PACKING DIRECTED CIRCUITS EXACTLY

BERTRAND GUENIN AND ROBIN THOMAS

Abstract

We give an "excluded minor" and a "structural" characterization of digraphs D that have the property that for every subdigraph H of D, the maximum number of disjoint circuits in H is equal to the minimum cardinality of a set $T \subseteq V(H)$ such that $H \backslash T$ is acyclic.

1. Introduction

Graphs and digraphs in this paper may have loops and multiple edges. Paths and circuits have no "repeated" vertices, and in digraphs they are directed. A transversal in a digraph D is a set of vertices T which intersects every circuit, i.e. $D \backslash T$ is acyclic. A packing of circuits (or packing for short) is a collection of pairwise (vertex-)disjoint circuits. The cardinality of a minimum transversal is denoted by $\tau(D)$ and the cardinality of a maximum packing is denoted by $\nu(D)$. Clearly $\nu(D) \leq \tau(D)$, and our objective is to study when equality holds. We will show in Section 4 that this is the case for every strongly planar digraph. (A digraph is strongly planar if it has a planar drawing such that for every vertex v, the edges with head v form an interval in the cyclic ordering of edges incident with v.) However, in general there is probably no nice characterization of digraphs for which equality holds, and so instead we characterize digraphs such that equality holds for every subdigraph. Thus we say that a digraph D packs if $\tau\left(D^{\prime}\right)=\nu\left(D^{\prime}\right)$ for every subdigraph D^{\prime} of D.

We will give two characterizations: one in terms of excluded minors, and the other will give a structural description of digraphs that pack. We say that an edge e of a digraph D with head v and tail u is special if either e is the only edge of D with head v, or it is the only edge of D with tail u, or both. We say that a digraph D is a minor of a digraph D^{\prime} if D can be obtained from a subdigraph of D^{\prime} by repeatedly contracting special edges. It is easy to see that if a digraph packs, then so do all its minors. Thus digraphs that pack can be characterized by a list of minor-minimal digraphs that do not pack. By an odd double circuit we mean the digraph obtained from an undirected circuit of odd length at least three by replacing each edge by a pair of directed edges, one in each direction. The digraph F_{7} is defined in Figure 1 The following is our excluded minor characterization.

[^0]

Figure 1. The digraph F_{7}.

Theorem 1.1. A digraph packs if and only if it has no minor isomorphic to an odd double circuit or F_{7}.

If D is an odd double circuit with k vertices then $\tau(D)=\lceil k / 2\rceil>\nu(D)=\lfloor k / 2\rfloor$. Moreover, $\tau\left(F_{7}\right)=$ $3>\nu\left(F_{7}\right)=2$. Thus odd double circuits and F_{7} do not pack and the content of Theorem 1.1 is to prove the converse.

The structural characterization can be stated directly in terms of digraphs, but it is more convenient to rephrase it in terms of bipartite graphs, and therefore we postpone its statement until Section 5. Roughly, the characterization states that a digraph packs if and only if it can be obtained from strongly planar digraphs by means of certain composition operations.

Our main tool in the proof is a characterization of bipartite graphs that have a Pfaffian orientation, found independently by McCuaig [1] and by Robertson, Seymour and the second author [6]. We present the characterization in Section 55 The rest of the paper is organized as follows. In Section 2 we mention three related results. Section 3 reduces the problem to strongly 2-connected digraphs. It is shown in Section 4 that strongly planar digraphs pack. Sections 6 show that the property that digraphs pack is preserved under the composition operations of the characterization theorem, thus completing the proof of Theorem 1.1 Finally, Section 9 offers some closing remarks.

2. Related Results

In this section we review three related results. The first is a classical theorem of Lucchesi and Younger, of which we only state a corollary [4](Theorem B).

Theorem 2.1. Let D be a planar digraph and \mathcal{F} be the family of its directed circuits. Then for any set of weights $w: E(D) \rightarrow Z_{+}$we have,

$$
\begin{align*}
& \min \left\{\sum_{e \in E(D)} w(e) x_{e}: \sum_{e \in C} x_{e} \geq 1, \forall C \in \mathcal{F}, x \in\{0,1\}^{E(D)}\right\} \\
= & \max \left\{\sum_{C: C \in \mathcal{F}} y_{C}: \sum_{C: e \in C \in \mathcal{F}} y_{C} \leq w(e), \forall e \in E(D), y \in Z_{+}^{\mathcal{F}}\right\} . \tag{2.1}
\end{align*}
$$

Thus, in particular, in a planar digraph the maximum cardinality of a collection of edge-disjoint circuits is equal to the minimum cardinality of a set of edges whose deletion makes the graph acyclic. This relation does not hold for all digraphs, but there is an upper bound on $\tau(D)$ as a function of $\nu(D)$. (A simple construction — splitting each vertex into a "source" and a "sink," also used in the proof of Corollary 4.1- shows that the same function serves as an upper bound for both the edge-disjoint as well as vertex-disjoint version of the problem. Note, however, that this construction does not preserve planarity, but it preserves strong planarity.) McCuaig [1] characterized all digraphs D with $\nu(D) \leq 1$; the following follows immediately from his characterization (but there does not seem to be a direct proof).

Theorem 2.2. For every digraph D, if $\nu(D) \leq 1$, then $\tau(D) \leq 3$.
In general, Reed, Robertson, Seymour and the second author [5] proved the following.
Theorem 2.3. There is a function f such that for every digraph D

$$
\tau(D) \leq f(\nu(D))
$$

The function f from the proof of Theorem 2.3, albeit explicit, grows rather fast. The best lower bound of $f(k) \geq \Omega(k \log k)$ was obtained by Noga Alon (unpublished). Finally, the undirected analogue of the problem we study is quite easy. It becomes much harder if we only require that the equality $\nu=\tau$ hold for all induced subgraphs. This problem remains open. However, Ding and Zang [2] managed to solve the closely related problem of characterizing graphs for which it is required that a weighted version of the relation $\nu=\tau$ holds. They gave a characterization by means of excluded induced subgraphs, and also gave a structural description of those graphs. We omit the precise statement.

3. Strong 2-CONNECTIVITY

Let D be a digraph and \mathcal{C} a packing of circuits. We will say that \mathcal{C} uses a vertex v if there exists a circuit C in \mathcal{C} with $v \in V(C)$. Consider a digraph D that packs. Then some minimum transversal includes v if and only if $\tau(D \backslash v)=\tau(D)-1$. As D packs, $\nu(D \backslash v)=\tau(D \backslash v)=\tau(D)-1=\nu(D)-1$. But $\nu(D \backslash v)=\nu(D)-1$ if and only if every maximum packing uses v. Thus we have shown the following.

Remark 3.1. Let D be a digraph that packs. There exists a minimum transversal of D containing v if and only if every maximum packing of D uses v.

A digraph is strongly connected if for every pair of vertices u and v there is a path from u to v. A digraph D is strongly k-connected if for every $T \subseteq V(D)$, where $|T| \leq k-1$, the digraph $D \backslash T$ is strongly connected. If D is not strongly connected, then $V(D)$ can be partitioned into non-empty sets X_{1}, X_{2} such that no edge has tail in X_{1} and head in X_{2}. Let $D_{1}:=D \backslash X_{2}$ and $D_{2}:=D \backslash X_{1}$. Then D is said to be a 0 -sum of D_{1} and D_{2}. Since every circuit of D is a circuit of precisely one of D_{1} or D_{2}, the following is straightforward.

Proposition 3.2. Let D be the 0 -sum of D_{1} and D_{2}. Then D_{1} and D_{2} pack if and only D packs.

Suppose D is strongly connected, but not strongly 2-connected; thus there is a vertex v such that $D \backslash v$ is not strongly connected. Then there is a partition of $V(D)-\{v\}$ into non-empty sets X_{1}, X_{2} such that all edges with endpoints in both X_{1} and X_{2} have tail in X_{1} and head in X_{2}. Let F be the set of all these edges. For $i=1,2$ let D_{i} be the digraph obtained from D by deleting all edges with both endpoints in $X_{3-i} \cup\{v\}$ and identifying all vertices of $X_{3-i} \cup\{v\}$ into a vertex called v. Thus edges of F belong to both D_{1} and D_{2}; in D_{1} they have head v and in D_{2} they have tail v. We say that D is a l-sum of D_{1} and D_{2}.

Let D be a digraph. We denote by $D+u v$ the digraph obtained from D by adding the vertices u, v (if they are not vertices of D) and an edge with tail u and head v. Let us stress that we add the edge even if D already has one or more edges with tail u and head v. We use $D+\left\{u_{1} v_{1}, u_{2} v_{2}, \ldots, u_{k} v_{k}\right\}$ to denote $D+u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{k} v_{k}$.

Proposition 3.3. Let a strongly connected digraph D be the 1 -sum of D_{1} and D_{2}. Then D_{1} and D_{2} pack if and only if D packs.

Proof. Since D is strongly connected, the digraphs D_{1} and D_{2} are minors of D. So if D packs, so do D_{1} and D_{2}. Conversely, assume that D_{1} and D_{2} pack. Since every subdigraph of D is either a subdigraph of D_{1} or D_{2}, or a 0 -sum or 1-sum of subdigraphs of D_{1} and D_{2}, it suffices to show that $\tau(D)=\nu(D)$. Let v, X_{1}, X_{2}, and F be as in the definition of 1-sum. For $i=1,2$ let $D_{i}^{\prime}:=D_{i} \backslash F$ and let \mathcal{C}_{i} be a maximum packing of D_{i}^{\prime}. Suppose that, for $i=1,2$, every maximum packing of D_{i}^{\prime} uses the vertex v. It follows from Remark 3.1 that there is a minimum transversal T_{i} of D_{i}^{\prime} using v. Let \mathcal{C} be obtained from the union of $\mathcal{C}_{1}, \mathcal{C}_{2}$ by removing the circuit of \mathcal{C}_{1} using v. Then \mathcal{C} is a packing of D and $T:=T_{1} \cup T_{2}$ is a transversal of D. Moreover, both have cardinality $\tau\left(D_{1}^{\prime}\right)+\tau\left(D_{2}^{\prime}\right)-1$, i.e. $\tau(D)=\nu(D)$. Thus we can assume one of $\mathcal{C}_{i}(i=1,2)$, say \mathcal{C}_{1}, does not use the vertex v.

For $i=1,2$, let F_{i} be the set of edges f of F such that $\nu\left(D_{i}^{\prime}+f\right)=\nu\left(D_{i}^{\prime}\right)$. Consider first the case where $F_{1} \cup F_{2}=F$. Suppose for a contradiction $\nu\left(D_{i}^{\prime}+F_{i}\right)>\nu\left(D_{i}^{\prime}\right)$ and let \mathcal{F} be a corresponding packing. Clearly \mathcal{F} uses an edge of F_{i}. Moreover as all edges F of D_{i} share the endpoint v, \mathcal{F} uses exactly one edge f of F_{i}. Hence $\nu\left(D_{i}^{\prime}+f\right)>\nu\left(D_{i}^{\prime}\right)$, a contradiction. Since (for $\left.i=1,2\right) D_{i}^{\prime}+F_{i}$ packs it has a transversal T_{i} of cardinality $\tau\left(D_{i}^{\prime}\right)$. As $F_{1} \cup F_{2}=F$ this implies that $T_{1} \cup T_{2}$ is a transversal of D. Recall that \mathcal{C}_{1} does not use v; thus $\mathcal{C}_{1} \cup \mathcal{C}_{2}$ is a packing of D and $\left|T_{1} \cup T_{2}\right|=\tau\left(D_{1}^{\prime}\right)+\tau\left(D_{2}^{\prime}\right)=\left|\mathcal{C}_{1} \cup \mathcal{C}_{2}\right|$, i.e. $\tau(D)=\nu(D)$.

