k-nets embedded in a projective plane over a field

G. Korchmáros* G. P. Nagy ${ }^{\dagger}$ and N. Pace \ddagger

Abstract

We investigate k-nets with $k \geq 4$ embedded in the projective plane $P G(2, \mathbb{K})$ defined over a field \mathbb{K}; they are line configurations in $\operatorname{PG}(2, \mathbb{K})$ consisting of k pairwise disjoint line-sets, called components, such that any two lines from distinct families are concurrent with exactly one line from each component. The size of each component of a k-net is the same, the order of the k-net. If \mathbb{K} has zero characteristic, no embedded k-net for $k \geq 5$ exists; see [10, 13]. Here we prove that this holds true in positive characteristic p as long as p is sufficiently large compared with the order of the k-net. Our approach, different from that used in [10, 13], also provides a new proof in characteristic zero.

1 Introduction

An (abstract) k-net is a point-line incidence structure whose lines are partitioned in k subsets, called components, such that any two lines from distinct components are concurrent with exactly one line from each component. The components have the same size, called the order of the k-net and denoted by

[^0]n. A k-net has n^{2} points and $k n$ lines. A k-net (embedded) in $P G(2, \mathbb{K})$ is a subset of points and lines such that the incidence structure induced by them is a k-net.

In the complex plane, there are known plenty of examples and even infinity families of 3 -nets but only one 4 -net up to projectivity; see [10, 11, 12, 13]. This 4-net, called the classical 4-net, has order 3 and it exists since $P G(2, \mathbb{C})$ contains an affine subplane $A G\left(2, \mathbb{F}_{3}\right)$ of order 3 , unique up to projectivity, and the four parallel line classes of $A G\left(2, \mathbb{F}_{3}\right)$ are the components of a 4-net in $P G(2, \mathbb{C})$. By a result of Stipins [10, see also [13], no k-net with $k \geq 5$ exists in $P G(2, \mathbb{C})$. Since Stipins' proof works over any algebraically closed field of characteristic zero, his result holds true in $P G(2, \mathbb{K})$ provided that \mathbb{K} has zero characteristic.

Our present investigation of k-nets in $P G(2, \mathbb{K})$ includes groundfields \mathbb{K} of positive characteristic p, and as a matter of fact, many more examples. This phenomena is not unexpected since $P G(2, \mathbb{K})$ with \mathbb{K} of characteristic $p>0$ contains an affine subplane $A G\left(2, \mathbb{F}_{p}\right)$ of order p from which k-nets for $3 \leq k \leq p+1$ arise taking k parallel line classes as components. Similarly, if $P G(2, \mathbb{K})$ also contains an affine subplane $A G\left(2, \mathbb{F}_{p^{h}}\right)$, in particular if $\mathbb{K}=\mathbb{F}_{q}$ with $q=p^{r}$ and $h \mid r$, then k-nets of order p^{h} for $3 \leq k \leq p^{h}+1$ exist in $\operatorname{PG}(2, \mathbb{K})$. Actually, more families of k-nets in $P G\left(2, \mathbb{F}_{q}\right)$ when $q=p^{r}$ with $r \geq 3$ exist; see Example 5.3, On the other hand, no 5-net of order n with $p>n$ is known to exist. This suggests that for sufficiently large p compared with n, Stipins' theorem remains valid in $\operatorname{PG}(2, \mathbb{K})$. Our Theorem 5.2 proves it for $p>3^{\varphi\left(n^{2}-n\right)}$ where φ is the classical Euler φ function, and in particular for $p>3^{n^{2} / 2}$. Our approach also works in zero characteristic and provides a new proof for Stipins' result.

A key idea in our proof is to consider the cross-ratio of four concurrent lines from different components of a 4-net. Proposition 3.1 states that the cross-ratio remains constant when the four lines vary without changing component. In other words, every 4 -net in $\operatorname{PG}(2, \mathbb{K})$ has constant cross-ratio. By Theorem 4.2 in zero charactersitic, and by Theorem 4.3 in characteristic p with $p>3^{\varphi\left(n^{2}-n\right)}$, the constant cross-ratio is restricted to two values only, namely to the roots of the polynomial $X^{2}-X+1$. From this, the non-existence of k-nets for $k \geq 5$ easily follows both in zero characteristic and in characteristic p with $p>3^{\varphi\left(n^{2}-n\right)}$. It should be noted that without a suitable hypothesis on n with respect to p, the constant cross-ratio of a 4-net may assume many different values, even for finite fields, see Example 5.3.

