Privileged users in zero-error transmission over a noisy channel

Noga Alon* Eyal Lubetzky ${ }^{\dagger}$

September 23, 2018

Abstract

The k-th power of a graph G is the graph whose vertex set is $V(G)^{k}$, where two distinct k tuples are adjacent iff they are equal or adjacent in G in each coordinate. The Shannon capacity of $G, c(G)$, is $\lim _{k \rightarrow \infty} \alpha\left(G^{k}\right)^{\frac{1}{k}}$, where $\alpha(G)$ denotes the independence number of G. When G is the characteristic graph of a channel $\mathcal{C}, c(G)$ measures the effective alphabet size of \mathcal{C} in a zero-error protocol. A sum of channels, $\mathcal{C}=\sum_{i} \mathcal{C}_{i}$, describes a setting when there are $t \geq 2$ senders, each with his own channel \mathcal{C}_{i}, and each letter in a word can be selected from either of the channels. This corresponds to a disjoint union of the characteristic graphs, $G=\sum_{i} G_{i}$. It is well known that $c(G) \geq \sum_{i} c\left(G_{i}\right)$, and in $\mathbb{1}$ it is shown that in fact $c(G)$ can be larger than any fixed power of the above sum.

We extend the ideas of $\mathbb{1}$ and show that for every \mathcal{F}, a family of subsets of $[t]$, it is possible to assign a channel \mathcal{C}_{i} to each sender $i \in[t]$, such that the capacity of a group of senders $X \subset[t]$ is high iff X contains some $F \in \mathcal{F}$. This corresponds to a case where only privileged subsets of senders are allowed to transmit in a high rate. For instance, as an analogue to secret sharing, it is possible to ensure that whenever at least k senders combine their channels, they obtain a high capacity, however every group of $k-1$ senders has a low capacity (and yet is not totally denied of service). In the process, we obtain an explicit Ramsey construction of an edge-coloring of the complete graph on n vertices by t colors, where every induced subgraph on $\exp (\Omega(\sqrt{\log n \log \log n}))$ vertices contains all t colors.

1 Introduction

A channel \mathcal{C} on an input alphabet V and an output alphabet U maps each $x \in V$ to some $S(x) \subset U$, such that transmitting x results in one of the letters of $S(x)$. The characteristic graph of the channel

[^0]$\mathcal{C}, G=G(\mathcal{C})$, has a vertex set V, and two vertices $x \neq y \in V$ are adjacent iff $S(x) \cap S(y) \neq \emptyset$, i.e., the corresponding input letters are confusable in the channel. Clearly, a maximum set of predefined letters which can be transmitted in \mathcal{C} without possibility of error corresponds to a maximum independent set in the graph G, and has cardinality $\alpha(G)$ (the independence number of G).

The strong product of two graphs, $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ is the graph, $G_{1} \cdot G_{2}$, on the vertex set $V_{1} \times V_{2}$, where two distinct vertices $\left(u_{1}, u_{2}\right) \neq\left(v_{1}, v_{2}\right)$ are adjacent iff for all $i=1,2$, either $u_{i}=v_{i}$ or $u_{i} v_{i} \in E_{i}$. In other words, the pairs of vertices in both coordinates are either equal or adjacent. This product is associative and commutative, hence we can define G^{k} to be the k-th power of G, where two vertices $\left(u_{1}, \ldots, u_{k}\right) \neq\left(v_{1}, \ldots, v_{k}\right)$ are adjacent iff for all $i=1, \ldots, k$, either $u_{i}=v_{i}$ or $u_{i} v_{i} \in E(G)$.

Note that if I, J are independent sets of two graphs, G, H, then $I \times J$ is an independent set of $G \cdot H$. Therefore, $\alpha\left(G^{n+m}\right) \geq \alpha\left(G^{n}\right) \alpha\left(G^{m}\right)$ for every $m, n \geq 1$, and by Fekete's lemma (cf., e.g., [4], p. 85), the limit $\lim _{n \rightarrow \infty} \alpha\left(G^{n}\right)^{\frac{1}{n}}$ exists and equals $\sup _{n} \alpha\left(G^{n}\right)^{\frac{1}{n}}$. This parameter, introduced by Shannon in [5], is the Shannon capacity of G, denoted by $c(G)$.

