point in common that
is not a vertex of K. Color P by 2m distinct colors. Pick four consecutive vertices
on P , say v−2, v−1, v1, v2, and assume that v−2v−1 = α−1, v−1v1 = α0, v1v2 = α1.
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Color inner edges as follows: v−2v1 = α1, v−1v2 = α−1, all remaining inner edges
are colored α0. The clique {v−2, v−1, v1, v2} is depicted in Figure 2.

Let H be a colorful (2m−1)-gon in the above coloring, and let n be the number
of crossings among the edges of H . If n = 0, then H lies on P with the exception
of one edge e that skips a vertex on P . If e skips v−1 then H has two edges colored
α1, namely v−2v1 and v1v2. If e skips v1 then H has two edges colored α−1, namely
v−2v−1 and v−1v2. If e skips any other vertex, then H has two edges colored α0,
namely e and v−1v1.

We claim that v−2v1 and v−1v2 cannot both lie in H . Assume they do. If v−1v1 is
also in H , then H has two edges colored α0, since it must have another inner edge
besides v−2v1, v−1v2. So v−1v1 is not in H . Since v−2v−1 = α−1, H must continue
from v−1 via some inner edge colored α0. Since v1v2 = α1, H must continue from
v1 via some inner edge colored α0, a contradiction. We have proved the claim.

Assume n = 1. Since the crossing edges of H have distinct colors, say α and
β, either the color α is α1 or α−1. There are therefore three scenarios: (i) α = α1

and β = α−1. Then both v−2v1, v−1v2 are in H , contrary to the claim. (ii) α = α1

and β = α0. Then v−2v1 is in H . But then H cannot continue from v1, since all
edges containing v1 are colored α1 or α0. (iii) α = α−1 and β = α0. Then we are
in a situation dual to (ii).

Assume n ≥ 2. Then H has at least three inner edges, since two edges only
cross once. Hence all three colors α−1, α0, α1 must be assigned to inner edges of
H , and we have once again violated the claim. �

Problem 3.8. Characterize S, the set of all spectra of complete colored graphs.

4. Gallai cliques

The basic building blocks of Gallai cliques are the 2-cliques, i.e., cliques a such
that |aa| ≤ 2, for a clique is Gallai iff it can be iteratively built up from 2-cliques.
We flesh out this result in Theorem 4.11, in more detail than would be strictly
necessary if that theorem were our only purpose. But the additional detail, and
in particular the concept of factor clique, is necessary for the subsequent analysis
of exact Gallai cliques in the following sections.

The fact that Gallai cliques can be iteratively built up from 2-cliques follows
from Theorem 4.2. Following [5], we attribute this result to Gallai, for it is implicit
in [4]. This theorem can also be found among the results of Cameron and Edmonds
in [2], and a nice proof is in [5].

Definition 4.1. Let a be a clique in a colored graph, and let ∆ ⊆ Γ. A ∆-relation
on a is an equivalence relation R ⊆ a× a such that for all u, v ∈ a,

(u, v) /∈ R =⇒ uv ∈ ∆.

A 2-relation on a is a ∆-relation on a for some ∆ ⊆ Γ such that |∆| ≤ 2. A
∆-relation is said to be homogenous if for all ui, vi ∈ a,

((u1, u2) , (v1, v2) ∈ R and (u1, v1) /∈ R) =⇒ u1v1 = u2v2.

The descriptive adjectives of the relations apply to the partitions they induce, giving
the terms ∆-partition, 2-partition, and homogenous partition.
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To rephrase the definition, a ∆-partition of a is a pairwise disjoint family A of
cliques whose union is a and which satisfies

⋃
{a1a2 : ai ∈ A, a1 6= a2} ⊆ ∆,

and the relation is homogeneous if |a1a2| = 1 for all ai ∈ A such that a1 6= a2.

Theorem 4.2. A nonsingleton Gallai clique admits a nontrivial homogeneous 2-
partition.

It is already clear from Theorem 4.2 that Gallai cliques are iteratively built up
from 2-cliques. What is necessary now is to identify, conceptually and notationally,
the particular 2-cliques used in the formation of a given Gallai clique. Thus we
are led to the notions of hereditary 2-clique and of tree 2-clique.