In $P G(2, \mathbb{K}), k$-nets naturally arise from pencils of curves, the components
of the k-net being the completely reducible curves in the pencil. This has given a motivation for the study of k-nets in Algebraic geometry; see [2], and [12]. We discuss this relationship in Section 2 and state an equation that will be useful in Section 3,

$2 k$-nets and completely irreducible curves in a pencil of curves

Let $\lambda_{1}, \lambda_{2}, \lambda_{3}$ be three components of a k-net of order n embedded in $P G(2, \mathbb{K})$. Let $r_{i}=0, w_{i}=0, t_{i}=0(i=1, \ldots, n)$ be the equations of the lines in $\lambda_{1}, \lambda_{2}, \lambda_{3}$, respectively. The completely reducible polynomials $R=r_{1} \cdots r_{n}$, $W=w_{1} \cdots w_{n}$ and $T=t_{1} \cdots t_{n}$ define three plane curves of degree n, say \mathcal{R}, \mathcal{W} and \mathcal{T}. Consider the pencil Λ generated by \mathcal{R} and \mathcal{W}. Since $\lambda_{1}, \lambda_{2}, \lambda_{3}$ are the components of a 3 -net of order n, there exist $\alpha, \beta \in \mathbb{K}^{*}$ such that \mathcal{T} and the curve \mathcal{H} of Λ with equation $\alpha R+\beta W=0$ have $n^{2}+1$ common points but no common components. From Bézout's theorem, $\mathcal{T}=\mathcal{H}$. Therefore,

$$
\begin{equation*}
\alpha r_{1} \cdots r_{n}+\beta w_{1} \cdots w_{n}+\gamma t_{1} \cdots t_{n}=0 \tag{1}
\end{equation*}
$$

holds for a homogeneous triple (α, β, γ) with coordinates \mathbb{K}^{*}. Changing the projective coordinate system in $\operatorname{PG}(2, \mathbb{K})$ the equations of the lines in the components of the 3-net change but the homogeneous triple (α, β, γ) remains invariant.

Conversely, assume that an irreducible pencil Λ of plane curves of degree n contains k curves each splitting into n distinct lines, that is, k completely reducible curves. Let λ_{i} with $1 \leq i \leq k$ be the set of the n lines which are the factors of a completely reducible curve. Then $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ are the components of a k-net embedded in $P G(2, \mathbb{K})$.

3 The invariance of the cross-ratio of a 4-net

Consider a 4-net of order n embedded in $P G(2, \mathbb{K})$ and label their components with λ_{i} for $i=1,2,3,4$. We say that the 4 -net $\lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right)$ has constant cross-ratio if for every point P of λ the cross-ratio $\left(\ell_{1}, \ell_{2}, \ell_{3}, \ell_{4}\right)$ of the four lines $\ell_{i} \in \lambda_{i}$ through P is constant.

Proposition 3.1. Every 4-net in $\operatorname{PG}(2, \mathbb{K})$ has constant cross-ratio.

Proof. In a projective reference system, let $r_{i}=0, w_{i}=0, t_{i}=0, s_{i}=0$ with $1 \leq i \leq n$ be the lines of a 4 -net $\lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right)$ respectively. Then there exist $\alpha, \beta, \gamma \in \mathbb{K}^{*}$ such that (11) holds and $\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime} \in \mathbb{K}$ such that

$$
\begin{equation*}
\alpha^{\prime} r_{1} r_{2} \cdots r_{n}+\beta^{\prime} w_{1} w_{2} \cdots w_{n}+\gamma^{\prime} s_{1} s_{2} \cdots s_{n}=0 \tag{2}
\end{equation*}
$$

As observed in Section 2, the coefficients $\alpha, \beta, \gamma, \alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}$ remain invariant when the reference system is changed. Take a point P of λ and relabel the lines of λ such that $r_{1}=0, w_{1}=0, t_{1}=0$ and $s_{1}=0$ are the four lines of λ passing through P. We temporarily introduce the notation $\left(x_{1}, x_{2}, x_{3}\right)$ for the homogeneous coordinates of a point, and we arrange the reference system in such a way that P coincides with the point $(0,0,1)$, the line $x_{3}=0$ contains no point from λ_{1} or λ_{2} while $r_{1}=x_{1}$ and $w_{1}=x_{2}$. Also, non-homogeneous coordinates $x=x_{1} / x_{3}$ and $y=x_{2} / x_{3}$ can be used so that $r_{1}=x$ and $w_{1}=y$. Note that we have arranged the coordinates so that $r_{i}, w_{i}, t_{i}, s_{i}$ have a zero constant term if and only if $i=1$. Let

$$
\rho=\prod_{i=2}^{n} r_{i}(0,0), \quad \omega=\prod_{i=2}^{n} w_{i}(0,0), \quad \tau=\prod_{i=2}^{n} t_{i}(0,0), \quad \sigma=\prod_{i=2}^{n} s_{i}(0,0)
$$

