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Abstract

Recently Kamiyama, Katoh, and Takizawa have shown a theorem on packing
arc-disjoint arborescences that is a proper extension of Edmonds’ theorem on disjoint
spanning branchings. We show a further extension of their theorem, which makes
clear an essentiable of a reachability condition played in the theorem. The right
concept required for the further extension is “convexity” instead of “reachability.”

1. Introduction: a theorem of Kamiyama, Katoh, and
Takizawa

Recently Kamiyama, Katoh, and Takizawa [3] have shown a theorem (KKT theorem for
short in the sequel) on packing arc-disjoint arborescences that is a proper extension of
Edmonds’ theorem [2] on disjoint spanning branchings, which is described as follows.
(The precise definitions of terms used here will be given later.)

Let G = (V, A) be a directed graph with a vertex détand an arc setl. For any
vertexv € V we denote by/;(v) the set of vertices reachable franby directed paths
in G. Given rootsr; (i € I), KKT theorem gives a characterization of the existence of a
set of arc-disjoint arborescenc#s (i € I) such that for each € I arborescencél; has
a rootr; and exactly spanB/ (r;).

In this note we show a further extension of KKT theorem, which makes clear an es-
sential ble played by a reachability condition in the theorem. The right concept required
for the further extension is “convexity” instead of “reachability.”

For more information about disjoint arborescences, their extensions, and related topics
see [4, Part V] and [1].



2. An extension of KKT theorem

Let G = (V, A) be a directed graph with a vertex $étand an arc setl. Each ara: € A
has aail denoted by« and aheaddenoted by~ a. For any vertex thein-degreeof v
is equal to the number of arcs that havas their heads. Aranchingin G is a subgraph
H = (U, B) of G without any cycle such that every vertexin U has in-degrees at
most one inf. Each connected component of branchfiidhas a unique vertex, called
aroot, that has the in-degree equal to zerofn A connected branching is called an
arborescencewhich has a single root.

For any vertexo € V we denote byR}(v) the set of vertices reachable fromby
directed paths inG and by R (v) the set of vertices from which is reachable by a
directed path irG. Also define for anyV C V/

Re(W) = {Rsw) [ve W}, Re(W) = [{Ra(v) [veW}  (21)

A vertex subsetV is called aconvex sein G if we haveW = R (W) N R (W), i.e.,
for every directed (possibly closed) pathfrom a vertex inl¥ to a vertex inl¥/ all the
intermediate vertices aP also lie in1/. The concept of convexity plays an essential
role in our result, which replaces th@le of reachability from roots in KKT theorem [3].
It should be noted that for any convex $étin G and the vertex sét’ of any strongly
connected component 6f that satisfyi’ N W # (), we must havé/ D V.

Suppose that we are given a finite index Beind, for each € I, a specified vertex
r; € V. Here we may allow; = r; for some distinct, j € I. For each € I we are also
given a convex sdt; C V such that; € U;. For anyv € V define

Iv)={iel|veU}. (2.2)

We assume that(v) # 0 forallv € V.

Now we are ready to state our main theorem, which is an extension of KKT theorem.
It should be noted that replacirig by RZ(r;) for all i € I in our theorem yields KKT
theorem. Our proof employs KKT theorem recursively. For any vertex subsetV
denote byG[Z] the subgraph ofr induced byZ.

Theorem 2.1 The following two statements are equivalent.

(a) There exist arc-disjoint arborescencés = (U;, B;) (i € I) such that for each
1 € I arborescencéed; has a rootr;.

(b) For eachv € V there exist arc-disjoint directed path3 (i € I(v)) such that for
eachi € I(v) path P; is fromr; to v.

(Proof) ((a)= (b)): This implication is easy.

((b) = (a)): Suppose (b) holds.

Consider the decomposition of graghinto strongly connected components, which
defines a partial ordex on the set of strongly connected components as follows. For two



strongly connected components and H' we haveH < H' if and only if there exists
a directed path fronf{’ to H. Let W C V be the vertex set of a strongly connected
component that is minimal with respect to the partial orgdernn other words )V is the
vertex set of a strongly connected componer@isuch thatkR (W) = W.

