
On collineations and dualities of finite generalized
polygons

Beukje Temmermans Joseph A. Thas Hendrik Van Maldeghem∗

Department of Pure Mathematics and Computer Algebra
Ghent University, Krijgslaan 281, S22, B–9000 Gent

email: btemmerm@cage.UGent.be, jat@cage.UGent.be, hvm@cage.UGent.be

Abstract

In this paper we generalize a result of Benson to all finite generalized polygons.
In particular, given a collineation θ of a finite generalized polygon S, we obtain a
relation between the parameters of S and, for various natural numbers i, the number
of points x which are mapped to a point at distance i from x by θ. As a special case
we consider generalized 2n-gons of order (1, t) and determine, in the generic case,
the exact number of absolute points of a given duality of the underlying generalized
n-gon of order t.

1 Introduction

Given a finite generalized quadrangle of order (s, t), and a collineation θ, there is a con-
nection between the parameters s, t, the number f0 of fixed points and the number f1 of
points mapped under θ to collinear points, given by Benson’s theorem [1]:

(1 + t)f0 + f1 ≡ 1 + st mod s + t.

The natural question arising here is whether there exists a similar formula for a duality
of a generalized quadrangle S of order s. Of course, a duality cannot fix points or lines,
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but elements can be mapped to elements at distance 1 or 3. In the former case, we say
that these elements are absolute. It will turn out that, in the generic case, i.e., in the case
where 2s is not a square, there are always exactly 1 + s absolute points, for every duality.
This yields an alternative proof for the fact that polarities in S can only exist if 2s is a
square (as a geometric argument immediately shows that there must be 1 + s2 absolute
points).

More generally, one can ask for similar restrictions on collineations and dualities for an
arbitrary finite generalized polygon. This is exactly what we are going to do in the
present paper. Roughly speaking, we first generalize Benson’s formula to finite generalized
hexagons, octagons and dodecagons with parameters s, t, and then show how these can be
used to obtain new results on dualities in projective planes, generalized quadrangles and
hexagons. The extension of Benson’s formula has a straightforward part, but there is also
a less trivial observation which precisely allows us to draw some rather strong conclusions
in the case of dualities, thereby producing new results even for finite projective planes.

The main application of our results lies in the classification of finite generalized polygons
whose collineation or duality group satisfies some given transitivity property like flag-
transitivity, or sharp transitivity on points or lines. For an explicit application, see [10].

2 Notation and Main Results

Throughout, we shall deal with finite generalized polygons of order (s, t). A generalized
n-gon S = (P ,L I) of order (s, t) is a point-line geometry with point set P , line set L and
symmetric incidence relation I, such that every line is incident with 1 + s points, every
point with 1 + t lines, the diameter of the incidence graph (i.e. the graph with vertex set
P ∪L and adjacency given by I) is n and its girth is 2n. Here, n ≥ 2, and for n = 2, the
incidence graph is a complete bipartite graph and hence S is a trivial geometry in which
every point is incident with every line. So in the sequel we will always assume n ≥ 3.

Note that in a generalized n-gon with n ≥ 3 each line is determined by the set of points
it is incident with. So, we can view a generalized n-gon S = (P ,L, I) as the set of points
P endowed with a set B of subsets of P , where B = {B ⊆ P : (∃L ∈ L)(x ∈ B ⇔ xIL)}.
In this case, there is no need for an incidence relation and we denote S = (P ,B). Related
to this point of view is the point graph of S, which is the graph with vertex set P and
adjacency given by collinearity (two points x, y are collinear, in symbols x ∼ y, if they
are distinct and incident with a common line). We will denote the distance function in
the point graph by d.
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If S = (P ,L, I) is a generalized polygon of order (s, t), then Sdual = (L,P , I) is also a
generalized polygon, now of order (t, s), called the dual of S. This gives rise the principle
of duality, which states that every theorem in the theory of generalized polygons can be
dualized by interchanging the roles of P and L, and of s and t. If s = t, then we say that
S has order s.

Generalized 3-gons of order (s, t) only exist for s = t and for s ≥ 2 they are exactly
the projective planes of order s = t. Generalized 4-gons are usually called generalized
quadrangles and these structures have been investigated in detail; see [9]. Generalized 6-
gons, 8-gons and 12-gons are also called generalized hexagons, octagons and dodecagons,
respectively. We refer to [12] and [15] for extensive surveys on (finite and infinite) gen-
eralized polygons. We content ourselves here with mentioning that generalized polygons
were introduced by Jacques Tits [13] in 1959. They are the spherical buildings of rank 2.
As such they provide the natural geometries for Chevalley groups of rank 2, and, more
generally, for algebraic, classical and mixed groups, and twisted versions, all of relative
rank 2.

A major result on finite generalized polygons is due to Feit & Higman [6] and states that
for a finite generalized n-gon, n ≥ 3, of order (s, t), we always have either n = 3 (and
then s = t), or n = 4 (and then s+ t divides st(1+ st)), or n = 6 (and then st is a perfect
square), or n = 8 (and then 2st is a perfect square), or n = 12 (and then 1 ∈ {s, t}). Each
generalized n-gon S = (P ,L, I) of order (s, s) gives rise to a unique generalized 2n-gon
2S = (P∪L, E) of order (1, s), called the double of S, where E is the set of flags of S (and
a flag is an incident point-line pair). This construction has an inverse which is unique up
to duality (see [14], cp. [15], Theorem 1.6.2).

A collineation θ of a generalized polygon S = (P ,B) is a permutation of P that induces a
permutation of B. If S ′ = (P ′,B′) is a second generalized polygon, then an isomorphism
σ : S → S ′ is a bijection from P to P ′ that induces a bijection from B to B′. A duality
of S is an isomorphism from S to Sdual. In this case we call S self-dual. Note that for a
self-dual generalized polygon of order (s, t) necessarily holds that s = t.

If θ is a duality of S, then an absolute element for θ is a point or a line incident with its
image.

Now let θ be a collineation of a finite generalized n-gon S = (P ,L, I) with parameters
s, t. Let fi, 0 ≤ i ≤ n

2
, be the number of points x of S that are mapped under θ onto a

point at distance i from x, measured in the point graph (or, equivalently, distance 2i in
the incidence graph). Also, the point graph has one eigenvalue (namely, s(1 + t)) with
multiplicity 1, it has always an eigenvalue equal to −1 − t and it has n

2
− 1 eigenvalues

different from −1− t with multiplicity > 1. We denote the latter with ξj, 1 ≤ j ≤ n
2
− 1.
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Benson’s theorem [1] says that, if n = 4, then (1 + t)f0 + f1 ≡ 1 + st mod s + t.
Equivalently, there exists an integer k1 such that (1+ s)(1+ t)+k1(s+ t) = (1+ t)f0 +f1.
Our Main Result generalizes this equivalent formulation as follows:

Main Result With the above notation, for n ∈ {4, 6, 8, 12}, there exist integers kj,
1 ≤ j ≤ n

2
−1, and, for each k ∈ {1, 2, . . . , n

2
−1}, explicitly defined polynomial expressions

Pk,i(s, t), 0 ≤ i ≤ k − 1, in s and t, such that

(1 + s)k(1 + t)k +

n/2−1∑
j=1

kj(ξj + 1 + t)k = fk +
k−1∑
i=0

Pk,i(s, t)fi.

We explicitly determine the expressions Pk,i in this theorem below, for each n separately:
for n = 4, see Theorem 4.1 (this is Benson’s theorem); for n = 6, see Theorems 5.1 and 5.4;
for n = 8, see Theorems 6.1, 6.4 and 6.5; for n = 12, see Theorems 7.1, 7.2, 7.3, 7.4 and 7.5.

Although the expressions are, especially for the cases n = 8, 12, rather involved and
cumbersome, we are able to draw some interesting conclusions. In particular we obtain
strong restrictions on the number of absolute elements of a duality. Generically, we obtain
the following result.