Observe that

$$
0=\alpha r_{1} \cdots r_{n}+\beta w_{1} \cdots w_{n}+\gamma t_{1} \cdots t_{n}=\alpha \rho x+\beta \omega y+\gamma \tau t_{1}+[\cdots]
$$

where [...] stands for the sum of terms of degree at least 2. From (11),

$$
\frac{\alpha \rho}{\gamma \tau} x+\frac{\beta \omega}{\gamma \tau} y+t_{1}=0
$$

Similarly,

$$
\frac{\alpha^{\prime} \rho}{\gamma^{\prime} \sigma} x+\frac{\beta^{\prime} \omega}{\gamma^{\prime} \sigma} y+s_{1}=0
$$

Therefore, the cross-ratio of the lines of λ passing through P is equal to

$$
\begin{equation*}
\kappa=\frac{\alpha \beta^{\prime}}{\alpha^{\prime} \beta} \tag{3}
\end{equation*}
$$

and hence it is independent of the choice of the point P.
As an illustration of Proposition 3.1 we compute the constant cross-ratio of the known 4-net embedded in the complex plane.

Example 3.2. Let $n=3$, and take a primitive third root of unity ξ. In homogeneous coordinates (x, y, z) of $P G(2, \mathbb{K})$, let

$$
\begin{array}{rlrl}
r_{1} & :=x, & r_{2} & :=y, \\
w_{1} & :=x+y+z, & w_{2} & :=x+\xi y+\xi^{2} z, \\
t_{1} & :=\xi x+y+z, & t_{2} & :=x+\xi y+z, \\
s_{1} & :=\xi^{2} x+y+z, & s_{2} & :=x+\xi^{2} y+z, \\
t_{3} & :=x+y+\xi z, \\
s_{3} & :=x+y+\xi^{2} z .
\end{array}
$$

Then these lines form a 4 -net λ order 3 . Moreover,

$$
\begin{aligned}
t_{1} t_{2} t_{3} & =3(2 \xi+1) r_{1} r_{2} r_{3}+\xi w_{1} w_{2} w_{3}, \\
s_{1} s_{2} s_{3} & =-3(2 \xi+1) r_{1} r_{2} r_{3}+\xi^{2} w_{1} w_{2} w_{3} .
\end{aligned}
$$

Hence, the constant cross-ratio of λ is $\kappa=-1 / \xi$.

4 Some constraints on the constant cross-ratio of a 4-net

It is well known that the cross-ratio of four distinct concurrent lines can take six possible different values depending on the order in which the lines are given. If κ is one of them then $\kappa \neq 0,1$ and these six cross-ratios are

$$
\kappa, \quad \frac{1}{\kappa}, \quad 1-\kappa, \quad \frac{1}{1-\kappa}, \quad \frac{\kappa}{\kappa-1}, \quad 1-\frac{1}{\kappa} .
$$

It may happen, however, that some of these values coincide, and this is the case if and only if either $\kappa \in\{-1,1 / 2,2\}$, or

$$
\begin{equation*}
\kappa^{2}-\kappa+1=0 . \tag{4}
\end{equation*}
$$

Proposition 3.1 says that the cross-ratio of four concurrent lines of a 4 -net takes the above six values for a given $\kappa \neq 0,1$, and each of these values can be considered as the constant cross-ratio of the 4 -net. Now, the problem consists in computing κ. We are able to do it in zero characteristic showing that κ satisfies Equation (4). In positive characteristic there are more possibilities. This will be discussed after proving the following result.
Proposition 4.1. Let λ be a 4-net of order n embedded in $P G(2, \mathbb{K})$. Then the cross-ratio κ of λ is an N-th root of unity of \mathbb{K} such that $N=n(n-1)$ and

$$
\begin{equation*}
(\kappa-1)^{N}=1 \tag{5}
\end{equation*}
$$

Proof. We prove first that $\kappa^{N}=1$. Let $P_{i j}$ be the common point of the lines r_{i} and w_{j} with $1 \leq i, j \leq n$. Then the unique line from λ_{3} through $P_{i j}$ has equation $\sigma_{i j} r_{i}+\tau_{i j} w_{j}$ with $\sigma_{i j}, \tau_{i j} \in \mathbb{K}^{*}$. Moreover, for any $k=1, \ldots, n$ there is a unique index j such that $t_{k}=\sigma_{i j} r_{i}+\tau_{i j} w_{j}$. For every $i=1, \ldots, n$,

$$
\begin{equation*}
\alpha r_{1} \cdots r_{n}+\beta w_{1} \cdots w_{n}+\gamma\left[\left(\sigma_{i 1} r_{i}+\tau_{i 1} w_{1}\right) \cdots\left(\sigma_{i n} r_{i}+\tau_{i n} w_{n}\right)\right]=0 \tag{6}
\end{equation*}
$$

