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Abstract

It is a long standing open problem to find an explicit description of the stable set polytope of claw-
free graphs. Yet more than 20 years after the discovery of a polynomial algorithm for the maximum
stable set problem for claw-free graphs, there is even no conjecture at hand today.
Such a conjecture exists for the class of quasi-line graphs. This class of graphs is a proper superclass
of line graphs and a proper subclass of claw-free graphs for which it is known that not all facets have
0/1 normal vectors. The Ben Rebea conjecture states that the stable set polytope of a quasi-line graph
is completely described by clique-family inequalities. Chudnovsky and Seymour recently provided
a decomposition result for claw-free graphs and proved that the Ben Rebea conjecture holds, if the
quasi-line graph is not a fuzzy circular interval graph.
In this paper, we give a proof of the Ben Rebea conjecture by showing that it also holds for fuzzy
circular interval graphs. Our result builds upon an algorithm of Bartholdi, Orlin and Ratliff which is
concerned with integer programs defined by circular ones matrices.

1 Introduction

A graph G is claw-free if no vertex has three pairwise nonadjacent neighbors. Line graphs are claw
free and thus the weighted stable set problem for a claw-free graph is a generalization of the weighted
matching problem of a graph. While the general stable set problem is NP-complete, it can be solved in
polynomial time on a claw-free graph [22, 31] even in the weighted case [24, 25] see also [34]. These
algorithms are extensions of Edmonds’ [11, 10] matching algorithms.

The stable set polytope STAB(G) is the convex hull of the characteristic vectors of stable sets of
the graph G. The polynomial equivalence of separation and optimization for rational polyhedra [17,
28, 19] provides a polynomial time algorithm for the separation problem for STAB(G), if G is claw-
free. However, this algorithm is based on the ellipsoid method [20] and no explicit description of a
set of inequalities is known that determines STAB(G) in this case. This apparent asymmetry between
the algorithmic and the polyhedral status of the stable set problem in claw-free graphs gives rise to the
challenging problem of providing a “. . . decent linear description of STAB(G)” [18], which is still open
today. In spite of results characterizing the rank-facets [13] (facets with 0/1 normal vectors) of claw-free
graphs, or giving a compact lifted formulation for the subclass of distance claw-free graphs [29], the
structure of the general facets for claw-free graphs is still not well understood and even no conjecture is
at hand.
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The matching problem [10] is a well known example of a combinatorial optimization problem in
which the optimization problem on the one hand and the facets on the other hand are well understood.
This polytope can be described by a system of inequalities in which the coefficients on the left-hand-side
are 0/1. This property of the matching polytope does not extend to the polytope STAB(G) associated
with a claw-free graph. In fact, Giles and Trotter [15] show that for each positive integer a, there exists a
claw-free graph G such that STAB(G) has facets with a/(a+1) normal vectors. Furthermore they show
that there exist facets whose normal vectors have up to 3 different coefficients (indeed up to 5 as it is
shown in [21]). Perhaps this is one of the reasons why providing a description of STAB(G) is not easy,
since 0/1 normal vectors can be interpreted as subsets of the set of nodes, whereas such an interpretation
is not immediate if the normal vectors are not 0/1.

A graph is quasi-line, if the neighborhood of any vertex partitions into two cliques. The complement
of quasi-line graphs are called near-bipartite and an interesting polyhedral characterization of near-
bipartite graphs is given in [23]; also a linear description of their stable set polytope has been given
in [35]. The class of quasi-line graphs is a proper superclass of line graphs and a proper subclass of the
class of claw-free graphs. Interestingly also for this class of graphs there are facets with a/(a+1) normal
vectors, for any nonnegative integer a [15], but no facet whose normal vector has more than 2 different
coefficients is known for this class.

Clique family inequalities and the Ben Rebea conjecture

We now describe the clique-family inequalities introduced in [27]. Our main result is a proof of the Ben
Rebea conjecture, which essentially says that this proper generalization of the odd-set inequalities [10]
which describe that matching polytope, together with the nonnegativity and clique inequalities, describe
the stable set polytope of a quasi-line graph.

Let F = {K1, . . . ,Kn} be a set of cliques, 1 ≤ p ≤ n be integral and r = n mod p. Let Vp−1 ⊆V (G)
be the set of vertices covered by exactly (p−1) cliques of F and V≥p ⊆V (G) the set of vertices covered
by p or more cliques of F . The inequality

(p− r−1) ∑
v∈Vp−1

x(v)+(p− r) ∑
v∈V≥p

x(v) ≤ (p− r)

⌊

n
p

⌋

(1)

is valid [27] for STAB(G) and is called the clique family inequality associated with F and p.
Clique family inequalities are a generalization of odd-set inequalities [10] which are part of the de-

scription of the matching polytope. This can be seen as follows. Suppose that the graph G =(V (G),E(G))
is the line graph of the graph H = (V (H),E(H)) and let U ⊆V (H) be an odd subset of the nodes of H .

The odd-set inequality defined by U is the inequality

∑
e∈E(U)

x(e) ≤ b|U |/2c (2)

which is valid for all characteristic vectors χ ∈ {0,1}E(H) of matchings in H . Here, E(U)⊆ E(H) is the
subset of edges of H which have both endpoints in U .

This inequality is a clique-family inequality for the stable-set polytope of G, via the following con-
struction. Each vertex v∈U yields a clique Kv in the line graph G of H consisting of the edges e∈ E(H),
which are incident to v. The family of cliques F will consist of those cliques. Furthermore we let p = 2.
Since |U | is odd the remainder r is 1. Furthermore, the vertices of G which are in V≥p are exactly the
edges of H which have both endpoints in U ⊆ V (H). The clique family inequality corresponding to F
and p is therefore the odd-set inequality

∑
v∈E(U)

x(v)≤ b|U |/2c. (3)
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Ben Rebea [30] considered the problem to study STAB(G) for quasi-line graphs. Oriolo [27] formu-
lated a conjecture inspired from his work.

