
ar
X

iv
:0

80
3.

13
21

v1
 [

cs
.D

S]
 9

 M
ar

 2
00

8

Treewidth computation and extremal combinatorics⋆

Fedor V. Fomin and Yngve Villanger

Department of Informatics, University of Bergen,
N-5020 Bergen,Norway {fedor.fomin,yngve.villanger}@ii.uib.no

Abstract. For a given graph G and integers b, f ≥ 0, let S be a subset of vertices of G of
size b+1 such that the subgraph of G induced by S is connected and S can be separated from
other vertices of G by removing f vertices. We prove that every graph on n vertices contains
at most n

`

b+f

b

´

such vertex subsets. This result from extremal combinatorics appears to be
very useful in the design of several enumeration and exact algorithms. In particular, we use
it to provide algorithms that for a given n-vertex graph G

– compute the treewidth of G in time O(1.7549n) by making use of exponential space and
in time O(2.6151n) and polynomial space;

– decide in time O((2n+k+1

3
)k+1 · n6) if the treewidth of G is at most k;

– list all minimal separators of G in time O(1.6181n) and all potential maximal cliques of
G in time O(1.7549n).

This significantly improves previous algorithms for these problems.

1 Introduction

The aim of exact algorithms is to solve exactly hard problems exponentially faster than brute-
force search. The first papers in the area date back to the sixties and seventies [18, 27]. For the
last two decades the amount of literature devoted to this topic has been tremendous and it is
impossible to give here a list of representative references without missing significant results. Recent
surveys [14, 20, 25, 29] provide a comprehensive information on exact algorithms. It is very natural
to assume the existence of strong links between the area of exact algorithms and some areas of
extremal combinatorics, especially the part of extremal combinatorics which studies the maximum
(minimum) cardinalities of a system of subsets of some set satisfying certain properties. Strangely
enough, there are not so many examples of such links in the literature, and the majority of exact
algorithms are based on the so-called branching (backtracking) technique which traces back to the
works of Davis, Putnam, Logemann, and Loveland [11, 12].

In this paper, we prove a combinatorial lemma which appears to be very useful in the analysis
of certain enumeration and exact algorithms. For a vertex v of a graph G and integers b, f ≥ 0, let
t(b, f) be the maximum number of connected induced subgraphs of G of size b + 1 such that the
intersection of all these subgraphs is nonempty and each such a subgraph has exactly f neighbors
(a neighbor of a subgraph H is a vertex of G \ H which is adjacent to a vertex of H). Then
Combinatorial Lemma states that t(b, f) ≤

(

b+f
b

)

(and it is easy to check that this bound is tight).
This can be seen as a variation of Bollobáss Theorem [7], which is one of the corner-stones in
extremal set theory. (See Section 9.2.2 of [21] for detailed discussions on Bollobáss Theorem and
its variants.)

We use Combinatorial Lemma to obtain faster algorithm for a number of problems related to
the treewidth of a graph. The treewidth is a fundamental graph parameter from Graph Minors
Theory by Robertson and Seymour [24] and it has numerous algorithmic applications, see the
surveys [4, 6]. Despite of the importance of treewidth almost nothing is known on how to cope

⋆ This research was partially supported by the Research Council of Norway.

http://arxiv.org/abs/0803.1321v1

2 Fedor V. Fomin and Yngve Villanger

with its intractability. The problems to compute the treewidth is known to be NP-hard [1] and
the best known approximation algorithm for treewidth has a factor

√
logOPT [13]. It is an old

open question whether the treewidth can be approximated within a constant factor. Treewidth is
known to be fixed parameter tractable. Moreover, for any fixed k, there is a linear time algorithm
due to Bodlaender [3] computing the treewidth of graphs of treewidth at most k. Unfortunately,
huge hidden constants in the running time of Bodlaender’s algorithm are a serious obstacle to its
implementation. For small values of k, the classical algorithm of Arnborg, Corneil and Proskurowski
[1] from 1987 which runs in time O(nk+2) can be used to decide if the treewidth of a graph is at
most k. For example, a modified version of this algorithms has been implemented by Shoikhet and
Geiger [26] to resolve the treewidth of randomly generated graphs of treewidth at most 10 with up
to 100 vertices. The first exact algorithm computing the treewidth of an n-vertex graph is due to
Fomin et al. [15] and has running time O(1.9601n). Later these results were improved in [16, 28]
to O(1.8899n). Both algorithms use exponential space. The fastest polynomial space algorithm for
treewidth prior to this work is due to Bodlaender et al. [5] and runs in time O(2.9512n).