Definition 4.3. We inductively define a hereditary 2-clique as follows. A single-
ton clique is a hereditary 2-clique. If a clique admits a homogeneous 2-partition
whose parts are hereditary 2-cliques then the clique itself is a hereditary 2-clique.

A tree is a finite poset T in which every pair of unrelated elements has a common
upper bound but no common lower bound. In such a poset we define

s ≺ t ⇐⇒ (s < t and ∀ r (s ≤ r ≤ t =⇒ r = s or r = t)) ,

and we say that t is the parent of s, and that s is a child of t. We say that s is an
offspring of t, and that t is an ancestor of s, if s < t. Elements s and t of T are
said to be siblings if they are unrelated but share a parent. Note that every pair
of unrelated elements are the offspring of siblings. A childless element is called a
leaf, and the set of leaves is called the yield of the tree,

K (T ) ≡ {t : t is a leaf} .

The largest element of a tree is referred to as its root, and the height of a tree is
the length of a longest path from a leaf to the root.

With a given tree T we associate two graphs. The sibling graph S (T ) has as
vertices the elements of T and as edges all those of the form st, where s and t
are siblings. The leaf graph K (T ) is the complete graph on the yield of T . An
edge coloring of S (T ), or simply a coloring of S (T ), is an assignment of a color,
denoted ŝt, to each edge st. We use •̂ to denote the color map itself. If •̂ has the
additional property that for every t ∈ T rK (T )

|{r̂s : r and s are distinct children of t}| ≤ 2,

then we say that •̂ is a 2-coloring of S (T ).

Proposition 4.4. Let T be a tree. Any coloring •̂ of S (T ) gives rise to a coloring
• of K (T ) by the rule

st ≡ ûv,

where u and v are the respective sibling ancestors of s and t. Such a coloring
satisfies

st = rt

whenever s and r have a common ancestor unrelated to t, and any coloring of
K (T ) with this property arises by this rule from a coloring of S (T ).
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We refer to a clique a as a tree clique if there is some tree T and some coloring
of S (T ) such that, when K (T ) is colored as in Proposition 4.4, a is isomorphic
to K (T ). This means that there is a bijection from a onto the leaves of T which
preserves the color of the edges. If the coloring of S (T ) is a 2-coloring, we refer
to a as a tree 2-clique.

Proposition 4.5. A tree 2-clique is Gallai.

Proof. We induct on the height of the tree. Consider vertices ui, 1 ≤ i ≤ 3, in
a = K (T ), where the edges of a derive their colors from a 2-coloring of S (T ) as
in Proposition 4.4. Label the root of T as t0, and its children t1, t2, . . . , tn. If all
three vertices are offspring of a single ti, the triangle they form lies in V (↓ ti), the
tree 2-clique of the subtree rooted at ti. Since this subtree has height less than
that of T , the triangle is not colorful by the induction hypothesis. If two of the
vertices, say u1 and u2, are offspring of one ti, while the third vertex u3 is the
offspring of another tj , i 6= j, then

u1u3 = t̂itj = u2u3.

If all three vertices are offspring of distinct children, say ui ≤ tji for distinct ji,
1 ≤ i ≤ 3, then because S (T ) carries a 2-coloring,

|{uiuk : 1 ≤ i 6= k ≤ 3}| =
∣∣∣
{
t̂jitjk : 1 ≤ i 6= k ≤ 3

}∣∣∣ ≤ 2.

Thus in any case the triangle formed by the uis is not colorful. �

Proposition 4.6. A clique a is a tree 2-clique iff it is a hereditary 2-clique.

Proof. Given a hereditary 2-clique a, we build its tree inductively. If a is a single-
ton, its tree consists of a single root node. If a admits a homogeneous 2-partition
into hereditary 2-cliques a1, a2, . . ., ak, then for each i there is, by the inductive
hypothesis applied to ai, a tree Ti and a 2-coloring of S (Ti) such that ai is isomor-
phic to K (Ti). Denote the root of each Ti by ti. Form the tree T for a by using
a new root node t0, by declaring the children of t0 to be the tis, and by coloring
the sibling edges of the root by the rule

t̂itj ≡ aiaj , i 6= j.