Conjecture (Ben Rebea conjecture [27]). The stable set polytope of a quasi-line graph G = (V,E) may
be described by the following inequalities:

(i) x(v) ≥ 0 for each v ∈V

(ii) ∑v∈K x(v)≤ 1 for each maximal clique K

(iii) inequalities (1) for each family F of maximal cliques and each integer p with |F | > 2p ≥ 4 and
|F | mod p 6= 0.

In this paper we prove that the Ben Rebea Conjecture holds true. This is done by establishing the
conjecture for fuzzy circular interval graphs, a class introduced by Chudnovsky and Seymour [6]. This
settles the result, since Chudnovsky and Seymour showed that the conjecture holds if G is quasi-line
and not a fuzzy circular interval graph. Interestingly, since all the facets are rank for this latter class of
graphs, the quasi-line graphs that “produce” non-rank facets are the fuzzy circular interval graphs.

We first show that we can focus our attention on circular interval graphs [6] a subclass of fuzzy cir-
cular interval graphs. The weighted stable set problem over a circular interval graph may be formulated
as a packing problem max{cx | Ax ≤ b, x ∈ Z

n
≥0}, where b = 1 and A ∈ {0,1}m×n is a circular ones ma-

trix, i.e., the columns of A can be permuted in such a way that the ones in each row appear consecutively.
Here the last and first entry of a row are also considered to be consecutive. Integer programs of this sort
with general right-hand side b ∈ Z

m have been studied by Bartholdi, Orlin and Ratliff [3]. From this, we
derive a separation algorithm which is based on the computation of a negative cycle, thereby extending
a recent result of Gijswijt [14]. We then concentrate on packing problems with right-hand side b = α1,
where α is an integer. By studying non-redundant cycles leading to separating hyperplanes, we show that
each facet of the convex hull of integer feasible solutions to a packing problem of this sort has a normal
vector with two consecutive coefficients. Instantiating this result with the case where α = 1, we obtain
our main result.

Cutting planes

Before we proceed, we would like to stress some connections of this work to cutting plane theory. An
inequality cx ≤ bδc is a Gomory-Chvátal cutting plane [16, 7] of a polyhedron P ⊆ R

n, if c ∈ Z
n is an

integral vector and cx ≤ δ is valid for P. The Chvátal closure Pc of P is the intersection of P with all its
Gomory-Chvátal cutting planes. If P is rational, then Pc is a rational polyhedron [32]. The separation
problem for Pc is NP-hard [12]. A polytope P has Chvátal-rank one, if its Chvátal closure is the integer
hull PI of P. Let QSTAB(G) be the fractional stable set polytope of a graph G, i.e., the polytope defined
by non-negativity and clique inequalities. A famous example of a polytope of Chvátal-rank one is the
fractional matching polytope and thus QSTAB(G), where G is a line graph. Giles and Trotter [15] showed
that the Chvátal rank of QSTAB(G) is at least two, if G is claw-free. Chvátal, Cook and Hartman [8]
showed that the Chvátal-rank of QSTAB(G) grows logarithmically in the number of nodes, even if the
stability number of G is two and thus, even if G is claw-free. Oriolo [27] has shown that QSTAB(G) has
Chvátal rank at least two, if G is a quasi-line graph.

An inequality cx ≤ δ is called a split cut [9] of P if there exists an integer vector π ∈ Z
n and an

integer π0 such that cx ≤ δ is valid for P∩{x ∈ R
n | πx ≤ π0} and for P∩{x ∈ R

n | πx ≥ π0 +1}. The
split closure Ps of P is the intersection of P with all its split cuts and this is a rational polyhedron if P
itself is rational [9, 2]. The separation problem for the split closure is also NP-hard [4]. A polyhedron
P ⊆ R

n has split-rank one, if Ps = PI . Since a Gomory-Chvátal cutting plane is also a split cut one has
Ps ⊆ Pc.
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Both cutting plane calculi are simple procedures to derive valid inequalities for the integer hull of a
polyhedron. We show below that a clique family inequality is a split cut for QSTAB(G) with π(v) = 1
if v ∈ Vp−1∪V≥p, π(v) = 0 otherwise and π0 = b n

pc. Thus, while the fractional stable set polytope of a
quasi-line graph does not have Chvátal rank one, its split-rank is indeed one.

In the remainder of this section, we present the split-cut derivation of the clique-family inequality.
Notice that the inequality

(p−1) ∑
v∈Vp−1

x(v)+ p ∑
v∈V≥p

x(v) ≤ n = pbn/pc+ r (4)

is valid for QSTAB(G), since it is the result of summing up the clique inequalities corresponding to F
and possibly applying the lower bounds −x(v)≤ 0 on vertices v ∈V≥p which are contained in more than
p cliques. Now consider the disjunction

∑
v∈Vp−1∪V≥p

x(v)≤ bn/pc ∨ ∑
v∈Vp−1∪V≥p

x(v) ≥ bn/pc+1 (5)

Assume now the left inequality of the disjunction (5). Under this assumption we can write

(p− r−1) ∑
v∈Vp−1

x(v)+(p− r) ∑
v∈V≥p

x(v) ≤ (p− r) ∑
v∈Vp−1∪V≥p

x(v)

≤ (p− r)bn/pc,

where the first inequality follows from the lower bounds on the variables.
Assume now the right inequality of the disjunction (5). Together with (4) we can write

(p− r−1) ∑v∈Vp−1
x(v)+(p− r)∑v∈V≥p

x(v)
= (p−1)∑v∈Vp−1

x(v)+ p∑v∈V≥p
x(v)− r ∑v∈Vp−1∪V≥p

x(v)
≤ (p− r)bn/pc.