Thus we may assume there exists $f \in F-F_{1}-F_{2}$. Let $\mathcal{C}_{i}^{\prime}(i=1,2)$ be a maximum packing of $D_{i}^{\prime}+f$. Each \mathcal{C}_{i}^{\prime} contains a circuit C_{i} using f. Define \mathcal{C} to be the collection of all circuits of $\mathcal{C}_{1}, \mathcal{C}_{2}$ distinct from C_{1} and C_{2} as well as the circuit $\left(C_{1} \cup C_{2}\right) \backslash f$ of D. Let $T_{i}(i=1,2)$ be a minimum transversal of D_{i}^{\prime}. Then $T:=T_{1} \cup T_{2} \cup\{v\}$ is a transversal of D and \mathcal{C} a packing of D. Moreover, $|T|=\tau\left(D_{1}^{\prime}\right)+\tau\left(D_{2}^{\prime}\right)+1=|\mathcal{C}|$, i.e. $\tau(D)=\nu(D)$, as desired.

4. Strong planarity

Let us recall that a digraph is strongly planar if it has a planar drawing such that for all vertices v, the edges with head v form an interval in the cyclic ordering of edges incident with v determined by the drawing.

Corollary 4.1. Every strongly planar digraph packs.
Proof. Let D be a strongly planar digraph with vertex set V and edge set E. We will show that D packs. Since subdigraphs of strongly planar digraphs are strongly planar it suffices to show $\tau(D)=\nu(D)$. Associate to every vertex v a new vertex v^{\prime} and let V^{\prime} be the set of all vertices v^{\prime}. Associate with every edge $e \in E(D)$ with tail u and head v a new edge e^{\prime} with tail u^{\prime} and head v. We define a digraph H as follows: the vertex-set of H is $V \cup V^{\prime}$, and the edge-set of H consists of all the edges e^{\prime} for $e \in E(D)$ and all the edges of the form $v v^{\prime}$, where $v \in V(D)$. Define weights $w: E(H) \rightarrow Z_{+}$as follows: $w\left(e^{\prime}\right)=|E(H)|$ for all $e \in E(D)$ and $w\left(v v^{\prime}\right)=1$ for all $v \in V(H)$. It is easy to see that the drawing associated to the strongly planar digraph D can be modified to induce a planar drawing of H. Now equation 2.1) states $\tau(D)=\nu(D)$, as desired.

5. BRACES

It will be convenient to reformulate our packing problem about digraphs to one about bipartite graphs. Let G be a bipartite graph with bipartition (A, B), and let M be a perfect matching in G. We denote by $D(G, M)$ the digraph obtained from G by directing every edge of G from A to B, and contracting every edge of M. When G^{\prime} is a subgraph of G and $M \cap E\left(G^{\prime}\right)$ is a perfect matching of G^{\prime} we will abbreviate $D\left(G^{\prime}, M \cap E\left(G^{\prime}\right)\right)$ by $D\left(G^{\prime}, M\right)$. It is clear that every digraph is isomorphic to $D(G, M)$ for some bipartite graph G and some perfect matching M. Moreover, the following is straightforward.

Remark 5.1. Let G be a bipartite graph and let M be a perfect matching in G. If G is planar then $D(G, M)$ is strongly planar.

A graph G is k-extendable, where k is an integer, if every matching in G of size at most k can be extended to a perfect matching. A 2-extendable bipartite graph is called a brace. The following straightforward relation between k-extendability and strong k-connectivity is very important.

Proposition 5.2. Let G be a connected bipartite graph, let M be a perfect matching in G, and let $k \geq 1$ be an integer. Then G is k-extendable if and only if $D(G, M)$ is strongly k-connected.

Let G be a bipartite graph and M a perfect matching in G such that $D(G, M)$ is isomorphic to F_{7}. This defines G uniquely up to isomorphism, and the graph so defined is called the Heawood graph.

Let G be a bipartite graph, and let e be an edge of G with ends u, v. Consider a new graph obtained from G by replacing e by a path with an even number of vertices and ends u, v and otherwise disjoint from G. Let G^{\prime} be obtained from G by repeating this operation, possibly for different edges of G. We say that G^{\prime} is an even subdivision of G. The graph G^{\prime} is clearly bipartite. Now let G, H be bipartite graphs. We say that G contains H if G has a subgraph L such that $G \backslash V(L)$ has a perfect matching, and L is isomorphic to an even subdivision of H.

A circuit C in a bipartite graph G is central if $G \backslash V(C)$ has a perfect matching. Let G_{0} be a bipartite graph, let C be a central circuit of G_{0} of length 4 , and let G_{1}, G_{2} be subgraphs of G_{0} such that $G_{1} \cup G_{2}=$ $G_{0}, G_{1} \cap G_{2}=C$, and $V\left(G_{1}\right)-V\left(G_{2}\right) \neq \emptyset \neq V\left(G_{2}\right)-V\left(G_{1}\right)$. Let G be obtained from G_{0} by deleting all the edges of C. In this case we say that G is the 4 -sum of G_{1} or G_{2} along C. This is a slight departure from the definition in [6], but the class of simple graphs obtainable according to our definition is the same, because we allow parallel edges.

Let G_{0} be a bipartite graph, let C be a central circuit of G_{0} of length 4, and let G_{1}, G_{2}, G_{3} be three subgraphs of G_{0} such that: $G_{1} \cup G_{2} \cup G_{3}=G_{0}$ and for distinct integers $i, j \in\{1,2,3\} G_{i} \cap G_{j}=C$ and $V\left(G_{i}\right)-V\left(G_{j}\right) \neq \emptyset$. Let G be obtained from G_{0} by deleting all the edges of C. In these circumstances we say that G is a trisum of G_{1}, G_{2}, G_{3} along C. We will need the following result.

Theorem 5.3. Let G be a brace, and let M be a perfect matching in G. Then the following conditions are equivalent.
(i) G does not contain $K_{3,3}$,
(ii) either G is isomorphic to the Heawood graph, or G can be obtained from planar braces by repeatedly applying the trisum operation,
(iii) either G is isomorphic to the Heawood graph, or G can be obtained from planar braces by repeatedly applying the 4-sum operation,
(iv) $D(G, M)$ has no minor isomorphic to an odd double circuit.

Proof. The equivalence of (i), (ii) and (iii) is the main result of [1] and [6]. Condition (iv) is equivalent to the other three by results of Little [3] and Seymour and Thomassen [7]. See also [1].

We will need the following small variation of Theorem5.3.
Theorem 5.4. Let G be a brace, and let M be a perfect matching in G. Then the following conditions are equivalent.
(i) G does not contain $K_{3,3}$ or the Heawood graph,
(ii) G can be obtained from planar braces by repeatedly applying the trisum operation,
(iii) G can be obtained from planar braces by repeatedly applying the 4-sum operation,
(iv) $D(G, M)$ has no minor isomorphic to an odd double circuit or F_{7}.

Proof. This follows from Theorem 5.3 and the fact [6, Theorem 6.7] that if G contains the Heawood graph and is not isomorphic to it, then it contains $K_{3,3}$.

We deduce the following information about a minimal counterexample to Theorem 1.1
Proposition 5.5. Let G be a bipartite graph and M a perfect matching in G such that the digraph $D:=$ $D(G, M)$ has no minor isomorphic to an odd double circuit or F_{7}, and every digraph D^{\prime} with $\left|V\left(D^{\prime}\right)\right|+$ $\left|E\left(D^{\prime}\right)\right|<|V(D)|+|E(D)|$ and no minor isomorphic to an odd double circuit or F_{7} packs. If $\nu(D)<\tau(D)$, then G is a brace and there exist braces G_{1}, G_{2}, G_{3} such that G is a trisum of G_{1}, G_{2}, G_{3} along a circuit C, and each of G_{1}, G_{2}, G_{3} can be obtained from planar braces by repeatedly applying the trisum operation.

Proof. It follows from Propositions 3.2 and 3.3 that D is strongly 2-connected. Thus G is a brace by Proposition 5.2 By Corollary 4.1 the digraph D is not strongly planar, and hence G is not planar by Remark 5.1, By Theorem 5.4 the graph G is obtained from planar braces by repeatedly applying the trisum operation. Since G itself is not planar, there is at least one trisum operation involved in the construction of G, and hence G_{1}, G_{2}, G_{3} and C exist, as desired.

In the next three sections we will prove the following result.
Proposition 5.6. Let G, M, and D be as in Proposition 5.5. Then $\nu(D)=\tau(D)$.
Proof of Theorem 1.1 (assuming Proposition 5.6). We have already established the "only if" part. To prove the "if" part let D be a digraph with no minor isomorphic to an odd double circuit or F_{7} such that every digraph D^{\prime} with $\left|V\left(D^{\prime}\right)\right|+\left|E\left(D^{\prime}\right)\right|<|V(D)|+|E(D)|$ and no minor isomorphic to an odd double circuit or F_{7} packs. By Proposition 5.6 we have that $\nu(D)=\tau(D)$, and hence D packs, as desired.

We now deduce the structural characterization of digraphs that pack.
Corollary 5.7. A digraph packs if and only if it can be obtained from strongly 2 -connected digraphs that pack by means of 0-and 1-sums. A strongly 2-connected digraph packs if and only if it is isomorphic to $D(G, M)$ for some brace G and some perfect matching M in G, where G is obtained from planar braces by repeatedly applying the trisum operation.

Proof. The first statement follows from Propositions 3.2 and 3.3 For the second statement let D be a strongly 2-connected digraph. Assume first that D packs, and let G be a bipartite graph and M a perfect matching such that D is isomorphic to $D(G, M)$. By Proposition 5.2 the graph G is a brace. By Theorem 1.1 the digraph D has no minor isomorphic to an odd double circuit or F_{7}, and so by Theorem5.4 G is as desired. The converse implication follows along the same lines.

As we alluded to in the Introduction, the second part of Corollary 5.7 can be stated purely in terms of "sums" of digraphs. However, three kinds of sum are needed (see [6]), as opposed to just one. Therefore the formulation we chose is clearer, despite the disadvantage that it involves the transition from a digraph to a bipartite graph.

Finally, we deduce a corollary about packing M-alternating circuits in bipartite graphs. Let G be a bipartite graph, and let M be a perfect matching in G. A circuit C in G is M-alternating if $2 \mid E(C) \cap$ $M|=|E(C)|$. Let $\nu(G, M)$ denote the maximum number of pairwise disjoint M-alternating circuits, and let $\tau(G, M)$ denote the minimum number of edges whose deletion leaves no M-alternating circuit. It is clear that $\nu(G, M)=\nu(D(G, M))$ and $\tau(G, M)=\tau(D(G, M))$. Thus we have the following corollary.

Corollary 5.8. Let G be a brace, and let M be a perfect matching in G. Then the following three conditions are equivalent.
(i) G does not contain $K_{3,3}$ or the Heawood graph,
(ii) $\tau\left(G^{\prime}, M^{\prime}\right)=\nu\left(G^{\prime}, M^{\prime}\right)$ for every subgraph G^{\prime} of G such that $M^{\prime}=M \cap E\left(G^{\prime}\right)$ is a perfect matching in G^{\prime}, and
(iii) G can be obtained from planar braces by repeatedly applying the trisum operation.