The result is a 2-coloring of S (T ) which provides a natural isomorphism from a
onto K (T ).

Now let a tree T be given, along with a 2-coloring of S (T ) and the corresponding
coloring of K (T ) as in Proposition 4.4. We show by induction on the height of
T that K (T ) is a hereditary 2-clique. If the height of T is 0 then T consists of
the root alone, and K (T ) is a singleton and therefore a hereditary 2-clique. So
suppose we have established the result for trees of height at most n, and consider
a tree T of height n + 1 with root t0 and children of the root t1, t2, . . . , tk. Let
Ti be ↓ ti, the subtree of T rooted at ti. Then ai ≡ K (Ti) is a hereditary 2-clique
by the inductive hypothesis, and the partition into the ais makes a ≡ K (T ) into
a hereditary 2-clique as well. �

Corollary 4.7. A hereditary 2-clique is Gallai.
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The expression of a given hereditary 2-clique as a tree 2-clique is by no means
unique. However, every such expression can be maximally refined, and this is the
content of Proposition 4.10. This proposition will be required for the analysis in
Section 5 of exact Gallai cliques.

Definition 4.8. When a clique a is expressed as a tree clique K (T ), for each
t ∈ T r V (T ) we refer to the clique of S(T ) of the form

{s : s ≺ t}

as the factor of a at t. For t1 < t2 in T r V (T ), we say that the factor at t2 is
higher than the factor at t1.

Definition 4.9. A clique is said to be irreducible if it admits no nontrivial homo-
geneous partition. A clique is said to be a hereditarily irreducible 2-clique provided
that it can be represented as a tree 2-clique with irreducible factors.

Proposition 4.10. Every hereditary 2-clique is a hereditarily irreducible 2-clique.

Proof. By a process of successive refinement, the cliques which arise in expressing a
given hereditary 2-clique as a tree 2-clique can be rendered irreducible. Of course,
the height of the tree typically increases. �

We summarize our results to this point.

Theorem 4.11. The following are equivalent for a complete clique a in a colored
graph.

(1) a is Gallai, i.e., a has no colorful triangles.
(2) a has no colorful cycles.
(3) a is a hereditary 2-clique.
(4) a is a hereditarily irreducible 2-clique.
(5) a is a tree 2-clique.
(6) For disjoint subcliques b and c of a,

∣∣bcr bb
∣∣ ≤ |c| .

(7) For any subclique b of a,
∣∣bb

∣∣ ≤ |b| − 1.

Proof. The equivalence of (1) and (2) is Proposition 3.2, that of (3) and (4) is
Proposition 4.10, that of (3) and (5) is Proposition 4.6, the implication from (3)
to (1) is Corollary 4.7, and the implication from (1) to (3) yields to a simple
induction based on Theorem 4.2. (6) implies (1) by taking |b| = 2 and |c| = 1,
and (1) implies (6) by a simple induction on |c|. Finally, (7) implies (1) by taking
|b| = 3, and (1) implies (7) by a simple induction on |b| based on (6). �

5. Exact Gallai cliques

Now we turn our attention to exact Gallai cliques, i.e., complete cliques in which
every triangle has edges of exactly two colors. Their analysis requires consideration
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of the monochromatic subgraphs of a colored graph G = (V,E, •). More explicitly,
for each color α we have the (uncolored) graph

G (α) ≡ (V, {e ∈ E : e = α}) .

A subgraph of G is called monochromatic if it is a subgraph of G (α) for some α. A
monochrome of G is a component of one of the G (α)s, i.e., a maximal connected
monochromatic subgraph of G, considered as an uncolored graph.

Although the monochromes in Gallai cliques can be as complicated as one
wishes (Proposition 5.1), the monochromes in exact Gallai cliques are fairly simple
(Proposition 6.6), and the monochromes of the irreducible factors of exact Gallai
cliques are simple indeed (Definition 5.4 and Proposition 5.5).