2 From quasi-line graphs to circular interval graphs

In this section we first review some results concerning the structure of quasi-line graphs due to Chud-
novsky and Seymour [6]. We then build upon these results to reduce the proof of the Ben Rebea conjec-
ture to the case where the graph is a circular interval graph.

2.1 Circular Interval Graphs

A circular interval graph [6] G = (V,E) is defined by the following construction, see Figure 1: Take a
circle C and a set of vertices V on the circle. Take a subset of intervals I of C and say that u,v ∈ V are
adjacent if u and v are contained in one of the intervals.

Any interval used in the construction will correspond to a clique of G. Denote the family of cliques
stemming from intervals by KI and the set of all cliques in G by K(G). Without loss of generality, the
(intervals) cliques of KI are such that none includes another. Moreover KI ⊆ K(G) and each edge of G
is contained in a clique of KI . Therefore, if we let A∈ {0,1}m×n be the clique vertex incidence matrix of
KI and V one can formulate the (weighted) stable set problem on a circular interval graph as a packing
problem

max ∑v∈V c(v)x(v)
Ax ≤ 1

x(v) ∈ {0,1} ∀v ∈V

where the matrix A is a circular ones matrix (e.g. using clockwise ordering of the vertices).
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Figure 1: A circular interval graph

We point out that the property above may be used as a characterization for circular interval graphs.
In fact, it is easy to see that a graph G(V,E) is a circular interval graph if and only if there exists an
ordering of V and a set KI of cliques of G such that: (i) each edge of G is contained in a clique of KI ;
(ii) the clique vertex incidence matrix of KI and V is a circular ones matrix. Finally, circular interval
graphs are also called proper circular arc graphs, i.e. they are equivalent to the intersection graphs of
arcs of a circle with no containment between arcs [6].

2.2 Fuzzy Circular Interval Graphs

Chudnovsky and Seymour [6] also introduced a super-class of circular interval graphs called fuzzy cir-
cular interval graphs. A graph G(V,E) is a fuzzy circular interval if the following conditions hold.

(i) There is a map Φ from V to a circle C .

(ii) There is a set of intervals I of C , none including another, such that no point of C is an endpoint of
more than one interval so that:

(a) If two vertices u and v are adjacent, then Φ(u) and Φ(v) belong to a common interval.

(b) If two vertices u and v belong to a same interval, which is not an interval with endpoints Φ(u)
and Φ(v), then they are adjacent.

In other words, in a fuzzy circular interval graph, adjacencies are completely described by the pair
(Φ,I ), except for vertices u and v such that I contains an interval with endpoints Φ(u) and Φ(v). For
these vertices adjacency is fuzzy. If [p,q] is an interval of I such that Φ−1(p) and Φ−1(q) are both
non-empty, then we call the cliques (Φ−1(p),Φ−1(q)) a fuzzy pair. Here Φ−1(p) denotes the clique
{v ∈V | Φ(v) = p}.

The left drawing of Figure 2 illustrates a section of a representation of a fuzzy circular interval graph.
The cliques Φ−1(p) and Φ−1(r) are fuzzy pairs, since p and r are the endpoints of an interval. The node
sets Φ−1(p)∪Φ−1(q) and Φ−1(q)∪Φ−1(r) are cliques. The edges with one endpoint in Φ−1(p) and
the other in Φ−1(r) are “fuzzy”. The other interval which starts a little left from q and ends at s can be
extended a little to the right of s, since Φ−1(q)∪Φ−1(r)∪Φ−1(s) is a clique of G. Therefore the right
drawing of Figure 2 shows another possible representation of the same graph.

p

q r

s p

q r

s

Figure 2: Two different representations of a fuzzy circular interval graph
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Trivially, if a fuzzy circular interval graph admits a fuzzy representation (Φ,I ) with no fuzzy pairs of
cliques, then G is a circular interval graph. We can sharpen this latter statement if we recall the definition
of homogeneous pair of cliques.

Two disjoint cliques K1 and K2 of size at least two are a homogeneous pair of cliques [6] if no vertex
v 6∈K1∪K2 is both a neighbor and a non-neighbor of a vertex of K1 or both a neighbor and a non-neighbor
of a vertex of K2 respectively. Trivially, if [p,q] is an interval of I such that Φ−1(p) and Φ−1(q) are both
of size at least two, then Φ−1(p) and Φ−1(q) is a homogeneous pair.

We also say that a homogeneous pair of cliques (K1,K2) is proper if every vertex of K1 has a neighbor
and a non-neighbor in K2 and every vertex of K2 has a neighbor and a non-neighbor in K1. A graph is
C4-free if it does not have an induced subgraph isomorphic to a cordless cycle of length 4. For X ⊆ V ,
we denote by G[X ] the subgraph of G induced by X .

Lemma 1. [5] Let (K1,K2) be a homogeneous pair of cliques. If (K1,K2) is proper, then the subgraph
G[K1∪K2] contains an induced C4.

Proof. For a vertex u ∈ K1 let d2(u) be its degree with respect to K2, that is d2(u) = |{v ∈ K2 : uv ∈ E}|.
Let u1 be a vertex of K1 with maximum degree with respect to K2. Since (K1,K2) is proper, u1 has a
non-neighbor z2 in K2. The same applies to z2 and K1: z2 has a neighbor u2 ∈ K1. Finally, there must
exist a vertex z1 ∈ K2 that is a neighbor of u1 and a non-neighbor of u2 (otherwise d2(u2) > d2(u1)). It
follows that {u1,u2,z1,z2} induce a C4.