Main Corollary Let θ be a duality of a finite generalized n-gon with parameter s. Then
there is at least one absolute point for θ. Suppose now that s is not a square if n = 3, that
2s is not a square if n = 4, and that none of s and 3s are squares if n = 6. Then there
are exactly 1 + s absolute points for θ.

Much more precise information is contained in the corollaries below. The consequences
of our Main Result seem endless, and we have included only a few of them. They are
related to ovoids, subpolygons, involutions and dualities.

The paper is organized as follows. In Section 3, we prove some general statements about
eigenvalues and multiplicities, and recall a useful result concerning the adjacency matrix
of a generalized polygon. In Section 4 we repeat Benson’s theorem and write down some
consequences, as a warming-up for the more general cases treated in Section 5 (generalized
hexagons), Section 6 (generalized octagons) and Section 7 (generalized dodecagons).

3 Some general observations

We will use the following notation. Suppose that S is a finite generalized polygon of order
(s, t). Let v be the number of points of S and b the number of lines. Put P = {xi : 1 ≤ i ≤
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v} and L = {Lj : 1 ≤ j ≤ b}. Let D be an incidence matrix of S, i.e., the rows of D are
labelled by the points of S, the columns by the lines of S and the (x, L)-entry of D (where
x ∈ P and L ∈ L) is equal to 1 if xIL; otherwise it is 0. Then M := DDT = A+(t+1)I,
where A is an adjacency matrix of the point graph of S. Let θ be an automorphism of S of
order n and let Q = (qij) be the v×v matrix with qij = 1 if xθ

i = xj and qij = 0 otherwise
(in fact Q is the permutation matrix belonging to θ with respect to the action on P).
Similarly, let R = (rij) be the permutation matrix belonging to θ with respect to the
action of θ on L (so rij = 1 if Lθ

i = Lj and rij = 0 otherwise). Then DR = QD. Because
Q and R are permutation matrices, it follows that QT = Q−1 and RT = R−1, so we have
QM = QDDT = DRDT = DRRT DT (Q−1)T = DDT Q = MQ. Hence QM = MQ.
Because n is the order of θ and QM = MQ, we have (QM)n = QnMn = Mn. It follows
that the eigenvalues of QM are of the form ξλ with λ an eigenvalue of M and ξ an nth

root of unity. Note that the eigenvalue (1 + s)(1 + t) of M is also an eigenvalue of QM
with multiplicity 1.

Lemma 3.1 Suppose that ξ and ξ′ are both primitive dth roots of unity, with d a divisor
of n, and let λ be an eigenvalue of M . If at least one of ξλ and ξ′λ is an eigenvalue of
QM , than they both are and they have the same multiplicity.

Proof. The coefficients of the characteristic polynomial of QM are integers. The minimal
polynomials (over Q) of ξλ and ξ′λ coincide, hence ξλ and ξ′λ have the same multiplicity.

�

Lemma 3.2 Let ξ be an nth root of unity and λ an eigenvalue of M . Then the multiplicity
of ξλ as an eigenvalue of QM is equal to the multiplicity of ξλj as an eigenvalue of QM j,
with j = 2, 3, · · · .

Proof. We first claim that there exists a basis of eigenvectors with eigenvalues ξλ for
QM (with ξ ranging over the nth roots of unity) in the eigenspace V which corresponds
with the eigenvalue λ for M . First note that, if ~v ∈ V , then

MQ~v = QM~v
= Qλ~v
= λQ~v,

and hence Q~v ∈ V . So Q preserves V and induces an isometry in V , V viewed as the
standard Euclidian space. Hence there exists an orthonormal basis B of V of eigenvectors
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of Q. Since Qn = 1, each eigenvalue ξ is an nth root of unity. If ~v ∈ B is an eigenvector
for Q with eigenvalue ξ, then MQ~v = ξλ~v. This shows our claim.

Now we will prove that the multiplicity of ξλ for QM is equal to the multiplicity of ξλj for
QM j, which is the dimension of the eigenspace which corresponds with this eigenvalue.
If ~v is an eigenvector of QM with eigenvalue ξλ, then we have

QM j~v = M j−1(QM~v)
= M j−1ξλ~v
= ξλM j−1~v
= ξλj~v.

Hence ~v is an eigenvector of QM j with eigenvalue ξλj. So the eigenvectors of QM with
eigenvalue ξλ form a subset of the eigenvectors of QM j with eigenvalue ξλj. Hence, since
QM , and similarly also QM j, is diagonalizable,

v =
n∑

m=1

dimension of eigenspace corresponding with eigenvalue e
m2πi

n λj of QM j

≥
n∑

m=1

dimension of eigenspace corresponding with eigenvalue e
m2πi

n λ of QM = v.

Hence every two corresponding terms in these sums must be equal.

�

In the sequel, we will also consider thin generalized polygons, by which we mean gener-
alized polygons S with either s = 1 or t = 1. As already noted, a generalized 2n-gon
S of order (1, t) is the double 2S ′ of a — up to duality uniquely — defined generalized
n-gon S ′ of order t. Every collineation of S induces either a unique collineation of S ′ or
a unique duality of S ′. In the first case a point x of S is mapped onto a point at even
distance from x; in the second case a point x of S is mapped onto a point at odd distance
from x. In the sequel we will call S ′ the underlying generalized n-gon.

The following lemma is well known, e.g. see [2].

Lemma 3.3 Let A be the adjacency-matrix of a generalized 2n-gon of order (s, t). Since
for two points x and y, the (x, y)-entry only depends on the distance 2i (in the incidence
graph) between x and y, the same is true for Ak with k ≥ 1. Hence we can denote this

entry by a
(k)
i . Let pi

j be the number of points at distance 2j from x and collinear to y,

with x and y as above. Then a
(k+1)
i =

∑n
j=0 pi

ja
(k)
j , with i ∈ {0, 1, · · · , n}.
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For a generalized n-gon pi
j is equal to:

s(t + 1) if j = 1, i = 0
1 if 0 ≤ j = i− 1 ≤ n− 2
s− 1 if 1 ≤ j = i ≤ n− 1
st if 2 ≤ j = i + 1 ≤ n
t + 1 if j = n− 1, i = n
(s− 1)(1 + t) if j = i = n
0 otherwise.

We end with a straightforward observation.

Lemma 3.4 A duality θ of a generalized polygon has as many absolute points as absolute
lines.

Proof. This follows from the fact that, if xIxθ, then xθI(xθ)θ, which implies that, if x
is an absolute point, then xθ is an absolute line. It is now easy to see that θ induces a
bijection from the set of absolute points to the set of absolute lines. �

4 Collineations of generalized quadrangles

At first we will have a look at a generalized quadrangle S = (P ,L, I) of order (s, t). Let
D, M , A, Q and θ be defined as before. If M = A + (t + 1)I, then M has eigenvalues
τ0 = (1 + s)(1 + t), τ1 = 0 and τ2 = s + t, with respective multiplicities m0 = 1,
m1 = s2(1 + st)/(s + t) and m2 = st(1 + s)(1 + t)/(s + t) (cf. Table 6.4 in [2]). Now we
have the following theorem.

Theorem 4.1 (Benson [1]) If f0 is the number of points fixed by the automorphism θ
and if f1 is the number of points x for which xθ 6= x ∼ xθ, then

tr(QM) = (1 + t)f0 + f1 and (1 + t)f0 + f1 ≡ 1 + st (mod s + t).

Proof. For the proof of this theorem, we refer to [1]. �

Remark 4.2 We can also write the conclusion of Theorem 4.1 as follows:
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tr(QM) = (1 + t)f0 + f1 = k(s + t) + (1 + s)(1 + t).