Our results.We introduce a new (exponential space) algorithm computing the treewidth of a graph
G on n vertices in time O(1.7549n) and a polynomial space algorithm computing the treewidth in
time O(2.6151n). We also show that if the treewidth of G is at most k, then it can be computed in
time O((2n+k+1

3)k+1 · n6). For k ≥ 5, this is an improvement over the running time O(nk+2) from
the classical algorithm of Arnborg et al. Running times of all these algorithms strongly depend on
possibilities of fast enumeration of specific structures in a graph, namely, potential maximal cliques,
and minimal separators [5, 8, 9, 15, 28]. Combinatorial Lemma becomes crucial in obtaining new
combinatorial bounds and enumeration algorithms for minimal separators and potential maximal
cliques, which, in turn, provides faster algorithms for treewidth.

Similar improvements in running times from O(1.8899n) to O(1.7549n) can be obtained for a
number of results in the literature on problems related to treewidth (we skip definitions here). For
example, by combining the ideas from [15] it is possible to compute the fill-in of a graph in time
O(1.7549n). Another example are the treelength and the Chordal Sandwich problem [23] which also
can be solved in time O(1.7549n) by making use of our technique.

The remaining part of the paper is organized as follows. In the next section we provide definitions
and preliminary results. In Section 3, we prove our main combinatorial tool, Combinatorial Lemma.
By making use of this tool, in Section 4, we prove combinatorial bounds on the number of minimal
separators and potential maximal cliques and obtain algorithm enumerating these structures. These
results form the basis for all our algorithms computing the treewidth of a graph presented in Sections
5, 6, and 7.

2 Preliminaries

We denote by G = (V,E) a finite, undirected and simple graph with |V | = n vertices and |E| = m
edges. For any non-empty subset W ⊆ V , the subgraph of G induced by W is denoted by G[W].
We say that a vertex set S ⊆ V is connected if G[S] is connected.

The neighborhood of a vertex v is N(v) = {u ∈ V : {u, v} ∈ E} and for a vertex set S ⊆ V we
set N(S) =

⋃

v∈S N(v) \ S. A clique C of a graph G is a subset of V such that all the vertices of
C are pairwise adjacent.

Minimal separators. Let u and v be two non adjacent vertices of a graph G = (V,E). A set of
vertices S ⊆ V is an u, v-separator if u and v are in different connected components of the graph
G[V \S]. A connected component C of G[V \S] is a full component (associated to S) if N(C) = S.
S is a minimal u, v-separator of G if no proper subset of S is an u, v-separator. We say that S is a

Treewidth computation and extremal combinatorics 3

minimal separator of G if there are two vertices u and v such that S is a minimal u, v-separator.
Notice that a minimal separator can be strictly included in another one. We denote by ∆G the set
of all minimal separators of G.

We need the following result due to Berry et al. [2] (see also Kloks et al. [22])

Proposition 1 ([2]). There is an algorithm listing all minimal separators of an input graph G in
O(n3|∆G|) time.

The following proposition is an exercise in [17].

Proposition 2 (Folklore). A set S of vertices of G is a minimal a, b-separator if and only if a
and b are in different full components of S. In particular, S is a minimal separator if and only if
there are at least two distinct full components of S.

Potential maximal cliques. A graphH is chordal (or triangulated) if every cycle of length at least
four has a chord, i.e. an edge between two non-consecutive vertices of the cycle. A triangulation of
a graph G = (V,E) is a chordal graph H = (V,E′) such that E ⊆ E′. H is a minimal triangulation
if for any set E′′ with E ⊆ E′′ ⊂ E′, the graph F = (V,E′′) is not chordal.

A set of vertices Ω ⊆ V of a graph G is called a potential maximal clique if there is a minimal
triangulation H of G such that Ω is a maximal clique of H . We denote by ΠG the set of all potential
maximal cliques of G.

The following result on the structure of potential maximal cliques is due to Bouchitté and
Todinca.

Proposition 3 ([8]). Let K ⊆ V be a set of vertices of the graph G = (V,E). Let C(K) =
{C1(K), . . . , Cp(K)} be the set of the connected components of G[V \K] and let S(K) = {S1(K),
S2(K), . . . , Sp(K)} where Si(K), i ∈ {1, 2, . . . , p}, is the set of those vertices of K which are adjacent
to at least one vertex of the component Ci(K). Then K is a potential maximal clique of G if and
only if:

1. G[V \K] has no full component associated to K, and
2. the graph on the vertex set K obtained from G[K] by completing each Si ∈ S(K) into a clique,

is a complete graph.

The following result is also due to Bouchitté and Todinca.

Proposition 4 ([8]). There is an algorithm that, given a graph G = (V,E) and a set of vertices
K ⊆ V , verifies if K is a potential maximal clique of G. The time complexity of the algorithm is
O(nm).

Treewidth. A tree decomposition of a graph G = (V,E) is a pair (χ, T) in which T = (VT , ET) is a
tree and χ = {χi|i ∈ VT } is a family of subsets of V such that: (1)

⋃

i∈VT
χi = V ; (2) for each edge

e = {u, v} ∈ E there exists an i ∈ VT such that both u and v belong to χi; and (3) for all v ∈ V , the
set of nodes {i ∈ VT |v ∈ χi} forms a connected subtree of T . To distinguish between vertices of the
original graph G and vertices of T , we call vertices of T nodes and their corresponding χi’s bags.
The maximum size of a bag minus one is called the width of the tree decomposition. The treewidth
of a graph G, tw(G), is the minimum width over all possible tree decompositions of G.