Take a point Q on the line $r_{i}=0$ such that $w_{j}(Q) \neq 0$ for every $1 \leq j \leq n$. Then

$$
w_{1}(Q) \cdots w_{n}(Q)\left(\beta+\gamma \prod_{j=1}^{n} \tau_{i j}\right)=0
$$

yields

$$
\begin{equation*}
-\frac{\beta}{\gamma}=\prod_{j=1}^{n} \tau_{i j} \tag{7}
\end{equation*}
$$

for any fixed index i. The above argument applies to any line w_{j} and gives

$$
\begin{equation*}
-\frac{\alpha}{\gamma}=\prod_{i=1}^{n} \sigma_{i j} \tag{8}
\end{equation*}
$$

for any fixed index j. Therefore,

$$
\begin{equation*}
\left(\frac{\beta}{\alpha}\right)^{n}=\prod_{i=1}^{n} \prod_{j=1}^{n} \frac{\tau_{i j}}{\sigma_{i j}} . \tag{9}
\end{equation*}
$$

A similar argument can be carried out for λ_{4}. The unique line from λ_{4} through $P_{i j}$ has equation $\delta_{i j} r_{i}+\omega_{i j} w_{j}$ with $\delta_{i j}, \omega_{i j} \in \mathbb{K}^{*}$. Then

$$
\begin{equation*}
\left(\frac{\beta^{\prime}}{\alpha^{\prime}}\right)^{n}=\prod_{i=1}^{n} \prod_{j=1}^{n} \frac{\omega_{i j}}{\delta_{i j}} \tag{10}
\end{equation*}
$$

From Lemma 3.1,

$$
\frac{\tau_{i j}}{\sigma_{i j}} \cdot \frac{\delta_{i j}}{\omega_{i j}}=\kappa
$$

for every $1 \leq i, j \leq n$. Then Equations (9) and (10) yield $\kappa^{n}=\kappa^{n^{2}}$ whence

$$
\begin{equation*}
\kappa^{N}=1 \tag{11}
\end{equation*}
$$

From the discussion at the beginning of this section, Equation (11) holds true when κ is replaced with any of the other five cross-ratio values. Therefore, (5) also holds.

In the complex plane, the cross-ratio equation has only two solutions, namely the roots of (4). In fact, let $\kappa=x+y i$ with $x, y \in \mathbb{R}$. Then with respect to the complex norm, (11) and (5) imply $|x+i y|=x^{2}+y^{2}=1$ and $|x-1+i y|=(x-1)^{2}+y^{2}=1$. It hence follows that $\kappa=\frac{1}{2}(1 \pm \sqrt{3} i)$, or equivalently (4).

To extend this result to any field of characteristic zero, and discuss the positive characteristic case, look at

$$
f(X)=\frac{X^{N}-1}{X-1} \text { and } g(X)=\frac{(X-1)^{N}-1}{X}
$$

as polynomials in $\mathbb{Z}[X]$. From the preceding discussion on the complex case, their maximum common divisor is either $X^{2}-X+1$, or 1 according as 6 divides N or does not. In the former case, divide both by $X^{2}-X+1$ and then replace $f(X)$ and $g(X)$ by them accordingly. Now, $f(X)$ and $g(X)$ are coprime, and hence their resultant is a non-zero integer R. Using a basic formula on resultants, see [4, Lemma 2.3], R may be computed in terms of a primitive N-th root of unity ξ, namely

$$
R=\prod_{1 \leq i, j \leq N-1}\left(1+\xi^{i}-\xi^{j}\right), \text { when } 6 \nmid N,
$$

and

$$
R=\prod_{\substack{1 \leq i, j \leq N-1 \\ i, j \neq N / 6,5 N / 6}}\left(1+\xi^{i}-\xi^{j}\right), \text { when } 6 \mid N,
$$

hold in the N-th cyclotomic field $\mathbb{Q}(\xi)$. Therefore, $R \neq 0$ provided that \mathbb{K} has zero characteristic.

Theorem 4.2. Let \mathbb{K} be a field of characteristic 0 . If a 4-net λ is embedded in $P G(2, \mathbb{K})$ then -3 is a square in \mathbb{K} and the constant cross-ratio κ of λ satisfies (4).