In fact, the equivalence of (i) and (ii) holds for all bipartite graphs, not just braces. We conclude this section with a lemma that will be needed later. The lemma follows immediately from [6, Theorem 8.2]. We say that a graph is a cube if it is isomorphic to the 1 -skeleton of the 3-dimensional cube. Thus every cube has 8 vertices and 12 edges.

Lemma 5.9. Let G be a trisum of G_{1}, G_{2}, G_{3} along C, where the graphs G_{1}, G_{2}, G_{3} are obtained from planar braces by repeatedly applying the trisum operation. Then for $i=1,2,3$ we have $\left|E\left(G_{i}\right)\right| \geq 12$ with equality if and only if G_{i} is a cube.

The remainder of the paper is dedicated to proving Proposition 5.6 Consider D, G, C as in Proposition 5.5 and let k be the number of edges of M with both ends in $V(C)$. As M is a perfect of matching of $G, k \in\{0,1,2\}$. Proposition 6.2 proves that $k \neq 2$, Proposition 7.2 proves that $k \neq 1$, and finally Proposition 8.2 proves that $k \neq 0$.

6. TRISUM-PART I

Let $D, G, M, G_{1}, G_{2}, G_{3}, C$ be as in Proposition5.5 For $i=1,2,3$ let M_{i}^{\prime} be the set of edges $M \cap E\left(G_{i}\right)$ with at least one end not in $V(C)$, let M_{0} be the set of edges of C that are parallel to an edge of M, and let $M_{i}=M_{i}^{\prime} \cup M_{0}$. We say that M_{i} is the imprint of M on G_{i}.

Proposition 6.1. Let a bipartite graph G be a 4 -sum of G_{1} and G_{2} along C, let M be a perfect matching in G such that some two edges of M have both ends in $V(C)$, let $D=D(G, M)$, and for $i=1,2$ let M_{i} be the imprint of M on G_{i}. If both $D\left(G_{1}, M_{1}\right)$ and $D\left(G_{2}, M_{2}\right)$ pack, then $\nu(D)=\tau(D)$.

Proof. For $i=1,2$ let $D_{i}=D\left(G_{i}, M_{i}\right)$. Then $\left|V\left(D_{1}\right) \cap V\left(D_{2}\right)\right|=2$; let $V\left(D_{1}\right) \cap V\left(D_{2}\right)=\left\{u_{1}, u_{2}\right\}$. Moreover, $E\left(D_{1}\right) \cap E\left(D_{2}\right)=\left\{e_{1}, e_{2}\right\}$, where e_{1} has head u_{2} and tail u_{1}, and e_{2} has head u_{1} and tail u_{2}. For $i=1,2$ let $D_{i}^{\prime}=D_{i} \backslash\left\{e_{1}, e_{2}\right\}$.

Claim 1. For each $D_{i}^{\prime}(i=1,2)$ one of the following holds:
(1) There exists a maximum packing not using any of u_{1} or u_{2}. Every minimum transversal does not contain any of u_{1} or u_{2}.
(2) For some $k \in\{1,2\}$ the following holds: all maximum packings use u_{k}, there exists a maximum packing not using u_{3-k}, and there exits a minimum transversal which contains u_{k} but not u_{3-k}.
(3) There exists a maximum packing using both u_{1} and u_{2}. There exists a minimum transversal using u_{1} and a minimum transversal using u_{2}. Moreover, either: (a) there is a minimum transversal containing both u_{1}, u_{2}; or (b) there is a packing of size $\tau\left(D_{i}^{\prime}\right)-1$ not using u_{1} or u_{2}.

Proof of Claim: Observe that for (1)-(3) the statements about transversals (except for the last sentence) follow from the statements about maximum packings and Remark 3.1 Suppose (1) does not hold; then every maximum packing of D_{i}^{\prime} uses one of u_{1}, u_{2}. In particular $\nu\left(D_{i}\right)=\nu\left(D_{i}^{\prime}\right)$. Suppose for a contradiction there exists a maximum packing \mathcal{C}_{i} of D_{i}^{\prime} not using u_{1} and a maximum packing \mathcal{C}_{i}^{\prime} of D_{i}^{\prime} not using u_{2}. Remark 3.1 implies that no minimum transversal of D_{i}^{\prime} contains u_{1} or u_{2}. Since $\left\{e_{1}, e_{2}\right\}$ is the edge-set of a circuit of D_{i} this implies $\tau\left(D_{i}\right)>\tau\left(D_{i}^{\prime}\right)$, a contradiction since D_{i} packs. Thus for some $k \in\{1,2\}$ every maximum packing of D_{i}^{\prime} uses u_{k}. If (2) does not hold, then all maximum packings use u_{3-k}. If (3)(a) does not hold, no minimum transversal of D_{i}^{\prime} uses both u_{1} and u_{2}. This implies $\tau\left(D_{i}^{\prime} \backslash\left\{u_{1}, u_{2}\right\}\right) \geq \tau\left(D_{i}^{\prime}\right)-1$. Since D_{i} packs (3)(b) must hold.

Claim 2. For $i=1,2$, let T_{i} be a minimum transversal of D_{i}^{\prime} and let \mathcal{C}_{i} be a maximum packing of D_{i}^{\prime}. We can assume one of the following holds:
(a) There exists $k \in\{1,2\}$ such that \mathcal{C}_{1} and \mathcal{C}_{2} use u_{k} but $u_{k} \notin T_{1} \cap T_{2}$.
(b) $\left\{u_{1}, u_{2}\right\} \cap\left(T_{1} \cup T_{2}\right)=\emptyset$.

Proof of Claim: Let $T:=T_{1} \cup T_{2}$ and let \mathcal{C} be an inclusion-wise maximal packing in $\mathcal{C}_{1} \cup \mathcal{C}_{2}$. If (a) does not hold, then $|T| \leq|\mathcal{C}|$. If (b) does not hold, then $\left\{u_{1}, u_{2}\right\} \cap T \neq \emptyset$; thus T is a transversal of D. It follows that $\tau(D)=\nu(D)$, as desired. Thus we may assume that (a) or (b) holds.

We can assume, because of Claim 1 and Claim 2, that D_{1}, D_{2} either both satisfy condition (1) of Claim 1, or they both satisfy condition (3) of Claim 1 and one of $D_{1}^{\prime}, D_{2}^{\prime}$, say D_{1}^{\prime}, satisfies (3)(b). Consider the latter
case first. Let T_{1} (resp. T_{2}) be a minimum transversal of D_{1}^{\prime} (resp. D_{2}^{\prime}) using u_{1}. Let $T:=T_{1} \cup T_{2}$. Let \mathcal{C}_{1} be a packing of $D_{1}^{\prime} \backslash\left\{u_{1}, u_{2}\right\}$ of size $\tau\left(D_{1}^{\prime}\right)-1$ and let \mathcal{C}_{2} be a maximum packing of D_{2}^{\prime}. Clearly $\mathcal{C}:=\mathcal{C}_{1} \cup \mathcal{C}_{2}$ is a packing in D. Since $\left|T_{1} \cup T_{2}\right|=\tau\left(D_{1}^{\prime}\right)+\tau\left(D_{2}^{\prime}\right)-1$ and $|\mathcal{C}|=\tau\left(D_{1}^{\prime}\right)-1+\tau\left(D_{2}^{\prime}\right)$, we have $\tau(D)=\nu(D)$.

Thus we may assume that both $D_{1}^{\prime}, D_{2}^{\prime}$ satisfy (1). For $i=1,2$, let \mathcal{C}_{i} be a maximum packing of D_{i}. Suppose there is $k \in\{1,2\}$ such that for $i=1,2, \tau\left(D_{i}^{\prime}+u_{k} u_{3-k}\right)=\tau\left(D_{i}^{\prime}\right)$ and let T_{i} be the corresponding minimum transversal. Then T_{i} intersects all $u_{3-k} u_{k}$-paths of D_{i}. Hence $T:=T_{1} \cup T_{2}$ is a transversal of D. Moreover, $|T|=\tau\left(D_{1}^{\prime}\right)+\tau\left(D_{2}^{\prime}\right)=\left|\mathcal{C}_{1} \cup \mathcal{C}_{2}\right|$, i.e. $\tau(D)=\nu(D)$. Thus we can assume there is for $k=1,2$ an index $t(k) \in\{1,2\}$ such that $\tau\left(D_{t(k)}^{\prime}+u_{k} u_{3-k}\right)>\tau\left(D_{t(k)}^{\prime}\right)$. Since D_{1}, D_{2} pack $\nu\left(D_{t(k)}^{\prime}+u_{k} u_{3-k}\right)>\tau\left(D_{t(k)}^{\prime}\right)$; let $\mathcal{F}_{t(k)}$ be the corresponding packing. Some circuit $C_{t(k)}$ of $\mathcal{F}_{t(k)}$ is of the form $P_{t(k)}+u_{k} u_{3-k}$ where $P_{t(k)}$ is a $u_{3-k} u_{k}$-path. For $i=1,2$ let T_{i} be a minimum transversal of D_{i}^{\prime}. Note that $T_{t(k)}$ does not intersect $P_{t(k)}$. Observe that we cannot have $t(1)=t(2)=i \in\{1,2\}$, for otherwise there exist both a $u_{1} u_{2^{-}}$and $u_{2} u_{1}$-paths in D_{i}^{\prime} which are not intersected by T_{i} and hence T_{i} does not intersect all circuits of D_{i}^{\prime}, a contradiction. Thus we can assume $t(1)=1$ and $t(2)=2$. Let $\mathcal{C}:=\mathcal{F}_{1} \cup \mathcal{F}_{2} \cup\left\{P_{1} \cup P_{2}\right\}-\left\{C_{1}, C_{2}\right\}$. Then \mathcal{C} is a packing of D and $T:=T_{1} \cup T_{2} \cup\left\{u_{1}\right\}$ is a transversal of D. Moreover, $|T|=\tau\left(D_{1}^{\prime}\right)+\tau\left(D_{2}^{\prime}\right)+1=|\mathcal{C}|$, i.e. $\tau(D)=\nu(D)$, as desired.

Proposition 6.2. Let G, M, D, where $\nu(D)<\tau(D)$, and G_{1}, G_{2}, G_{3}, C be as in Proposition 5.5 Then at most one edge of M has both ends in $V(C)$.

Proof. Suppose for a contradiction that two edges of M have both ends in $V(C)$. For $i=1,2,3$ let M_{i} be the imprint of M on G_{i}. The graphs G_{1} and $G_{2} \cup G_{3}$ are obtained from planar braces by repeatedly applying the 4 -sum operation, and hence the digraphs $D_{1}=D\left(G_{1}, M_{1}\right)$ and $D_{2}=D\left(G_{2} \cup G_{3}, M_{2} \cup M_{3}\right)$ have no minor isomorphic to an odd double circuit or F_{7} by Theorem5.4. Thus D_{1} and D_{2} pack, and hence by Proposition6.1 $\nu(D)=\tau(D)$, a contradiction.