An alternative definition of treewidth is via minimal triangulations. The treewidth of a graph
G is the minimum of ω(H) − 1 taken over all triangulations H of G. (By ω(H) we denote the
maximum clique-size of a graph H .)

Our algorithm for treewidth is based on the following result.

Proposition 5 ([15]). There is an algorithm that, given a graph G together with the list of its
minimal separators ∆G and the list of its potential maximal cliques ΠG, computes the treewidth of
G in O(n3 (|ΠG|+ |∆G|) time. Moreover, the algorithm constructs an optimal triangulation for the
treewidth.

4 Fedor V. Fomin and Yngve Villanger

3 Combinatorial Lemma

The following lemma is our main combinatorial tool.

Lemma 1 (Combinatorial Lemma). Let G = (V,E) be a graph. For every v ∈ V , and b, f ≥ 0,
the number of connected vertex subsets B ⊆ V such that

(i) v ∈ B,
(ii) |B| = b+ 1, and
(iii) |N(B)| = f

is at most
(

b+f
b

)

.

Proof. Let v be a vertex of a graph G = (V,E). For b+ f = 0 Lemma trivially holds. We proceed
by induction assuming that for some k > 0 and every b and f such that b + f ≤ k − 1, Lemma
holds. For b and f such that b+ f = k we define B as the set of sets B satisfying (i), (ii), (iii). We
claim that

|B| ≤
(

b+ f

b

)

.

Since the claim always holds for b = 0, let us assume that b > 0.
Let N(v) = {v1, v2, . . . , vp}. For 1 ≤ i ≤ p, we define Bi as the set of all connected subsets B

such that

– Vertices v, vi ∈ B,
– For every j < i, vj 6∈ B,
– |B| = b+ 1,
– |N(B)| = f .

Let us note, that every set B satisfying the conditions of the lemma is in some set Bi for some i,
and that for i 6= j, Bi ∩ Bj = ∅. Therefore,

|B| =
p

∑

i=1

|Bi| (1)

For every i > f + 1, |Bi| = 0 (this is because for every B ∈ Bi, the set N(B) contains vertices
v1, . . . , vi−1 and thus is of size at least f + 1.) Thus (1) can be rewritten as follows

|B| =
f+1
∑

i=1

|Bi| (2)

Let Gi be the graph obtained from G by contracting edge {v, vi} (removing the loop, reduce
double edges to single edges, and calling the new vertex by v) and removing vertices v1, . . . , vi−1.
Then the cardinality of Bi is equal to the number of the connected vertex subsets B of Gi such that

– v ∈ B,
– |B| = b,
– |N(B)| = f − i+ 1.

By the induction assumption, this number is at most
(

f+b−i
b−1

)

and (2) yields that

|B| =
f+1
∑

i=1

|Bi| ≤
f+1
∑

i=1

(

f + b− i

b− 1

)

=

(

b + f

b

)

.

⊓⊔

Treewidth computation and extremal combinatorics 5

The inductive proof of Combinatorial Lemma can be easily turned into recursive enumeration
algorithm (we skip the proof here).

Lemma 2. All vertex sets of size b + 1 with f neighbors in a graph G can be enumerated in time
O(n

(

b+f
b

)

) by making use of polynomial space.

4 Combinatorial bounds

In this section we provide combinatorial bounds on the number of minimal separators and potential
maximal cliques in a graph. Both bounds are the applications of Combinatorial Lemma and will be
used in the algorithmic results in the next sections.

4.1 Minimal separators

Theorem 1. Let ∆G be the set of all minimal separators in a graph G on n vertices. Then |∆G| =
O(1.6181n).

Proof. For 1 ≤ i ≤ n, let f(i) be the number of all minimal separators in G of size i. Then

|∆G| =
n
∑

1

f(i) (3)

Let S be a minimal separator of size αn, where 0 < α < 1. By Proposition 2, S has two full
components C1 and C2. Let us assume that |C1| ≤ |C2|. Then |C1| ≤ (1− α)n/2. By the definition
of a full component, we have N(C1) = S. Thus f(αn) is at most the number of connected sets C
of size at most (1−α)n/2 with neighborhoods of size |N(C)| = αn. Hence, to bound f(αn) we can
use Combinatorial Lemma for every vertex of G.

By Lemma 1, for every vertex v, the number of full components of size b + 1 = (1 − α)n/2
containing v and with neighborhoods of size αn is at most

(

b+ 1 + αn

b

)

≤
(

(1 + α)n/2

b

)

.