Corollary 4.3 Let S be a generalized quadrangle of order (s, t) and let θ be an automor-
phism of S. Suppose that s and t are not relatively prime, then there exists at least one
fixpoint or at least one point which is mapped to a point collinear to itself.

Proof. Suppose that there are no fixpoints and no points which are mapped to a collinear
point. Then f0 = f1 = 0. Because of the previous theorem 1+ st+ l(s+ t) has to be 0 for
some l, or st + l(s + t) = −1. But because s and t are not relatively prime, there exists
an integer m > 1 which divides both s and t. Hence m divides st + l(s + t). But m does
not divide −1 and we have a contradiction. �

Corollary 4.4 Suppose that S is a generalized quadrangle of order s and θ is a nontrivial
automorphism of S. If s is even, then θ cannot fix any ovoid pointwise.

Proof. Suppose that O is an ovoid which is fixed pointwise by θ. Then (with the notation
of the previous theorem) f0 = 1+s2 = |O|. Note that by 2.4.1 in [9] θ cannot fix anything
else. Suppose that there exists a point x which is mapped to a collinear point by θ. Take
a line through x different from xxθ. This line contains a point y of the ovoid. Now the
line xy is mapped to the line xθy, hence we have a triangle which is a contradiction. So
f1 = 0. Because of Benson’s theorem it follows that (1 + s)(1 + s2) ≡ 1 + s2 (mod 2s) or
s(1 + s2) ≡ 0 (mod 2s). Hence 1 + s2 is even and so s has to be odd. �

Let Q(4, q) be a nonsingular (parabolic) quadric in the projective space PG(4, q), and let
H be a hyperplane of PG(4, q) meeting Q(4, q) in a nonsingular elliptic quadric Q−(3, q).
If q is odd, then H has a pole x (the intersection of all hyperplanes tangent to Q(4, q) at
points of Q−(3, q)), and the unique involutive perspectivity of PG(4, q) with center x and
axis H induces a nontrivial collineation in the generalized quadrangle Q(4, q) fixing the
ovoid Q−(3, q) pointwise. Hence Corollary 4.4 is not valid for s odd.

Corollary 4.5 Suppose that S is a generalized quadrangle of order s and θ is a nontrivial
automorphism of S. If s is even, then θ cannot fix any thin subquadrangle of order (1, s)
pointwise.

Proof. Suppose that S ′ is a thin subquadrangle of S of order (1, s) which is fixed pointwise
by θ. Then we claim f0 = 2(s + 1) = |S ′|. Indeed, if θ fixes a point not belonging to S ′,
then θ would fix a subquadrangle S ′′ of order (s′′, s) with S ′ ⊂ S ′′ ⊆ S. By 2.2.1 of [9] it
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follows that s ≥ s′′s. Hence s′′ = 1 a contradiction. Now suppose that x is a point of S ′.
There are s+1 lines through x in S ′ and on each of these lines there is precisely one other
point which belongs to S ′. Take such a point y. On the line xy of S there are s− 1 other
points which are mapped to each other (not fixed). So we already have (s − 1)(s + 1)2

points which are mapped to a collinear point by θ. Suppose that there is a point z of S
which does not lie on a line of S ′ and which is mapped to a point collinear to itself. Then
by 2.2.1 of [9] the line zzθ intersects a line of S ′ (which is fixed under θ). But then the
line zzθ also has to be fixed and we obtain a contradiction. Hence f1 = (s − 1)(s + 1)2.
Now Theorem 4.1 implies that there exists an integer k with

k(2s) + (1 + s)2 = 2(1 + s)2 + (s− 1)(s + 1)2.

Hence k = (s+1)2

2
and so s is odd. �

5 Collineations of hexagons and dualities of projec-

tive planes

Next we will generalize Benson’s theorem for hexagons.

Suppose that S is a generalized hexagon. Let θ be an automorphism of S and let f0 be
the number of fixpoints, f1 the number of points which are mapped on a collinear point
(d(xθ, x) = 1 in the point graph of S) and f2 the number of points which are mapped on
a point at distance 2 from itself (in the point graph). The matrix M is again equal to
A + (t + 1)I, with A an adjacency matrix of the point graph of S. And Q is the matrix
with qij = 1 if xθ

i = xj and qij = 0 otherwise.

We start from the eigenvalues of A which are −1−t, s(t+1), −1+s+
√

st and −1+s−
√

st,
with respective multiplicities m0, m1 = 1, m2 and m3. Because M = A + (t + 1)I the
eigenvalues of M are as follows (cf. Table 6.4 in [2]).
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eigenvalues of M multiplicity

0 m0 =
s3(1+st+s2t2)

s2+st+t2

(s + 1)(t + 1) m1 = 1

s + t +
√

st m2 =
(1+t)st(1+s)(1+st+s2t2)

2(s(t−1)2+t(s−1)2+3st+(s−1)(t−1)
√

st)

s + t−
√

st m3 =
(1+t)st(1+s)(1+st+s2t2)

2(s(t−1)2+t(s−1)2+3st−(s−1)(t−1)
√

st)

We now have the following result.

Theorem 5.1 Let S be a generalized hexagon of order (s, t) and let θ be an automorphism
of S. If fi, i = 0, 1, is defined as above, then for some integers k1 and k2 there holds

k1(s + t +
√

st) + k2(s + t−
√

st) + (1 + s)(1 + t) = (1 + t)f0 + f1.

Proof. Suppose that θ has order n, so that (QM)n = QnMn = Mn. It follows that
the eigenvalues of QM are the eigenvalues of M multiplied by the appropriate roots of
unity. Let J be the v × v matrix with all entries equal to 1. Since MJ = (1 + s)(1 + t)J ,
we have (QM)J = (1 + s)(1 + t)J , so (1 + s)(1 + t) is an eigenvalue of QM . Because
m1 = 1, it follows that this eigenvalue of QM has multiplicity 1. Further it is clear that
0 is an eigenvalue of QM with multiplicity m0. For each divisor d of n, let ξd denote
a primitive dth root of unity, and put Ud =

∑
ξi
d, where the summation is over those

integers i ∈ {1, 2, . . . , d − 1} that are relatively prime to d. Now Ud is the coefficient of
the term of the second largest degree of the corresponding cyclotomic polynomial Φn(x).
And since Φn(x) ∈ Z[x], by [7], Ud is an integer. For each divisor d of n, the primitive
dth roots of unity all contribute the same number of times to the eigenvalues ϕ of QM
with |ϕ| = s + t +

√
st and also the primitive dth roots of unity all contribute the same

number of times to the eigenvalues ϕ′ of QM with |ϕ′| = s + t−
√

st, because of Lemma
3.1. Let ad denote the multiplicity of ξd(s + t +

√
st) and let bd denote the multiplicity of

ξd(s + t−
√

st) as eigenvalues of QM , with d|n and ξd a primitive dth root of unity. Then
we have:

tr(QM) =
∑
d|n

ad(s + t +
√

st)Ud +
∑
d|n

bd(s + t−
√

st)Ud + (1 + s)(1 + t),
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or

tr(QM) = k1(s + t +
√

st) + k2(s + t−
√

st) + (1 + s)(1 + t),

with k1 and k2 integers.

Since the entry on the ith row and ith column of QM is the number of lines incident with
xi and xθ

i , we have tr(QM) = (1 + t)f0 + f1. Hence

k1(s + t +
√

st) + k2(s + t−
√

st) + (1 + s)(1 + t) = (1 + t)f0 + f1,

with k1 and k2 integers. �

The following corollary is the analogue of Corollary 4.3

Corollary 5.2 Let S be a generalized hexagon of order (s, t) and let θ be an automorphism
of S. If s and t are not relatively prime, then there exists at least one fixpoint or at least
one point which is mapped to a point collinear to itself.