7. TRISUM-PART II

Lemma 7.1. Let D_{1}, D_{2} be digraphs with $V\left(D_{1}\right) \cap V\left(D_{2}\right)=\left\{u_{1}, u_{2}, u_{3}\right\}$ and $E\left(D_{1}\right) \cap E\left(D_{2}\right)=\emptyset$. Let $D=D_{1} \cup D_{2}, a \notin V(D), E_{1}=\left\{u_{1} u_{2}, u_{1} u_{3}, u_{2} u_{3}\right\}, E_{2}=\left\{u_{2} u_{1}, u_{3} u_{1}, u_{3} u_{2}\right\}, Z_{1}=\left\{a u_{2}, u_{2} a, u_{1} a, a u_{3}\right\}$, and $Z_{2}=\left\{a u_{2}, u_{2} a, a u_{1}, u_{3} a\right\}$, where $a \notin V(D)$. Assume that
(a) if, for $i=1,2, C_{i}$ is a circuit of D_{i}, then $V\left(C_{1}\right) \cap V\left(C_{2}\right) \subseteq\left\{u_{2}\right\}$,
(b) if C is a circuit of D that uses edges of both D_{1} and D_{2}, then $C=P_{1} \cup P_{2}$ and there exist integers $i, j \in\{1,2,3\}$ such that $i<j$ and P_{1} is a $u_{j} u_{i}$-path of D_{1} and P_{2} is a $u_{i} u_{j}$-path of D_{2}, and
(c) there exist integers i, j such that $\{i, j\}=\{1,2\}, D_{i}+E_{i}$ packs and is strongly 2-connected, and $D_{j}+Z_{j}$ packs.

Then $\tau(D)=\nu(D)$.

Proof. Suppose for a contradiction that $\nu(D)<\tau(D)$.
Claim 1. The digraph D has a packing of $\operatorname{size} \nu\left(D_{1}\right)+\nu\left(D_{2}\right)-1$.
Proof of Claim: Clearly $\nu\left(D_{2} \backslash u_{2}\right) \geq \nu\left(D_{2}\right)-1$, and so the union of any maximum packing of D_{1} with any packing of $D_{2} \backslash u_{2}$ of size $\nu\left(D_{2}\right)-1$ is as desired by (a). This proves Claim 1

Claim 2. The digraph D has a transversal of size at most $\tau\left(D_{1}\right)+\tau\left(D_{2}\right)+1$.
Proof of Claim: By (c) we may assume from the symmetry that $D_{1}+E_{1}$ packs. Clearly $\nu\left(D_{1}+E_{1}\right) \leq$ $\nu\left(D_{1}\right)+1$. Thus $\tau\left(D_{1}+E_{1}\right) \leq \tau\left(D_{1}\right)+1$. Let T_{1} be a transversal of $D_{1}+E_{1}$ of size at most $\tau\left(D_{1}\right)+1$, and let T_{2} be a transversal of D_{2} of size $\tau\left(D_{2}\right)$. By (b) $T_{1} \cup T_{2}$ is a transversal of D, as required. This proves Claim 2

For $i=1,2$ let F_{i} be the set of all edges $f \in E_{i}$ such that $\nu\left(D_{i}+f\right)=\nu\left(D_{i}\right)$.
Claim 3. For $i=1,2, \nu\left(D_{i}+F_{i}\right)=\nu\left(D_{i}\right)$.
Proof of Claim: If $\nu\left(D_{i}+F_{i}\right)>\nu\left(D_{i}\right)$, then, since every edge of E_{i} has both ends in $\left\{u_{1}, u_{2}, u_{3}\right\}$, we deduce that $\nu\left(D_{i}+f\right)>\nu\left(D_{i}\right)$ for some $f \in F_{i}$, a contradiction. This proves Claim 3]

Claim 4. Let $i, j \in\{1,2,3\}$ be such that $i<j$, and let D^{\prime} be a subdigraph of D_{1}. If $\nu\left(D^{\prime}+u_{i} u_{j}\right)>\nu\left(D^{\prime}\right)$, then there exist a maximum packing \mathcal{C} of D^{\prime} and a path P in D^{\prime} from u_{j} to u_{i} such that every member of \mathcal{C} is disjoint from P.

Proof of Claim: Let \mathcal{C}^{\prime} be a maximum packing of $D^{\prime}+u_{i} u_{j}$. Since \mathcal{C}^{\prime} is not a packing of D^{\prime}, some member of \mathcal{C}^{\prime}, say C, uses the edge $u_{i} u_{j}$. Thus $\mathcal{C}^{\prime}-\{C\}$ and $C \backslash u_{i} u_{j}$ satisfy the conclusion of the claim.

Claim 5. If $D_{1}+E_{1}$ packs and every maximum packing of $D_{1}+u_{1} u_{3}$ uses u_{2}, then every maximum packing of D_{1} uses u_{2}.

Proof of Claim: Suppose for a contradiction that every maximum packing of $D_{1}+u_{1} u_{3}$ uses u_{2}, but some maximum packing of D_{1} does not use u_{2}. Then $\nu\left(D_{1}+u_{1} u_{3}\right)>\nu\left(D_{1}\right)$. By Claim 4 applied to $D^{\prime}=D_{1}$ there exist a maximum packing \mathcal{C} of D_{1} and a path P of D_{1} from u_{3} to u_{1} such that P is disjoint from every member of \mathcal{C}. Let L be a subdigraph of D_{1} such that
(α) L includes P and every member of \mathcal{C},
(β) L includes every member of some maximum packing of D_{1} that does not use u_{2}, and
(γ) subject to (α) and $(\beta), E(L)$ is minimal.
By $(\alpha) \nu(L)=\nu\left(D_{1}\right)$. We claim that $\nu\left(L+u_{1} u_{2}+u_{2} u_{3}\right)>\nu(L)$. To prove this claim suppose for a contradiction that equality holds. Since $D_{1}+E_{1}$ packs we deduce that $\tau\left(L+u_{1} u_{2}+u_{2} u_{3}\right)=\nu(L)$. Let T be a transversal of $L+u_{1} u_{2}+u_{2} u_{3}$ of size $\nu(L)$. From (β) we deduce that $u_{2} \notin T$, but then it follows
that T is a transversal of $L+u_{1} u_{3}$, contrary to (α). This proves that $\nu\left(L+u_{1} u_{2}+u_{2} u_{3}\right)>\nu(L)$. Let \mathcal{S} be a maximum packing of $L+u_{1} u_{2}+u_{2} u_{3}$. We may assume that no member C of \mathcal{S} uses both edges $u_{1} u_{2}, u_{2} u_{3}$, for otherwise $\mathcal{S} \backslash\{C\} \cup\left\{C+u_{1} u_{3}-u_{1} u_{2}-u_{2} u_{3}\right\}$ is a maximum packing of $D_{1}+u_{1} u_{3}$ avoiding u_{2}, a contradiction. Hence, either $\nu\left(L+u_{1} u_{2}\right)>\nu(L)$ or $\nu\left(L+u_{2} u_{3}\right)>\nu(L)$, and so we may assume the former. By Claim 4 applied to $D^{\prime}=L$ there exists a maximum packing \mathcal{C}^{\prime} of L and a path P^{\prime} in L from u_{2} to u_{1} disjoint from every member of \mathcal{C}^{\prime}. Since the union of P and all members of \mathcal{C} does not include a path from u_{2} to u_{1}, there exists an edge $e \in E\left(P^{\prime}\right)$ that does not belong to P or any member of \mathcal{C}. Thus $L \backslash e$ satisfies (α). But $L \backslash e$ includes every member of \mathcal{C}^{\prime}, and hence it also satisfies (β), contrary to (γ). This proves Claim 5

Claim 6. Let $i, j \in\{1,2,3\}$ with $i<j$. If $u_{i} u_{j} \notin F_{1}$, then $u_{j} u_{i} \in F_{2}$.
Proof of Claim: Suppose for a contradiction that $u_{i} u_{j} \notin F_{1}$ and $u_{j} u_{i} \notin F_{2}$. Let \mathcal{C}_{1} be a packing of $D_{1}+u_{i} u_{j}$ of size $\nu\left(D_{1}\right)+1$, and let \mathcal{C}_{2} be a packing of $D_{2}+u_{j} u_{i}$ of $\operatorname{size} \nu\left(D_{2}\right)+1$. Then \mathcal{C}_{1} includes a circuit C_{1} containing $u_{i} u_{j}$, and \mathcal{C}_{2} includes a circuit C_{2} containing $u_{j} u_{i}$. Let C be the circuit $\left(C_{1} \backslash u_{i} u_{j}\right) \cup\left(C_{2} \backslash u_{j} u_{i}\right)$. If one of $\mathcal{C}_{1}-\left\{C_{1}\right\}, \mathcal{C}_{2}-\left\{C_{2}\right\}$ does not use u_{2}, then $\mathcal{C}:=\left(\mathcal{C}_{1}-\left\{C_{1}\right\}\right) \cup\left(\mathcal{C}_{2}-\left\{C_{2}\right\}\right) \cup\{C\}$ is a packing of D of size $\nu\left(D_{1}\right)+\nu\left(D_{2}\right)+1$ by (a). Then because of Claim2 $\tau(D)=\nu(D)$ packs, a contradiction. Thus we may assume that both $\mathcal{C}_{1}-\left\{C_{1}\right\}, \mathcal{C}_{2}-\left\{C_{2}\right\}$ use u_{2} for all choices of \mathcal{C}_{1} and \mathcal{C}_{2}. Thus $i=1$ and $j=3$, and every maximum packing of $D_{1}+u_{1} u_{3}$ or $D_{2}+u_{3} u_{1}$ uses u_{2}. By (c) we may assume that $D_{1}+E_{1}$ and $D_{2}+Z_{2}$ packs. Hence by Claim[5every maximum packing of D_{1} uses u_{2}. By Remark $3.1 D_{1}$ has transversal T_{1} of size $\nu\left(D_{1}\right)$ with $u_{2} \in T_{1}$, and $D_{2}+u_{3} u_{1}$ has a transversal T_{2} of size $\nu\left(D_{2}\right)+1$ with $u_{2} \in T_{2}$. By (b) $T_{1} \cup T_{2}$ is a transversal of D of size $\nu\left(D_{1}\right)+\nu\left(D_{2}\right)$. On the other hand, by deleting one of the circuits of \mathcal{C} that contain u_{2} we obtain a packing of D of size $\nu\left(D_{1}\right)+\nu\left(D_{2}\right)$. Thus $\nu(D)=\tau(D)$, a contradiction. This proves Claim6

Claim 7. The digraph D has a packing of size $\nu\left(D_{1}\right)+\nu\left(D_{2}\right)$.
Proof of Claim: Suppose not. Then for $i=1,2$ every maximum packing of D_{i} uses u_{2}, for otherwise the union of a maximum packing in D_{i} that does not use u_{2} with any maximum packing of D_{3-i} is as desired. By Remark 3.1 the digraph D_{i} has a transversal T_{i} of size $\tau\left(D_{i}\right)$ with $u_{2} \in T_{i}$. Let us assume first that $\nu\left(D_{1}+u_{1} u_{3}\right)>\nu\left(D_{1}\right)$. Then $\nu\left(D_{2}+u_{3} u_{1}\right)=\nu\left(D_{2}\right)$ by Claim6 The graph $D_{2}+u_{3} u_{1}$ packs (because by (c) $D_{2}+E_{2}$ or $D_{2}+Z_{2}$ packs), and so $\nu\left(D_{2}+u_{3} u_{1} \backslash u_{2}\right)=\tau\left(D_{2}+u_{3} u_{1} \backslash u_{2}\right)$. If $\nu\left(D_{2}+u_{3} u_{1} \backslash u_{2}\right)=\nu\left(D_{2}\right)$, then let \mathcal{C}_{1} be a maximum packing in $D_{1}+u_{1} u_{3}$ and let \mathcal{C}_{2} be a maximum packing in $\nu\left(D_{2}+u_{3} u_{1} \backslash u_{2}\right)$. Then some circuit of \mathcal{C}_{1} uses the edge $u_{1} u_{3}$ (because $\nu\left(D_{1}+u_{1} u_{3}\right)>\nu\left(D_{1}\right)$), and some circuit of \mathcal{C}_{2} uses the edge $u_{3} u_{1}$ (because every maximum packing of D_{2} uses u_{2}). Thus \mathcal{C}_{1} and \mathcal{C}_{2} can be combined as in the proof of Claim6to produce the desired packing of D. Thus we may assume that $\nu\left(D_{2}+u_{3} u_{1} \backslash u_{2}\right)<\nu\left(D_{2}\right)$. Let T_{2}^{\prime} be a transversal in $D_{2}+u_{3} u_{1} \backslash u_{2}$ of size $\nu\left(D_{2}\right)-1$; then $T_{1} \cup T_{2}^{\prime}$ is a transversal in D by (b), and its size is $\nu\left(D_{1}\right)+\nu\left(D_{2}\right)-1$, contrary to Claim 1 This completes the case when $\nu\left(D_{1}+u_{1} u_{3}\right)>\nu\left(D_{1}\right)$.