Therefore

f(αn) ≤ n ·
(1−α)n/2

∑

i=1

(

i+ αn

i

)

< n ·
(1−α)n/2

∑

i=1

(

(1 + α)n/2

i

)

(4)

For α ≤ 1/3, we have

(1−α)n/2
∑

i=1

(

(1 + α)n/2

i

)

< 2(1+α)n/2 < 22n/3 < 1.59n,

and thus

n/3
∑

i=1

f(i) = O(1.59n) (5)

For α ≥ 1/3,

(1−α)n/2
∑

i=1

(

(1 + α)n/2

i

)

< (1− α)n/2 ·
(

(1 + α)n/2

(1− α)n/2

)

< n ·
(

(1 + α)n/2

(1 − α)n/2

)

,

6 Fedor V. Fomin and Yngve Villanger

and thus

f(αn) < n2 ·
(

(1 + α)n/2

(1 − α)n/2

)

.

By making use of the fact that the number of subsets of size β · n of a set of size n is of size
O∗((β−β · (1− β)β−1)n)1 and computer, one can show that

n3

(

(1 + α)n/2

(1− α)n/2

)

= O(1.6181n).

Therefore,

n
∑

i=n/3

f(i) = O(1.6181n) (6)

Finally, the theorem follows from (3),(5) and (6). ⊓⊔

4.2 Potential maximal cliques

Definition 1 ([8]). Let Ω be a potential maximal clique of a graph G and let S ⊂ Ω be a minimal
separator of G. We say that S is an active separator for Ω, if Ω is not a clique in the graph obtained
from G by completing all the minimal separators contained in Ω, except S. A potential maximal
clique Ω containing an active separator (for Ω) is called a nice potential maximal clique.

We need the following result by Bouchitté and Todinca.

Proposition 6 ([9]). Let Ω be a potential maximal clique of G = (V,E), let u be a vertex of G,
and let G′ = G[V \ {u}]. Then one of the following holds:

1. Either Ω, or Ω \ {u} is a potential maximal clique of G′;
2. Ω = S ∪ {u}, where S is a minimal separator of G;
3. Ω is a nice potential maximal clique.

Let Πn be the maximum number of nice potential maximal cliques that can be contained in a
graph on n vertices. Proposition 6 is useful to bound the number of potential maximal cliques in a
graph by the number of minimal separators ∆G and Πn.

Lemma 3. For any graph G = (V,E), |ΠG| ≤ n(n|∆G|+Πn).

Proof. Let v1, v2, ..., vn be an ordering of V and let Vi =
⋃i

j=1 vj . The proof of the lemma follows
from the following claim ΠG[Vi+1] ≤ ΠG[Vi]+n|∆G|+Πn which can be proved by making inductive
use of Proposition 6. ⊓⊔

Definition 2. Let Ω ∈ ΠG, v ∈ Ω, and Cv be the connected component of G[V \ (Ω \ {v})]
containing v. We call the pair (Cv, v) by vertex representation of Ω.

Lemma 4. Let (Cv , v) be a vertex representation of Ω. Then Ω = N(Cv) ∪ {v}.
1 To suppress polynomially bounded factors we use a modified big-Oh notation. For functions f and g we
write f(n) = O∗(g(n)) if f(n) = O(g(n)poly(n)), where poly(n) is a polynomial.

Treewidth computation and extremal combinatorics 7

Proof. By Proposition 3, every vertex u ∈ Ω\{v}, is either adjacent to v, or there exists a connected
component C of G[V \ Ω] such that u, v ∈ N(C). Since C ⊂ Cv, we have that Ω \ {v} ⊆ N(Cv).
Every connected component C of G[V \Ω] that contains v ∈ N(C) is contained in Cv andN(C) ⊂ Ω
for every C, therefore Ω \ {v} = N(Cv). ⊓⊔

We need also the following result from [28].

Proposition 7 ([28]). Let Ω be a nice potential maximal clique of size αn in a graph G. There

exists a vertex representation (Cv, v) of Ω such that |Cv| ≤ ⌈ 2(1−α)n
3 ⌉.

Now everything is settled to apply Combinatorial Lemma.

Lemma 5. The number of nice potential maximal cliques in a graph G = (V,E) is O(1.7549n).

Proof. By Proposition 7, for every nice potential maximal clique Ω of cardinality αn, there exists
a vertex representation (Cv, v) of Ω such that |Cv| ≤ ⌈2n(1 − α)/3⌉. Let b + 1 be the number of
vertices in Cv. By Lemma 1, for every vertex v, the number of such pairs (Cv, v) is at most

2(1−α)n/3
∑

i=1

(

(2 + α)n/3

i

)

As in the proof of Theorem 1, one can compute that the value of the above sum, and thus the
number of nice potential maximal cliques, is O(1.7549n). ⊓⊔

By combining Lemma 3, 5 and Theorem 1 we arrive at the main result of this subsection.