Proof. Suppose that there are no fixpoints and no points which are mapped to a collinear
point. Then f0 = f1 = 0. Because of the previous theorem, k1(s+t+

√
st)+k2(s+t−

√
st)+

(1+s)(1+ t) has to be equal to 0. Hence k1(s+ t+
√

st)+k2(s+ t−
√

st)+s+ t+st = −1.
But because s and t are not relatively prime, there exists an integer m > 1 which divides
s and t. Hence m divides k1(s + t +

√
st) + k2(s + t−

√
st) + s + t + st, but m does not

divide −1 and we have a contradiction. �

Corollary 5.3 Let S be a generalized hexagon of order (s, t) and let θ be an involution
of S. If s and t are not relatively prime, then there exists at least one fixpoint or at least
one fixline.

Proof. This follows immediately from the previous corollary because if there is a point
x which is mapped to a point collinear to x by the involution θ, then the line xxθ is a
fixline. �

Now we have a look at the formula in Theorem 5.1 in the special case of a thin hexagon
(s = 1). Then we have:

k1(1 + t +
√

t) + k2(1 + t−
√

t) + 2(1 + t) = (1 + t)f0 + f1.
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If t is not a square, then it follows that k1 = k2, hence we obtain k12(t + 1) + 2(t + 1) =
(t + 1)f0 + f1 and so t + 1 has to divide f1. But we will improve this below (see Corollary
5.6). Note that either f0 or f1 is 0, according to whether the corresponding collineation
θ of S induces a duality or a collineation in the underlying projective plane.

The method exploited in the proof of Theorem 5.1 is completely similar to the original
approach of Benson. However, in order to be able to say more, an additional idea is needed.
Motivated by Lemma 3.2, our idea is now to apply Benson’s approach to the matrix
M2 (which, in case of generalized quadrangles, does not give anything new). Without
Lemma 3.2, this would not give too much, but in combination with that lemma, we will
obtain new and quite interesting results, even for the case of projective planes!

Theorem 5.4 Let S be a generalized hexagon of order (s, t) and let θ be an automorphism
of S. If fi, i = 0, 1, 2, is as before, then for the integers k1 and k2 of Theorem 5.1 there
holds

k1(s+t+
√

st)2+k2(s+t−
√

st)2+((1+s)(1+t))2 = (1+s+t)(1+t)f0+(1+s+2t)f1+f2.

Proof. Suppose that M , A and Q are defined as before. Suppose that θ has order n, so
that (QM2)n = QnM2n = M2n. It follows that the eigenvalues of QM2 are the eigenvalues
of M2 multiplied by the appropriate roots of unity. Since M2J = ((1 + s)(1 + t))2J , we
have (QM2)J = ((1+s)(1+t))2J , so ((1+s)(1+t))2 is an eigenvalue of QM2. By Lemma
3.2 and the proof of Theorem 5.1 it follows that this eigenvalue of QM2 has multiplicity 1.
Further it is clear that 0 is an eigenvalue of QM2 with multiplicity m0. For each divisor
d of n, let ξd again denote a primitive dth root of unity, and put Ud =

∑
ξi
d, where the

summation is over those integers i ∈ {1, 2, . . . , d− 1} that are relatively prime to d. Then
Ud is an integer [7]. For each divisor d of n, the primitive dth roots of unity all contribute
the same number of times to the eigenvalues ϕ of QM2 with |ϕ| = (s+ t+

√
st)2 and also

the primitive dth roots of unity all contribute the same number of times to the eigenvalues
ϕ′ of QM2 with |ϕ′| = (s+t−

√
st)2, because of Lemma 3.1. Let ad denote the multiplicity

of ξd(s + t +
√

st)2 and let bd denote the multiplicity of ξd(s + t−
√

st)2 as eigenvalues of
QM2, with d|n and ξd a primitive dth root of unity. Then we have:

tr(QM2) =
∑
d|n

ad(s + t +
√

st)2Ud +
∑
d|n

bd(s + t−
√

st)2Ud + ((1 + s)(1 + t))2,

or

tr(QM2) = k1(s + t +
√

st)2 + k2(s + t−
√

st)2 + ((1 + s)(1 + t))2,

12



with k1 and k2 integers. Clearly we have tr(QA) = f1.

The matrix A2 = (aij) is the matrix with s(1 + t) along the main diagonal and on the
other entries we have aij = s− 1 if xi ∼ xj, aij = 1 if d(xi, xj) = 2 and aij = 0 otherwise.
Hence tr(QA2) = s(1 + t)f0 + (s− 1)f1 + f2. It follows that

tr(QM2)
= tr(Q(A + (1 + t)I)2)
= tr(QA2) + 2(1 + t)tr(QA) + (1 + t)2tr(Q)
= s(1 + t)f0 + (s− 1)f1 + f2 + 2(1 + t)f1 + (1 + t)2f0

= (1 + s + t)(1 + t)f0 + (1 + s + 2t)f1 + f2.

Finally, the integers k1 and k2 are the same integers as in Theorem 5.1 by Lemma 3.2.

This completes the proof of the theorem. �

Corollary 5.5 Suppose that we have a thin hexagon of order (1, t), with t 6= 1. Consider
a duality in the underlying projective plane. If t is not a square, then f1 = 2(1 + t). If t
is a square, then f1 ≡ 2 mod 2

√
t. In particular there is at least one absolute line and

one absolute point.

Proof. Since we have a duality in the underlying projective plane, we know that f0 = 0
and f2 = 0. Because of Theorems 5.1 and 5.4, we have the following equations:{

k1(1 + t +
√

t) + k2(1 + t−
√

t) + 2(1 + t) = f1,

k1(1 + t +
√

t)2 + k2(1 + t−
√

t)2 + (2(1 + t))2 = (2 + 2t)f1,

hence {
k1 = f1−2(1+t)

2
√

t
,

k2 = −f1−2(1+t)

2
√

t
.

So f1−2(1+t)

2
√

t
has to be an integer. In the case that t is not a square, this only holds if

f1− 2(1 + t) = 0. Hence f1 = 2(1 + t) if t is not a square. If t is a square, then f1− 2 has
to be a multiple of 2

√
t. Hence f1 ≡ 2 mod 2

√
t. �

In view of Lemma 3.4, this immediately implies:

Corollary 5.6 Suppose that θ is a duality of a projective plane of order t, then it has
1 + t absolute points and 1 + t absolute lines if t is not a perfect square, and it has 1
mod

√
t absolute points and just as many absolute lines if t is a perfect square.

13



If t is a square, then the lower bound of this corollary can be obtained. Indeed, let b
be an element of the finite (Galois) field Ft (of t elements) not belonging to the subfield
F√

t. With the usual representation of the Desarguesian projective plane PG(2, t) of order
t by means of triples of elements of Ft (with round brackets to denote points and square
brackets for lines), the map

θ : PG(2, t) → PG(2, t) :

{
(x, y, z) 7→ [x

√
t, z

√
t, y

√
t − bz

√
t],

[u, v, w] 7→ (u
√

t, w
√

t + bv
√

t, v
√

t)

is a duality. A point (x, y, z) is absolute if and only if (x, y, z) is incident with [x
√

t, z
√

t, y
√

t−
bz

√
t]. If z 6= 0, then this obviously implies that

b =
xx

√
t + (yz

√
t + y

√
tz)

zz
√

t

is fixed by the field automorphism a 7→ a
√

t, and hence belongs to F√
t, a contradiction.

Hence, if (x, y, z) is absolute, then z = 0 and so xx
√

t = 0. We obtain a unique absolute
point (0, 1, 0). Likewise, [0, 0, 1] is the unique absolute line.

For the next corollary we need the following lemma.

Note that for a generalized hexagon of order (s, t) with s 6= t no ovoids exist because of
[8].

Lemma 5.7 Suppose that S is a generalized hexagon of order s and θ is a collineation of
S. If O is an ovoid of S which is fixed pointwise by θ and θ additionally fixes some point
x /∈ O, then θ is the identity.