A subgraph is said to span a graph if every vertex of the graph is a vertex of
the subgraph. The following result appeared first in [4]. The simple proof below
was suggested by the referee:

Proposition 5.1. A Gallai clique has a spanning monochrome, and every con-
nected graph is a spanning monochrome in a Gallai clique.

Proof. Let a be a Gallai clique, and let M be a monochrome of a with largest
number of vertices. We claim that M spans a. Suppose that this is not the case,
and let v be a vertex outside of M . Consider the star S centered at v with leaves
consisting of all vertices of M . We can assume that the edges of M are colored
blue in a. If any of the edges of S are colored blue, we obtain a monochrome with
more vertices than M , a contradiction. If S is monochromatic, we reach the same
contradiction. Hence, without loss of generality, there are vertices u, w of M such
that vu is red and vw is green. Since M is connected, there is a path u1 = u, u2,
. . . , un = w in M such that uiui+1 is blue for every 1 ≤ i < n. Since vu1 is red,
u1u2 is blue, and vu2 is not blue, vu2 must be red, else a is not Gallai. Proceeding
in this fashion, we conclude that vun must be red, a contradiction. �

Corollary 5.2. A clique is Gallai iff every subclique has a spanning monochrome.

Proof. A triangle is a subclique. �

We will need to refer to several specific uncolored graphs.

v0

v1

v2 v3

v4

v5

Figure 3. The graph A.

Notation 5.3. The k-path is

Pk ≡ ({vi : 0 ≤ i ≤ k} , {vivi+1 : 0 ≤ i < k}) ,

and the k-cycle is

Ck ≡ ({vi : 1 ≤ i ≤ k} , {vivi+1 : 1 ≤ i < k} ∪ {vkv1}) .



COLORED GRAPHS WITHOUT COLORFUL CYCLES 11

We introduce a special graph which will play a role in Section 7:

A ≡ ({vi : 0 ≤ i ≤ 5} , {v0v1, v1v2, v1v4, v2v3, v3v4, v4v5}) .

See Figure 3.

Figure 4. Simple cliques.

Definition 5.4. We say that a clique a in a colored graph is simple if it is com-
plete, and if either

(1) |a| = 2, or
(2) |a| = 4, and a has two monochromes isomorphic to P3, or
(3) |a| = 5, and a has two monochromes isomorphic to C5.

The three simple cliques are depicted in Figure 4.
For the sake of concise exposition in what follows, we shorten the phrase “the

triangle with vertices u0, u1, and u2” to “the triangle u0u1u2.”

Proposition 5.5. A clique is simple iff it is a nonsingleton irreducible Gallai
2-clique.

Proof. Let a be a nonsingleton irreducible Gallai 2-clique. a cannot have six or
more elements, for the most basic form of Ramsey’s Theorem ([9]) asserts that
a 2-clique with six vertices has a monochromatic triangle. a cannot have three
elements, for identification of the two vertices connected by the edge with minority
color constitutes a nontrivial homogenous partition.

Let a = {u0, u1, u2, u3}. Without loss of generality u0u1 = u0u3 = α. If
u0u2 = α then {u0, {u1, u2, u3}} is a nontrivial homogeneous partition, hence
u0u2 = β 6= α. The triangle u0u1u3 cannot be monochromatic, hence u1u3 = β.
We are now in the situation depicted in Figure 5, and it is easy to see that a is
simple.

Let a = {u0, u1, u2, u3, u4}. Without loss of generality u0u1 = u0u4 = α, and
u0u3 = u1u4 = β. If u0u2 = α then u1u2 = β, but in that case any color assigned
to u2u4 would result in a colorful triangle. Thus u0u2 = β, u2u3 = α, and we are
in the situation depicted in Figure 5. It is then easy to see that a is simple. �

Theorem 5.6. A clique is exact Gallai iff it is a hereditarily irreducible 2-clique
with simple factors, such that higher factors use different colors than lower factors.
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u0

u1u4

u3 u2

u1

u2u3

u0

β

α

α

α α

β β

α

β
β

Figure 5. Proving Proposition 5.5.