Theorem 2. For any graph G, |ΠG| = O(1.7549n).

5 Exponential space exact algorithm for treewidth

To compute the treewidth of a graph we want to use Proposition 5. To be able to do this we should
list minimal separators and potential maximal cliques. While by Proposition 1 and Theorem 1, all
minimal separators can be listed in time O(1.6181n), we have to explain here how to list potential
maximal cliques.

Lemma 6. For any graph G, all potential maximal cliques of G can be listed in time O(1.7549n).

Proof. The algorithm listing potential maximal cliques has two phases. First it generates all nice
potential maximal cliques (and here again we use Combinatorial Lemma). In the second phase by
making use of Proposition 6, we generate potential maximal cliques from minimal separators and
the nice ones.

Generating nice potential maximal cliques. For every vertex v and 0 < α < 1 we generate all nice
potential maximal cliques of size αn containing vertex v. By Lemma 4, to generate all such potential
maximal cliques it is sufficient to generate all their vertex representations. By Proposition 7, we
can restrict our search to vertex representations of size at most ⌈2n(1 − α)/3⌉. For every vertex
representation C, we have that |N(C) ∪ {v}| = αn (the set N(C) ∪ {v} should form a potential
maximal clique). For each such subset we use Proposition 4 to check if N(C) ∪ {v} is a potential
maximal clique.

So finally, the problem of generating all nice potential maximal cliques boils down to the following
problem: List all connected sets B such that |B| ≤ ⌈2n(1−α)/3⌉ and |N(B)∪{v}| ≤ αn. By plugging

8 Fedor V. Fomin and Yngve Villanger

into algorithmic version of Combinatorial Lemma (Lemma 2) b ≤ ⌈2n(1 − α)/3⌉ − 1 and f = αn,
we obtain that for each 0 < α < 1 all nice potential maximal cliques of size αn can be listed in time

O(n

2(1−α)n/3
∑

i=1

(

(2 + α)n/3

i

)

) (7)

By using Combinatorial Lemma for each value of α and by bounding the sum as in the proof
of Lemma 5, we end up with an algorithm that lists all nice potential maximal cliques in time
O(1.7549n).

Generating potential maximal cliques. First we generate all minimal separators and all potential
maximal cliques that can be obtained from a minimal separator by adding one vertex. Then we list
all nice potential maximal cliques. As we already have shown, all these sets can be listed in time
O(1.7549n).

Let v1, v2, ..., vn be an ordering of V and let Vi =
⋃i

j=1 vj . By Proposition 6, every potential
maximal clique Ω in G[Vi+1] that is not yet listed (i.e. is not obtained by adding a vertex to a
minimal separator or which is not nice) is either also potential maximal clique in G[Vi] or obtained
from a potential maximal clique in G[Vi] by adding vi+1. Thus by performing dynamic programming
one can list all remaining potential maximal cliques in time O(1.7549n). ⊓⊔

As an immediate corollary of Proposition 1 and Lemma 6, we have the following result

Theorem 3. The treewidth of a graph on n vertices can be computed in time O(1.7549n).

6 Computing treewidth at most k

In this section we show how Combinatorial Lemma can be used to refine the classical result of
Arnborg et al. [1].

By Proposition 5, the treewidth of a graph can be computed in O(n3 (|ΠG|+ |∆G|)) time if the
list of all minimal separators ∆G and the list of all potential maximal cliques ΠG for the graph is
given. Actually, the results of Proposition 5 can be strengthened (with almost the same proof as in
[16]) as follows. Let ∆G[k] be the set of minimal separators and let ΠG[k] be the set of potential
maximal cliques of size at most k.

Lemma 7. Given a graph G with sets ∆G[k] and ΠG[k+1], it can be decided in time O(n3 (|ΠG[k+
1]|+ |∆G[k]|)) if the treewidth of G is at most k. Moreover, if the treewidth of G is at most k, an
optimal tree decomposition can be constructed within the same time.

By Lemma 2 and Equation (4),

|∆G[k]| ≤ n ·
(n−k)/2
∑

i=1

(

(n+ k)/2

i

)

) ≤ n2 ·
(

(n+ k)/2

k

)

) (8)

and to list all vertex subsets containing all separators from ∆G[k] in time O(n2 ·
(

(n+k)/2
k

)

)). For
each such a subset one can check in time O(n2) if it is a minimal separator or not, and thus all

minimal separators of size at most k can be listed in time O(n4 ·
(

(n+k)/2
k

)

).
Let Πn[k] be the maximum number of nice potential maximal cliques of size at most k that can

be in a graph on n vertices. By (7),

|Πn[k]| ≤ n ·
(2(n−k))/3

∑

i=1

(

(2n+ k)/3

i

)

≤ n2 ·
(

(2n+ k)/3

k

)

,

Treewidth computation and extremal combinatorics 9

and by making use of Proposition 4, all nice potential maximal cliques of size at most k can be
listed in time O(n5 ·

(

(2n+k)/3
k

)

).
Finally, we use nice potential maximal cliques and minimal separators of size k to generate all

potential maximal cliques of size at most k.