Lemma 2. Let G be a fuzzy circular interval graph with a representation (Φ,I ). If no fuzzy pair contains
an induced C4, then G is a circular interval graph.

Proof. Let (Φ−1(p),Φ−1(q)) be a fuzzy pair. This pair is homogenous but not proper by Lemma 1.
Since it is not proper, there exists a vertex in Φ−1(p) (resp. Φ−1(q)) that is either totally joined to or
independent from Φ−1(q) (resp. Φ−1(p)).

Suppose that v ∈ Φ−1(p) is totally joined to Φ−1(q). Then we can move Φ(v) by a small amount
into the interior of the interval [p,q]. This yields a new representation (Φ ′,I ) of the graph G that does
not introduce new fuzzy pairs and reduces the number of vertices which are contained in a fuzzy pair by
one.

Similarly, if v ∈Φ−1(p) is independent from Φ−1(q), we can move Φ(v) such that it is outside [p,q].
This operation yields a new mapping Φ′. In addition to that we must add an interval I covering v and its
neighbors in [p,q]. Since v is connected to every vertex which is mapped to the half-open interval [p,q)
and since v∪Φ′−1 ([p,q)) is a clique, this interval I can be chosen such that both of its endpoints are not
contained in Φ′(V ). This new representation (Φ′,I ∪{I}) does also not introduce new fuzzy pairs and
reduces the number of vertices which are contained in a fuzzy pair by one.

We can iterate this process until there are no fuzzy pairs left.

2.3 Decomposition of quasi-line graphs

Let G be a graph and L(G) be its line graph. Notice that G can be build by considering a disjoint union
of stars (associated to every vertex in G) and then identifying some of the edges. L(G) can thus be built
by considering a disjoint union of cliques and identifying some vertices. This construction has been
generalized by Chudnovsky and Seymour [6] through the operations glue and composition.

A vertex v is simplicial if its neighbors form a clique. A strip (G,a,b) is a graph G together with two
designated simplicial vertices a and b. Let (G,a,b) and (G′,a′,b′) be two vertex-disjoint strips. The glue
of (G,a,b) and (G′,a′,b′) is the graph resulting from the union of G \ {a,b} and G′ \ {a′,b′} together
with the adjunction of all possible edges between the neighbors of a (b) and the neighbors of a ′ (b′).
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Let G0 be a disjoint union of cliques with an even vertex set V (G0) = {a1,b1, . . . ,an,bn}. Let
(G′

i,a
′
i,b

′
i) be n strips that are vertex-disjoint, also from G0. For i = 1, ...,n, let Gi be the graph ob-

tained by gluing (Gi−1,ai,bi) with (G′
i,a

′
i,b

′
i). Gn is called the composition of the strips (G′

i,a
′
i,b

′
i), with

the collection of disjoint cliques G0.
We observed that a line graph can be built by considering a disjoint union of cliques and identifying

some vertices. Gluing a 2-edges strip with a strip (S,a,b) results in the identification of a and b. There-
fore any line graph G can be expressed as the composition of 2-edges strips with G0 made of |V (G)|
cliques. If we now replace 2-edges strips by fuzzy linear interval strips (a superclass), we get a large
class of quasi-line graphs. Chudnovsky and Seymour proved in fact the following structural result.

Theorem 3 (Chudnovsky and Seymour [6]). A connected quasi-line graph G is either a fuzzy circular
interval graph, or it is the composition of fuzzy linear interval strips with a collection of disjoint cliques.

Chudnovsky and Seymour were also able to give a complete characterization of the stable set poly-
tope of quasi-line graphs that are not fuzzy circular interval graphs. Let F = {K1,K2, ...,K2n+1} be an
odd set of cliques of G. Let T ⊆ V be the set of vertices which are covered by at least two cliques of
F . Then the inequality ∑v∈T x(v) ≤ n is a valid inequality for STAB(G) and inequalities of this type are
called Edmonds inequalities.

Theorem 4 (Chudnovsky and Seymour [6]). If G is the composition of fuzzy linear interval strips with
a collection of disjoint cliques, then all non trivial facets of STAB(G) are Edmonds inequalities.

2.4 The reduction to circular interval graphs

Observe that Edmonds inequalities are special clique family inequalities associated with F and p = 2.
Therefore, we may give a positive answer to the Ben Rebea Conjecture if we prove that it holds for fuzzy
circular interval graphs. We now show that it will be enough to prove the conjecture for circular interval
graphs.

Lemma 5. Let F be a facet of STAB(G), where G is a fuzzy circular interval graph. Then F is also
a facet of STAB(G′), where G′ is a circular interval graph and is obtained from G by removing some
edges.

Proof. Suppose that F is induced by the valid inequality ax ≤ β. An edge e is F-critical, if ax ≤ β is not
valid for STAB(G\ e). If e is not F-critical, then F is also a facet of STAB(G\ e).

Let (Φ, I) be a fuzzy representation of G. For every fuzzy pair (K1,K2), we remove all the edges
connecting a vertex in K1 to a vertex in K2 that are non F-critical. We end up with a fuzzy circular
interval graph G′ which has the same fuzzy representation (Φ, I) as G.

We claim that no fuzzy pair of G′ contains a C4 and thus by Lemma 2, G′ is a circular interval graph.
Moreover since we remove only non F-critical edges, F is still a facet of STAB(G ′).

Suppose the contrary that there exists a fuzzy pair (K1,K2) of G′ that contains a C4. Say V (C4) =
{u1,u2,v1,v2} with u1,u2 ∈ K1, v1,v2 ∈ K2, u1v1, u2v2 ∈ E(C4). The edge u1v1 is F-critical. Hence there
exists a stable set S containing u1 and v1 such that S violates ax ≤ β and S is stable in G′ \u1v1. Since K1

and K2 form an homogeneous pair, u1 and u2 are adjacent to the same vertices in G′ \K2. This implies
that (S\u1)∪ u2 is a stable set. Therefore a(u2) < a(u1) (else (u1,v1) is not F-critical). Applying the
same argument to u2v2 leads to a(u1) < a(u2). Which is a contradiction.