Proof. Let a by a hereditarily irreducible 2-clique with simple factors. As long
as higher factors use different colors than lower factors, the argument given in
Proposition 4.5 can be readily modified to show that every triangle has edges of
exactly two colors. Now consider an exact Gallai clique in a colored graph. Apply
Theorem 4.11 to express it as a tree 2-clique with irreducible factors. Then these
factors are exact by Proposition 5.5, and clearly higher factors use differed colors
than lower factors, since otherwise a monochromatic triangle exists. �

6. Full homomorphisms

A full homomorphism ([6]) is a map f : G → H between (uncolored) graphs
such that for all vi ∈ VG,

v1v2 ∈ EG ⇐⇒ f (v1) f (v2) ∈ EH .

Note that the identity map is a full homomorphism, and that the composition
of full homomorphisms is itself a full homomorphism. Thus, graphs with full
homomorphisms constitute a category. For our purposes, however, we need only
a few simple properties of these maps, given in the following lemmas. In theses
lemmas and in what follows, we reserve the term embedding for the identity map
on an induced subgraph.

Lemma 6.1. An embedding is a full homomorphism, and every full homomor-
phism factors into a full surjection followed by an embedding. That is, each full
homomorphism f : G → H factors as f = jf ′,

G
f ′

→ f (G)
j=⊆
→ H,

where f ′ is the map v 7−→ f (v) onto the induced subgraph with vertex set f (G),
and j is the embedding of this subgraph into H.
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For a graph G = (V,E), we can view E as a relation on V × V , and therefore
write uEv in place of uv ∈ E, and uE = {v; uEv}.

A graph G = (V,E) is said to be reduced if for all vi ∈ V ,

v1E = v2E =⇒ v1 = v2.

Lemmas 6.2–6.5 are folklore:

Lemma 6.2. A full homomorphism out of a reduced graph is injective, hence an
embedding.

Proof. Let f : G → H be a full homomorphism, let G be reduced, and let vi ∈ V
satisfy f (v1) = f (v2). Since for any v ∈ V we have

v1v ∈ EG ⇐⇒ f (v1) f (v) ∈ EH ⇐⇒ f (v2) f (v) ⇐⇒ v2v ∈ EG,

it is clear that v1EG = v2EG. Because G is reduced, v1 = v2. �

We wish to show that every graph has a reduced form. For that purpose, we

fix a graph G = (VG, EG) for the next few lemmas, and define Ĝ ≡ (V
Ĝ
, E

Ĝ
) by

setting
VĜ ≡ {vE : v ∈ VG} , EĜ ≡ {(v1E) (v2E) : v1v2 ∈ EG} .

We first show that this definition makes sense.

Lemma 6.3. If u1E = u2E and v1E = v2E then

u1Ev1 ⇐⇒ u2Ev2.

Proof. Since

u1Ev1 ⇐⇒ v1 ∈ u1E = u2E ⇐⇒ u2 ∈ v1E = v2E ⇐⇒ u2Ev2,

the result is clear. �

We define the canonical map rG : G → Ĝ by the rule v 7−→ vE.

Lemma 6.4. Ĝ is reduced and rG is a full surjection. Moreover, any function

hG : Ĝ → G which satisfies hG (vE) ∈ vE for all v ∈ VG constitutes a full

homomorphism such that rGhG is the identity map on Ĝ.

The significance of Ĝ is that it is the smallest full quotient of G.

Lemma 6.5. rG is the smallest full surjection out of G. That is, if f : G → H

is a full surjection then there is a unique full surjection g : H → Ĝ such that
gf = rG.

Proof. If f (v1) = f (v2) then we claim that v1EG = v2EG. For if v ∈ v1EG then
f (v1)EHf (v), hence f (v2)EHf (v) and v2EGv, and conversely. Thus we can
define h by setting h (f (v)) ≡ vE. It is routine to verify that h has the properties
claimed for it. �

It follows from Lemma 6.5 that G is reduced iff rG is an isomorphism. We refer
to Ĝ as the reduced form of G, and we refer to the isomorphism type of Ĝ as the
type of G. Note that if G is connected then so is its type.