Lemma 8. For every graph G on n vertices, |ΠG[k]| ≤ n(|∆G[k]|+Πn[k]) and all potential maximal

cliques of G of size at most k can be listed in time O(n6 ·
(

(2n+k)/3
k

)

).

Proof. Let v1, v2, ..., vn be an ordering of V and let Vi =
⋃i

j=1 vj . By Proposition 6 and Lemma
3, every potential maximal clique of G[Vi] either is a nice potential maximal clique of G[Vi], or
is a potential maximal clique of G[Vi−1], or is obtained by adding vi to a minimal separator or
a potential maximal clique of G[Vi−1]. This yields that |ΠG[k]| ≤ n(|∆G[k]| + Πn[k]). To list all
potential maximal cliques, for each i, 1 ≤ i ≤ n, we list all minimal separators and nice potential
maximal cliques in G[Vi]. This can be done in time O(n6 ·

(

(2n+k)/3
k

)

). The total number of all such

structures is at most n3 ·
(

(2n+k)/3
k

)

. By making use of dynamic programing, one can check if adding
vi to a minimal separator or potential maximal clique of G[Vi−1] creates a potential maximal clique
in G[Vi], which by Proposition 4 can be done in time O(n3). Thus dynamic programming can be

done in O(n6 ·
(

(2n+k)/3
k

)

) steps. ⊓⊔
Now putting Lemma 7, Lemma 8 and Equation (8) together, we obtain the main result of this

section.

Theorem 4. There exists an algorithm that for a given graph G and integer k ≥ 0, either computes
a tree decomposition of G of the minimum width, or correctly concludes that the treewidth of G is
at least k + 1. The running time of this algorithm is O(n6 ·

(

(2n+k+1)/3
k+1

)

) = O(n6 · (2n+k+1
3)k+1) .

7 Polynomial space exact algorithm for treewidth

The algorithm used in Proposition 1 requires exponential space because it is based on dynamic
programming which keeps a table with all potential maximal cliques. As a consequence of that, our
time O(1.7549n) algorithm computing treewidth also uses space O(1.7549n).

When restricting to polynomial space, we cannot store all minimal separators and potential
maximal cliques. Thus the idea to compute the treewidth of a graph in polynomial space is to
search for a “central” potential maximal clique or a minimal separator in the graph which can
safely be completed into a clique. Similar idea is used in [5], however the improvement in the
running time of our algorithm, is due to the following lemma and the technique used for listing
minimal separators. Both results are, again, based on Combinatorial Lemma.

Lemma 9. For a given graph G = (V,E) and 0 < α < 1, one can list in time O(mn2 ·2n(1−α)) and
polynomial space all potential maximal cliques of G such that for every potential maximal clique Ω
from this list, there is a connected component of G[V \Ω] of size at least αn.

Proof. Let Ω be a potential maximal clique satisfying the conditions of the lemma, and let C be the
connected component of size at least αn. By Proposition 3, N(C) is a minimal separator containing
in Ω and Ω \ N(C) 6= ∅. Let (Cu, u) be a vertex representation of Ω, where u ∈ Ω \ N(C). Since
u is not adjacent to any vertex in C, we have that Cu ∩ C = ∅. Thus to find Ω, we try to find its
vertex representation by a connected vertex set such that the closed neighborhood of this set is of
size at most n(1− α). By the Combinatorial Lemma, the number of such sets is at most

n ·
n(1−α)
∑

i=1

(

n(1− α)

i

)

= n · 2n(1−α)

10 Fedor V. Fomin and Yngve Villanger

and by Lemma 2, all these sets can be listed in O(n · 2n(1−α)) steps and within polynomial space.
Finally, for each set we use Lemma 4 and Proposition 4 to check in time O(mn) if the set is a
potential maximal clique. ⊓⊔

We also use the following result which is a slight modification of the result from [5], where it is
stated in terms of elimination orderings.

Proposition 8 ([5]). For a given graph G = (V,E) and a clique K ⊂ V , there exists a polynomial
space algorithm, that computes the optimum tree decomposition (χ, T) of G, subject to the condition
that the vertices of K form a bag which is a leaf of T . This algorithm runs in time O∗(4n−|K|).

Theorem 5. The treewidth of a graph G = (V,E) can be computed in O(2.6151n) time and poly-
nomial space.

Proof. It is well known (and follows from the properties of clique trees of chordal graphs), that
there is an optimal tree decomposition (χ, T), {χi : i ∈ VT }, T = (VT , ET), of G, where every bag is
a potential maximal clique [8, 10, 19]. Among all the bags of χ, let χi be a bag such that the largest
connected component of G[V \ χi] is of minimum size, i.e. χi is a bag with the minimum value of

max{|C| : C is a connected component of G[V \ χi]},

where minimum is taken over all bags of χ. Let Ci be the connected component of G − χi of
maximum size.