Thus we may assume that $\nu\left(D_{1}+u_{1} u_{3}\right)=\nu\left(D_{1}\right)$ and $\nu\left(D_{2}+u_{3} u_{1}\right)=\nu\left(D_{2}\right)$. From the symmetry and (c) we may assume that $D_{2}+Z_{2}$ packs. Since every maximum packing of D_{2} uses u_{2}, and $\nu\left(D_{2}+u_{3} u_{1}\right)=$ $\nu\left(D_{2}\right)$, we see that $\nu\left(D_{2}+Z_{2}\right)=\nu\left(D_{2}\right)$. Since $D_{2}+Z_{2}$ packs, there exists a transversal $T_{2}^{\prime \prime}$ of $D_{2}+Z_{2}$ of size $\tau\left(D_{2}\right)$. Since $T_{2}^{\prime \prime} \cap V\left(D_{2}\right)$ is a transversal of D_{2}, we deduce that $a \notin T_{2}^{\prime \prime}$, and hence $u_{2} \in T_{2}^{\prime \prime}$, because $T_{2}^{\prime \prime}$ intersects the circuit of $D_{2}+Z_{2}$ with vertex-set $\left\{a, u_{2}\right\}$. Thus $T_{2}^{\prime \prime}$ is a transversal of $D_{2}+u_{3} u_{1}$ with $u_{2} \in T_{2}^{\prime \prime}$, and so $T_{1} \cup T_{2}^{\prime \prime}$ is a transversal of D by (b). Moreover, $\left|T_{1} \cup T_{2}^{\prime \prime}\right|=\tau\left(D_{1}\right)+\tau\left(D_{2}\right)-1$, contrary to Claim 1. This completes the proof of Claim 7

We are now ready to complete the proof of the lemma. We claim that one of $D_{1}+F_{1}, D_{2}+F_{2}$ does not pack. Indeed, if both of them pack, then by Claim 3 the digraph $D_{i}+F_{i}$ has a transversal of size $\nu\left(D_{i}\right)$, and the union of those sets is a transversal in D by (b) of size $\nu\left(D_{1}\right)+\nu\left(D_{2}\right)$, contrary to Claim 7 Thus we may assume that $D_{2}+F_{2}$ does not pack.

By (c) the digraph $D_{1}+E_{1}$ packs and is strongly 2-connected, and $D_{2}+Z_{2}$ packs. To motivate the next step, notice that since $D_{2}+Z_{2}$ packs, but $D_{2}+F_{2}$ does not, we have $u_{2} u_{1}, u_{3} u_{2} \in F_{2}$. Since $D_{1}+E_{1}$ packs, so does $D_{1}+F_{1}$, and hence by Claim 3 there exists a transversal T_{1} in $D_{1}+F_{1}$ of size $\tau\left(D_{1}\right)$.

We claim that the set T_{1} is a transversal in $D_{1}+F_{1}+u_{1} u_{2}$ or $D_{1}+F_{1}+u_{2} u_{3}$. To prove this claim suppose for a contradiction that this is not the case. We deduce that there exist a $u_{2} u_{1}$-path P_{1} and a $u_{3} u_{2}$-path P_{2} in D_{1}, both disjoint from T_{1}. Since T_{1} intersects every circuit of D_{1}, it follows that $V\left(P_{1}\right) \cap V\left(P_{2}\right)=\left\{u_{2}\right\}$. Since $D_{1}+E_{1}$ is strongly 2-connected, there exists a path Q in D_{1} from $V\left(P_{2}\right)-\left\{u_{2}\right\}$ to $V\left(P_{1}\right)-\left\{u_{2}\right\}$; we may assume that no interior vertex of Q belongs to $V\left(P_{1}\right) \cup V\left(P_{2}\right)$. Let H be the digraph $P_{1} \cup P_{2} \cup Q+E_{1}$; then $\nu(H)=1<2=\tau(H)$, contrary to the fact that $D_{1}+E_{1}$ packs. This proves our claim that T_{1} is a transversal in $D_{1}+F_{1}+u_{1} u_{2}$ or $D_{1}+F_{1}+u_{2} u_{3}$.

From the symmetry we may assume that T_{1} is a transversal in $D_{1}+F_{1}+u_{1} u_{2}$. Let $F_{2}^{\prime}=F_{2}-\left\{u_{1} u_{2}\right\}$. Since $D_{2}+Z_{2}$ packs, so does its minor $D_{2}+F_{2}^{\prime}$, and so by Claim 3 the digraph $D_{2}+F_{2}^{\prime}$ has a transversal T_{2} of size $\tau\left(D_{2}\right)$. By (b) the set $T_{1} \cup T_{2}$ is a transversal in D, and its size is $\tau\left(D_{1}\right)+\tau\left(D_{2}\right)$, contrary to Claim 7

Proposition 7.2. Let G, M, D, where $\nu(D)<\tau(D)$, and G_{1}, G_{2}, G_{3}, C be as in Proposition 5.5 Then either none or exactly two edges of M have both ends in $V(C)$.

Proof. Let A, B denote a bipartition of G. Let $v_{1}, v_{2}^{\prime}, v_{2}, v_{3}$ be the vertices of C (in that order), where $v_{1}, v_{2} \in A$. For $i=1,2,3$ let m_{i} be the edge of M incident with v_{i}. Suppose for a contradiction that m_{2} is the only edge of M with both ends in $V(C)$. We may assume that m_{2} is incident with v_{2}^{\prime}. Thus m_{1}, m_{3} are distinct and are incident with vertices not on C. We may also assume that $m_{1}, m_{3} \in E\left(G_{1}\right) \cup E\left(G_{2}\right)$. For $i=1,2,3$ let M_{i} be the imprint of M on G_{i} (see the paragraph prior to Proposition6.1for a definition). Let $J_{1}:=D\left(G_{1} \cup G_{2}, M_{1} \cup M_{2}\right)$, let Q be a cube such that C is a subgraph of Q and otherwise Q is disjoint from
G_{3}, and let $J_{2}:=D\left(G_{3} \cup Q, M_{3}^{\prime}\right)$, where M_{3}^{\prime} is a perfect matching of $G_{3} \cup Q$ with $M_{3} \subseteq M_{3}^{\prime}$ that does not use an edge joining v_{1} and v_{3}. Such a matching is unique, and it has a unique element, say m_{0}, not incident with a vertex of G_{3}. Let a denote the vertex of J_{2} that results from contracting m_{0}, and in both J_{1}, J_{2} let u_{1}, u_{2}, u_{3} denote the vertices that result from contracting the edges incident with v_{1}, v_{2}, v_{3}, respectively.

Let D_{1} be obtained from J_{1} by deleting the edges of C, and let D_{2} be obtained from J_{2} by deleting the vertex a and edges of $Q \cup C$. We wish to apply Lemma7.1to the digraphs D_{1} and D_{2}. Since u_{1} is a source and u_{3} is a sink of D_{2}, we see immediately that (a) and (b) of that lemma hold. We will show that $i=1$ and $j=2$ satisfy (c). Since G_{1} and G_{2} are braces, so is $G_{1} \cup G_{2}$, and thus J_{1} is strongly 2-connected by Proposition5.2, To show that $D_{1}+E_{1}$ packs we first notice that $D_{1}+E_{1}$ is isomorphic to J_{1}. But $G_{1} \cup G_{2}$ is obtained from planar braces by repeatedly applying the trisum operation, and hence J_{1} has no odd double circuit or F_{7} minor by Theorem5.4. Moreover, $\left|V\left(J_{1}\right)\right|+\left|E\left(J_{1}\right)\right|=\left|E\left(G_{1} \cup G_{2}\right)\right|<|E(G)|=|V(D)|+|E(D)|$ by Lemma5.9, and hence J_{1} (and thus $D_{1}+E_{1}$) pack by the hypothesis of Proposition5.5. Finally, $D_{2}+Z_{2}$ is a subdigraph of J_{2}, and hence it packs, by the argument of this paragraph. Thus $\nu(D)=\tau(D)$ by Proposition7.1, a contradiction.

8. Trisum-Part III

Let D_{1}, D_{2} be edge-disjoint subdigraphs of a digraph D, let $X \subseteq V\left(D_{1}\right) \cap V\left(D_{2}\right)$, and let C be a circuit of D. We say that C passes from D_{1} to D_{2} through X if there is no vertex $v \in V(D)-X$ such that the edge of C with head v belongs to D_{1} and the edge of C with tail v belongs to D_{2}.

Lemma 8.1. Let D_{1} and D_{2} be digraphs with $V\left(D_{1}\right) \cap V\left(D_{2}\right)=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ and $E\left(D_{1}\right) \cap E\left(D_{2}\right)=\emptyset$. Let $D=D_{1} \cup D_{2}$, let $E_{1}=\left\{u_{1} u_{2}, u_{3} u_{2}, u_{3} u_{4}, u_{1} u_{4}\right\}$, and let $E_{2}=\left\{u_{2} u_{1}, u_{2} u_{3}, u_{4} u_{3}, u_{4} u_{1}\right\}$. Assume that
(1) for $i=1,2, D_{i}+E_{i}$ packs,
(2) every circuit of D_{1} is disjoint from every circuit of D_{2},
(3) every circuit of D passes from D_{1} to D_{2} through $\left\{u_{1}, u_{3}\right\}$, and it passes from D_{2} to D_{1} through $\left\{u_{2}, u_{4}\right\}$.

Moreover, assume that for every pair $e_{1}, e_{2} \in E_{i}$ of independent edges one of the following holds:
(a) $\nu\left(D_{i}+e_{1}+e_{2}\right) \geq \nu\left(D_{i}\right)+2$,
(b) $\tau\left(D_{i}+e_{1}\right)=\tau\left(D_{i}\right)$, or
(c) $\tau\left(D_{i}+e_{2}\right)=\tau\left(D_{i}\right)$.