Exact Gallai monochromes are characterized by their types.
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Proposition 6.6. Monochromes of exact Gallai cliques are of type P1, P3, or C5,
and every graph of one of these types appears as a (spanning) monochrome in an
exact Gallai clique.

Proof. According to Theorem 5.6, we may think of an exact Gallai clique as a tree
2-clique K (T ) with simple factors. Let G = (V,E) be a monochrome in K (T ),
i.e., a component of K (T ) (α) for some color α. Now every edge of E inherits
its color from that of an edge connecting a sibling pair in S (T ) as in Proposition
4.4, and all these sibling pairs have a common parent t because higher factors use
different colors than lower factors. Let b = {t′ ∈ T : t′ ≺ t} be the factor at t, and
let H be b (α). Let f : G → H be the map which takes each v ∈ V to its unique
ancestor in b. Then f is clearly a full homomorphism, and since b is simple, H is
isomorphic to P1, P3, or C5. �

An induced subgraph of a reduced graph need not be reduced. The reduced
induced subgraphs of C5 are P1, P3, and C5 (the remaining P2 reduces to P1),
the very graphs used to define simple cliques. This observation permits a second
characterization of exact Gallai types in Corollary 6.8, a result which uses the
following trivial lemma.

Lemma 6.7. There exists a full homomorphism from G into H iff the type of G
is embedded in the type of H.

Proof. In light of the rX : X → X̂ and hX : X̂ → X from Lemma 6.4, there is an

f : G → H iff there is a f̂ : Ĝ → Ĥ. By Lemma 6.2 the latter is an embedding. �

Corollary 6.8. A connected graph is an exact Gallai monochrome iff it can be
mapped into C5 by a full homomorphism.

C5 reappears in a pivotal role in Section 7.
Most questions about exact Gallai cliques can now be answered by straightfor-

ward calculations. For example, we offer a concise proof of Theorem 1 of [3].

Theorem 6.9. The largest number of vertices of an exact Gallai clique colored by

k colors is 5
k

2 if k is even and 2 · 5
k−1

2 if k is odd.

Proof. Theorem 5.6 permits us to view an exact Gallai clique as a tree 2-clique
with factors of size n = 2, 4 or 5, in which higher factors use different colors than
lower factors. When n = 2, the factor contributes one color. When n = 4 or 5,
the factor contributes two colors. The result follows. �

7. Homomorphism dualities

In this section, all graphs are assumed to be connected. Let M be a class of
graph homomorphisms. We write

G →M H

to mean that there is a function f : G → H of M. Otherwise we write

G 9M H.
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Two sets A and B of graphs are said to be in a homomorphism duality ([8]) if for
every G

∀A ∈ A (A 9M G) ⇐⇒ ∃B ∈ B (G →M B) .

In this section we take M to be the class of full homomorphisms.

Theorem 7.1. We have the homomorphism duality

{C3, P4, A} 9M G iff G →M C5,

and the connected graphs G characterized by this condition are precisely the mono-
chromes in exact Gallai cliques.

Proof. The condition displayed on the right characterizes the monochromes in
exact Gallai cliques by Lemma 6.7 combined with Proposition 6.6. The same
lemma also shows that the condition displayed on the right implies the one on the
left. Thus we have only to show that for any connected graph G,

{C3, P4, A} 9M G ⇒ G →M C5.

Suppose G = (V,E) contains a copy of C5, designated as in 5.3. First observe
that for every v ∈ V there is an index i for which vvi ∈ E. Indeed, if this were not
the case then there would exist vertices u and w and index j such that uw,wvj ∈ E
but uvj /∈ E. (Consider the last three vertices on a shortest path from v to C5.) In
order to prevent {u, w, vj, vj+1, vj+2} and {u, w, vj, vj−1, vj−2} from being copies of
P4, we would have to have uvj+2, uvj−2 ∈ E, but then we would have a triangle.
Furthermore, v cannot be connected with only one vj ∈ C5, or else there would be
a P4-path {w, vj, vj+1, vj+2, vj+3}. To avoid triangles, v cannot be connected with
two neighboring points vj , vj+1 of C5. Therefore, for every v ∈ V there is exactly
one i, 0 ≤ i ≤ 4, such that vvi−1, vvi+1 ∈ E; set f(v) = i.