Our further strategy depends on the size of |Ci|. Let us assume first that |Ci| < 0.38685n. In this
case, by Lemma 9, the set of potential maximal cliques S such that for every Ω ∈ S the maximum
size of a component of G[V \Ω] is |Ci|, can be listed in time O(mn2 ·2n−|Ci|) and polynomial space.
Since χi ∈ S, we have that there is a potential maximal clique Ω ∈ S such that tw(GΩ) = tw(G),
where GΩ is obtained from G by turning Ω into a clique. The treewidth of GΩ is equal to the
maximum of minimum width of decompositions of GΩ[C ∪Ω] with Ω forming a leaf bag, where C
is a connected component of GΩ[V \Ω]. Let us remind that the size of each such component is at
most |Ci|.

By Proposition 8, the optimum width of GΩ[C∪Ω] for every connected component C of GΩ[C∪
Ω] (and with Ω forming a leaf bag) can be computed in O∗(4|C|) = O∗(4|Ci|), time and thus the
treewidth of G can be found in time

O∗(2n−|Ci| · 4|Ci|) = O∗(2(1−0.38685)n · 40.38685n) = O(2.6151n).

Thus if |Ci| < 0.38685n, we compute the treewidth of G, and the running time of this polynomial
space procedure is O(2.6151n).

Let us consider the case |Ci| ≥ 0.38685n. For each connected component C of G[V \ χi], there
exists a bag χi′ ⊂ N(C) ∪ C and a minimal separator S = χi ∩ χi′ in χi that separates C from
the rest of the graph. Let S = χi ∩ χj be the separator in χi that separates Ci from the rest of the
graph. Let GS be the graph obtained from G by turning S into a clique. Then tw(GS) = tw(G). To
compute the treewidth of GS we compute the minimum width of decompositions of GS [C ∪S] with
S forming a leaf bag, where C is a connected component of GS [V \S], and then take the maximum
of these values.

By the definition of χi, there exists a connected component Cj of G[V \χj], such that |Cj | ≥ |Ci|.
By Proposition 3, χj 6⊆ χi. Thus χj \χi 6= ∅, and the size of every connected component in G[Ci\χj]
is at most |Ci| − 1. Furthermore, since S = χi ∩ χj , we have that every connected component of
G[Ci \ χj] is also a connected component of G[V \ χj]. This yields that Cj ∩Ci = ∅ and that both
Ci and Cj are full connected components of G[V \ S]. Thus |Cj |+ |Ci| ≤ n− |S|. Every connected

Treewidth computation and extremal combinatorics 11

component of G[V \S], except Ci, is a connected component of G[V \χj]. Because |Ci| ≤ |Cj |, this
implies that Cj is the largest component of G[V \ S]. Both Ci and Cj contain at least 0.38685n
vertices, thus the size of S is at most n(1 − 2 · 0.38685) = 0.2263n. By the algorithmic version of
Combinatorial Lemma, all sets of such size (and which form the neighborhood of a set of size |Ci|)
can be listed in polynomial space and time

O(nm ·
0.2263n
∑

p=1

(|Ci|+ p

p

)

).

By Proposition 8, we can compute the minimum width of decompositions of GS [C ∪ S] with S
forming a leaf bag, where C is a connected component of GS [V \ S], in time

O∗(4|C|) = O∗(4|Cj|)

and polynomial space. Because |Cj | ≤ n− |S| − |Ci|, we have that for |S| = p,

O∗(4|Cj|) = O∗(4n−|Ci|−p).

Thus to compute the treewidth of GS (and the treewidth of G), we list all sets S and for each
such a set we use Proposition 8 for all graphs GS [C ∪ S]. The running time of this procedure is

O∗(

0.2263n
∑

p=1

(|Ci|+ p

p

)

· 4n−|Ci|−p).

By Vandermonde’s identity, we have that

(|Ci|+ p

p

)

=

p
∑

k=0

(

0.38685n+ p

k

)(|Ci| − 0.38685n

k

)

<

p
∑

k=0

(

0.38685n+ p

k

)

2|Ci|−0.38685n.

Thus

0.2263n
∑

p=1

(|Ci|+ p

p

)

· 4n−|Ci|−p <

0.2263n
∑

p=1

p
∑

k=0

(

0.38685n+ p

k

)

2|Ci|−0.38685n · 4n−|Ci|−p

≤ p ·
0.2263n
∑

p=1

(

0.38685n+ p

p

)

· 22((1−0.38685)n−p) = O(2.6151n)

To conclude, if |Ci| ≥ 0.38685n, we compute the treewidth of G in polynomial space within
O(2.6151n) steps. ⊓⊔

Acknowledgement. We are grateful to Saket Saurabh for many useful comments.