To investigate the positive characteristic case, we will use the well known result that $\mathbb{Q}(\xi)$ is a cyclic Galois extension of \mathbb{Q} of degree $\varphi(N)$ where φ is the classical Euler function. Let α be a generator of the Galois group. Then $\alpha(\xi)=\xi^{m}$ for a positive integer m prime to N. Therefore, α permutes the factors in the right hand side. Given such a factor $1+\xi^{i}-\xi^{j}$, its cyclotomic norm

$$
\left\|1+\xi^{i}-\xi^{j}\right\|=\left(1+\xi^{i}-\xi^{j}\right) \cdot\left(1+\xi^{i}-\xi^{j}\right)^{\alpha} \cdot \ldots \cdot\left(1+\xi^{i}-\xi^{j}\right)^{\alpha^{N-1}}
$$

is in \mathbb{Q}. Actually, it is an integer since the factors are algebraic integers. Hence, the prime divisors of R come from the prime divisors of the norms $\left\|1+\xi^{i}-\xi^{j}\right\|$. Therefore, to find an upper bound on the largest prime divisor of R it is enough to find an upper bound on these norms. Obviously,
$\left|\left\|1+\xi^{i}-\xi^{j}\right\|\right| \leq\left|1+\xi^{i}-\xi^{j}\right| \cdot\left|1+\xi^{i m}-\xi^{j m}\right| \cdot \ldots \cdot\left|1+\xi^{i(\varphi(N)-1))}-\xi^{j(\varphi(N)-1))}\right|$.
Since $\left|1-\xi^{i}+\xi^{j}\right| \leq 3$, this shows that $\left|\left\|1+\xi^{i}-\xi^{j}\right\|\right| \leq 3^{\varphi(N)}$. Hence the largest prime divisor of R is at most $3^{\varphi(N)}$. Therefore, the following result is proven.

Theorem 4.3. Let \mathbb{K} be a field of characteristic $p>0$. If $p>3^{\varphi\left(n^{2}-n\right)}$ then Theorem 4.2 holds.

For planes over finite fields, Equations (11) and (5) may provide further non-existence results on embedded 4-nets.

Theorem 4.4. Let $\mathbb{K}=\mathbb{F}_{q}$ be a finite field of order $q=p^{h}$ with p prime. If $p \neq 3$, then there exists no 4-net of order n embedded in $P G\left(2, \mathbb{F}_{q}\right)$ for

$$
\operatorname{gcd}(n(n-1), q-1) \leq 2
$$

Proof. From Equation (11), either $\kappa=1$ and $p=2$ or $\kappa^{2}=1$ and $p>2$. On the other hand, $\kappa \neq 1$. Hence $\kappa=-1$ and $p>2$. Now, Equation (5) yields $p=3$, a contradiction.

The following example shows that the hypothesis $p \neq 3$ in Theorem 4.4 is essential.

Example 4.5. Let $q=3^{r}$, and regard $P G\left(2, \mathbb{F}_{q}\right)$ as the projective closure of the affine plane $A G\left(2, \mathbb{F}_{q}\right)$. The four line sets $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}$ form a 4-net of order q embedded in $A G\left(2, \mathbb{F}_{q}\right)$ where λ_{1} and λ_{2} consist of all horizontal and vertical lines respectively, while λ_{3} and λ_{4} consist of all lines with slope 1 or -1 , respectively. The constant cross-ratio of this 4 -net equals -1 .

5 Nets with more than four components

We prove the non-existence of 5-nets embedded in $P G(2, \mathbb{K})$ over a field \mathbb{K} of characteristic 0 . This result was previously proved by Stipins [10]; see also
[13]. Those authors used results and techniques from Algebraic geometry. Here, we present a simple combinatorial proof depending on Theorem 4.2. Our proof also works in positive characteristic p whenever p is big enough compared to the order n of 4-net; for example, when $p>3^{\varphi\left(n^{2}-n\right)}$ so that Theorem 4.3 holds. However, the non-existence result fails in general. This will be illustrated by means of some examples.

We begin with a technical lemma.
Lemma 5.1. Let A, B, C, D, D^{\prime} be collinear points in $P G(2, \mathbb{K})$ with crossratios $\kappa=(A B C D)$ and $1-\kappa=\left(A B C D^{\prime}\right)$. If (4) holds then $\left(A B D D^{\prime}\right)=$ $-\kappa$.

Proof. Without loss of generality, $A=(1,0,0), B=(0,1,0), C=(1,1,0)$. Then $D=(\kappa, 1,0), D^{\prime}=(1-\kappa, 1,0)$, and the result follows by a direct computation.

Theorem 5.2. If the characteristic of the field \mathbb{K} is either 0 or greater than $3^{\varphi\left(n^{2}-n\right)}$, then there exists no 5 -net of order n embedded in $P G(2, \mathbb{K})$.