Remark. We would like to point out here that the following statement can be proved in a similar way
as the proof of Lemma 5: Let F be a facet of STAB(G). There exists a graph G′, obtained from G by
removing some edges, such that F is also a facet of STAB(G′) and G′ does not contain any pair of cliques
which is proper and homogeneous.
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Lemma 5 shows that each facet of a fuzzy circular interval graph is a facet of a circular interval graph
which is obtained via the deletion of some edges. A clique family inequality of the thereby obtained cir-
cular interval graph is a clique family inequality of the original fuzzy circular interval graph. Therefore,
we now only have to establish the Ben Rebea conjecture for the class of circular interval graphs. Recall
that the stable set polytope of a circular interval graph is the integer hull of a polyhedron of the form
{x ∈ R

n | Ax ≤ 1, x ≥ 0}, where A ∈ {0,1}m×n is a circular ones matrix.

3 Slicing and separation

In this section we show that the separation problem for STAB(G) reduces to a min-cost circulation
problem if G is a circular interval graph. For this, we present a membership algorithm of Gijswijt [14]
and develop it further to retrieve a separating hyperplane.

Let P be a polytope P = {x ∈R
n | Ax ≤ b, x ≥ 0}, where A ∈ {0,1}m×n is a circular ones matrix and

b ∈ Z
m an integral vector. We consider the separation problem for the integer hull PI of P:

Given x∗ ∈R
n, determine, whether x∗ ∈ PI and if not, determine an inequality cx ≤ δ which

is valid for PI and satisfies cx∗ > δ.

Following Bartholdi, Orlin and Ratliff [3], we consider the unimodular transformation x = T y, where T
is the unimodular matrix

T =











1
−1 1

−1 1
−1

. . .
1
−1 1











(6)

The problem then reads, separate y∗ = T−1x∗ from the integer hull QI of the polytope Q defined by the
system

(

A
−I

)

T y ≤

(

b
0

)

. (7)

In the following we denote the inequality system (7) by By≤ d. Let us rewrite the matrix B as B = (N|v),

i.e. v is the n-th column of B. Observe that, by construction, v is also the last column of

(

A
−I

)

.

Each row of the matrix N has at most one entry which is +1 and at most one entry which is −1. All
other entries are 0. The matrix N is thus totally unimodular. Thus, whenever y(n) is set to an integer
β ∈ Z, the possible values for the variables y(1), . . . ,y(n−1) define an integral polytope Qβ = Q∩{y ∈
R

n | y(n) = β}. We call this polytope Qβ the slice of Q defined by β.
Since T is unimodular, the corresponding slice of the original polyhedron P∩{x∈R

n |∑n
i=1 x(i) = β}

is an integral polyhedron. From this it is already easy to see that the split-rank of P is one. However, we
present a combinatorial separation procedure for the integer hull PI of P which computes a split cut via
the computation of a negative cycle.

If y∗(n) is integral, then y∗ lies in QI if and only if y∗ ∈Qy∗(n). Therefore we assume in the following
that y∗(n) is not integral and let β be an integer such that β < y∗(n) < β + 1 and let 1 > µ > 0 be the
real number with y∗(n) = β+1−µ. Furthermore, let QL and QR be the left slice Qβ and right slice Qβ+1

respectively. A proof of the next lemma follows from basic convexity.

Lemma 6. The point y∗ lies in QI if and only if there exist yL ∈ QL and yR ∈ QR such that

y∗ = µyL +(1−µ)yR.

8



In the following we denote by y ∈ R
n−1 the vector of the first n−1 components of y ∈ R

n. From the
above discussion one has y∗ ∈ QI if and only if the following linear constraints have a feasible solution.

yL + yR = y∗

NyL ≤ µdL

NyR ≤ (1−µ)dR

, (8)

where dL = d−βv and dR = d− (β+1)v.
Using Farkas’ Lemma [33], it follows that the system (8) is feasible, if and only if ∑n−1

i=1 λ(i)y∗(i)+
µ fLdL +(1−µ) fRdR is nonnegative, whenever λ, fL and fR satisfy

λ+ fLN = 0
λ+ fRN = 0

fL, fR ≥ 0.
(9)

Now λ+ fLN = 0 and λ+ fRN = 0 is equivalent to λ =− fLN and fLN = fRN. Thus (8) defines a feasible
system, if and only if the optimum value of the following linear program is nonnegative

min− fLN y∗+µ fLdL +(1−µ) fRdR

fLN = fRN
fL, fR ≥ 0.

(10)

Let w be the negative sum of the columns of N. Then (10) is the problem of finding a minimum cost
circulation in the directed graph D = (U,A) defined by the edge-node incidence matrix

M =

(

N w
−N −w

)

and edge weights µ(−N y∗ +dL),(1−µ)(−N y∗+dR) (11)

Thus y∗ /∈ QI if and only if there exists a negative cycle in D = (U,A). The membership problem for QI

thus reduces to the problem of detecting a negative cycle in D, see [14].
A separating split cut for y∗ is an inequality which is valid for QL and QR but not valid for y∗. The

inequality fLNy≤ fLdL is valid for QL and the inequality fRNy≤ fRdR is valid for QR. The corresponding
disjunctive inequality (see, e.g., [26]) is the inequality

fLNy+ c(n)y(n) ≤ δ, where c(n) = fLdL− fRdR and δ = (β+1) fLdL−β fRdR. (12)

The polytopes QL and QR are defined by the systems

y(n) = β
N y+ vy(n) ≤ d

and
y(n) = β+1

N y+ vy(n) ≤ d
(13)

respectively.
Let fL,0 be the number c(n)− fLv. Then the inequality (12) can be derived from the system defining

QL with the weights ( fL,0, fL). Notice that, if y∗ can be separated from QI , then fL,0 must be positive.
This is because y∗ violates (12) and satisfies the constraints (13) on the left, where the equality y(n) = β
in the first line is replaced with y(n)≥ β. Let fR,0 be the number c(n)− fRv. Then the inequality (12) can
be derived from the system defining QR with the weights ( fR,0, fR). Notice that, if y∗ can be separated
from QI , then fR,0 must be negative.