When sending k-letter words in the channel \mathcal{C}, two words are confusable iff the pairs of letters in each of their k-coordinates are confusable. Thus, the maximal number of k-letter words which can be sent in \mathcal{C} without possibility of error is precisely $\alpha\left(G^{k}\right)$, where $G=G(\mathcal{C})$. It follows that for sufficiently large values of k, the maximal number of k-letter words which can be sent without possibility of error is roughly $c(G)^{k}$. Hence, $c(G)$ represents the effective alphabet size of the channel in zero-error transmission.

The sum of two channels, $\mathcal{C}_{1}+\mathcal{C}_{2}$, describes the setting where each letter can be sent from either of the two channels, and letters from \mathcal{C}_{1} cannot be confused with letters from \mathcal{C}_{2}. The characteristic graph in this case is the disjoint union $G_{1}+G_{2}$, where G_{i} is the characteristic graph of \mathcal{C}_{i}. Shannon showed in [5] that $c\left(G_{1}+G_{2}\right) \geq c\left(G_{1}\right)+c\left(G_{2}\right)$ for every two graphs G_{1} and G_{2}, and conjectured that in fact $c\left(G_{1}+G_{2}\right)=c\left(G_{1}\right)+c\left(G_{2}\right)$ for all G_{1} and G_{2}. This was disproved in [1], where the author gives an explicit construction of two graphs G_{1}, G_{2} with a capacity $c\left(G_{i}\right) \leq k$, satisfying $c\left(G_{1}+G_{2}\right) \geq k^{\Omega\left(\frac{\log k}{\log \log k}\right)}$.

We extend the ideas of [1] and show that it is possible to construct t graphs, $G_{i}(i \in[t]=$ $\{1,2, \ldots, t\}$), such that for every subset $X \subseteq[t]$, the Shannon capacity of $\sum_{i \in X} G_{i}$ is high iff X contains some subset of a predefined family \mathcal{F} of subsets of $[t]$. This corresponds to assigning t channels to t senders, such that designated groups of senders $F \in \mathcal{F}$ can obtain a high capacity by combining their channels $\left(\sum_{i \in F} \mathcal{C}_{i}\right)$, and yet every group of senders $X \subseteq[t]$ not containing any $F \in \mathcal{F}$ has a low capacity. In particular, a choice of $\mathcal{F}=\{F \subset[t]:|F|=k\}$ implies that every set X of senders has a high Shannon capacity of $\sum_{i \in X} \mathcal{C}_{i}$ if $|X| \geq k$, and a low capacity otherwise. The following theorem, proved in Section 2 formalizes the claims above:

Theorem 1.1. Let $T=\{1, \ldots, t\}$ for some fixed $t \geq 2$, and let \mathcal{F} be a family of subsets of T. For every (large) n it is possible to construct graphs $G_{i}, i \in T$, each on n vertices, such that the
following two statements hold for all $X \subseteq T$:

1. If X contains some $F \in \mathcal{F}$, then $c\left(\sum_{i \in X} G_{i}\right) \geq n^{1 /|F|} \geq n^{1 / t}$.
2. If X does not contain any $F \in \mathcal{F}$, then

$$
c\left(\sum_{i \in X} G_{i}\right) \leq \mathrm{e}^{(1+o(1)) \sqrt{2 \log n \log \log n}}
$$

where the $o(1)$-term tends to 0 as $n \rightarrow \infty$.

As a by-product, we obtain the following Ramsey construction, where instead of forbidding monochromatic subgraphs, we require "rainbow" subgraphs (containing all the colors used for the edge-coloring). This is stated by the next proposition, which is proved in Section 3,
Proposition 1.2. For every (large) n and $t \leq \sqrt{\frac{2 \log n}{(\log \log n)^{3}}}$ there is an explicit t-edge-coloring of the complete graph on n vertices, such that every induced subgraph on

$$
\mathrm{e}^{(1+o(1)) \sqrt{8 \log n \log \log n}}
$$

vertices contains all t colors.

