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Abstract

Recently Kamiyama, Katoh, and Takizawa have shown a theorem on packing
arc-disjoint arborescences that is a proper extension of Edmonds’ theorem on disjoint
spanning branchings. We show a further extension of their theorem, which makes
clear an essential rôle of a reachability condition played in the theorem. The right
concept required for the further extension is “convexity” instead of “reachability.”

1. Introduction: a theorem of Kamiyama, Katoh, and
Takizawa

Recently Kamiyama, Katoh, and Takizawa [3] have shown a theorem (KKT theorem for
short in the sequel) on packing arc-disjoint arborescences that is a proper extension of
Edmonds’ theorem [2] on disjoint spanning branchings, which is described as follows.
(The precise definitions of terms used here will be given later.)

Let G = (V,A) be a directed graph with a vertex setV and an arc setA. For any
vertexv ∈ V we denote byR+

G(v) the set of vertices reachable fromv by directed paths
in G. Given rootsri (i ∈ I), KKT theorem gives a characterization of the existence of a
set of arc-disjoint arborescencesHi (i ∈ I) such that for eachi ∈ I arborescenceHi has
a rootri and exactly spansR+

G(ri).
In this note we show a further extension of KKT theorem, which makes clear an es-

sential r̂ole played by a reachability condition in the theorem. The right concept required
for the further extension is “convexity” instead of “reachability.”

For more information about disjoint arborescences, their extensions, and related topics
see [4, Part V] and [1].
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2. An extension of KKT theorem

Let G = (V,A) be a directed graph with a vertex setV and an arc setA. Each arca ∈ A
has atail denoted by∂+a and aheaddenoted by∂−a. For any vertexv the in-degreeof v
is equal to the number of arcs that havev as their heads. Abranchingin G is a subgraph
H = (U,B) of G without any cycle such that every vertexu in U has in-degrees at
most one inH. Each connected component of branchingH has a unique vertex, called
a root, that has the in-degree equal to zero inH. A connected branching is called an
arborescence, which has a single root.

For any vertexv ∈ V we denote byR+
G(v) the set of vertices reachable fromv by

directed paths inG and byR−
G(v) the set of vertices from whichv is reachable by a

directed path inG. Also define for anyW ⊆ V

R+
G(W ) =

⋃{R+
G(v) | v ∈ W}, R−

G(W ) =
⋃{R−

G(v) | v ∈ W}. (2.1)

A vertex subsetW is called aconvex setin G if we haveW = R+
G(W ) ∩ R−

G(W ), i.e.,
for every directed (possibly closed) pathP from a vertex inW to a vertex inW all the
intermediate vertices ofP also lie inW . The concept of convexity plays an essential
rôle in our result, which replaces the rôle of reachability from roots in KKT theorem [3].
It should be noted that for any convex setU in G and the vertex setW of any strongly
connected component ofG that satisfyU ∩W 6= ∅, we must haveU ⊇ W .

Suppose that we are given a finite index setI and, for eachi ∈ I, a specified vertex
ri ∈ V . Here we may allowri = rj for some distincti, j ∈ I. For eachi ∈ I we are also
given a convex setUi ⊆ V such thatri ∈ Ui. For anyv ∈ V define

I(v) = {i ∈ I | v ∈ Ui}. (2.2)

We assume thatI(v) 6= ∅ for all v ∈ V .
Now we are ready to state our main theorem, which is an extension of KKT theorem.

It should be noted that replacingUi by R+
G(ri) for all i ∈ I in our theorem yields KKT

theorem. Our proof employs KKT theorem recursively. For any vertex subsetZ ⊆ V
denote byG[Z] the subgraph ofG induced byZ.

Theorem 2.1: The following two statements are equivalent.

(a) There exist arc-disjoint arborescencesHi = (Ui, Bi) (i ∈ I) such that for each
i ∈ I arborescenceHi has a rootri.

(b) For eachv ∈ V there exist arc-disjoint directed pathsPi (i ∈ I(v)) such that for
eachi ∈ I(v) pathPi is fromri to v.

(Proof) ((a)⇒ (b)): This implication is easy.
((b)⇒ (a)): Suppose (b) holds.
Consider the decomposition of graphG into strongly connected components, which

defines a partial order¹ on the set of strongly connected components as follows. For two
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strongly connected componentsH andH ′ we haveH ¹ H ′ if and only if there exists
a directed path fromH ′ to H. Let W ⊆ V be the vertex set of a strongly connected
component that is minimal with respect to the partial order¹. In other words,W is the
vertex set of a strongly connected component inG such thatR+

G(W ) = W .
Define

I(W ) =
⋃{I(v) | v ∈ W}(= {i ∈ I | W ⊆ Ui}), (2.3)

Ui(W ) = Ui ∩R−
G(W ) (i ∈ I(W )), (2.4)

V (W ) =
⋃{Ui(W ) | i ∈ I(W )}. (2.5)

Then consider the subgrapĥG = G[V (W )] of G induced byV (W ). Because of the
convexity ofUi (i ∈ I), definitions (2.3)–(2.5), and assumption (b) we can show the
following two facts.

Fact 1: For eachi ∈ I(W ) Ui(W ) is exactly the set of vertices that can be reached from
ri by directed paths in̂G, i.e.,R+

Ĝ
(ri) = Ui(W ).