A negative cycle in a graph with m edges and n nodes can be found in time O(mn), see, e.g. [1].
Translated back to the original space and to the polyhedron P this gives the following theorem.
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Theorem 7. The separation problem for PI can be solved in time O(mn). Moreover, if x∗ ∈ P and x∗ 6∈ PI

one can compute in O(mn) a split cut cx≤ δ which is valid for PI and separates x∗ from PI together with
a negative integer fR,0, a positive integer fL,0 and a vector fL, fR, which is the incidence vector of a
simple negative cycle of the directed graph D = (U,A) with edge-node incidence matrix and weights as
in (11), such that cx ≤ δ is derived with from the systems

1x ≤ β
Ax ≤ b
−x ≤ 0.

and
−1x ≤ −(β+1)

Ax ≤ b
−x ≤ 0,

(14)

with the weights fL,0, fL and | fR,0|, fR respectively.

The above theorem gives an explicit derivation of the separating hyperplane as a split cut of P. We
have the following corollary.

Corollary 8. The integer hull PI is the split closure of P.

4 The facets of PI for the case b = α ·1

In this section we study the facets of PI , where P = {x ∈ R
n | Ax ≤ b, x ≥ 0}, where A is a circular ones

matrix and b is an integer vector of the form α1, α ∈ N. For this, we actually inspect how the facets
of the transformed polytope Q described in Section 3 are derived from the systems (13) and apply this
derivation to the original system. It will turn out that the facet normal-vectors of PI have only two integer
coefficients, which are in addition consecutive. Since the stable set polytope of a circular interval graph
is defined by such a system with α = 1, we can later instantiate the results of this section to this special
case. We can assume that the rows of A are inclusion-wise maximal.

Let F be a facet of QI and let y∗ be in the relative interior of F . This facet F is generated by the
unique inequality (12), which corresponds to a simple cycle of (10) of weight 0. Furthermore assume
that F is not induced by an inequality y(n) ≤ γ for some γ ∈ Z. Since F is a facet of the convex hull
of integer points of two consecutive slices, we can assume that y∗(n) = β + 1/2 and thus that µ = 1/2
in (10). This allows us to rewrite the objective function of problem (10) as follows:

min(s∗ + 1
2 v) fL +(s∗− 1

2 v) fR (15)

where s∗ is the slack vector

s∗ =

(

α1
0

)

−By∗ =

(

α1
0

)

−

(

A
−I

)

x∗ ≥ 0. (16)

The point x∗ in (16) is x∗ = T y∗. Notice that x∗ satisfies the system Ax ≤ α1.
Furthermore, we are interested in the facets of QI which are not represented by the system By ≤ d.

If F is such a facet, then one can translate y∗ away from QI , without changing y∗(n) = β+1/2, such that
y∗ /∈ QI and By∗ ≤ d with the property that the facet we are considering is the unique inequality (12),
where fL, fR is a simple negative cycle in the graph D = (U,A).

In the following we denote U = {1, . . . ,n}, where node i corresponds to the i-th column of the matrix
M in (11). Notice that A partitions in two classes of arcs AL and AR. The arcs AR are simply the reverse
of the arcs AL. AL consists of two sets of arcs SL and TL, where SL is the set of arcs associated with
inequalities Ax ≤ α1 and TL are the arcs stemming from the lower bounds x ≥ 0. Likewise AR can be
partitioned into SR and TR. In other words, if we look at the arc-node incidence matrix M in (11), the
rows of M appear in the order SL,TL,SR,TR.
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PSfrag replacements

i i+ pi−1

l l−1

Figure 3: The incidence vector of a row of A consists of the nodes{i, i+1, . . . , i+ p} which are consecu-
tive on the cycle in clockwise order. Its corresponding arc in SL is the arc (i+ p, i−1). The arc (l−1, l)
in TL corresponds to the lower bound x(l)≥ 0.

In particular, let a denote a row vector of A. Since A is a circular ones matrix one has ax ≤ α ≡

∑p
h=0 x(i+h) ≤ α for some suitable i and p, where computation is modulo n, so xn ≡ x0, xn+1 ≡ x1, etc.

It is straightforward to see that ax ≤ α generates the arcs (i + p, i− 1) ∈ SL and (i− 1, i + p) ∈ SR of
A, see Figure 3. The weights of the two arcs coincide, if n /∈ {i, i+1, . . . , i+ p} and is exactly the slack
α−∑p

h=0 x∗(i+h) in this case. Otherwise, the weight of the arc (i+ p, i−1) is α−∑p
h=0 x∗(i+h)+1/2

and the weight of the arc (i−1, i+ p) is α−∑p
h=0 x∗(i+h)−1/2.

On the other hand, a lower bound −xi ≤ 0 generates the two arcs (i− 1, i) ∈ TL and (i, i− 1) ∈ TR.
The weight of both arcs is equal to x∗(i), if i 6= n. If i = n, the arc (n−1,n) ∈ TL has weight x∗(n)−1/2
and (n,n−1) ∈ TR has weight x∗(n)+1/2.