Proof. There exists a unique point of the ovoid which is collinear to x, we call this point
y. Every point x′ collinear to x which is not incident with the line xy is collinear to a
unique point y′ 6= y of the ovoid. Since both x and y′ are fixed, also x′ is fixed. Now take
any point x′′ /∈ {x, y} that is incident with the line xy. Take a point a collinear to x′′, not
incident with xy. This point is collinear to a unique point b of O. Since b is fixed by θ
and the line xy is fixed by θ, also the point x′′ has to be fixed. So every point collinear to
x is fixed. Since O contains a point at distance 6 from x we can apply Theorem 4.4.2(v)
in [15] to obtain that θ is the identity. �

It is well known that the dual H(q)dual of the split Cayley hexagon H(q) of order q admits
an ovoid stabilized by the subgroup SU3(q) of G2(q), and the elements of SU3(q) fixing the
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ovoid pointwise are exactly the elements of the center of SU3(q) (see [3]). If q is divisible
by 3, however, this center is trivial and the ovoid does not admit a nontrivial collineation
fixing it pointwise. This is a special case of the following more general phenomenon.

Corollary 5.8 Suppose that S is a generalized hexagon of order s and θ is a nontrivial
automorphism of S. If s is a multiple of 3, then θ cannot fix any ovoid pointwise.

Proof. Suppose that O is an ovoid of S which is fixed pointwise by θ. Because of the
previous lemma there are no other fixpoints. Then f0 = 1 + s3 = |O|. Suppose that there
exists a point x which is mapped to a collinear point by θ. Suppose that there is a point
y of O which is collinear to x and not collinear to xθ. Then the line xy will be mapped
to the line xθy, hence we have a triangle, so this is not possible. Now there has to be
a point y′ at distance 4 from x which belongs to the ovoid. By a similar reasoning we
become a pentagon. Hence we have a contradiction and f1 has to be equal to 0. Because
θ fixes an ovoid every point is mapped to a point at distance at most 4 from it. So f2 is
the number of points not on the ovoid, hence f2 = (1 + s3)(s + s2). Because of Theorem
5.1 and Theorem 5.4 we have the following equations{

k13s + k2s + (1 + s)2 = (1 + s)(1 + s3),
k19s

2 + k2s
2 + (1 + s)4 = (1 + 2s)(1 + s)(1 + s3) + (1 + s3)(s + s2).

Hence {
k1 = (1+s)(s2−1)

3
,

k2 = 0.

Because k1 has to be an integer, it follows that s cannot be a multiple of 3. �

The split Cayley hexagon H(q) admits a subhexagon of order (1, q), stabilized by the group
SL3(q) (which has index two in the full stabilizer, see e.g. [4]). The pointwise stabilizer
of that subhexagon is the center of SL3(q), which is again trivial if 3 divides q. More
generally, we can now show the following result.

Corollary 5.9 Suppose that S is a generalized hexagon of order s and θ is a nontrivial
automorphism of S. If s is a multiple of 3, then θ cannot fix any thin subhexagon of order
(1, s) pointwise.

Proof. Suppose that S ′ is a thin subhexagon of S of order (1, s) which is fixed pointwise
by θ. Then we claim f0 = 2(1 + s + s2) = |S ′|. Indeed, if θ fixes a point not belonging
to S ′, then θ would fix a subhexagon S ′′ of order (s′′, s) with S ′ ⊂ S ′′ ⊆ S. By [11] it
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follows that s ≥ s′′2t so s ≥ s′′2s. Hence s′′ = 1, a contradiction. Now suppose that x is
a point of S ′. There are s + 1 lines through x in S ′ and on each of these lines there is
precisely one other point which belongs to S ′. Take such a point y. On the line xy of S
there are s − 1 other points which are mapped to each other (not fixed). So we already
have (1+ s+s2)(s+1)(s−1) points which are mapped to a collinear point by θ. Suppose
that there is a point z of S which does not lie on a line of S ′ and which is mapped to
a point collinear to itself. Then by [11] the line zzθ intersects a line of S ′ which is fixed
under θ. But then the line zzθ also has to be fixed which leads to a contradiction. Hence
f1 = (1 + s + s2)(s + 1)(s− 1). Now suppose that there is a point u which is mapped to
a point at distance 4 from itself. There exists a point u′ which is collinear to u and also
to uθ. We have two possibilities, either the point u′ is incident with a line L of S ′ or it is
not. In the first case the point u′ should be fixed, because it is the unique point from L
collinear to both u and uθ. But it cannot be a point of S ′ so we obtain a contradiction.
In the second case, again by [11] the line uu′ intersects a line M of S ′, so the line uu′ is
mapped to a line trough uθ which intersects the same line M of S ′. Hence we obtain a
quadrangle and we have a contradiction. Consequently f2 = 0. Because of Theorem 5.1
and Theorem 5.4 we have the following equations

k13s + k2s + (1 + s)2 = (1 + s)2(1 + s + s2) + (1 + s + s2)(1 + s)(s− 1),
k19s

2 + k2s
2 + (1 + s)4 = (1 + 2s)(1 + s)2(1 + s + s2)+

(1 + 3s)(1 + s + s2)(1 + s)(s− 1).

Hence {
k1 = (1+s)(1+s+s2)

3
,

k2 = s + s2.

We see that k2 is an integer, but k1 also has to be an integer. It follows that s cannot be
a multiple of 3.

�

6 Collineations of octagons and dualities of quadran-

gles

Suppose that S is a generalized octagon. Let θ be an automorphism of S and let fi be
the number of points for which d(x, xθ) = i in the point graph. The matrices M , A and
Q are defined analogously as before. The eigenvalues of M are as follows (cf. Table 6.4
in [2]):
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eigenvalues of M multiplicity

0 m0 =
s4(1+st)(1+s2t2)

(s+t)(s2+t2)

(s + 1)(t + 1) m1 = 1

s + t +
√

2st m2 =
(1+t)st(1+s)(1+st)(1+s2t2)

4(s(t−1)2+t(s−1)2+2st+(s−1)(t−1)
√

2st)

s + t−
√

2st m3 =
(1+t)st(1+s)(1+st)(1+s2t2)

4(s(t−1)2+t(s−1)2+2st−(s−1)(t−1)
√

2st)

s + t m4 =
(1+t)st(1+s)(1+st)(1+s2t2)

2(s(t−1)2+t(s−1)2+4st)

Theorem 6.1 Let S be a generalized octagon of order (s, t) and let θ be an automorphism
of S. If f0 and f1 are as before, then for some integers k1, k2 and k3 there holds

k1(s + t +
√

2st) + k2(s + t−
√

2st) + k3(s + t) + (1 + s)(1 + t) = (1 + t)f0 + f1.

Proof. This proof is totally analogous to the proof of Theorem 5.1. �

Lemma 6.2 Let S be a generalized octagon of order (s, t) and let θ be an automorphism
of S. If s and t are not relatively prime, then there exists at least one fixpoint or at least
one point which is mapped to a point collinear to itself.

Proof. This proof is totally analogous to the proof of Corollary 5.2. �

Note that in a thick generalized octagon s and t cannot be odd at the same time since√
2st is an integer and hence either the number of points or the number of lines is odd,

or both are. So for a thick generalized octagon, we conclude:

Corollary 6.3 Let S be a thick generalized octagon of order (s, t) and let θ be an invo-
lution of S. Then there exists at least one fixpoint or at least one fixline.

Proof. By our foregoing observations, either the number of points is odd, or the number
of lines is odd. If the number of points is odd, than every involution fixes at least one
point. If the number of lines is odd, than every involution fixes at least one line. �

If we have a thin octagon, then we obtain:
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k1(1 + t +
√

2t) + k2(1 + t−
√

2t) + k3(1 + t) + 2(1 + t) = (1 + t)f0 + f1.