Then $\tau(D)=\nu(D)$.
Proof. Suppose for a contradiction that $\nu(D)<\tau(D)$.
Claim 1. Let $i=1$ or $i=2$, and let $F \subseteq E_{i}$. Then one of the following holds:
(i) There is an edge $e \in F$ such that $\nu\left(D_{i}+e\right)>\nu\left(D_{i}\right)$,
(ii) $\tau\left(D_{i}+F\right)=\tau\left(D_{i}\right)$, or
(iii) there exist independent edges $e_{1}, e_{2} \in F$ such that

$$
\nu\left(D_{i}\right)=\nu\left(D_{i}+e_{1}\right)=\nu\left(D_{i}+e_{2}\right)<\nu\left(D_{i}+e_{1}+e_{2}\right)
$$

Proof of Claim: Suppose (ii) does not hold, i.e. $\tau\left(D_{i}+F\right)>\tau\left(D_{i}\right)$. As $D_{i}+E_{i}$ packs, $\nu\left(D_{i}+F\right)>\nu\left(D_{i}\right)$. Now if (i) does not hold then (iii) must hold since if two edges $e_{1}, e_{2} \in F$ appear in the same circuit then e_{1}, e_{2} are independent.

Claim 2. D has a transversal of size $\nu\left(D_{1}\right)+\nu\left(D_{2}\right)+1$.
Proof of Claim: If $\tau\left(D_{i}+E_{i}\right) \leq \tau\left(D_{i}\right)+1$ for some $i \in\{1,2\}$, then take the corresponding transversal, and union it with any transversal of D_{3-i} of size $\tau\left(D_{3-i}\right)$. The resulting set is a transversal in D of size $\nu\left(D_{1}\right)+\nu\left(D_{2}\right)+1$ by (3), as desired. Thus we may assume that $\tau\left(D_{i}+E_{i}\right) \geq \tau\left(D_{i}\right)+2$ for $i=1,2$. Since $\nu\left(D_{i}+E_{i}\right)=\tau\left(D_{i}+E_{i}\right)$ we may assume that there is a packing of size $\nu\left(D_{1}\right)$ in D_{1} and two disjoint paths disjoint from the packing joining u_{2} to u_{3} and u_{4} to u_{1}, respectively. Likewise, we may assume that a similar situation occurs in D_{2}, but with paths joining u_{3} to u_{4} and u_{1} to u_{2}. (If the paths join the other pairs we get a packing of size $\nu\left(D_{1}\right)+\nu\left(D_{2}\right)+2$, a contradiction, because the union of $\left\{u_{1}, u_{3}\right\}$, any transversal of D_{1} and any transversal of D_{2} is a transversal of D of the same size.) Now we use the fact that D_{2} satisfies (a), (b) or (c) for the edges $u_{2} u_{3}$ and $u_{4} u_{1}$. If (a) holds, then we have a packing in D of size $\nu\left(D_{1}\right)+\nu\left(D_{2}\right)+2$, and so we may assume from the symmetry that (b) holds, where $e_{1}=u_{2} u_{3}$. Let T_{2} be the corresponding transversal. We may also assume that $\nu\left(D_{1}+u_{3} u_{4}+u_{1} u_{2}\right) \leq \nu\left(D_{1}\right)+1$, for otherwise we produce a packing of D of size $\nu\left(D_{1}\right)+\nu\left(D_{2}\right)+2$. It follows that $\nu\left(D_{1}+u_{3} u_{4}+u_{1} u_{2}+u_{1} u_{4}\right) \leq \nu\left(D_{1}\right)+1$, because a packing of $D_{1}+u_{3} u_{4}+u_{1} u_{2}+u_{1} u_{4}$ that uses $u_{1} u_{4}$ cannot use $u_{3} u_{4}$ or $u_{1} u_{2}$. Hence $\tau\left(D_{1}+u_{3} u_{4}+u_{1} u_{2}+u_{1} u_{4}\right)=$ $\nu\left(D_{1}+u_{3} u_{4}+u_{1} u_{2}+u_{1} u_{4}\right) \leq \tau\left(D_{1}\right)+1$. Let T_{1} be a corresponding transversal. Then $T_{1} \cup T_{2}$ is a transversal in D of size $\nu\left(D_{1}\right)+\nu\left(D_{2}\right)+1$ by (3), as desired.

Let F_{i} be the set of all edges $e \in E_{i}$ such that $\tau\left(D_{i}+e\right)>\tau\left(D_{i}\right)$.

Claim 3. The reversal of no edge in F_{1} belongs to F_{2}.
Proof of Claim: Otherwise we can construct a packing in D of size $\nu\left(D_{1}\right)+\nu\left(D_{2}\right)+1$, contrary to Claim 2 . \diamond

Claim 4. The digraph D has a packing of size $\nu\left(D_{1}\right)+\nu\left(D_{2}\right)$.
Proof of Claim: The union of any maximum packing of D_{1} with any maximum packing of D_{2} is as desired by (2).

Claim 5. For some $i \in\{1,2\}, F_{i}$ includes two independent edges.

Proof of Claim: Suppose for a contradiction that no F_{i} includes two independent edges. It follows from Claim 3 that there exist adjacent edges $e_{1}, e_{2} \in E_{1}-F_{1}$ and adjacent edges $e_{3}, e_{4} \in E_{2}-F_{2}$ such that e_{3}, e_{4} are the reverses of the edges in $E_{1}-\left\{e_{1}, e_{2}\right\}$. Since $e_{1}, e_{2} \notin F_{1}$ we deduce from Claim 1 that $\tau\left(D_{1}+e_{1}+e_{2}\right)=\nu\left(D_{1}+e_{1}+e_{2}\right)=\nu\left(D_{1}\right)$ and similarly $\tau\left(D_{2}+e_{3}+e_{4}\right)=\nu\left(D_{2}\right)$. But the union of the corresponding transversals is a transversal in D of size $\nu\left(D_{1}\right)+\nu\left(D_{2}\right)$, contrary to Claim 4

Claim 6. At most one of F_{1}, F_{2} includes two independent edges.
Proof of Claim: If both of them do, then (a) holds for those pairs, and we get a packing in D of size at least $\nu\left(D_{1}\right)+\nu\left(D_{2}\right)+1$, contradicting Claim 2

By Claim 5 we may assume that F_{2} includes two independent edges. We wish to define a set $F \subseteq E_{1}-F_{1}$. If $E_{2}=F_{2}$, then $F_{1}=\emptyset$ by Claim 3] and we put $F=E_{1}$. Otherwise we proceed as follows. If $F_{1} \neq \emptyset$, then it includes a unique edge by Claim 3, Claim 6 and the fact that F_{2} includes two independent edges. Let e be the unique member of F_{1}. If $F_{1}=\emptyset$, then we select $e \in E_{1}$ such that its reverse does not belong to F_{2}. In either case the reverse of e does not belong to F_{2}. We put $F=E_{1}-\{e\}$. This completes the definition of F. We apply Claim 1 to D_{1} and F. Then (i) does not hold, because $F \cap F_{1}=\emptyset$. If (ii) holds, then let T_{1} be the corresponding transversal, and let T_{2} be a transversal of size $\tau\left(D_{2}\right)$ in D_{2} if e does not exist, and in D_{2} with the reverse of e added otherwise. Then $T_{1} \cup T_{2}$ is a transversal in D by (3) of size $\nu\left(D_{1}\right)+\nu\left(D_{2}\right)$, contrary to Claim4. Thus (iii) holds. That is, there exist independent edges $e_{1}, e_{2} \in F$ such that $\nu\left(D_{1}+e_{1}+e_{2}\right)>\nu\left(D_{1}\right)$. Let $e_{3}, e_{4} \in E_{2}$ be the reverses of e_{1}, e_{2}. Since F_{2} includes two independent edges we deduce from the choice of F that $e_{3}, e_{4} \in F_{2}$. Thus $\nu\left(D_{2}+e_{3}+e_{4}\right) \geq \nu\left(D_{2}\right)+2$ by (a). By combining the resulting packings we get a packing in D of size at least $\nu\left(D_{1}\right)+\nu\left(D_{2}\right)+1$, contrary to Claim 2

Proposition 8.2. Let G, M, D, where $\nu(D)<\tau(D)$, and G_{1}, G_{2}, G_{3}, C be as in Proposition 5.5 Then at least one edge of M has both ends in $V(C)$.

Proof. Let A, B denote a bipartition of G. Let $u_{1}, u_{2}, u_{3}, u_{4}$ be the vertices of C (in that order), where $u_{1}, u_{3} \in A$ and $u_{2}, u_{4} \in B$. Suppose for a contradiction that no edge of M has both ends in $V(C)$, and let the edges of M incident to vertices of C be $m_{1}=u_{1} u_{1}^{\prime}, m_{2}=u_{2} u_{2}^{\prime}, m_{3}=u_{3} u_{3}^{\prime}, m_{4}=u_{4} u_{4}^{\prime}$. For $i=1,2,3,4$ we will use u_{i} to also denote the vertex of D that results from contracting m_{i}. Let Q be a cube such that C is a subgraph of Q, and Q is otherwise disjoint from $G_{1} \cup G_{2} \cup G_{3}$. Since G is a brace, $\left|V\left(G_{i}\right) \backslash\left\{u_{1}, \ldots, u_{4}\right\}\right|$ is even for $i=1,2,3,4$. As each of $m_{1}, m_{2}, m_{3}, m_{4}$ have exactly one end in C, we may assume (by renumbering G_{1}, G_{2}, G_{3} and $u_{1}, u_{2}, u_{3}, u_{4}$) that $\left\{m_{1}, m_{2}, m_{3}, m_{4}\right\} \subseteq E\left(G_{1}\right)$, or $\left\{m_{3}, m_{4}\right\} \subseteq E\left(G_{1}\right)$ and $\left\{m_{1}, m_{2}\right\} \subseteq E\left(G_{2}\right)$. In the former case we may also assume that $\left|E\left(G_{2}\right)\right| \leq$ $\left|E\left(G_{3}\right)\right|$. If $\left\{m_{1}, m_{2}, m_{3}, m_{4}\right\} \subseteq E\left(G_{1}\right)$ and $\left|E\left(G_{1}\right)\right|>12$, then let $H_{1}=G_{1}$ and $H_{2}=G_{2} \cup G_{3}$; otherwise let $H_{1}=G_{1} \cup G_{2}$ and $H_{2}=G_{3}$. Thus $\left|E\left(H_{1}\right)\right|>12$ by Lemma 5.9. Then both H_{1} and H_{2}
are obtained from planar braces by repeatedly applying the trisum operation. Let $J_{1}=D\left(H_{1}, M\right)$, and let $D_{1}=J_{1} \backslash E(C)$. Let J_{2} be obtained from H_{2} by directing every edge from $A \cap V\left(H_{2}\right)$ to $B \cap V\left(H_{2}\right)$, and then contracting every edge of $M \cap E\left(H_{2}\right)$, and let $D_{2}=J_{2} \backslash E(C)$. Let us notice that u_{1}, u_{3} are sources, and u_{2}, u_{4} are sinks of D_{2}. Thus conditions (2) and (3) of Lemma 8.1 hold.

We now prove that condition (1) holds. The graph H_{1} is obtained from planar braces by repeatedly applying the 4 -sum operation. By Theorem 5.4 the digraph J_{1} has no minor isomorphic to an odd double circuit or F_{7}. Moreover $\left|V\left(J_{1}\right)\right|+\left|E\left(J_{1}\right)\right|<|V(D)|+|E(D)|$ by Lemma 5.9, and so J_{1} packs by the hypothesis of Proposition5.5 But J_{1} is isomorphic to $D_{1}+E_{1}$, and hence $D_{1}+E_{1}$ packs. To prove that $D_{2}+E_{2}$ packs we first notice that $D_{2}+E_{2}$ is a subdigraph of $D\left(H_{2} \cup Q, M_{2}\right)$, where M_{2} is a perfect matching of $H_{2} \cup Q$ that includes $E\left(H_{2}\right) \cap M$ and no edge with both ends in $V(C)$. But $D\left(H_{2} \cup Q, M_{2}\right)$ packs by the hypothesis of Proposition 5.5 and the fact that $\left|E\left(H_{1}\right)\right|>12$. Thus conditions (1)-(3) of Lemma 8.1 hold.