Since the slacks are non-negative, the arcs whose cost is equal to the corresponding slack minus 1
2

are the only candidates to have a negative cost. We call those light arcs. Consequently we call those arcs
whose cost is equal to the slack plus 1

2 heavy. Observe that the light arcs belong to SR∪{(n−1,n)}.

Lemma 9. Let C be a simple negative cycle in D, then the following holds:

(a) C contains strictly more light arcs than heavy ones.

(b) An arc of C in SL (TL) cannot be immediately followed or preceded by an arc in SR (TR).

(c) The cycle C contains at least one arc of SR or contains no arc of SL∪SR.

Proof. (a) follows from the fact that the slacks are nonnegative. (b) follows from our assumption that the
rows of the matrix A are maximal and that C is simple.

To prove (c) suppose that the contrary holds. It follows that (n− 1,n) is in C, because it is the only
light arc not in SR. We must reach n−1 on the cycle without using heavy arcs.

Each arc in SL with starting node n is heavy. Thus (n−1,n) is followed by (n,1) ∈ TL. Suppose that
(n−1,n) is followed by a sequence of arcs in TL leading to i and let (i, j) /∈ TL be the arc which follows
this sequence. It follows from (b) that (i, j) /∈ TR and thus that (i, j) ∈ SL. Since (i, j) cannot be heavy,
we have 1 ≤ j < i < n. This is a contradiction to the fact that C is simple, since we have a sub-cycle
contained in C, defined by (i, j) and ( j, j +1), . . . ,(i−1, i).

Lemma 10. If there exists a simple cycle C of D with negative cost, then there exists a simple cycle C ′ of
D with negative cost that does not contain any arc from SL.
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Proof. Suppose that C also contains an arc from the set SL. We know from Lemma 9 that the cycle C

contains at least one arc of SR. Lemma 9 implies that C has an arc in SL, followed by arcs in TL or TR

but not both, followed by an arc in SR. We first consider the case that the intermediate arcs are all in TL.PSfrag replacements

ki−1 j−1 l

A B C

(a)

PSfrag replacements

ki−1 j−1 l

A B C

(b)

Figure 4: (a) depicts an arc (k, i−1) ∈ SL, followed by arcs in TL and the arc ( j−1, l) ∈ SR. (b) depicts
the situation, where the intermediate arcs are in TR.

This situation is depicted in Figure 4, (a). The arc in SL is (k, i− 1). This is followed by the arcs
(i− 1, i), . . . ,( j− 2, j− 1) in TL and the arc ( j− 1, l) in SR. Let this be the path P1. We now show that
we can replace this path with the path P2 = (k,k +1), . . . ,(l−1, l) consisting of arcs in TL. We proceed
as follows. First we show that the weight of this path is at most the weight of the original path, where we
ignore the addition of ±1/2 to the arc-weights. Let light(P) and heavy(P) be the number of light and
heavy edges in a path P, respectively. We then show that light(P2)−heavy(P2) = light(P1)−heavy(P1),
from which we can conclude the claim in this case.

Consider the set of indices A = {i, . . . , j−1}, B = { j, . . . ,k} and C = {k+1, . . . , l} and the numbers
A = ∑µ∈A x∗(µ), B = ∑µ∈B x∗(µ) and C = ∑µ∈C x∗(µ) . Ignoring the eventual addition of ±1/2 to the
edge weights, we have that the weight of P2 is C and that of P1 is α− (A + B)+ A + α− (B +C) and
suppose that this is less than C. Then B +C > α which is not possible, since x∗ satisfies the constraints
Ax≤ α1. Thus, if none of the edges in P1 and P2 is heavy or light, the weight of P2 is at most the weight
of P1.

Suppose now that n ∈ A . Then P1 contains exactly one heavy edge (k, i− 1) and one light edge
(n−1,n). The path P2 contains no heavy or light edge. Suppose that n∈B , then P1 contains exactly one
heavy edge, (k, i− 1) and one light edge ( j− 1, l). P2 does not contain a heavy or light edge. If n ∈ C ,
then P1 contains exactly one light edge ( j−1, l) and no heavy edge. P2 also contains exactly one light
edge (n−1,n). This concludes the claim for the case that an arc of SL is followed by arcs of TL and an
arc of SR.

The case, where the intermediate arcs belong to TR is depicted in Figure 4, (b). The assertion follows
by a similar argument.

Combining Theorem 7 with the above lemma we obtain the following theorem.

Theorem 11. Let P = {x ∈ R
n | Ax ≤ α1,x ≥ 0} be a polyhedron, where A ∈ {0,1}m×n is a circular

ones matrix and α ∈ N a positive integer. A facet of PI is of the form

a ∑
v∈T

x(v)+(a−1) ∑
v/∈T

x(v) ≤ aβ, (17)

where T ⊆ {1, . . . ,n} and a,β ∈ N.

Proof. Theorem 7 implies that a facet which is not induced by Ax≤α1, x≥ 0 or 1x ≤ γ is a nonnegative
integer combination of the system on the left in (14) with nonnegative weights fL,0, fL. Lemma 10 implies
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that fL can be chosen such that the only nonzero (+1) entries of fL are corresponding to lower bounds
−x(v) ≤ 0. The theorem thus follows with a = f0,L and T set to those variables, whose lower bound
inequality does not appear in the derivation.