Proof. Let $\Lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}\right)$ be a 5 -net of order n embedded in $\operatorname{PG}(2, \mathbb{K})$. Then $\Lambda_{5}=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right), \Lambda_{4}=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{5}\right)$, and $\Lambda_{45}=\left(\lambda_{1}, \lambda_{2}, \lambda_{4}, \lambda_{5}\right)$ are three different 4 -nets and so we can compare their cross-ratios, say

$$
\kappa_{5}=\left(l_{1}, l_{2}, l_{3}, l_{4}\right), \kappa_{4}=\left(l_{1}, l_{2}, l_{3}, l_{5}\right), \kappa_{45}=\left(l_{1}, l_{2}, l_{4}, l_{5}\right),
$$

for five lines from different components and concurrent at a point of Λ. From Proposition 4.1 each of them is a root of the polynomial $X^{2}-X+1$. Since Λ_{5} and Λ_{4} only differ in the last component, $\kappa_{5} \neq \kappa_{4}$. Therefore, $\kappa_{4}=1-\kappa_{5}$. From Lemma 5.1, $\kappa_{45}=-\kappa_{5}$. This shows that κ_{45} is not a root of $X^{2}-X+1$ contradicting Proposition 4.1.

Example 4.5 can be generalized for finite fields \mathbb{F}_{q} with $q=p^{r}$ showing that k-nets arise from affine subplanes of $\operatorname{PG}(2, \mathbb{K})$. Such k-nets have order p^{h} with $h \mid r$. Here, we give further k-nets of p-power order. The construction relies on an idea of G. Lunardon [7]. For the sake of simplicity, we describe the construction in terms of a dual k-net, that is, the components are sets of points such that a line connecting two points of different components hits any third component in precisely one point.

Example 5.3. Let $\mathbb{K}=\mathbb{F}_{q}$ such that $q=r^{s}$ with $s \geq 3$. Take elements $u, v \in \mathbb{F}_{q}$ such that $1, u, v$ are linearly independent over the subfield \mathbb{F}_{r}. Take a basis $\mathbf{b}_{1}, \mathbf{b}_{2}$ of \mathbb{F}_{q}^{2} and put $\mathbf{b}_{0}=u \mathbf{b}_{1}+v \mathbf{b}_{2}$. For any $\alpha \in \mathbb{F}_{r}$, we define the points sets

$$
A_{\alpha}=\left\{\alpha \mathbf{b}_{0}+\lambda \mathbf{b}_{1}+\mu \mathbf{b}_{2} \mid \lambda, \mu \in \mathbb{F}_{r}\right\}
$$

in $A G(2, q)$. Then the A_{α} 's $\left(\alpha \in \mathbb{F}_{r}\right)$ are components of a dual r-net of order r^{2}. In order to see this, take the points

$$
P_{i}=\alpha_{i} \mathbf{b}_{0}+\lambda_{i} \mathbf{b}_{1}+\mu_{i} \mathbf{b}_{2}, \quad i=1,2,3 .
$$

P_{1}, P_{2}, P_{3} are collinear in $A G(2, q)$ if and only if the vectors
$\left(\alpha_{1}-\alpha_{2}\right) \mathbf{b}_{0}+\left(\lambda_{1}-\lambda_{2}\right) \mathbf{b}_{1}+\left(\mu_{1}-\mu_{2}\right) \mathbf{b}_{2}$ and $\left(\alpha_{1}-\alpha_{3}\right) \mathbf{b}_{0}+\left(\lambda_{1}-\lambda_{3}\right) \mathbf{b}_{1}+\left(\mu_{1}-\mu_{3}\right) \mathbf{b}_{2}$
are linearly dependent over \mathbb{F}_{q}. By the definition of \mathbf{b}_{0} and the independence of $\mathbf{b}_{1}, \mathbf{b}_{2}$, (12) is equivalent with

$$
\begin{align*}
& \left(\left(\alpha_{1}-\alpha_{2}\right) u+\lambda_{1}-\lambda_{2}\right)\left(\left(\alpha_{1}-\alpha_{3}\right) v+\mu_{1}-\mu_{3}\right)- \\
& \quad\left(\left(\alpha_{1}-\alpha_{3}\right) u+\lambda_{1}-\lambda_{3}\right)\left(\left(\alpha_{1}-\alpha_{2}\right) v+\mu_{1}-\mu_{2}\right)=0 . \tag{13}
\end{align*}
$$