If 2t is not a square, then it follows that k1 = k2, hence:

k12(1 + t) + k3(1 + t) + 2(1 + t) = (1 + t)f0 + f1.

Note that this implies that in a generalized quadrangle of order t, with 2t not a square,
the number of absolute elements of a duality is divisible by 1 + t. But we will do better
in Corollary 6.7.

Theorem 6.4 Let S be a generalized octagon of order (s, t) and let θ be an automorphism
of S. If f0, f1 and f2 are as before, then for the integers k1, k2 and k3 obtained in
Theorem 6.1 there holds

k1(s + t +
√

2st)2 + k2(s + t−
√

2st)2 + k3(s + t)2 + ((1 + s)(1 + t))2 =
(1 + s + t)(1 + t)f0 + (1 + s + 2t)f1 + f2.

Proof. This proof is totally analogous to the proof of Theorem 5.4. �

For a thin octagon we obtain:

k1(1+t+
√

2t)2+k2(1+t−
√

2t)2+k3(1+t)2+(2(1+t))2 = (2+t)(1+t)f0+(2+2t)f1+f2.

If 2t is not a square, then it follows that k1 = k2 and we obtain:

k12(1 + 4t + t2) + k3(1 + t)2 + (2(1 + t))2 = (2 + t)(1 + t)f0 + (2 + 2t)f1 + f2.

Theorem 6.5 Let S be a generalized octagon of order (s, t) and let θ be a nontrivial
automorphism of S. If f0, f1, f2 and f3 are defined as above, then for the integers k1, k2

and k3 of Theorem 6.1 there holds

k1(s + t +
√

2st)3 + k2(s + t−
√

2st)3 + k3(s + t)3 + ((1 + s)(1 + t))3 =
(s(s− 1)(1 + t) + 3s(1 + t)2 + (1 + t)3)f0

+(s(1 + t) + (s− 1)2 + st + 3(1 + t)(s− 1) + 3(1 + t)2)f1

+(2(s− 1) + 3(1 + t))f2 + f3.
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Proof. Suppose that M , A and Q are defined as before. In the same way as in the proof
of Theorems 5.1 and 5.4 we can prove that tr(QM3) = k1(s + t +

√
2st)3 + k2(s + t −√

2st)3 + k3(s + t)3 + ((1 + s)(1 + t))3, with k1, k2 and k3 integers. On the other hand,
because of Lemma 3.3 and the values for pi

j given after that lemma, we can calculate
that A3 = (aij) is the matrix with s(s − 1)(1 + t) along the main diagonal and on
the other entries we have aij = s(1 + t) + (s − 1)2 + st if xi ∼ xj, aij = 2(s − 1)
if d(xi, xj) = 2, aij = 1 if d(xi, xj) = 3 and aij = 0 otherwise. Hence tr(QA3) =
s(s − 1)(1 + t)f0 + (s(1 + t) + (s − 1)2 + st)f1 + 2(s − 1)f2 + f3. Because of the proof
of Theorem 5.4 we know that tr(QA2) = s(1 + t)f0 + (s − 1)f1 + f2, tr(QA) = f1 and
tr(Q) = f0. Hence

tr(QM3)
= tr(Q(A + (1 + t)I)3)
= tr(QA3) + 3(1 + t)tr(QA2) + 3(1 + t)2tr(QA) + (1 + t)3tr(Q)
= s(s− 1)(1 + t)f0 + (s(1 + t) + (s− 1)2 + st)f1 + 2(s− 1)f2 + f3

+3(1 + t)(s(1 + t)f0 + (s− 1)f1 + f2) + 3(1 + t)2f1 + (1 + t)3f0

= (s(s− 1)(1 + t) + 3s(1 + t)2 + (1 + t)3)f0

+(s(1 + t) + (s− 1)2 + st + 3(1 + t)(s− 1) + 3(1 + t)2)f1

+(2(s− 1) + 3(1 + t))f2 + f3.

Using Lemma 3.2 as before, the proof of the theorem is complete. �

For a thin octagon with s = 1 we obtain:

k1(1 + t +
√

2t)3 + k2(1 + t−
√

2t)3 + k3(1 + t)3 + (2(1 + t))3 =
(3(1 + t)2 + (1 + t)3)f0 + (1 + 2t + 3(1 + t)2)f1 + 3(1 + t)f2 + f3.

If 2t is not a square, then it follows that k1 = k2 and we obtain:

k12(1 + 9t + 9t2 + t3) + k3(1 + t)3 + (2(1 + t))3 =
(3(1 + t)2 + (1 + t)3)f0 + (1 + 2t + 3(1 + t)2)f1 + 3(1 + t)f2 + f3.

Corollary 6.6 Suppose that we have a thin octagon of order (1, t). Consider a duality
in the underlying generalized quadrangle. If 2t is not a square, then f1 = 2(1 + t). If 2t
is a square, then f1 ≡ 2 mod 2

√
2t. In particular there is at least one absolute point and

one absolute line.
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Proof. Since we have a duality in the underlying generalized quadrangle, we know that
f0 = 0 and f2 = 0. Because of Lemma 3.2, Theorems 6.1, 6.4 and 6.5, we have the
following equations:

k1(1 + t +
√

2t) + k2(1 + t−
√

2t) + k3(1 + t) + 2(1 + t) = f1,

k1(1 + t +
√

2t)2 + k2(1 + t−
√

2t)2 + k3(1 + t)2 + (2(1 + t))2 = (2 + 2t)f1,

k1(1 + t +
√

2t)3 + k2(1 + t−
√

2t)3 + k3(1 + t)3 + (2(1 + t))3 =
(1 + 2t + 3(1 + t)2)f1 + f3.

Because f0 and f2 are 0, we know that f1 + f3 = 2(1 + t)(1 + t2). Hence:
k1 =

√
2(−2t+f1−2)

4
√

t
,

k2 = −
√

2(−2t+f1−2)

4
√

t
,

k3 = 0,
f3 = 2(t3 + t2 + t + 1)− f1.

So
√

2(−2t+f1−2)

4
√

t
has to be an integer. In the case that 2t is not a square, this only holds if

−2t + f1 − 2 = 0. Hence f1 = 2(1 + t) if 2t is not a square. If 2t is a square, then f1 − 2
has to be a multiple of 2

√
2t. Hence f1 ≡ 2 mod 2

√
2t. �

From Lemma 3.4 now immediately follows.

Corollary 6.7 Suppose that θ is a duality of a generalized quadrangle of order t. If 2t
is not a square, then it has 1 + t absolute points and 1 + t absolute lines, and there are
(1 + t)t2 points which are mapped to a line at distance 3 and (1 + t)t2 lines which are
mapped to a point at distance 3. If 2t is a perfect square, then it has 1 mod

√
2t absolute

points and equally many absolute lines.

If 2t is a square, then one can again construct examples of dualities in a generalized
quadrangle of order t, namely in the symplectic quadrangle W(t), admitting the lower
bound 1 of absolute points given in the previous corollary. Indeed, consider a polarity ρ
and compose it with a nontrivial central root elation τ whose center is an absolute point
x. The resulting duality θ = ρτ has x as unique absolute point. Indeed, suppose by way
of contradiction that the point y 6= x is absolute for θ. Since τ is involutive, this implies
that yρIyτ . It is easy to see that x and y are not collinear and that x I- yρ. Since τ
is central, the unique point z on yρ collinear with x is also collinear with y. Applying
ρ to the chain yIyzIzIyρ, we deduce that zρ = yz, hence z is an absolute point for ρ,
contradicting the fact that z is collinear with x.
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7 Collineations of dodecagons and dualities of hexagons

Suppose that S is a generalized dodecagon. Let θ be an automorphism of S and let fi be
the number of points for which d(x, xθ) = i in the point graph, with i ∈ {0, 1, 2, 3, 4, 5}.
The matrices M , A and Q are defined analogously as before. The eigenvalues of M are
as follows (cf. [5]):

eigenvalues of M multiplicity

0 m0

(s + 1)(t + 1) m1 = 1

s + t +
√

st m2

s + t−
√

st m3

s + t +
√

3st m4

s + t−
√

3st m5

s + t m6

Thick finite generalized dodecagons do not exist, but nevertheless we formulate the fol-
lowing results with general s and t. In real life, either s or t is equal to 1, but the formulae
do not seem to be equivalent. Afterwards, we apply our results to the case s = 1, implying
results for dualities of generalized hexagons.