5 The solution of the Ben Rebea Conjecture

Let G be a circular interval graph and let KI the family of cliques stemming from the intervals in the
definition of G (see Section 2). Then P = {x∈ Rn | Ax≤ 1,x≥ 0} where the 0/1 matrix A, corresponding
to the cliques KI , has the circular ones property. Theorem 11 implies that any facet of STAB(G) is of the
form

a ∑
v∈T

x(v)+(a−1) ∑
v6∈T

x(v)≤ a ·β (18)

We now show that a facet F , which is not induced by an inequality of Ax ≤ 1,x ≥ 0 is induced by
a clique family inequality associated with some set of cliques F ⊆ KI and some integer p. Recall from
Theorem 7 that any facet of this kind can be derived from the system

−1x ≤ −(β+1)
Ax ≤ 1
−x ≤ 0,

(19)

with weights | fR,0|, fR, where fR,0 is a negative integer while fR is a 0-1 vector. A root of F is a stable
set, whose characteristic vector belongs to F . In particular, we have that the multiplier fR(v) associated
with a lower bound −x(v)≤ 0 must be 0 if v belongs to a root of size β+1. If v does not belong to a root
of size β or to a root of size β+1, then the facet is induced by x(v)≥ 0. Thus if v /∈ T , then v belongs to
a root of size β+1.

Let F = {K ∈ KI | fR(K) 6= 0} and p = a+ | fR,0|. The multiplier | fR,0| must satisfy

−| fR,0|+ |{K ∈ F | v ∈ K}|= a−1 ∀v 6∈ T
−| fR,0|+ |{K ∈ F | v ∈ K}|= a ∀v ∈ T, v is in a root of size β+1
−| fR,0|+ |{K ∈ F | v ∈ K}| ≥ a ∀v ∈ T, v is not in a root of size β+1

−| fR,0|(β+1)+ |F |= aβ

Observe that |F |= (a+ | fR,0|)β+ | fR,0| and therefore r = |F | mod p = | fR,0|. Moreover, any vertex not
in T belongs to exactly p−1 cliques from F , while each vertex in T belongs to at least p cliques from
F . Therefore, inequality (18) is the clique family inequality associated with F and p. In particular since
a ≥ 1 and | fR,0| ≥ 1, it follows that p ≥ 2. We may therefore state the following theorem.

Theorem 12. Let G be a circular interval graph. Then any facet of STAB(G), which is not induced by
an inequality of the system Ax ≤ 1, x ≥ 0, is a clique family inequality associated with some F and p
such that |F | mod p 6= 0.

If we combine this result with Lemma 5, Theorem 4 and we recall that Edmonds inequalities are also
clique family inequalities associated with |F | odd and p = 2, we obtain the following.

Theorem 13. Let G be a quasi-line graph. Any non-trivial facet of STAB(G) is a clique family inequality
associated with some F and p such that |F | mod p 6= 0.

The Ben Rebea conjecture is now almost settled. Inspecting it again, we observe that apart from the
statement that the stable set polytope is described by nonnegativity, clique and clique family inequalities
it contains also conditions on F and p. We may assume that the cliques in the family F are maximal [27].
What remains is the condition |F | > 2 p ≥ 4. This is settled in the following, where we also show that
clique family inequality are facet inducing only if V≥p 6= /0.
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Lemma 14. A clique family inequality associated with F and p is facet inducing only if V≥p 6= /0.

Proof. If V≥p = /0, then the clique family inequality associated with F and p reads:

(p− r−1) ∑
v∈Vp−1

x(v) ≤ (p− r)

⌊

n
p

⌋

(20)

We claim that this inequality is dominated by the clique family inequality associated with F and
p−1:

(p− r′−1) ∑
v∈V≥p−1

x(v)+(p− r′−2) ∑
v∈Vp−2

x(v)≤ (p−1− r′)

⌊

n
p−1

⌋

(21)

where r′ = |F |mod(p−1).
Since p− r−1 6= 0 we can rewrite (20) as

∑
v∈Vp−1

x(v) ≤

⌊

n
p

⌋

+

⌊

n
p

⌋

p− r−1
.

Then, since Vp−1 ⊆V≥p−1, inequality (21) dominates:

∑
v∈Vp−1

x(v) ≤

⌊

n
p−1

⌋

Now bn/(p−1)c= bn/pc+
⌊

(
⌊

n
p

⌋

+ r)/(p−1)
⌋

and the claim follows since









⌊

n
p

⌋

+ r

p−1







≤

⌊

n
p

⌋

p− r−1
.

Lemma 15. Let G be a quasi-line graph and (F , p) a pair such that

(p− r−1) ∑
v∈Vp−1

x(v)+(p− r) ∑
v∈V≥p

x(v) ≤ (p− r)

⌊

|F |

p

⌋

(22)

is a facet of STAB(G). If |F |< 2p, then the inequality (22) is a clique inequality.

Proof. We know from the previous lemma that V≥p 6= /0. Since
⌊

|F |
p

⌋

= 1, if Vp−1 = /0 or p− r = 1, then

the inequality (22) is a clique inequality, and we are done. Therefore we may assume that Vp−1 6= /0 and
p− r > 1. Since the inequality is facet inducing, then p− r = 2 and it reads:

∑
v∈Vp−1

x(v)+2 ∑
v∈V≥p

x(v)≤ 2 (23)

Trivially, the inequality is also facet-inducing for the induced subgraph G ′ = G[Vp−1∪V≥p]. A full
description of the stable set polytope of graphs with stability number less than three, as G ′, is given in
[21]. There it is shown that an inequality ∑v∈A x(v)+ 2∑v∈B x(v) ≤ 2, with A and B both non-empty, is
facet inducing only if B is a clique, A and B are totally joined and there is an odd antihole in G[A]. But no
vertex of a quasi-line graph is totally joined to an odd antihole (from the definition of quasi-line graphs),
so there is a contradiction.

We may therefore state our main result:

Theorem 16. The Ben Rebea conjecture holds true.
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[8] V. Chvátal, W. Cook, and M. Hartmann, On cutting-plane proofs in combinatorial optimization, Linear Al-
gebra and its Applications 114/115 (1989), 455–499.
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