Sorting by u and v, we obtain

$$
\begin{aligned}
0= & u\left[\left(\alpha_{1}-\alpha_{2}\right)\left(\mu_{1}-\mu_{3}\right)-\left(\alpha_{1}-\alpha_{3}\right)\left(\mu_{1}-\mu_{2}\right)\right] \\
& +v\left[\left(\alpha_{1}-\alpha_{3}\right)\left(\lambda_{1}-\lambda_{2}\right)-\left(\alpha_{1}-\alpha_{2}\right)\left(\lambda_{1}-\lambda_{3}\right)\right] \\
& +\left(\lambda_{1}-\lambda_{2}\right)\left(\mu_{1}-\mu_{3}\right)-\left(\mu_{1}-\mu_{2}\right)\left(\lambda_{1}-\lambda_{3}\right) .
\end{aligned}
$$

The independence of $1, u, v$ over \mathbb{F}_{r} implies the system of equations

$$
\begin{align*}
& 0=\left(\alpha_{1}-\alpha_{2}\right)\left(\mu_{1}-\mu_{3}\right)-\left(\alpha_{1}-\alpha_{3}\right)\left(\mu_{1}-\mu_{2}\right), \tag{14}\\
& 0=\left(\alpha_{1}-\alpha_{3}\right)\left(\lambda_{1}-\lambda_{2}\right)-\left(\alpha_{1}-\alpha_{2}\right)\left(\lambda_{1}-\lambda_{3}\right), \tag{15}\\
& 0=\left(\lambda_{1}-\lambda_{2}\right)\left(\mu_{1}-\mu_{3}\right)-\left(\mu_{1}-\mu_{2}\right)\left(\lambda_{1}-\lambda_{3}\right) . \tag{16}
\end{align*}
$$

With given points $P_{1}, P_{2}, \alpha_{1} \neq \alpha_{2}$, (14) and (15) has the unique solution

$$
\begin{aligned}
& \lambda_{3}=\frac{\lambda_{1}\left(\alpha_{3}-\alpha_{2}\right)+\lambda_{2}\left(\alpha_{1}-\alpha_{3}\right)}{\alpha_{1}-\alpha_{2}}, \\
& \mu_{3}=\frac{\mu_{1}\left(\alpha_{3}-\alpha_{2}\right)+\mu_{2}\left(\alpha_{1}-\alpha_{3}\right)}{\alpha_{1}-\alpha_{2}},
\end{aligned}
$$

which is a solution for (16), as well. This means that the line $P_{1} P_{2}$ hits $A_{\alpha_{3}}$ in the unique point

$$
P_{3}=\frac{\alpha_{3}-\alpha_{2}}{\alpha_{1}-\alpha_{2}} P_{1}+\frac{\alpha_{1}-\alpha_{3}}{\alpha_{1}-\alpha_{2}} P_{2} .
$$

This formula further shows that the constant cross-ratio can take any value in $\mathbb{F}_{r} \backslash\{0,1\}$.

We are able to describe the geometric structure of k-nets $(k \geq 4)$ where one component is contained in a line pencil.

Theorem 5.4. Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right), k \geq 4$, be a k-net of order n embedded in $P G(2, \mathbb{K})$. Assume that the component λ_{1} is contained in a line pencil. Then the following hold.

1. The order of λ is $n=p^{e}$ where $p>0$ is the characteristic of \mathbb{K}.
2. For each component $\lambda_{i}, i>1$, there is an elementary Abelian p-group of collineations acting regularly on the lines of λ_{i}.
3. The components $\lambda_{2}, \ldots, \lambda_{k}$ are projectively equivalent.
4. If any other component is contained in a line pencil then all components are, and the base points of the pencils are collinear.

Proof. It suffices to prove the theorem for $k=4$. We give the proof for the dual k-net by assuming that the component λ_{1} is contained in the line ℓ. Let κ be the constant cross-ratio of $\left(\lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{1}\right)$ and for any point $S \notin \ell$ denote by u_{S} the (S, ℓ)-perspectivity such that for any point P and its image $P^{\prime}=u_{S}(P)$, the cross-ratio of S, P, P^{\prime} and $P P^{\prime} \cap \ell$ is κ. Then, for any $S \in \lambda_{2}, u_{S}$ induces a bijection between λ_{3} and λ_{4}. In particular, λ_{3} and λ_{4} are projectively equivalent. Let $S, T \in \lambda_{2}, S \neq T$, and assume that $u_{S}^{-1} u_{T}$ has a fixed point $R \notin \ell$, that is, $u_{S}(R)=u_{T}(R)=R^{\prime}$. Then, $S, T \in R R^{\prime}$ and with $R^{\prime \prime}=R R^{\prime} \cap \ell$ the cross-ratios $\left(S, R, R^{\prime}, R^{\prime \prime}\right)$, $\left(T, R, R^{\prime}, R^{\prime \prime}\right)$ are equal to κ. This implies $S=T$, a contradiction. This means that for all $S, T \in \lambda_{2}$, $S \neq T$, the collineation $u_{S}^{-1} u_{T}$ is an elation with axis ℓ, and $\left\{u_{S}^{-1} u_{T} \mid S, T \in\right.$ $\left.\lambda_{2}\right\}$ generate an elementary Abelian p-group U of collineations, leaving λ_{3} invariant. Moreover, U acts transitively, hence regularly on λ_{3}. This finishes the proof.