Theorem 7.1 Let S be a generalized dodecagon of order (s, t) and let θ be an automor-
phism of S. If f0 is the number of points fixed by θ and f1 is the number of points x for
which x ∼ xθ, then for some integers k1, k2, k3, k4 and k5 there holds

k1(s+t+
√

st)+k2(s+t−
√

st)+k3(s+t+
√

3st)+k4(s+t−
√

3st)+k5(s+t)+(1+s)(1+t) =
(1 + t)f0 + f1.

Proof. This proof is totally analogous to the proof of Theorem 5.1. �
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Theorem 7.2 Let S be a generalized dodecagon of order (s, t) and let θ be an automor-
phism of S. If fi, i = 0, 1, 2, is defined as above, then for the integers k1, k2, k3, k4 and
k5 obtained in Theorem 7.1 there holds

k1(s + t +
√

st)2 + k2(s + t−
√

st)2 + k3(s + t +
√

3st)2 + k4(s + t−
√

3st)2 + k5(s + t)2 +
((1 + s)(1 + t))2 = (1 + s + t)(1 + t)f0 + (1 + s + 2t)f1 + f2.

Proof. This proof is totally analogous to the proof of Theorem 5.4. �

Theorem 7.3 Let S be a generalized dodecagon of order (s, t) and let θ be an automor-
phism of S. If fi, i = 0, 1, 2, 3, is as before, then for the integers k1, k2, k3, k4 and k5 of
Theorem 7.1 there holds

k1(s + t +
√

st)3 + k2(s + t−
√

st)3 + k3(s + t +
√

3st)3 + k4(s + t−
√

3st)3 + k5(s + t)3 +
((1 + s)(1 + t))3 =

(s(s− 1)(1 + t) + 3s(1 + t)2 + (1 + t)3)f0

+(s(1 + t) + (s− 1)2 + st + 3(1 + t)(s− 1) + 3(1 + t)2)f1

+(2(s− 1) + 3(1 + t))f2 + f3.

Proof. This proof is totally analogous to the proof of Theorem 6.5. �

Theorem 7.4 Let S be a generalized dodecagon of order (s, t) and let θ be an automor-
phism of S. If fi, i = 0, 1, 2, 3, 4, is as before, then for the integers k1, k2, k3, k4 and k5

of Theorem 7.1 there holds

k1(s + t +
√

st)4 + k2(s + t−
√

st)4 + k3(s + t +
√

3st)4 + k4(s + t−
√

3st)4 + k5(s + t)4 +
((1 + s)(1 + t))4 =

((s(1 + t) + (s− 1)2 + st)(1 + t)s + 4s(s− 1)(1 + t)2 + 6s(1 + t)3 + (1 + t)4)f0

+(s(s− 1)(1 + t) + (s− 1)(s(1 + t) + (s− 1)2 + st) + 2(s− 1)st + 4(1 + t)(s(1 + t)
+(s− 1)2 + st) + 6(1 + t)2(s− 1) + 4(1 + t)3)f1

+(s(1 + t) + 3(s− 1)2 + 2st + 8(1 + t)(s− 1) + 6(1 + t)2)f2

+(3(s− 1) + 4(1 + t))f3 + f4.

Proof. Suppose that M , A and Q are defined as before. In the same way as in the
proof of Theorems 5.1, 5.4 and 6.5 we can prove that tr(QM4) = k1(s + t +

√
st)4 +

k2(s + t−
√

st)4 + k3(s + t +
√

3st)4 + k4(s + t−
√

3st)4 + k5(s + t)4 + ((1 + s)(1 + t))4,
with k1, k2, k3, k4 and k5 integers. On the other hand, because of Lemma 3.3 and the
values for pi

j given after that lemma, we can calculate that A4 = (aij) is the matrix with
(s(1 + t) + (s− 1)2 + st)(1 + t)s on the main diagonal while on the other entries we have
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aij = s(s− 1)(1 + t) + (s− 1)(s(1 + t) + (s− 1)2 + st) + 2(s− 1)st if xi ∼ xj

aij = s(1 + t) + 3(s− 1)2 + 2st if d(xi, xj) = 2
aij = 3(s− 1) if d(xi, xj) = 3
1 if d(xi, xj) = 4
0 otherwise.

Hence

tr(QA4) = ((s(1 + t) + (s− 1)2 + st)(1 + t)s)f0

+(s(s− 1)(1 + t) + (s− 1)(s(1 + t) + (s− 1)2 + st) + 2(s− 1)st)f1

+(s(1 + t) + 3(s− 1)2 + 2st)f2 + 3(s− 1)f3 + f4.

The rest of the proof is totally analogous to the proof of Theorem 6.5. �

Theorem 7.5 Let S be a generalized dodecagon of order (s, t) and let θ be an automor-
phism of S. If fi, i = 0, 1, 2, 3, 4, 5, is as before, then for the integers k1, k2, k3, k4 and
k5 of Theorem 7.1 there holds

k1(s + t +
√

st)5 + k2(s + t−
√

st)5 + k3(s + t +
√

3st)5 + k4(s + t−
√

3st)5 + k5(s + t)5 +
((1+ s)(1+ t))5 = (s(t+1)(s(s− 1)(1+ t)+ (s− 1)(s(1+ t)+ (s− 1)2 + st)+2(s− 1)st)+
5(1+t)(s(1+t)+(s−1)2+st)(1+t)s+10(1+t)2s(s−1)(1+t)+10(1+t)3s(t+1)+(1+t)5)f0

+((s(1+ t)+(s−1)2 +st)(1+ t)s+(s−1)(s(s−1)(1+ t)+(s−1)(s(1+ t)+(s−1)2 +st)+
2(s− 1)st) + st(s(1 + t) + 3(s− 1)2 + 2st) + 5(1 + t)(s(s− 1)(1 + t) + (s− 1)(s(1 + t) +

(s− 1)2 + st) + 2(s− 1)st) + 10(1 + t)2(s(1 + t) + (s− 1)2 + st) + 10(1 + t)3(s− 1)+
5(1 + t)4)f1

+(s(s−1)(1+t)+(s−1)(s(1+t)+(s−1)2+st)+2(s−1)st+(s−1)(s(1+t)+3(s−1)2+2st)
+3st(s− 1) + 5(1 + t)(s(1 + t) + 3(s− 1)2 + 2st) + 10(1 + t)22(s− 1) + 10(1 + t)3)f2

(s(1 + t) + 3(s− 1)2 + 2st + 3(s− 1)2 + st + 5(t + 1)3(s− 1) + 10(t + 1)2)f3

+(4(s− 1) + 5(t + 1))f4 + f5.