Define

1(W) = U{I() v e Wi(={ie I|W CU}), (2.3)
UW) = U,nRG(W) (i € I(W)), (2.4)
VW) = JU(W) | i € I(W)}. (2.5)

Then consider the subgragh = G[V(W)] of G induced byV (V). Because of the
convexity of U; (i € I), definitions (2.3)—(2.5), and assumption (b) we can show the
following two facts.

Fact 1. For eachi € I(W) U;(W) is exactly the set of vertices that can be reached from
r; by directed paths it/ i.e., R} (r;) = Us(W).

Fact 2 For anyv € V(W) and any directed patR in G fromr; (i € I(W)) to v all the
intermediate vertices a? lie in U;(1W).

It foIIovys from these two facts that assumption (b) (appropriately modified) also holds for
graphG with index set/ (1) and convex (reachable) ses.(r;) = U;(W) (i € I(W)).
More precisely, the following (*) holds.

(*) for eachv € V(W) there exist arc-disjoint directed pats (i € I(v) N I(W))
such that for eache I(v) N I[(W) pathP; is fromr; tov in G.

Hence from KKT theorem there exist arc-disjoint arboresceiites (U;(W), B;) (i €
I(W)) such that each arboresceridg(i € I(W)) has a root;.
Define
BY =B,nd W (ieI(W)), (2.6)

whered~ W is the set of arca € A with 0-a € W. (Here note that we may have
Ofa e W.) Foralli € I\ I(W) defineB!” = (. Then put

G—G\W, (2.7)
U —U\W (iel), (2.8)
I —I\{iel|reW}, (2.9)

whereG \ W is the graph obtained by removing frofhthe vertices ofi” and the arcs
incident tolV. Note that ifG'\ 1V has desired arc-disjoint arborescenggs= (U;\ W, B;)
(i € I) restricted onG \ W, thenH; = (U;, B U B}Y) (i € I) are desired ones fdf.
It should also be noted thaf; \ W (i € I) are convex sets in the original graghand
hence in the new as well. Sincé/; \ W (i € I) are convex sets in the original graph



directed paths withi/; \ W in the originalG are also directed path in the néw Hence
assumption (b) also holds for the néw , U; (i € I), andr; (i € I).

Repeat this process untid becomes empty. Lét/, - - -, W, be the sequence &¥'s
chosen in the repeated above-mentioned process.

Define for each € I

where B/"* is defined to beB)” for W = W,. We can easily see thdf; = (U;, B;)

(¢ € I) are desired arborescences with rogtéi € I), one for each correspondirfg;.
O

Note that the proof given above leads us to a polynomial algorithm for finding arc-
disjoint arborescences that span specified convex sets with roots by using the algorithm
in[3].

We can also show the following. Defid&v) = {i € I(v) | r; # v} forallv € V.

Theorem 2.2 The following two statements are equivalent(&) (and (b)) in Theo-
rem2.1

(c) Forany vertex subsét C V'
A" Z] = {ie I(Z) | ri & Z}], (2.11)
whereA~Z denotes the set of aresc A such thatv™a ¢ Z ando—a € Z.

(d) There exist spanning treds = (U;, E;) of G[U;] (¢ € I) such thatE; (i € I) are
pairwise disjoint and every vertexc V' has in-degree equal td’(v)| in the union
of T; (i € I) (as a subgraptd = (V,U;c, E;) of G).

(Proof) We show the implications (e} (b) ((a))= (d) = (c).

((c) = (b)): Letwv be any vertex irl/. Consider anyZ C V withv € Zin (c). Then it
follows from (c) (with any sucl¥) and the max-flow min-cut theorem that (b) foholds.

((b) = (d)): This is easy since (a) and (b) are equivalent.

((d) = (c)): Let Z be any subset df . Denote byAy[Z] the set of arca in H with
0%ta,0"a € Z. Then we have

A™Z| = > [I'(v)l = |AulZ]| = {i € I(Z) | r: ¢ Z}, (2.12)

veZ
where the second inequality follows from the fact thatn Ay [Z]| < |U; N Z| — 1 for
Svez [ I(v)| —11(Z)].) Hence (2.11) holds. O

It should be noted that because of (d) in Theorem 2.2 a problem of finding minimum-
weight arc-disjoint arborescences that span given convex sets with roots can be solved in

polynomial time.
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