Skip to main content
Log in

Distinguishing labeling of the actions of almost simple groups

  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

Suppose Γ is a group acting on a set X, written as (Γ,X). An r-labeling f: X→{1,2, ..., r} of X is called distinguishing for (Γ,X) if for all σ∈Γ,σ≠1, there exists an element xX such that f(x)≠f(x σ). The distinguishing number d(Γ,X) of (Γ,X) is the minimum r for which there is a distinguishing r-labeling for (Γ,X). If Γ is the automorphism group of a graph G, then d(Γ,V (G)) is denoted by d(G), and is called the distinguishing number of the graph G. The distinguishing set of Γ-actions is defined to be D*(Γ)={d(Γ,X): Γ acts on X}, and the distinguishing set of Γ-graphs is defined to be D(Γ)={d(G): Aut(G)≅Γ}. This paper determines the distinguishing set of Γ-actions and the distinguishing set of Γ-graphs for almost simple groups Γ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. O. Albertson and K. L. Collins: Symmetry breaking in graphs, Electron. J. Combin. 3 (1996) #R18, 17.

  2. M. O. Albertson and D. L. Boutin: Using determining sets to distinguish Kneser graphs, Electron. J. Combin. 14 (2007), no. 1, #R20, 9.

  3. P. Cameron, P. M. Neumann and J. Saxl: On groups with no regular orbits on the set of subsets, Arch. Math. 43 (1984), 295–296.

    Article  MathSciNet  MATH  Google Scholar 

  4. G. H. Chan: A characterization of minimal (k)-groups of degree n≤3k, Linear and Multilinear Algebra 4 (1976/77), No. 4, 285–305.

    Article  MathSciNet  Google Scholar 

  5. K. L. Collins: private communication, 2006.

  6. J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson: Atlas of Finite Groups, Clarendon Press, Oxford, 1985.

    MATH  Google Scholar 

  7. S. Dolfi: Orbits of permutation groups on the power set, Arch. Math. 75 (2000), 321–327.

    Article  MathSciNet  MATH  Google Scholar 

  8. The GAP Group: GAP — Groups, Algorithms and Programming, Version 4.4.12, 2008. (http://www.gap-system.org)

  9. D. Gluck: Trivial set-stabilizers in finite permutation groups, Can. J. Math. XXXV (1983), No. 1, 59–67.

    Article  MathSciNet  Google Scholar 

  10. S. Jiang: Distinguishing labeling of S 5-actions, Master Thesis, National Sun Yat-sen University, 2006.

  11. S. Klavžar, T. Wong and X. Zhu: Distinguishing labelings of group action on vector spaces and graphs, Journal of Algebra 303 (2006), 626–641.

    Article  MathSciNet  MATH  Google Scholar 

  12. M. W. Liebeck: Graphs whose full automorphism group is a symmetric group, J. Austral. Math. Soc. Ser. A 44 (1988), 46–63.

    Article  MathSciNet  MATH  Google Scholar 

  13. D. Marusic: On vertex symmetric digraphs, Discrete Mathematics, 36 (1981), 69–81.

    MathSciNet  MATH  Google Scholar 

  14. D. Marusic and R. Scapellato: Classifying vertex-transitive graphs whose order is a product of two primes, Combinatorica 14(2)(1994), 187–201.

    Article  MathSciNet  MATH  Google Scholar 

  15. D. W. Miller: On a theorem of Hölder, Amer. Math. Monthly 65 (1958), 252–254.

    Article  MathSciNet  MATH  Google Scholar 

  16. Yoav Segev: The commuting graph and minimal nonsolvable groups, Geometriae Dedicata 88 (2001), 55–66.

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Seress: Primitive groups with no regular orbits on the set of subsets, Bull. London Math. Soc. 29 (1997), 697–704.

    Article  MathSciNet  Google Scholar 

  18. A. Seress: The minimal base size of primitive solvable permutation groups, J. London Math. Soc. 53 (1996), No. 2, 243–255.

    MathSciNet  MATH  Google Scholar 

  19. M. Suzuki: Group theory. I. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 247. Springer-Verlag, Berlin-New York, 1982.

    Google Scholar 

  20. J. Tymoczko: Distinguishing numbers for graphs and groups, Electron. J. Combin. 11 (2004), #R63, 13.

  21. D. West: Open Problems #23, http://www.math.uiuc.edu/west/pcol/pcolink.html

  22. M. Yossi: On permutation groups and partitions, Comm. Algebra 30 (2002), No. 10, 4889–4903.

    Article  MathSciNet  MATH  Google Scholar 

  23. H. Wielandt: Finite permutation groups, Academic Press, New York, 1964.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by the NSF and by ARC Grant DP1096525

Supported in part by the National Science Council under grant NSC92-2115-M-110-010

Supported in part by ZJNSF under grant Z6110786.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seress, Á., Wong, TL. & Zhu, X. Distinguishing labeling of the actions of almost simple groups. Combinatorica 31, 489–506 (2011). https://doi.org/10.1007/s00493-011-2221-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00493-011-2221-7

Mathematics Subject Classification (2000)

Navigation