Fact 2: For anyv ∈ V (W ) and any directed pathP in G from ri (i ∈ I(W )) to v all the
intermediate vertices ofP lie in Ui(W ).

It follows from these two facts that assumption (b) (appropriately modified) also holds for
graphĜ with index setI(W ) and convex (reachable) setsR+

Ĝ
(ri) = Ui(W ) (i ∈ I(W )).

More precisely, the following (*) holds.

(*) for eachv ∈ V (W ) there exist arc-disjoint directed pathsPi (i ∈ I(v) ∩ I(W ))
such that for eachi ∈ I(v) ∩ I(W ) pathPi is from ri to v in Ĝ.

Hence from KKT theorem there exist arc-disjoint arborescencesĤi = (Ui(W ), B̂i) (i ∈
I(W )) such that each arborescenceĤi (i ∈ I(W )) has a rootri.

Define
BW

i = B̂i ∩ δ−W (i ∈ I(W )), (2.6)

whereδ−W is the set of arcsa ∈ A with ∂−a ∈ W . (Here note that we may have
∂+a ∈ W .) For all i ∈ I \ I(W ) defineBW

i = ∅. Then put

G ← G \W, (2.7)

Ui ← Ui \W (i ∈ I), (2.8)

I ← I \ {i ∈ I | ri ∈ W}, (2.9)

whereG \W is the graph obtained by removing fromG the vertices ofW and the arcs
incident toW . Note that ifG\W has desired arc-disjoint arborescencesH ′

i = (Ui\W,B′
i)

(i ∈ I) restricted onG \ W , thenHi = (Ui, B
′
i ∪ BW

i ) (i ∈ I) are desired ones forG.
It should also be noted thatUi \ W (i ∈ I) are convex sets in the original graphG and
hence in the newG as well. SinceUi \W (i ∈ I) are convex sets in the original graphG,
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directed paths withinUi \W in the originalG are also directed path in the newG. Hence
assumption (b) also holds for the newG, I, Ui (i ∈ I), andri (i ∈ I).

Repeat this process untilG becomes empty. LetW1, · · · ,Wk be the sequence ofWs
chosen in the repeated above-mentioned process.

Define for eachi ∈ I

Bi =
⋃{BW`

i | ` = 1, · · · , k}, (2.10)

whereBW`
i is defined to beBW

i for W = W`. We can easily see thatHi ≡ (Ui, Bi)
(i ∈ I) are desired arborescences with rootsri (i ∈ I), one for each correspondingHi.

2

Note that the proof given above leads us to a polynomial algorithm for finding arc-
disjoint arborescences that span specified convex sets with roots by using the algorithm
in [3].

We can also show the following. DefineI ′(v) = {i ∈ I(v) | ri 6= v} for all v ∈ V .

Theorem 2.2: The following two statements are equivalent to(a) (and (b)) in Theo-
rem2.1.

(c) For any vertex subsetZ ⊂ V

|∆−Z| ≥ |{i ∈ I(Z) | ri /∈ Z}|, (2.11)

where∆−Z denotes the set of arcsa ∈ A such that∂+a /∈ Z and∂−a ∈ Z.

(d) There exist spanning treesTi = (Ui, Ei) of G[Ui] (i ∈ I) such thatEi (i ∈ I) are
pairwise disjoint and every vertexv ∈ V has in-degree equal to|I ′(v)| in the union
of Ti (i ∈ I) (as a subgraphH = (V,∪i∈IEi) of G).

(Proof) We show the implications (c)⇒ (b) ((a))⇒ (d)⇒ (c).
((c)⇒ (b)): Letv be any vertex inV . Consider anyZ ⊂ V with v ∈ Z in (c). Then it

follows from (c) (with any suchZ) and the max-flow min-cut theorem that (b) forv holds.
((b)⇒ (d)): This is easy since (a) and (b) are equivalent.
((d)⇒ (c)): Let Z be any subset ofV . Denote byAH [Z] the set of arcsa in H with

∂+a, ∂−a ∈ Z. Then we have

|∆−Z| ≥ ∑

v∈Z

|I ′(v)| − |AH [Z]| ≥ |{i ∈ I(Z) | ri /∈ Z}|, (2.12)

where the second inequality follows from the fact that|Ei ∩ AH [Z]| ≤ |Ui ∩ Z| − 1 for
all i ∈ I(Z). (Note that|AH [Z]| = ∑

i∈I(Z) |Ei ∩AH(Z)| ≤ ∑
i∈I(Z) |Ui ∩Z| − |I(Z)| =∑

v∈Z |I(v)| − |I(Z)|.) Hence (2.11) holds. 2

It should be noted that because of (d) in Theorem 2.2 a problem of finding minimum-
weight arc-disjoint arborescences that span given convex sets with roots can be solved in
polynomial time.

5



Acknowledgments

I am grateful to Naoyuki Kamiyama for pointing out an error in statement (d) of Theo-
rem 2.2 in an earlier version of this note. Thanks are also due to András Frank for useful
discussions and comments on disjoint arborescences and to the referee for his careful
reading. The present research was supported by a Grant-in-Aid from the Ministry of
Education, Culture, Sports, Science and Technology of Japan.

References
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