Example 5.5. In Example 5.3, we constructed a dual r-net of order r^{2} in $A G\left(2, r^{s}\right), s \geq 3$. For $P_{1} \in A_{\alpha_{1}}, P_{2} \in A_{\alpha_{2}}$, the line $P_{1} P_{2}$ has direction vectors

$$
(u+\lambda) \mathbf{b}_{1}+(v+\mu) \mathbf{b}_{2} .
$$

These are linearly independent for different choices of $\lambda, \mu \in \mathbb{F}_{r}$, hence they determine r^{2} points at infinity. Let λ_{0} be the set of corresponding infinite points. Then, $\left(\lambda_{0}, \lambda_{1}, \ldots, \lambda_{r}\right)$ is a dual $(r+1)$-net with component λ_{0} contained in a line.

References

[1] A. Blokhuis, G. Korchmáros and F. Mazzocca, On the structure of 3nets embedded in a projective plane, J. Combin. Theory Ser-A. 118 (2011), 1228-1238.
[2] I. Dolgachev, Pencils of plane curves with completely reducible members, Oberwolfach Reports 26/2008, 1436-1438.
[3] M. Falk and S. Yuzvinsky, Multinets, resonance varieties, and pencils of plane curves, Compos. Math. 143 (2007), 1069-1088.
[4] J.W.P. Hirschfeld, G. Korchmáros and F. Torres, Algebraic Curves Over a Finite Field, Princeton Univ. Press, Princeton and Oxford, 2008, $\mathrm{xx}+696 \mathrm{pp}$.
[5] D.R. Hughes and F.C. Piper, Projective Planes, Graduate Texts in Mathematics 6, Springer, New York, 1973, x+291 pp.
[6] G. Korchmáros, G.P. Nagy and N. Pace, 3-nets realizing a group in a projective plane, preprint.
[7] G. Lunardon, Private communication, 2012.
[8] Á. Miguel and M. Buzunáriz, A description of the resonance variety of a line combinatorics via combinatorial pencils, Graphs and Combinatorics 25 (2009), 469-488.
[9] J.V. Pereira and S. Yuzvinsky, Completely reducible hypersurfaces in a pencil, Adv. Math. 219 (2008), 672-688.
[10] J. Stipins, Old and new examples of k-nets in \mathbb{P}^{2}, math.AG/0701046.
[11] G. Urzúa, On line arrangements with applications to 3-nets, Adv. Geom. 10 (2010), 287-310.
[12] S. Yuzvinsky, Realization of finite abelian groups by nets in \mathbb{P}^{2}, Compos. Math. 140 (2004), 1614-1624.
[13] S. Yuzvinsky, A new bound on the number of special fibers in a pencil of curves, Proc. Amer. Math. Soc. 137 (2009), 1641-1648.

Authors' addresses:
Gábor KORCHMÁROS
Dipartimento di Matematica e Informatica
Università della Basilicata
Contrada Macchia Romana
85100 Potenza (Italy)
E-mail: gabor.korchmaros@unibas.it
Gábor P. NAGY
Bolyai Institute
University of Szeged
Aradi vértanúk tere 1
6725 Szeged (Hungary)
E-mail: nagyg@math.u-szeged.hu
Nicola PACE
Inst. de Ciências Matemáticas e de Computação
Universidade de São Paulo
Av. do Trabalhador São-Carlense, 400
São Carlos, SP 13560-970, Brazil
E-mail: nicolaonline@libero.it

[^0]: *the research was performed while the first author was a visiting professor at the Bolyai Institute of University of Szeged during the second semester of the academic year 201112. The visit was financially supported by the TAMOP-4.2.1/B-09/1/KONV-2010-0005 project,
 ${ }^{\dagger}$ the research was supported by the European Union and co-funded by the European Social Fund; project number TAMOP-4.2.2.A-11/1/KONV-2012-0073
 ${ }^{\ddagger}$ the research was supported by FAPESP (Fundação de Amparo a Pesquisa do Estado de São Paulo), proc. no. 12/03526-0.