References

1. S. Arnborg, D. G. Corneil, and A. Proskurowski, Complexity of finding embeddings in a k-tree,
SIAM J. Algebraic Discrete Methods, 8 (1987), pp. 277–284.

2. A. Berry, J. P. Bordat, and O. Cogis, Generating all the minimal separators of a graph., Int. J.
Found. Comput. Sci., 11 (2000), pp. 397–403.

12 Fedor V. Fomin and Yngve Villanger

3. H. L. Bodlaender, A linear-time algorithm for finding tree-decompositions of small treewidth., SIAM
J. Comput., 25 (1996), pp. 1305–1317.

4. H. L. Bodlaender, A partial k-arboretum of graphs with bounded treewidth, Theoretical Computer
Science, 209 (1998), pp. 1–45.

5. H. L. Bodlaender, F. V. Fomin, A. M. C. A. Koster, D. Kratsch, and D. M. Thilikos, On
exact algorithms for treewidth., in ESA, vol. 4168 of LNCS, Springer, 2006, pp. 672–683.

6. H. L. Bodlaender and A. M. C. A. Koster, Combinatorial Optimization on Graphs of Bounded
Treewidth, The Computer Journal, to appear.

7. B. Bollobás, On generalized graphs, Acta Math. Acad. Sci. Hungar., (1965), pp. 447–452.
8. V. Bouchitté and I. Todinca, Treewidth and minimum fill-in: Grouping the minimal separators,

SIAM J. Comput., 31 (2001), pp. 212–232.
9. , Listing all potential maximal cliques of a graph., Theor. Comput. Sci., 276 (2002), pp. 17–32.

10. P. Buneman, A characterization of rigid circuit graphs, Discrete Math., 9 (1974), pp. 205–212.
11. M. Davis, G. Logemann, and D. Loveland, A machine program for theorem-proving, Comm. ACM,

5 (1962), pp. 394–397.
12. M. Davis and H. Putnam, A computing procedure for quantification theory, J. Assoc. Comput. Mach.,

7 (1960), pp. 201–215.
13. U. Feige, M. T. Hajiaghayi, and J. R. Lee, Improved approximation algorithms for minimum-weight

vertex separators., in STOC, ACM press, 2005, pp. 563–572.
14. F. Fomin, F. Grandoni, and D. Kratsch, Some new techniques in design and analysis of exact

(exponential) algorithms, Bulletin of the European Association for Theoretical Computer Science, 87
(2005), pp. 47–77.

15. F. V. Fomin, D. Kratsch, and I. Todinca, Exact (exponential) algorithms for treewidth and mini-
mum fill-in., in ICALP, vol. 3142 of LNCS, Springer, 2004, pp. 568–580.

16. F. V. Fomin, D. Kratsch, I. Todinca, and Y. Villanger, Exact algorithms for treewidth and
minimum fill-in, SIAM J. Comput., (accepted).

17. M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980.
18. M. Held and R. M. Karp, A dynamic programming approach to sequencing problems, Journal of

SIAM, 10 (1962), pp. 196–210.
19. C.-W. Ho and R. C. T. Lee, Counting clique trees and computing perfect elimination schemes in

parallel, Inform. Process. Lett., 31 (1989), pp. 61–68.
20. K. Iwama, Worst-case upper bounds for k-SAT, Bulletin of the European Association for Theoretical

Computer Science, 82 (2004), pp. 61–71.
21. S. Jukna, Extremal combinatorics With applications in computer science, Springer-Verlag, Berlin, 2001.
22. T. Kloks and D. Kratsch, Listing all minimal separators of a graph., SIAM J. Comput., 27 (1998),

pp. 605–613.
23. D. Lokshtanov, On the complexity of computing treelength, in MFCS, vol. 4708 of LNCS, Springer,

2007, pp. 276–287.
24. N. Robertson and P. D. Seymour, Graph minors. II. Algorithmic aspects of tree-width, Journal of

Algorithms, 7 (1986), pp. 309–322.
25. U. Schöning, Algorithmics in exponential time, in STACS, vol. 3404 of LNCS, Springer, 2005, pp. 36–

43.
26. K. Shoikhet, and D. Geiger, A practical algorithm for nding optimal triangulations, Nat. Conf. on

Articial Intelligence (AAAI), Morgan Kaufmann, 1997, pp. 185 190.
27. R. E. Tarjan and A. E. Trojanowski, Finding a maximum independent set, SIAM Journal on

Computing, 6 (1977), pp. 537–546.
28. Y. Villanger, Improved exponential-time algorithms for treewidth and minimum fill-in., in LATIN,

vol. 3887 of LNCS, Springer, 2006, pp. 800–811.
29. G. Woeginger, Exact algorithms for NP-hard problems: A survey, in Combinatorial Optimization -

Eureka, you shrink!, vol. 2570 of LNCS, Springer-Verlag, Berlin, 2003, pp. 185–207.