This extends the construction of Frankl and Wilson [2] that deals with the case $t=2$ (using a slightly different construction).

2 Graphs with high capacities for unions of predefined subsets

The upper bound on the capacities of subsets not containing any $F \in \mathcal{F}$ relies on the algebraic bound for the Shannon capacity using representations by polynomials, proved in [1]. See also Haemers [3] for a related approach.

Definition. Let \mathbb{K} be a field, and let \mathcal{H} be a linear subspace of polynomials in r variables over \mathbb{K}. A representation of a graph $G=(V, E)$ over \mathcal{H} is an assignment of a polynomial $f_{v} \in \mathcal{H}$ and a value $c_{v} \in \mathbb{K}^{r}$ to every $v \in V$, such that the following holds: for every $v \in V, f_{v}\left(c_{v}\right) \neq 0$, and for every $u \neq v \in V$ such that $u v \notin E, f_{u}\left(c_{v}\right)=0$.

Theorem 2.1 ([1]). Let $G=(V, E)$ be a graph and let \mathcal{H} be a space of polynomials in r variables over a field \mathbb{K}. If G has a representation over \mathcal{H} then $c(G) \leq \operatorname{dim}(\mathcal{H})$.

We need the following simple lemma:
Lemma 2.2. Let $T=[t]$ for $t \geq 1$, and let \mathcal{F} be a family of subsets of T. There exist sets $A_{1}, A_{2}, \ldots, A_{t}$ such that for every $X \subseteq T$:

$$
X \text { does not contain any } F \in \mathcal{F} \Longleftrightarrow \bigcap_{i \in X} A_{i} \neq \emptyset
$$

Furthermore, $\left|\bigcup_{i=1}^{t} A_{i}\right| \leq\binom{ t}{\lfloor t / 2\rfloor}$.

Proof of lemma. Let \mathcal{Y} denote the family of all maximal sets Y such that Y does not contain any $F \in \mathcal{F}$. Assign a unique element p_{Y} to every $Y \in \mathcal{Y}$, and define:

$$
\begin{equation*}
A_{i}=\left\{p_{Y}: i \in Y, Y \in \mathcal{Y}\right\} \tag{1}
\end{equation*}
$$

Let $X \subseteq T$, and note that (11) implies that $\bigcap_{i \in X} A_{i}=\left\{p_{Y}: X \subseteq Y\right\}$. Thus, if X does not contain any $F \in \mathcal{F}$, then $X \subseteq Y$ for some $Y \in \mathcal{Y}$, and hence $p_{Y} \in \bigcap_{i \in X} A_{i}$. Otherwise, X contains some $F \in \mathcal{F}$ and hence is not a subset of any $Y \in \mathcal{Y}$, implying that $\bigcap_{i \in X} A_{i}=\emptyset$.

Finally, observe that \mathcal{Y} is an anti-chain and that $\left|\bigcup_{i=1}^{t} A_{i}\right| \leq|\mathcal{Y}|$, hence the bound on $\left|\bigcup_{i=1}^{t} A_{i}\right|$ follows from Sperner's Theorem [6].

Proof of Theorem 1.1. Let p be a large prime, and let $\left\{p_{Y}: Y \in \mathcal{Y}\right\}$ be the first $|\mathcal{Y}|$ primes succeeding p. Define $s=p^{2}$ and $r=p^{3}$, and note that, as t and hence $|\mathcal{Y}|$ are fixed, by well-known results about the distribution of prime numbers, $p_{Y}=(1+o(1)) p<s$ for all Y, where the $o(1)$-term tends to 0 as $p \rightarrow \infty$.