Proof. Suppose that M , A and Q are defined as before. In the same way as in the proof
of Theorems 5.1, 5.4 and 6.5 we can prove that tr(QM5) = k1(s + t +

√
st)5 + k2(s + t−√

st)5 + k3(s + t +
√

3st)5 + k4(s + t−
√

3st)5 + k5(s + t)5 + ((1 + s)(1 + t))5, with k1, k2,
k3, k4 and k5 the integers of Theorem 7.1 (by Lemma 3.2). On the other hand, because of
Lemma 3.3 and the values for pi

j given after that lemma, we can calculate that A4 = (aij)
is the matrix with s(t + 1)(s(s− 1)(1 + t) + (s− 1)(s(1 + t) + (s− 1)2 + st) + 2(s− 1)st)
on the main diagonal while on the other entries we have
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aij = (s(1 + t) + (s− 1)2 + st)(1 + t)s + (s− 1)(s(s− 1)(1 + t)
+(s− 1)(s(1 + t) + (s− 1)2 + st) + 2(s− 1)st)
+st(s(1 + t) + 3(s− 1)2 + 2st) if xi ∼ xj

aij = s(s− 1)(1 + t) + (s− 1)(s(1 + t) + (s− 1)2 + st) + 2(s− 1)st
+(s− 1)(s(1 + t) + 3(s− 1)2 + 2st) + 3st(s− 1) if d(xi, xj) = 2

aij = s(1 + t) + 3(s− 1)2 + 2st + 3(s− 1)2 + st if d(xi, xj) = 3
aij = 4(s− 1) if d(xi, xj) = 4
1 if d(xi, xj) = 5
0 otherwise.

Hence

tr(QA5) = (s(t + 1)(s(s− 1)(1 + t) + (s− 1)(s(1 + t) + (s− 1)2 + st) + 2(s− 1)st))f0

+((s(1 + t) + (s− 1)2 + st)(1 + t)s + (s− 1)(s(s− 1)(1 + t) + (s− 1)(s(1 + t)
+(s− 1)2 + st) + 2(s− 1)st) + st(s(1 + t) + 3(s− 1)2 + 2st))f1

+(s(s− 1)(1 + t) + (s− 1)(s(1 + t) + (s− 1)2 + st) + 2(s− 1)st
+(s− 1)(s(1 + t) + 3(s− 1)2 + 2st) + 3st(s− 1))f2

+(s(1 + t) + 3(s− 1)2 + 2st + 3(s− 1)2 + st)f3 + 4(s− 1)f4 + f5.

We have

tr(QM5)
= tr(Q(A + (1 + t)I)5)
= tr(QA5) + 5(1 + t)tr(QA4) + 10(1 + t)2tr(QA3) + 10(1 + t)3tr(QA2)

+5(1 + t)4tr(QA) + (1 + t)5tr(Q).

If we substitute the formula for tr(QA5) which we obtained above and the formulas which
we obtained in Theorems 5.1, 5.4, 6.5 and 7.4 for tr(QA4), tr(QA3), tr(QA2), tr(QA) and
tr(Q), then we obtain the assertion. �

Corollary 7.6 Suppose that we have a thin dodecagon of order (1, t). Consider a duality
in the underlying generalized hexagon. If 3t and t are no squares, then f1 = 2(1 + t),
f3 = 2(t2 + t3) and f5 = 2(t4 + t5). If 3t is a square and t is not a square, then f1 ≡ 2
mod 2

√
3t and f3 ≡ 0 mod 2

√
3t. If t is a square and 3t is not a square, then f1 ≡ 2

mod 2
√

t and f3 ≡ 0 mod 2
√

t. In particular there is always at least one absolute point
and one absolute line.
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Proof. Since we have a duality in the underlying generalized hexagon, we know that
f0 = 0, f2 = 0 and f4 = 0. Because of Theorems 7.1, 7.2, 7.3, 7.4 and 7.5, we have the
following equations:

k1(1 + t +
√

t) + k2(1 + t−
√

t) + k3(1 + t +
√

3t) + k4(1 + t−
√

3t) + k5(1 + t)
+2(1 + t) = f1,

k1(1 + t +
√

t)2 + k2(1 + t−
√

t)2 + k3(1 + t +
√

3t)2 + k4(1 + t−
√

3t)2 + k5(1 + t)2

+(2(1 + t))2 = (2 + 2t)f1,

k1(1 + t +
√

t)3 + k2(1 + t−
√

t)3 + k3(1 + t +
√

3t)3 + k4(1 + t−
√

3t)3 + k5(1 + t)3

+(2(1 + t))3 = (1 + 2t + 3(1 + t)2)f1 + f3,

k1(1 + t +
√

t)4 + k2(1 + t−
√

t)4 + k3(1 + t +
√

3t)4 + k4(1 + t−
√

3t)4 + k5(1 + t)4

+(2(1 + t))4 = (4(1 + t)(1 + 2t) + 4(1 + t)3)f1 + 4(1 + t)f3,

k1(1 + t +
√

t)5 + k2(1 + t−
√

t)5 + k3(1 + t +
√

3t)5 + k4(1 + t−
√

3t)5 + k5(t + 1)5

+(2(t + 1))5 = (5t4 + 40t3 + 85t2 + 64t + 16)f1 + (10t2 + 24t + 11)f3 + f5.

Because f0, f2 and f4 are 0, we know that f1 + f3 + f5 = 2(t6−1)
t−1

. Hence:

k1 = −−2t3−f1t+f3+f1−2

4
√

t3
,

k2 = −2t3−f1t+f3+f1−2

4
√

t3
,

k3 = (−2t3−4t2−4t−2+f1t+f3+f1)
√

3

12
√

t3
,

k4 = − (−2t3−4t2−4t−2+f1t+f3+f1)
√

3

12
√

t3
,

k5 = 0,
f5 = 2(t5 + t4 + t3 + t2 + t + 1)− f1 − f3.

So −2t3−f1t+f3+f1−2

4
√

t3
and (−2t3−4t2+f1t−2−4t+f3+f1)

√
3

12
√

t3
have to be integers. In the case that 3t

and t are no squares, this only holds if −2t3 − f1t + f3 + f1 − 2 = 0 and −2t3 − 4t2 −
4t − 2 + f1t + f3 + f1 = 0. Hence f1 = 2(1 + t) and f3 = 2(t2 + t3) if 3t and t are no
squares. If 3t is a square and t is no square, then −2t3 − f1t + f3 + f1 − 2 = 0 and
−2t3 − 4t2 + f1t − 2 − 4t + f3 + f1 has to be a multiple of 4t

√
3t. Combining these,

we see that f1 − 2 has to be a multiple of 2
√

3t, which means that f1 ≡ 2 mod 2
√

3t.
Substituting this in the former equality yields f3 ≡ 0 mod 2

√
3t. On the other hand,

if t is a square and 3t is no square, then −2t3 − 4t2 + f1t − 2 − 4t + f3 + f1 = 0 and
−2t3 − f1t + f3 + f1 − 2 has to be a multiple of 4t

√
t. Hence f1 − 2 has to be a multiple

of 2
√

t, which means that f1 ≡ 2 mod 2
√

t. Similarly as above, f3 ≡ 0 mod 2
√

t. �

This immediately implies, in view of Lemma 3.4, the following corollary.
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Corollary 7.7 Suppose that θ is a duality of a generalized hexagon of order t. If none
of 3t and t are perfect squares, then θ has 1 + t absolute points and 1 + t absolute lines,
there are t2 + t3 points which are mapped to a line at distance 3 and t2 + t3 lines which
are mapped to a point at distance 3, and there are t4 + t5 points which are mapped to a
line at distance 5 and t4 + t5 lines which are mapped to a point at distance 5. If t is a
perfect square, then there are 1 mod

√
t absolute points and equally many absolute lines;

the number of point mapped onto a line at distance 3 in the incidence graph is divisible by√
t. If 3t is a perfect square, then there are 1 mod

√
3t absolute points and equally many

absolute lines; the number of point mapped onto a line at distance 3 in the incidence graph
is divisible by

√
3t.

We currently do not know of any finite self-dual generalized hexagon of order t, with
neither t nor 3t a perfect square. If 3t is a square, then similarly as for symplectic
quadrangles of order s, with 2s a square, one can easily construct dualities of the split
Cayley hexagon H(t) with exactly one absolute point as the composition of a polarity with
a nontrivial central collineation with center one of the absolute points of the polarity. If t
is a square, then our conjecture is that the number of absolute points of a duality is also
exactly 1 + t.
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