Next we show that for $i=1,2$, and for every pair $e_{1}, e_{2} \in E_{i}$ of independent edges one of (a), (b), (c) holds. We first do so for $i=2$. It suffices to argue for $e_{1}=u_{2} u_{1}$ and $e_{2}=u_{4} u_{3}$. Since $D\left(H_{2} \cup Q, M_{2}\right)$ packs by the previous paragraph, we see that $D_{2}^{\prime}=D_{2}+\left\{u_{2} u_{1}, u_{3} u_{2}, u_{4} u_{3}, u_{1} u_{4}\right\}$ also packs. But clearly $\tau\left(D_{2}^{\prime}\right)>\tau\left(D_{2}\right)$, because u_{1}, u_{3} are sources and u_{1}, u_{4} are sinks of D_{2}, and $\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ is the vertex-set of a circuit of D_{2}^{\prime}. If $\nu\left(D_{2}^{\prime}\right) \geq \nu\left(D_{2}\right)+2$, then (a) holds. Thus we may assume that $\tau\left(D_{2}^{\prime}\right)=\tau\left(D_{2}\right)+1$. Let T be a corresponding transversal of D_{2}^{\prime}. Since $\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ is the vertex-set of a circuit of D_{2}^{\prime}, and $|T|=\nu\left(D_{2}\right)+1$, we see that $\left|\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\} \cap T\right|=1$. Let $T^{\prime}=T-\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$. If $u_{1} \in T$ or $u_{2} \in T$, then T^{\prime} shows that (c) holds and if $u_{3} \in T$ or $u_{4} \in T$, then T^{\prime} shows that (b) holds, as desired. This proves that one of (a), (b), (c) holds for $i=2$.

It remains to show that one of (a), (b), (c) holds for $i=1$. Let e_{1}, e_{2} be independent edges as in Lemma8.1, for the purpose of this paragraph we may take advantage of symmetry and assume that $e_{1}=u_{1} u_{2}$ and $e_{2}=u_{2} u_{4}$. For $j=1,2,3,4$ let $u_{j} v_{j}$ denote the edges of Q with exactly one end in $V(C)$. Let M_{1} be the union of $M \cap E\left(H_{1}\right)$ and two edges of Q, one with ends $v_{1} v_{2}$ and the other with ends $v_{3} v_{4}$. Let us consider the digraph $D_{1}^{\prime}:=D\left(H_{1} \cup Q \backslash E(C), M_{1}\right)$. Then D_{1}^{\prime} is isomorphic to the graph $D_{1}+\left\{u_{1} a, a u_{2}, a b, b a, u_{3} b, b u_{4}\right\}$. If D_{1}^{\prime} packs, then one of (a), (b), (c) holds: clearly $\tau\left(D_{1}^{\prime}\right)>\tau\left(D_{1}\right)$ because D_{1}^{\prime} has a circuit disjoint from D_{1}. If $\nu\left(D_{1}^{\prime}\right) \geq \nu\left(D_{1}\right)+2$, then (a) holds; if $\tau\left(D_{1}^{\prime}\right)=\tau\left(D_{1}\right)+1$, then let T be a corresponding transversal. If $a \in T$ then $T \cap V\left(D_{1}\right) \cup\left\{u_{1}\right\}$ proves (b). If $b \in T$ then $T \cap V\left(D_{2}\right) \cup\left\{u_{3}\right\}$ proves (c). Thus we may assume that D_{1}^{\prime} does not pack, and so by the hypothesis of Proposition 5.5 we see that $\left|E\left(H_{2}\right)\right| \leq|E(Q)|$. Thus H_{2} is a cube by Lemma5.9 In particular, $H_{2}=G_{3}$ and $H_{1}=G_{1} \cup G_{2}$. The definition of H_{1} and H_{2} implies that $\left\{m_{1}, m_{2}, m_{3}, m_{4}\right\} \nsubseteq E\left(G_{1}\right)$ or $\left|E\left(G_{1}\right)\right|=12$.

Let us first assume that $\left\{m_{1}, m_{2}, m_{3}, m_{4}\right\} \subseteq E\left(G_{1}\right)$. Then $\left|E\left(G_{1}\right)\right|=12$, and so G_{1} is a cube. Since $\left|E\left(G_{2}\right)\right| \leq\left|E\left(G_{3}\right)\right|$ and $G_{3}=H_{2}$ is a cube, we deduce that G_{1}, G_{2}, G_{3} are all cubes. Let a, b (resp. c, d) denote the edges of $M \backslash C$ in G_{2} (resp. G_{3}). Then D is isomorphic to one of the digraphs depicted in Figure 2 ,

Figure 2. Two digraphs.

For both (a) and (b), $\left\{u_{1} a, a u_{2}, u_{2} u_{1}\right\},\left\{u_{3} b, b u_{4}, u_{4} u_{3}\right\},\{c d, d c\}$ is a packing of circuits and $\left\{a, u_{3}, c\right\}$ is a transversal. In particular, $\nu(D)=3=\tau(D)$, a contradiction.

Thus we may assume that $\left\{m_{1}, m_{2}, m_{3}, m_{4}\right\} \nsubseteq E\left(G_{1}\right)$, and so $\left\{m_{3}, m_{4}\right\} \subseteq E\left(G_{1}\right)$ and $\left\{m_{1}, m_{2}\right\} \subseteq$ $E\left(G_{2}\right)$. Moreover, $H_{1}=G_{1} \cup G_{2}$. For $i=1,2$ let L_{i} be obtained from $G_{i} \backslash E(C)$ by orienting all the edges of $G_{i} \backslash E(C)$ from A to B and by contracting all edges of $M \cap E\left(G_{i}\right)$. Then
$(*) u_{1}$ is a source and u_{2} is a sink of L_{1}, and u_{3} is a source and u_{4} is a sink of L_{2}.

Claim 1.

(1) The digraph L_{1} does not have disjoint paths P_{1} from u_{1} to u_{3} and P_{2} from u_{4} to u_{2}.
(2) The digraph L_{2} does not have disjoint paths P_{1} from u_{3} to u_{1} and P_{2} from u_{2} to u_{4}.

Proof of Claim: We may assume that $i=1$, and suppose for a contradiction that P_{1}, P_{2} exist. For the cube Q we have $V(Q)=\left\{u_{1}, u_{2}, u_{3}, u_{4}, v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and $E(Q)=C \cup\left\{u_{i} v_{i}: i=1,2,3,4\right\} \cup$ $\left\{v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{4}, v_{4} v_{1}\right\}$. Let $M^{\prime}=M \cup\left\{u_{1} v_{1}, u_{2} v_{2}, v_{3} v_{4}\right\}$. Let Q^{\prime} be the graph obtained from Q by replacing every edge of C by two parallel edges. Then $D\left(G_{1} \cup Q^{\prime}, M^{\prime}\right)$ contains as a subdigraph a digraph D^{\prime} which is obtained from L_{1} by adding a new vertex w and edges $u_{2} u_{1}, u_{1} u_{2}, u_{3} w, w u_{4}, w u_{1}$, and $u_{2} w$. But that is a contradiction, because D^{\prime} has an odd double circuit minor (contract all but one edge of each path comprising L_{1}) and by Theorem 5.4, Lemma 5.9 and the hypothesis of Proposition5.5, $D\left(G_{1} \cup Q^{\prime}, M^{\prime}\right)$ packs, and hence so does D^{\prime}.

We now show that one of (a), (b), (c) holds for the pair of edges $u_{1} u_{4}$ and $u_{3} u_{2}$. Indeed, suppose that none of (a), (b), (c) hold. Then $D_{1}+u_{1} u_{4}$ has a packing of size $\nu\left(D_{1}\right)+1$. This packing includes a circuit containing the edge $u_{1} u_{4}$. Hence, D_{1} has a packing \mathcal{C} of size $\nu\left(D_{1}\right)$ and a path P_{1} from u_{4} to u_{1} disjoint from every $C \in \mathcal{C}$. Similarly, D_{1} has a packing \mathcal{C}^{\prime} of size $\nu\left(D_{1}\right)$ and a path P_{2} from u_{2} to u_{3} disjoint from
every $C \in \mathcal{C}^{\prime}$. Since P_{1} and P_{2} are disjoint from any minimum transversal of D_{1} we deduce that their union is acyclic. By $(*)$ we deduce that P_{1} can be decomposed into either (α) subpaths P_{1}^{\prime} from u_{2} to u_{1} of L_{2} and $P_{1}^{\prime \prime}$ from u_{1} to u_{3} of L_{1}, or (β) subpaths P_{1}^{\prime} from u_{2} to u_{4} of L_{2} and $P_{1}^{\prime \prime}$ from u_{4} to u_{3} of L_{1}. Similarly, P_{2} can be decomposed into either $\left(\alpha^{\prime}\right)$ subpaths P_{2}^{\prime} from u_{4} to u_{2} of L_{1} and $P_{2}^{\prime \prime}$ from u_{2} to u_{1} of L_{2}, or $\left(\beta^{\prime}\right)$ subpaths P_{2}^{\prime} from u_{4} to u_{3} of L_{1} and $P_{2}^{\prime \prime}$ from u_{3} to u_{1} of L_{1}. If (α) and $\left(\alpha^{\prime}\right)$ occur then the paths $P_{1}^{\prime \prime}$ and P_{2}^{\prime} contradict Claim 1). If (β) and (β^{\prime}) occurs then paths P_{1}^{\prime} and $P_{2}^{\prime \prime}$ contradict Claim (2). All other cases contradict the fact that $P_{1} \cup P_{2}$ is acyclic.

It remains to show that one of (a), (b), (c) holds for the pair of edges $u_{1} u_{2}$ and $u_{3} u_{4}$. Suppose it does not. Thus $D_{1}+u_{3} u_{4}$ has a packing of size $\nu\left(D_{1}\right)+1$. This packing includes a circuit containing the edge $u_{3} u_{4}$, and hence D_{1} has a packing \mathcal{C} of size $\nu\left(D_{1}\right)$, and a path P from u_{4} to u_{3} disjoint from every member of \mathcal{C}. It follows from $(*)$ and Claim 1 that P is a subgraph of L_{1}. Since \mathcal{C} does not use u_{3} or u_{4} (because every member of \mathcal{C} is disjoint from P) we deduce that at most one circuit of \mathcal{C} intersects both $E\left(L_{1}\right)$ and $E\left(L_{2}\right)$. Thus either (letting $\nu=\nu\left(D_{1}\right)$ and using $(*)$)
(A) $\nu\left(L_{1}+u_{3} u_{4}\right)+\nu\left(L_{2}\right) \geq \nu+1$, or
(B) $\nu\left(L_{1}+u_{2} u_{1}+u_{3} u_{4}\right)+\nu\left(L_{2}+u_{1} u_{2}\right) \geq \nu+2$,
where (A) (resp. (B)) occurs when no (resp. exactly one) circuit of \mathcal{C} intersects both $E\left(L_{1}\right)$ and $E\left(L_{2}\right)$. Similarly, either
(C) $\nu\left(L_{2}+u_{1} u_{2}\right)+\nu\left(L_{1}\right) \geq \nu+1$, or
(D) $\nu\left(L_{2}+u_{1} u_{2}+u_{4} u_{3}\right)+\nu\left(L_{1}+u_{3} u_{4}\right) \geq \nu+2$.