The graph $G_{i}=\left(V_{i}, E_{i}\right)$ is defined as follows: its vertex set V_{i} consists of all $\binom{r}{s}$ possible s-element subsets of $[r]$, and for every $A \neq B \in V_{i}$:

$$
\begin{equation*}
(A, B) \in E_{i} \Longleftrightarrow|A \cap B| \equiv s \quad\left(\bmod p_{Y}\right) \text { for some } p_{Y} \in A_{i} \tag{2}
\end{equation*}
$$

Let $X \subseteq T$. If X does not contain any $F \in \mathcal{F}$, then, by Lemma $2.2 \bigcap_{i \in X} A_{i} \neq \emptyset$, hence there exists some q such that $q \in A_{i}$ for every $i \in X$. Therefore, for every $i \in X$, if A, B are disconnected in G_{i}, then $|A \cap B| \not \equiv s(\bmod q)$. It follows that the graph $\sum_{i \in X} G_{i}$ has a representation over a subspace of the multi-linear polynomials in $|X| r$ variables over \mathbb{Z}_{q} with a degree smaller than q. To see this, take the variables $x_{j}^{(i)}, i=1, \ldots,|X|, j=1, \ldots, r$, and assign the following polynomial to each vertex $A \in V_{i}$:

$$
f_{A}(\bar{x})=\prod_{u \neq s}\left(u-\sum_{j \in A} x_{j}^{(i)}\right) .
$$

The assignment c_{A} is defined as follows: $x_{j}^{\left(i^{\prime}\right)}=1$ if $i^{\prime}=i$ and $j \in A$, otherwise $x_{j}^{\left(i^{\prime}\right)}=0$. As every assignment $c_{A^{\prime}}$ gives values in $\{0,1\}$ to all $x_{j}^{(i)}$, it is possible to reduce every f_{A} modulo the polynomials $\left(x_{j}^{(i)}\right)^{2}-x_{j}^{(i)}$ for all i and j, and obtain multi-linear polynomials, equivalent on all the assignments $c_{A^{\prime}}$.

The following holds for all $A \in V_{i}$:

$$
f_{A}\left(c_{A}\right)=\prod_{u \neq s}(u-s) \not \equiv 0 \quad(\bmod q),
$$

and for every $B \neq A$:

$$
\begin{aligned}
B \in V_{i},(A, B) \notin E_{i} & \Longrightarrow f_{A}\left(c_{B}\right)=\prod_{u \neq s}(u-|A \cap B|) \equiv 0 \quad(\bmod q), \\
B \notin V_{i} & \Longrightarrow f_{A}\left(c_{B}\right)=\prod_{u \neq s} u \equiv 0 \quad(\bmod q),
\end{aligned}
$$

where the last equality is by the fact that $s \not \equiv 0(\bmod q)$, as $s=p^{2}$ and $p<q$. As the polynomials f_{A} lie in the direct sum of $|X|$ copies of the space of multi-linear polynomials in r variables of degree less than q, it follows from Theorem [2.1] that the Shannon capacity of $\sum_{i \in X} G_{i}$ is at most:

$$
|X| \sum_{i=0}^{q-1}\binom{r}{i} \leq t \sum_{i=0}^{q-1}\binom{r}{i}<t\binom{r}{q} .
$$

Recalling that $q=(1+o(1)) p$ and writing $t\binom{r}{q}$ in terms of $n=\binom{r}{s}$ gives the required upper bound on $c\left(\sum_{i \in X} G_{i}\right)$.

Assume now that X contains some $F \in \mathcal{F}, F=\left\{i_{1}, \ldots, i_{|F|}\right\}$. We claim that the following set is an independent set in $\left(\sum_{i \in X} G_{i}\right)^{|F|}$:

$$
\left\{\left(A^{\left(i_{1}\right)}, A^{\left(i_{2}\right)}, \ldots, A^{\left(i_{|F|}\right)}\right): A \subseteq[r],|A|=s\right\},
$$

where $A^{\left(i_{j}\right)}$ is the vertex corresponding to A in $V_{i_{j}}$. Indeed, if (A, A, \ldots, A) and (B, B, \ldots, B) are adjacent, then for every $i \in F,|A \cap B| \equiv s\left(\bmod p_{Y}\right)$ for some $p_{Y} \in A_{i}$. However, $\bigcap_{i \in F} A_{i}=\emptyset$, hence there exist $p_{Y} \neq p_{Y}^{\prime}$ such that $|A \cap B|$ is equivalent both to $s\left(\bmod p_{Y}\right)$ and to $s\left(\bmod p_{Y}^{\prime}\right)$. By the Chinese Remainder Lemma, it follows that $|A \cap B|=s$ (as $|A \cap B|<p_{Y} p_{Y}^{\prime}$), thus $A=B$. Therefore, the Shannon capacity of $\sum_{i \in X} G_{i}$ is at least $\binom{r}{s}^{1 /|F|}=n^{1 /|F|}$.