We need to demonstrate that the map v 7−→ vf(v) is a full homomorphism. If
uv ∈ E then we must have f(u) = f(v)± 1, since otherwise

{
vf(u)−1, vf(u)+1

}
∩
{
vf(v)−1, vf(v)+1

}
6= ∅,

resulting in a triangle. Finally, if f(u) = i and f(v) = i + 1 then uv ∈ E lest
{u, vi−1, vi−2, vi+2, v} be a copy of P4.

Suppose (V,E) does not contain a copy of C5. Then the longest induced path
is a copy of Pk, k = 1, 2, or 3, since P4 9M G. Choose such a path in G, call it
Pk, and designate its vertices as in 5.3. Since Pk →M C5, it suffices to construct
a full homomorphism f : G → Pk.

If k = 1 then G, by connectedness, is P1 itself and the statement is obvious. So
suppose k = 2, so that Pk is {v0, v1, v2}. Then for every v ∈ V we have either vv1
or vv0 in E, and in the latter case we also have vv2 in E, since otherwise there
would be a P3-path. Set

f(v) =

{
v1 if vv0, vv2 ∈ E
v0 if vv1 ∈ E

.

(Note that the range of f is actually a P1-path. This is not surprising, for the
reduced form of a P2-path is a P1-path, so that by Lemma 6.7, G admits a full
homomorphism into a P2-path iff it admits a full homomorphism into a P1-path.)
Now if uv ∈ E then we could not have f(u) = f(v) = vi, for there would be the
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triangle uvv1−i. And if f(u)f(v) is an edge, say f(u) = v1 and f(v) = v0, then, in
order to prevent {u, v0, v1, v} from being a P3-path, we have to have uv ∈ E.

It remains only to handle the case in which k = 3. We claim that each v ∈ V
has to be immediately connected with some vi ∈ P3. For otherwise consider the
last three points, call them u, w, and vi, on a shortest path connecting v to P3.
Note that, since u is not connected to P3, avoiding a P4-path requires a second
edge (other than wvi) joining w to P3, and there is precisely one such edge, else a
triangle arises.

If i is 0 then the possibilities for the second edge are wv1, wv2, and wv3, but
these choices lead to a copy of C3, a copy of A, or a copy of P4, respectively. If i
is 1 then the possibilities are wv0, wv2, and wv3, but these choices lead to a copy
of C3, a copy of C3, or a copy of A, respectively. Symmetrical arguments rule out
the possibility that i could be 2 or 3, and the claim is proven.

Set

f (v) ≡





v0 if vv1 ∈ E and vv3 /∈ E
v1 if vv0 ∈ E and vv2 ∈ E
v2 if vv1 ∈ E and vv3 ∈ E
v3 if vv2 ∈ E and vv0 /∈ E

.

The definition is correct, for if vv0 ∈ E then vv2 ∈ E to prevent {v, v0, v1, v2, v3}
from being either P4 or C5, and similarly, if vv3 ∈ E then also vv1 ∈ E. And the
value of the function at any argument is unique, since otherwise we would have a
copy of C3. For the same reason, if f(u) = f(v) then uv /∈ E.

Now we must show that if f (u) and f (v) are connected by an edge then so
are u and v. If f(u) = v0 and f(v) = v1 then uv ∈ E, since otherwise we would
have an A-subgraph {u, v1, v0, v2, v, v3}; likewise f(u) = v2 and f(v) = v3 imply
uv ∈ E. If f(u) = v1 and f(v) = v2 then uv ∈ E, since otherwise we would have
a P4-path {u, v0, v1, v, v3}.

At last, we must show that if f (u) and f (v) are not connected by an edge
then neither are u and v. If f(u) = v0 and f(v) = v2 then uv /∈ E because of
the triangle uvv1, and similarly uv /∈ E if f(u) = v1 and f(v) = v3. Finally,
if f(u) = v0 and f(v) = v3 then uv /∈ E since otherwise we would have an
A-subgraph {v0, v1, u, v, v2, v3}. �
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