By $(*) \nu\left(L_{1}\right)+\nu\left(L_{2}\right) \leq \nu$. Thus if (A) and (C) hold we deduce that

$$
\nu\left(D_{1}+u_{1} u_{2}+u_{3} u_{4}\right) \geq \nu\left(L_{1}+u_{3} u_{4}\right)+\nu\left(L_{2}+u_{1} u_{2}\right)=2 \nu+2-\nu\left(L_{1}\right)-\nu\left(L_{2}\right) \geq \nu+2
$$

where the first inequality follows from $(*)$. It follows that (a) holds, a contradiction. Assume now that (B) and (D) hold. Clearly $\nu\left(L_{2}+u_{1} u_{2}+u_{4} u_{3}\right) \geq \nu\left(L_{2}+u_{1} u_{2}\right), \nu\left(L_{1}+u_{2} u_{1}+u_{3} u_{4}\right) \geq \nu\left(L_{1}+u_{3} u_{4}\right)$ and $\nu\left(L_{1}+u_{2} u_{1}+u_{3} u_{4}\right)+\nu\left(L_{2}+u_{1} u_{2}+u_{4} u_{3}\right) \leq \nu+2$. Therefore

$$
2 \nu+4 \geq \nu\left(L_{1}+u_{2} u_{1}+u_{3} u_{4}\right)+\nu\left(L_{2}+u_{1} u_{2}\right)+\nu\left(L_{2}+u_{1} u_{2}+u_{4} u_{3}\right)+\nu\left(L_{1}+u_{3} u_{4}\right) \geq 2 \nu+4
$$

Thus equality holds throughout, and, in particular, $\nu\left(L_{1}+u_{2} u_{1}+u_{3} u_{4}\right)=\nu\left(L_{1}+u_{3} u_{4}\right)$. Since $\nu\left(L_{2}\right) \geq$ $\nu\left(L_{2}+u_{1} u_{2}\right)-1$ we have

$$
\nu\left(L_{1}+u_{3} u_{4}\right)+\nu\left(L_{2}\right) \geq \nu\left(L_{1}+u_{2} u_{1}+u_{3} u_{4}\right)+\nu\left(L_{2}+u_{1} u_{2}\right)-1 \geq \nu+1
$$

by (B), and so (A) holds. Thus we have shown that if (B) and (D) hold, then (A) holds as well.
To complete the proof we may assume that either (A) and (D) hold or that (B) and (C) hold. By symmetry we may assume that the former case occurs and that (C) does not hold. We need two claims.
(E) $\nu\left(L_{2}+u_{1} u_{2}\right) \leq \nu\left(L_{2}\right)$

To prove (E) we subtract the negation of (C) from (A), and use the fact that $\nu\left(L_{1}+u_{3} u_{4}\right) \leq \nu\left(L_{1}\right)+1$. We find that $\nu\left(L_{2}+u_{1} u_{2}\right) \leq \nu\left(L_{2}\right)$, which is (E).
(F) $\nu\left(L_{2}+u_{4} u_{3}\right) \leq \nu\left(L_{2}\right)$

To prove (F) we use the fact that $\nu\left(L_{1}+u_{3} u_{4}\right)+\nu\left(L_{2}+u_{4} u_{3}\right) \leq \nu+1$. (Otherwise those packings could be combined to produce a packing in D_{1} of size $\nu+1$.) By subtracting this inequality from (A) we obtain (F).

Let $L_{2}^{\prime}=L_{2}+\left\{u_{1} a, a u_{2}, u_{3} b, b u_{4}, a b, b a, u_{4} u_{3}\right\}$. Let Q^{\prime} be obtained from Q by adding a three-edge path P^{\prime} joining u_{3} and u_{4}, and otherwise disjoint from $G \cup Q$. Let M_{2}^{\prime} be a perfect matching of $G_{2} \cup Q^{\prime}$ that includes $M \cap E\left(G_{2}\right)$, two edges of P^{\prime}, and two edges of $Q \backslash V(C)$: one with ends adjacent to u_{1} and u_{2}, and the other with ends adjacent to u_{3} and u_{4}. Thus L_{2}^{\prime} is isomorphic to $D\left(G_{2} \cup Q^{\prime} \backslash E(C), M_{2}^{\prime}\right)$. The graph $G_{2} \cup Q^{\prime}$ is a subgraph of a brace H in such a way that $H \backslash V\left(G_{2} \cup Q^{\prime}\right)$ has a perfect matching and H is obtained from planar braces by trisumming. By Theorem5.4 the digraph L_{2}^{\prime} has no minor isomorphic to an odd double circuit or F_{7}. By Lemma 5.9 the digraph L_{2}^{\prime} satisfies $\left|V\left(L_{2}^{\prime}\right)\right|+\left|E\left(L_{2}^{\prime}\right)\right|<|V(D)|+|E(D)|$, and hence L_{2}^{\prime} packs by the hypothesis of Proposition5.5. We will show that $\tau\left(L_{2}^{\prime}\right) \geq \nu\left(L_{2}\right)+2$ and $\nu\left(L_{2}^{\prime}\right) \leq \nu\left(L_{2}\right)+1$. This is a contradiction that will prove the proposition.

We first show that $\tau\left(L_{2}^{\prime}\right) \geq \nu\left(L_{2}\right)+2$. Indeed, suppose for a contradiction that L_{2}^{\prime} has a transversal T of size at most $\nu\left(L_{2}\right)+1$. Since $\left\{b, u_{3}, u_{4}\right\}$ is the vertex-set of a circuit of L_{2}^{\prime}, one of those vertices belongs to T. If $b \in T$, then $T-\{b\}$ is a transversal of $L_{2}+u_{1} u_{2}+u_{4} u_{3}$ of size $\nu\left(L_{2}\right)$. Thus $\nu\left(L_{2}+u_{1} u_{2}+u_{4} u_{3}\right)+$ $\nu\left(L_{1}+u_{3} u_{4}\right) \leq \nu\left(L_{2}\right)+\nu\left(L_{1}+u_{3} u_{4}\right) \leq \nu+1$, contrary to (D). If $b \notin T$, then $u_{3} \in T$ or $u_{4} \in T$, and $a \in T$, because $\{a, b\}$ is the vertex-set of a circuit of L_{2}^{\prime}. Then $T-\left\{u_{3}, u_{4}, a\right\}$ is a transversal of L_{2} by $(*)$ of size $\nu\left(L_{2}\right)-1$, a contradiction. This proves that $\tau\left(L_{2}^{\prime}\right) \geq \nu\left(L_{2}\right)+2$.

Finally, it remains to prove that $\nu\left(L_{2}^{\prime}\right) \leq \nu\left(L_{2}\right)+1$. To this end suppose for a contradiction that \mathcal{C} is a packing in L_{2}^{\prime} of size $\nu\left(L_{2}\right)+2$. Choose a circuit $C \in \mathcal{C}$ such that $b \in V(C)$. If such a choice is not possible choose C with $a \in V(C)$, and if that is not possible choose C arbitrarily. It follows that the packing $\mathcal{C}-\{C\}$ uses at most one of a and u_{4}, and hence the packing $\mathcal{C}-\{C\}$ proves that either $\nu\left(L_{2}+u_{4} u_{3}\right)>\nu\left(L_{2}\right)$, or $\nu\left(L_{2}+u_{1} u_{2}\right)>\nu\left(L_{2}\right)$, contrary to (E) and (F). This proves that $\nu\left(L_{2}^{\prime}\right) \leq \nu\left(L_{2}\right)+1$, and hence completes the proof of the proposition.

9. Concluding remarks

Consider a digraph D with weight function $w: V(D) \rightarrow Z_{+}$. The weight of a subset $T \subseteq V(D)$ is defined as $\sum_{v \in T} w(v)$. The value of the minimum weight transversal is written $\tau(D, w)$. The cardinality of the largest family \mathcal{C} of circuits with the property that for every $v \in V(D)$ at most $w(v)$ circuits of \mathcal{C} use v, is denoted $\nu(D, w)$. Let $e: V(D) \rightarrow Z_{+}$where $e(v)=1, \forall v \in V(D)$. Then $\tau(D)=\tau(D, e)$ and $\nu(D)=\nu(D, e)$. Observe that for every digraph D and for all positive weight functions w we have $\tau(D, w) \geq \nu(D, w)$. A natural extension of Theorem 1.1 would be to characterize which are the digraphs

Figure 3. Digraph D with $\tau(D, w)>\nu(D, w)$.
D for which $\tau(H, w)=\nu(H, w)$, for every subdigraph H of D and for every weights $w: V(D) \rightarrow Z_{+}$. This class of digraphs is closed under taking minors, and thus does not contain F_{7} or odd double circuits. However, there are other obstructions as is illustrated by the digraph D of Figure 3 Next to each vertex v we indicate the weight $w(v)$. Here we have $3=\tau(D, w)>\nu(D, w)=2$, and D does not contain F_{7} or an odd double circuit as a minor. In fact many other obstructions can be obtained by a similar construction. A related problem is to study the class of digraphs for which $\tau(D, w)=\nu(D, w)$ for all $w: V(D) \rightarrow Z_{+}$but without requiring that the same property hold for every subdigraph. This can be formulated as a hypergraph matching problem where the vertices of the hypergraph are the vertices of the digraph and the edges are the vertex set of circuits of D. There is a long list of obstructions to this property. However the problem has been solved for the special case when D is a tournament [8] or a bipartite tournament [9].

REFERENCES

[1] W. McCuaig, Pólya's permanent problem. Electron. J. Combin. 11 (2004), 83pp.
[2] G. Ding and W. Zang, Packing cycles in graphs, J. Combin. Theory Ser. B 86 (2002), 381-407.
[3] C. H. C. Little, A characterization of convertible (0, 1)-matrices, J. Combin. Theory Ser. B 18 (1975), 187-208.
[4] C. L. Lucchesi and D. H. Younger, A minimax relation for directed graphs, J. London Math. Soc. 17 (1978), 369-374.
[5] B. Reed, N. Robertson, P. D. Seymour and R. Thomas, Packing directed circuits, Combinatorica 16 (1996), 535-554.
[6] N. Robertson, P. D. Seymour and R. Thomas, Permanents, Pfaffian orientations, and even directed circuits, Ann. Math. 150 (1999), 929-975.
[7] P. D. Seymour and C. Thomassen, Characterization of even directed graphs, J. Combin. Theory Ser. B 42 (1987), 36-45.
[8] W. Zang, M. Cai and X. Deng. A TDI system and its application to approximation algorithm, Proc. 39th IEEE Symposium on Foundations of Computer Science, (1998).
[9] W. Zang, M. Cai and X. Deng, A min-max theorem on feedback vertex sets, Math. of Operations research, 27, (2002), 361-371.

Bertrand Guenin
DEPARTMENT OF COMbINATORICS AND Optimization
Faculty of Mathematics
University of Waterloo
Waterloo, ON N2L 3G1, CANADA

Robin Thomas
School of Mathematics
Georgia Institute of Technology
Atlanta, Georgia 30332, USA

[^0]: Date: January 2001. Revised 1 December 2010.
 Key words and phrases. Directed circuit, vertex feedback set, min-max theorem.
 Research partially supported by NSF under Grant No. DMS 96-32032 and Grant No. DMS-9970514.
 Classification: 05C20, 90C47.