3 Explicit construction for rainbow Ramsey graphs

Proof of Proposition 1.2, Let p be a large prime, and let $p_{1}<\ldots<p_{t}$ denote the first t primes succeeding p. We define r, s as in the proof of Theorem $1.1 s=p^{2}, r=p^{3}$, and consider the complete graph on n vertices, K_{n}, where $n=\binom{r}{s}$, and each vertex corresponds to an s-element subset of $[r]$. The fact that $t \leq \sqrt{\frac{2 \log n}{(\log \log n)^{3}}}$ implies that $t \leq\left(\frac{1}{2}+o(1)\right) \frac{p}{\log p}$, and hence, by the distribution of prime numbers, $p_{t}<2 p$ (with room to spare) for a sufficiently large value of p.

We define an edge-coloring γ of K_{n} by t colors in the following manner: for every $A, B \in V$, $\gamma(A, B)=i$ if $|A \cap B| \equiv s\left(\bmod p_{i}\right)$ for some $i \in[t]$, and is arbitrary otherwise. Note that for every $i \neq j \in\{1, \ldots, t\}, s<p_{i} p_{j}$. Hence, if $|A \cap B| \equiv s\left(\bmod p_{i}\right)$ and $|A \cap B| \equiv s\left(\bmod p_{j}\right)$ for such i and j, then by the Chinese Remainder Lemma, $|A \cap B|=s$, and in particular, $A=B$. Therefore, the coloring γ is well-defined.

It remains to show that every large induced subgraph of K_{n} has all t colors according to γ. Indeed, this follows from the same consideration used in the proof of Theorem 1.1. To see this, let G_{i} denote the spanning subgraph of K_{n} whose edge set consists of all (A, B) such that $\gamma(A, B) \neq i$. Each such pair satisfies $|A \cap B| \not \equiv s\left(\bmod p_{i}\right)$, hence G_{i} has a representation over the multi-linear polynomials in r variables over $\mathbb{Z}_{p_{i}}$ with a degree smaller than p_{i} (define $f_{A}\left(x_{1}, \ldots, x_{r}\right.$) as is in the proof of Theorem 1.1 and take c_{A} to be the characteristic vector of A). Thus, $c\left(G_{i}\right)<\binom{r}{p_{i}}$, and in particular, $\alpha\left(G_{i}\right)<\binom{r}{p_{i}}$. This ensures that every induced subgraph on at least $\binom{r}{p_{i}} \leq\binom{ r}{2 p}$ vertices contains an i-colored edge, and the result follows.

Acknowledgement We would like to thank Benny Sudakov for fruitful discussions.

References

[1] N. Alon, The Shannon capacity of a union, Combinatorica 18 (1998), 301-310.
[2] P. Frankl and R. Wilson, Intersection theorems with geometric consequences, Combinatorica 1 (1981), 357-368.
[3] W. Haemers, An upper bound for the Shannon capacity of a graph, Colloquia Mathematica Societatis János Bolyai, 25: Algebraic Methods in Graph Theory, Szeged (Hungary), 1978, 267-272.
[4] J.H. van Lint and R.M. Wilson, A Course in Combinatorics, Second Edition, Cambridge University Press, Cambridge, 2001.
[5] C. E. Shannon, The zero-error capacity of a noisy channel, IRE Transactions on Information Theory, 2(3):8-19, 1956.
[6] E. Sperner, Ein Satz über Untermengen einer endlichen Menge, Math. Z. 27, 544-548, 1928.

[^0]: *Schools of Mathematics and Computer Science, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel. Email: nogaa@tau.ac.il. Research supported in part by a USA-Israeli BSF grant, by the Israel Science Foundation and by the Hermann Minkowski Minerva Center for Geometry at Tel Aviv University.
 ${ }^{\dagger}$ School of Computer Science, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel. Email: lubetzky@tau.ac.il. Research partially supported by a Charles Clore Foundation Fellowship.

